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Abstract 
We introduce a family of local inhomogeneous mark-weighted summary statistics, of 
order two and higher, for general marked point processes. Depending on how the 
involved weight function is specified, these summary statistics capture different kinds of 
local dependence structures. We first derive some basic properties and show how 
these new statistical tools can be used to construct most existing summary statistics for 
(marked) point processes. We then propose a local test of random labelling. This 
procedure allows us to identify points, and consequently regions, where the random 
labelling assumption does not hold, e.g. when the (functional) marks are spatially 
dependent. Through a simulation study we show that the test is able to detect local 
deviations from random labelling. We also provide an application to an earthquake point 
pattern with functional marks given by seismic waveforms.  

Keywords: earthquakes; functional marked point process; local envelope test; 
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1 Introduction 

The analysis of a point pattern, given as a collection of points in a region, 

typically begins with computing an estimate of some summary statistic which 

may be used to find specific structures in the data and suggest suitable models 

(Chiu et al., 2013; Daley and Vere-Jones, 2008; Gelfand et al., 2010; Illian 

et al., 2008; Van Lieshout, 2000)  

The choice of summary statistic depends both on the pattern at hand and on the 

feature or hypothesis of interest.  

A widely used summary statistic for descriptive analyses and diagnostics, which 

is obtained as an instance of the so-called reduced second moment measure 

(Cressie and Collins, 2001; Chiu et al., 2013; Møller, 2003), is Ripley’s K-function 

(Ripley, 1976), which is based on the assumption of a non-marked stationary and 

isotropic point process. In the marked case, assuming discrete marks and 

stationarity, cross versions of the K- or nearest neighbour distance distribution 

functions have been proposed (Diggle, 2013). For real-valued marks, the mark 

correlation type-functions in Penttinen and Stoyan (1989); Illian et al. (2008) are 

widely used and such second order statistics have been studied in more detail 

and reformulated by Schlather (2001), in order to obtain a more rigorous 

formulation. However, although the assumption of stationarity is mathematically 

appealing, it can rarely be justified in practice since the intensity tends to change 

over the study region. This is to say that the underlying point process is 

inhomogeneous and, in the unmarked case, Baddeley et al. (2000) proposed an 

inhomogeneous extension of the K-function for a class of point processes, which 

are referred to as second order intensity-reweighted stationary. Their ideas were 

extended to spatio-temporal point processes in Gabriel and Diggle (2009); Møller 

and Ghorbani (2012). Further, Møller and Waagepetersen (2003) proposed an 

extension of this K-function to second order intensity-reweighted stationary 

multivariate point processes. As indicated in Cronie and van Lieshout (2016) and 

Iftimi et al. (2019), this structure may be extended to K-functions for general 
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marked point processes. To analyse higher order interactions in general 

stationary marked point processes, Van Lieshout (2006) proposed marked 

versions of the nearest neighbour distance distribution functions, the empty 

space function and the J-function. These summary statistics, which allow us to 

study spatial interactions between different mark groupings of the points, were 

later extended to the inhomogeneous setting by Cronie and van Lieshout (2016) 

and Iftimi et al. (2019). In particular, to test for random labelling, Cronie and van 

Lieshout (2016) proposed inhomogeneous Lotwick-Silverman-type Monte Carlo 

tests based on their new summary statistics, while Iftimi et al. (2019) proposed 

second order Monte Carlo tests based on permuting the attached marks. Further 

details on the random shift-type testing considered in Lotwick-Silverman-type 

tests can be found in Mrkvička et al. (2021).  

Despite the relatively long history of point process theory (see 

e.g. Diggle, 2013; Stoyan and Stoyan, 1994; Daley and Vere-Jones, 2008), few 

approaches have been proposed to analyse spatial point patterns where the 

features of interest are functions/curves instead of qualitative or quantitative 

variables. Examples of point patterns with associated functional data include 

forest patterns where for each tree we have a growth function, curves 

representing the incidence of an epidemic over a period of time, and the 

evolution of distinct economic parameters such as unemployment and price 

rates, all for distinct spatial locations. The study of such configurations allows 

analysing the effects of the spatial structure on individual functions. Illian 

et al. (2006) consider for each point a transformed Ripley (1976)’s K-function to 

characterise spatial point patterns of ecological plant communities, whilst Mateu 

et al. (2007) build new marked point processes formed by spatial locations and 

curves defined in terms of Local Indicators of Spatial Association (LISA) 

functions, which describe local characteristics of the points. They use this 

approach to classify and discriminate between points belonging to a clutter and 

those belonging to a feature. Finally, the idea of analysing point patterns with 
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attached functions has been presented coherently by Comas 

et al. (2011); Ghorbani et al. (2021).  

Ghorbani et al. (2021) introduced a very broad framework for the analysis of 

Functional Marked Point Processes (FMPPs), indicating how they connect the 

point process framework with both Functional Data Analysis (FDA; Ramsay and 

Silverman (2002)) and geostatistics. In particular, they defined a new family of 

summary statistics, so-called weighted n-th order marked inhomogeneous K-

functions, together with their non-parametric estimators, which they exploited to 

analyse Spanish population structures, such as demographic evolution and sex 

ratio over time. This summary statistic family can be used to run a Monte Carlo 

test of random labelling, e.g. by means of global envelopes test (GET; Myllymäki 

et al. (2017)), to assess whether the functional marks of the analysed pattern are 

spatially dependent. However, this procedure is essentially global, since it does 

not provide information on the points which mostly contributed to the rejection of 

the random labelling hypothesis. Therefore, motivated by the need of detecting 

such points, and thus the regions in which they are located, where the functional 

marks really do depend on the surrounding structure, in this paper we introduce a 

new class of summary statistics, local t-weighted marked n-th order 

inhomogeneous K-functions. These are used to propose a local test of random 

labelling. Here t refers to a function which governs how much weight we put on 

different aspects of the marked point process/pattern.  

Further, we use the developed tools to analyse seismic data. Note that while the 

spatial (and temporal) locations of the epicenters of earthquakes are typically 

analysed within the framework of point processes, the associated seismic 

waveforms are commonly investigated in separate analyses through FDA. 

Applying the local test allows us to identify where one would expect waveforms 

(i.e. functional marks) to be similar to those of nearby points.  
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All the performed analyses are carried out through the R Core Team (2022) 

software, and the codes are available from the first author. Preliminary data 

manipulation is performed through the software Python (Van Rossum and 

Drake Jr, 1995).  

The structure of the paper is as follows. In Section 2, the motivation of this paper 

is presented, showing the dataset and problem that will be further analysed along 

the paper. Section 3 contains some preliminaries on functional marked point 

processes. In Section 4, we present our proposed local t-weighted n-th order 

inhomogeneous K-functions and their main properties, also relating them to their 

global counterparts. Section 5 outlines the main steps to run a local test of 

random labelling. In Section 6, we present a motivating example to show the 

further advantages of a local test, compared to a global one. To have a 

comprehensive understanding of the performance of the proposed local test, we 

show simulation results under different scenarios. Section 7 provides an 

application to seismic data. Finally, conclusions are drawn in Section 8.  

2 Data and motivation  

Earthquakes’ detection provides a whole set of data which are usually studied 

separately, i.e. spatial (and temporal) occurrence of points through point process 

theory (Siino et al. (2017); Iftimi et al. (2019); D’Angelo et al. (2022), to cite just a 

few recent works), and the analysis of waveforms through FDA (Adelfio 

et al., 2011, 2012; Chiodi et al., 2013).  

A recently released set of data on Italian seismic activity encompasses both of 

these data types. The Italian seismic dataset for machine learning (INSTANCE) 

is a dataset of seismic waveforms data and associated metadata (Michelini 

et al., 2021), which includes 54008 earthquakes for a total of 1159249 3-channel 

waveforms. It also contains 132330 3-channel noise waveforms. For each of 

these waveforms, 115 metadata (i.e. statistical variables) are available, providing 

information on station, trace, source, path and quality. Overall, the data are 
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collected by 19 networks which consist of 620 seismic stations. The dataset is 

available on http://www.pi.ingv.it/instance/.  

The earthquake list in the dataset is based on the Italian seismic bulletin 

(http://terremoti.ingv.it/bsi) of the “Istituto Nazionale di Geofisica e Vulcanologia”, 

includes events which occurred between January 2005 and January 2020, and in 

the magnitude range between 0.0 and 6.5. The waveform data have been 

recorded primarily by the Italian National Seismic Network. Figure 1 (a) - (b) 

depict the earthquake locations and the seismic stations which recorded the 

events.  

In Figure 1 (c), some waveforms contained in the dataset are represented. All the 

waveform traces have a length of 120 seconds, are sampled at 100 Hz, and are 

provided both in counts and ground motion physical units after deconvolution of 

the instrument transfer functions. The waveform dataset is accompanied by 

metadata consisting of more than 100 variables providing comprehensive 

information on the earthquake source, the recording stations, the trace features, 

and other derived quantities.  

3 Preliminaries on marked point processes 

Throughout the paper, we consider a marked point process 1{( , )}N

i i iY x m 
 (Daley 

and Vere-Jones, 2008, Definition 6.4.1), with ground points xi in the d-

dimensional Euclidean space , 1d d  , which is equipped with the Lebesgue 

measure 
| | d

A
A z   for Borel sets ( )dA ; a closed Euclidean r-ball around 

dx  will be denoted by [ , ]b x r . By definition, the ground process 1{ }N

g i iY x 
, 

obtained from Y by ignoring the marks, is a well-defined point process on 
d
 in 

its own right. Note that, formally, Y is a random element in the measurable space 

( , )lfN
 of locally finite point configurations/patterns 

1 1{(( , ), , ( , ))}, 0n nx m x m n  x
 (Daley and Vere-

Jones, 2008; Van Lieshout, 2000). We assume that the mark space  is Polish 
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and equipped with a finite reference measure ν on the Borel σ-algebra ( ) . 

The Borel σ-algebra ( ) ( ) ( )d d    is endowed with the product 

measure | | ( ), ( )dA E A E A E    . We will let 

( , )

( ) {( , ) }
x m Y

Y A E x m A E


    1

, where 1  is the indicator function, denote the 

cardinality of the random set ( )Y A E  . We assume that Y is simple, that is, it 

almost surely (a.s.) does not contain multiple points in the sense that 

( ({( , )}) 0 or 1) 1P Y x m    for all ( , ) dx m   .  

Given this general setup, one may obtain various forms of marked point 

processes, most notably multivariate/multitype point processes with {1, , }k   

(Diggle, 2013) and functional marked point processes with  given by a 

suitable function space (Ghorbani et al., 2021).  

3.1 Functional Marked Point Processes 

In this section, we provide the definition of functional marked point processes 

following Ghorbani et al. (2021).  

In classical FDA, one analyses a collection of functions 

1{ ( ), , ( )}, [0, ), 1nf t f t t n    
, which take values in some Euclidean space 

, 1k k  , and belong to some suitable function space, typically an L2-space. 

Although t usually represents time, it could also represent some other quantity, 

for example, spatial distance. Classically, one would assume that such a 

collection of functions constitute realisations or samples of some collection of 

independent and identically distributed (iid) random functions or stochastic 

processes 1{ ( ), , ( )},nF t F t t 
. Such an assumption may, however, be 

questioned in certain settings. For example, two functions fi and fj, which are 

spatially close to each other in 
k
, could gain (or lose) from being close to each 

other. Accordingly, it seems natural to relax the iid assumption for 1, , NF F
. A 

natural way to handle such a scenario is to generate 1, , NF F
 conditionally on 
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some collection of (dependent) random spatial locations. Note that the 

conditional distribution of 1, , NF F
 could render them either independent or 

dependent.  

To facilitate such a setting, we consider a functional marked point process 

(Ghorbani et al., 2021), which is defined as a marked point process where the 

marks are random elements in some (Polish) function space, , most notably 

the space of L2-functions : kf  . Realisations of FMPPs are called 

functional marked point patterns. It is noteworthy that the original formal 

construction of functional marked point processes by Ghorbani et al. (2021) also 

included an additional non-functional mark, so that each ground process point 

would be marked by a pair which consists of a function and a non-functional 

variable. We here do not consider such auxiliary non-functional marks.  

3.2 Product densities 

Provided that it exists, the n-th order intensity/product density function 
( ) , 1n n  , 

which is the density of the n-th order factorial moment measure 
( )n , may be 

specified through the n-th order Campbell formula. It states that, for any non-

negative measurable function h on ( )d n , the expectation of the random 

sum of h satisfies  

1 1

1 1

( , ), ,( , )

( )

1 1 1 1

1

(( , ), , ( , ))

(( , ), , ( , )) (( , ), , ( , )) d ( ),

n n

n n

x m x m Y

n
n

n n n n i i

i

h x m x m

h x m x m x m x m x dm 



 



 
  

 

  



 

 (1) 

where   indicates that the sum is over n-tuples of distinct points of Y. 

Heuristically, 
( )

1 1 1 1(( , ), , ( , ))d ( ) d ( )n

n n n nx m x m x dm x dm  
 gives the probability 

that Y has points in infinitesimal neighbourhoods 
( , ) ( , ) d

i i i id x m x m  
 with 

measures 
d ( ), 1, ,i ix dm i n  

. Moreover, we retrieve 
( )

1 1(( ) ( )), ( ) ( ), 1, ,n d

n n i iA E A E A E i n         
, by letting h be given 

Acc
ep

te
d 

M
an

us
cr

ipt



by the indicator function 1 1 1 1{( , ) ( ), , ( , ) ( )}n n n nx m A E x m A E    1
. It further 

follows that  

1

( ) ( )

1 1 , , 1 1(( , ), , ( , )) ( , , ) ( , , ),
n

n n

n n x x n g nx m x m f m m x x      

where 
( )n

g  is the n-th order product density of Yg and 1 , , (·)
nx xf   is a conditional 

density function on 
n

 which governs the joint distribution of n marks, given that 

their associated ground process points are given by 1, , d

nx x 
. These, in turn, 

yield the corresponding mark distributions  

1

1
1

, ,

1 , , 1

1

( , , ) ( , , ) ( ),n

n
n

n
x x

n x x n i
E E

i

M E E f m m dm





      

which govern the joint distribution on n marks, given the associated ground 

process locations.  

The intensity measure of Y, which coincides with the first order factorial moment 

measure, here satisfies  

( ) [ ( )] ( , )d ( )

( ) ( )d ( ) ( ) ( )d ,

A E

x

x g g
A E A

A E Y A E x m x dm

f m x x dm M E x x

  

  

   

 

 

  
 (2) 

where the first order intensity functions 
(1)   and 

(1)

g g 
 are typically referred 

to as the intensity functions of Y and Yg. Note that ρ may be viewed as a “heat 

map” which reflects the infinitesimal chance of having a point of Y at/around an 

arbitrary location in 
d  . When the intensity function (of the ground process) 

is constant, we say that the (ground) process is homogeneous, otherwise it is 

called inhomogeneous.  

When, conditional on the ground process, all marks have the same marginal 

univariate distribution, so that 
( ) ( )d ( ) ( )d ( ) ( )z

z
E E

M E f m dm f m m M E     , we 

say that X has a common (marginal) mark distribution. This holds e.g. when Y is 
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stationary, i.e. when its distribution is invariant under translations of the ground 

points; here 
( ) ( ) | |gA E M E A  

 and 
0g 

 is the constant intensity of the 

ground process. We will see that, at times, it is particularly convenient to have 

here that the reference measure ν coincides with the common mark distribution 

M, which implies that the common mark density f is set to 1 and 
( , ) ( )gx m x 

.  

When Y is independently marked, i.e. when the marks are independent 

conditional on the ground process, 1 1, , 1 1( , , ) ( ) ( )
n nx x n x x nf m m f m f m  

 for any 

1n   and if, in addition, there is a common mark distribution, whereby the marks 

are iid conditional on the ground process, we say that Y is randomly labelled and 

note that 1 , , 1 1( , , ) ( ) ( )
nx x n nf m m f m f m  

.  

3.2.1 Intensity reweighted stationarity 

We next turn to the notion of a k-th order marked intensity reweighted stationary 

(k-MIRS) marked point process Y (Ghorbani et al., 2021). We say that Y is k-

MIRS, {1,2, }k   , if ρ is bounded away from 0 and the correlation functions  

1

1

( )

1 1

( )( )
, , 1 11 1

1 1 1 1

(( , ), , ( , ))

( , , ) ( , , )(( , ), , ( , ))
, 1,

( , ) ( , ) ( ) ( ) ( ) ( )

n

n

n

n n

nn
x x n g nn n

n n x x n g g n

g x m x m

f m m x xx m x m
n

x m x m f m f m x x



   



 

 
  

 

satisfy 
( ) ( )

1 1 1 1(( , ), , ( , )) (( , ), , ( , ))n n

n n n ng x m x m g z x m z x m    
 for any 

dz   and 

any n k . Note that 
(1) (·) 1g   and that the second ratio on the right hand side is 

the n-th order correlation function, 
( )n

gg
, of the ground process. Provided that the 

product densities of all orders exist, stationarity implies k-MIRS for all orders 

1k  . Note further that 
( ) (·) 1, 1ng n  , for a Poisson process and when 

( )

1 1(( , ), , ( , )) 1n

n ng x m x m 
 points of Yg in infinitesimal neighbourhoods of 1, , nx x

 

with marks in infinitesimal neighbourhoods of 1, , nm m
 tend to cluster/aggregate. 

Similarly, 
( )

1 1(( , ), , ( , )) 1n

n ng x m x m 
 indicates inhibition/regularity.  
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3.3 Palm distributions 

Let Y be a simple marked point process whose intensity function exists. Many of 

the summary statistics we will consider can be expressed in terms of reduced 

Palm distributions. These satisfy the reduced Campbell–Mecke formula which 

states that, for any non-negative measurable function h on the product space 

( )d

lfN 
,  

!( , )

( , )

!( , )

(( , ), \{( , )}) [ (( , ), )] ( , )d ( )

[ (( , ), )] ( , )d ( ).

x m

z m Y

x m

h z m Y z m h x m Y x m x dm

h x m Y x m x dm

 

 



 
 

 



 



 (3)  

Here 
!( , )x mY  is the reduced Palm process at ( , ) dx m   , which we interpret 

as Y conditioned on the null event that there is a point in (x, m), which is removed 

upon realisation. The probability distribution 
!( , ) !( , ) !( , )(·) ( ·) ( ·)x m x m x mP Y Y     on 

( , )lfN
, which corresponds to 

!( , )x m
, is called the reduced Palm distribution at 

(x, m).  

4 Local weighted marked summary statistics 

Global summary statistics have had a prominent role in the statistical analysis of 

point processes. More precisely, their non-parametric estimators are typically 

used to characterise the degree of spatial interaction present in the underlying 

data-generating point process. In Section 1, we have reviewed a few such 

examples, for instance K-functions.  

The individual contributions to a global statistic, which are commonly called Local 

Indicators of Spatial Association (LISA) functions, can be used to identify outlying 

components measuring the influence of each contribution to the global statistic 

(Anselin, 1995). This is the case of the scatter plot based on the local Moran 

index (Anselin, 1996). On the other hand, the individual contributions can be 

used to test for specific local structures, such as spatial association and hot spot 
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detection in areal data (Getis and Ord, 1992). Basically, the local statistics 

mentioned so far are often used to analyse areal data but Getis and 

Franklin (1987) introduced a local version of the K-function for spatial point 

processes to show that trees exhibit different kinds of heterogeneity when 

examined at different scales of analysis. The notion of individual functions for 

certain statistics has also been studied in Stoyan and Stoyan (1994) and Mateu 

et al. (2010) showed that the local product density function (Cressie and 

Collins, 2001) is more sensitive to identifying different local structures and 

unusual points than the local K-function. Applications of LISA functions range 

from detection of features in images with noise (Mateu et al., 2007) to detection 

of disease clusters (Moraga and Montes, 2011). In Siino et al. (2018) the authors 

extend local indicators of spatial association to the spatio-temporal context 

(LISTA functions) based on the second order product density, and these local 

functions have been used to define a proper statistical test for clustering 

detection. Recently, LISTA functions have been used both for diagnostic (Adelfio 

et al., 2020) and fitting purposes (D’Angelo et al., 2023). Finally, D’Angelo 

et al. (2021) extended LISTA functions to spatio-temporal point processes living 

on linear networks.  

As we have clearly indicated, an alternative to studying the aforementioned 

global summary statistics for marked point processes is considering local 

summary statistics which describe the spatial interaction in the vicinity of a given 

marked point. In order to do so here in the marked context, we introduce the 

function  

1 1 1 1

1 1 1 1

( , ), ,( , ) 1 1 1 1

(( , ), ( , ), , ( , ))
(( , ), ) (( , ), ; , ) ,

( , ) ( , ) ( , )
n n

n n
n

x m x m n n

t x m x m x m
L x m L x m t

x m x m x m


  
 



 

   


  

x

x x  (4) 

for ( , ) dx m   , point pattern lfNx
, and measurable : ( )d nt   , 

2n  . Note that, formally, the argument   does not need to be the true intensity 

function ρ of Y, it could e.g. be a plug-in estimator. We will exploit Definition 1, 
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and thereby (4), to define proper notions of (mark-weighted n-th order 

inhomogeneous) local summary statistics.  

Definition 1. Given a marked point process Y, we refer to 

(( , ), {( , )}; , ), ( , )L x m Y x m t x m Y  , as the family of n-th order local marked 

cumulative summary statistics of Y associated with t  and  .  

The construction of a specific local statistic is obtained by identifying when, for 

some function family 
{ }rt ,  

( , )

( , ) (( , ), {( , )}; , )n r

x m Y

G r Y L x m Y x m t 


   (5) 

forms an estimator of an existing global summary statistic.  

Using n-th order local marked cumulative summary statistics to quantify local 

spatial interactions for a point pattern x entails inserting an estimate 

ˆˆ ˆ( , ) ( ) ( )z gx m f m x 
 for the unknown intensity 

( , ) ( ) ( )z gx m f m x 
, i.e. setting 

ˆ  . When we assume that there is a common mark distribution which 

coincides with the mark reference measure ν, we obtain that 
ˆ ˆ( , ) ( )gx m x 

, 

i.e. the intensity estimate does not depend on the mark values. Imposing this 

assumption is particularly convenient when dealing with functional marks since 

estimation of the mark density, which here is a density on a function space, is 

rather challenging and beyond the scope of this paper. Note that when Y is 

randomly labelled, it has a common mark distribution and in this setting the 

assumption 
ˆ ˆ( , ) ( )gx m x 

 thus makes sense.  

Turning to the distributional properties of the n-th order local marked cumulative 

summary statistics, we next derive their expectations under the assumption of k-

MIRS. Note, in particular, that the choice of t  plays a significant role here.  
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Theorem 1. When Y is k-MIRS and   , for any ( )dW   the expectation of 

(( , ), {( , )} ; , ), ( , )L x m Y x m W t x m Y W     , is almost everywhere given 

by  

1 1

1 1

1 1 1 1

0, , , 1 1 ( )

1 1 1 1 1 1

0 1 1
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x x n
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when 2 n k  . Moreover, the expectation of ( , )G r Y W   is obtained by 

replacing t  by rt  in the expression above and integrating it over W   with 

respect to the reference measure on 
d  .  

Proof. Note first that the expectation coincides with  

1 1 1 1
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Hence, our starting point will be the reduced Campbell-Mecke formula. Consider 

an arbitrary bounded ( )dA E   . It follows that  
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On the other hand, by the Campbell formula we have that  Acc
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by the imposed k-MIRS and a change of variables, i iu x x 
. Hence, since 

( )dA E    was arbitrary, for almost every (x, m) we have that  

1

!( , )

1 1 1 1
( ) ( )

( )

1 1 1 1 1 1 1 1

1 1 1 1

0, , ,

[ (( , ), ; , )]

(( , ), ( , ), , ( , ))

((0, ), ( , ), , ( , ))d ( ) d ( )

(( , ), ( , ), , ( , ))(

n

x m

n

n n
W x W x

n

n n n n

n n
W x W x

u u

L x m Y t

t x m u x m u x m

g m u m u m u dm u dm

t x m u x m u x m

f



 

 
   

   

 
 





    

 

    



 

   

1

1 1

1 1 ( )

1 1 1 1 1 1

0 1 1

( , , , )
( ) ( ) (0, , , )d d ,

( ) ( ) ( )
)

n

n n

n g n n

u u n

m m m
dm dm g u u u u

f m f m f m
 





  





 

by Fubini’s theorem. □  

The first thing we note is that when Y is independently marked then the density 

ratio in the expression for the expectation vanishes. In addition, if Y is a Poisson 

process on 
d   which satisfies being a marked point process with mark 

space , then the expectation reduces to an integral with t  as integrand. 

These observations may be used as benchmarks for when Y exhibits mark 

(in)dependence and spatial interaction locally.  

4.1 Special cases 

We next illustrate how (5), through Definition 1 and (4), reduces to several 

existing summary statistic estimators by varying t  and  .  
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4.1.1 Ground K-functions 

First, set n = 2 and t  to 1 1 1 1(( , ),( , )) ( , ) { }/ | |, 0rt x m x m w x x x x C W r   1
, where 

, | | 0dW W  , and (·)w  is an edge correction term. If the ground process is 

stationary with intensity 
0g 

 and 
( , ) gx m 

, then (5) with Y set to Y W   

reduces to an estimator of Ripley’s K-function when [0, ] [ , ]x C x b r b x r     

whereas if the ground process is inhomogeneous and we set 
( , ) ( )gx m x 

, it 

follows that (5) reduces to an estimator of the inhomogeneous K-function 

(Baddeley et al., 2000) for Yg. The extension to space-time is straightforward; 

replace the Euclidean ball [0, ]b r  by 
1{( , ) :|| || ,| | } ( )dC x s x r s t     , where ||·||  

denotes the Euclidean norm (Cronie and Van Lieshout, 2015; Gabriel and 

Diggle, 2009; Iftimi et al., 2019).  

4.1.2 Marked K-functions 

When n = 2, by instead letting 

1 1 1 1 1 1 1(( , ),( , )) ( , ) { } { , }/ (| | ( ) ( ))rt x m x m w x x x x C m E m E W E E     1 1
 and    in 

(4), using a suitable edge correction function (·)w , then ( , )G r Y W   in (5) 

reduces to an estimator of the marked second order reduced moment measure 

1 ( )
EE

C  of Iftimi et al. (2019), which measures the intensity reweighted 

interactions between points with marks in E and points with marks in E1, when 

their separation vectors belong to ( )dC  . We note that measures of this kind 

are in general not symmetric, i.e. 
1 1(·) (·)EE E E  (Iftimi et al., 2019). 

Furthermore, choosing C to be the closed origin-centred ball [0, ]b r  of radius 

0r  , we consider the marked inhomogeneous K-function 
1 ( )

EE

inhomK r
 of Cronie and 

van Lieshout (2016), which measures pairwise intensity reweighted spatial 

dependence within distance r between points with marks in E and points with 

marks in E1.  

By additionally letting n > 2, we obtain a definition of a marked n-th order reduced 

moment measure, 

1
1

1 1( )
n
i iE E

nC C



 
, which measures the intensity 
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reweighted spatial interaction between an arbitrary point with mark in E and 

distinct ( 1)n  -tuples of other points, where the separation vectors between the 

E-marked point and these n – 1 points, which have marks in 1 1, , nE E 
, belong to 

1 1, , nC C 
. We note that 

[0, ], 1, , 1, 0iC b r i n r    
, yields an n-point version of 

the marked inhomogeneous K-function 

1
1 ( )

n
i iE E

inhomK r



 of Cronie and van 

Lieshout (2016), which may be used to analyse intensity reweighted interactions 

between a point with mark in E and n – 1 of its r-close neighbours, which have 

marks belonging to the respective sets 1 1, , nE E 
.  

4.1.3 Weighted marked reduced moment measures and K-functions 

Finally, by letting    and 1 1 1 1(( , ),( , ), , ( , ))n nt x m x m x m 
 be given by the product 

of  

1

1 1 1 1

1

1

1 1 1 1

1

{ }{ }
( , , , ) ( , , , ) ,

( ) ( )

( , , , ) ( , , , ) { ( )},

n
i i

n n

i i

n

n n i i

i

m Em E
t m m m t m m m

E E

w x x x w x x x x x C

 



 





 




  

    





11

1

 (6)  

for ( ), ( ) 0E E  , and 

( ) ( ) ( ), ( ) 0, 1, , 1d d

i i iC E E i n        
, we obtain an unbiased 

estimator 

1
1

1 1( ) ( , )
n
i iE E

t nC C G r Y W



    
 of the t-weighted marked n-th 

order reduced moment measure of Ghorbani et al. (2021),  

1
1

1 1 1 1

1 1

1 1

1
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1 1

 (7)  

assuming that the edge correction function w is such that unbiasedness holds. 

Examples of such w include the minus sampling edge correction and the 
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translational edge correction (Ghorbani et al., 2021). Note here that one just as 

well could have merged the scaled indicators in the expression for t  with t so 

that t t ; Ghorbani et al. (2021) included this mark set filtering to highlight that 

their summary statistic generalises previously proposed ones.  

4.2 Local t-weighted marked n-th order inhomogeneous K-function 

In this section, we provide the estimator corresponding to the local contributions 

of (7) and discuss its properties.  

Definition 2. Let t  be (up to indicator-scaling) as in (6) and consider  

1
1

1 1 1 1

( , )

1 1

1 11

( , ), ,( , ) {( , )}

1

1

1 1

1

( ) (( , ), {( , )} ; , )

1
( , , , )

( , ) ( ) ( )

{ } { }
( , , , ) , ( , ) ,

( , )

n
i i

n n

x m E

t n n

nn

x m x m Y x m W
i

i

n
i i i i

n

i i i

C C L x m Y x m W t

w x x x

x m E E

x x C m E
t m m m x m Y W

x m



  






 









   









     

  

  
    





1 1

 (8) 

for some suitable edge correction w in (6), ( ), ( ), ( ) 0dW E E   , and 

( ), ( ) 0, 1, , 1d

i i iC E E i n      
. We refer to 

1 1
1 1( , ) ( , )

1( ) ( [0, ] ), 0
n n
i i i ix m E x m E

n
t tr b r r

 
  

  , as a local t-weighted marked n-th order 

inhomogeneous K-function. In particular, 

1( , ) ( , )

, ( ) ( )
nx m x m

t n tr r


  does not 

perform any explicit mark set filtering.  

Note first that when there is a common mark distribution which coincides with the 

reference measure on , setting    we, for instance, obtain  

1 1 1 1

( , )
1 1 1 1

,

( , ), ,( , ) {( , )} ( [ , ] ) 1 1

( , , , ) ( , , , )
( )

( ) ( ) ( )
n n

x m
n n

t n

x m x m Y x m b x r W g g g n

t m m m w x x x
r

x x x  
 



 

     

 
   

since ν must be a probability measure here.  
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Regarding the distributional properties of (8), when Y is k-MIRS, Theorem 1 tells 

us that the expectation is given by  

1 1

1 1
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1 1
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1

 

In particular, under independent marking the mark related integral within brackets 

reduces to 1 1
1 1 1 1( , , , ) ( ) ( )

n
n n

E E
t m m m dm dm 


  

, whereby (8) is given by the 

product of this term and a term measuring intensity reweighted spatial 

interaction.  

4.2.1 Test functions for FMPPs 

Turning to the FMPP case, by choosing different test functions (·)t  for the 

functional marks, we may extract different features. We here focus on pairwise 

interactions, i.e. n = 2.  

The test function t is intended to reflect similarities between functions. Hence, a 

natural starting point would be a metric 1 2 1 2( , ) ( , )t f f d f f
 on the function space 

, which does not necessarily need to be the underlying assumed metric on 

. The first candidate that comes to mind is an Lp-distance:  

 
1/

1 2 1 2( , ) | ( ) ( ) | d , 1 ,
p

b
p

a
t f f f t f t t p      (9) 

where p    represents the supremum metric. For any choice of p in (9), 

similarity between functions implies a small value of the test function. Other 

tentative functions are semi-metrics based on the Lp distance between the s-th 

derivatives of the functions, for different combinations of p and s, with the L1 and 
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L2 distances being particular cases, and semi-metrics based on functional 

principal component analysis.  

A further alternative is the functional marked counterpart of the test function for 

the classical variogram, given by  

1 2 1 2( , ) ( ( ) ( ))( ( ) ( ))d ,
b

a
t f f f t F t f t F t t    (10) 

with 1

( ) (1/ ) ( )
n

i

i

F t n f t


 
 being the average functional mark at time t for the 

observed functional part of the point pattern; such averaging is motivated by the 

assumption of a common mark distribution.  

5 Local test for random labelling 

Simple hypotheses for spatial point patterns, such as Complete Spatial 

Randomness, are commonly tested using an estimator of a global summary 

statistic, e.g., Ripley’s K-function. In this context, one typically resorts to Monte 

Carlo testing. The first step is then to generate Q simulations under the null 

hypothesis, and to estimate the chosen summary statistic for both the observed 

pattern and the simulations. In order to study whether there is random labelling in 

a (functional) marked point process, the simulations are obtained by permuting 

the (functional) marks, that is, randomly assigning them to the spatial points of 

the ground pattern, which are kept fixed. Then, the chosen summary statistic is 

estimated for each of these permutations and global envelopes at a given 

nominal level are generated based on them. The result of the test can be 

assessed graphically: if the summary statistic estimate for the observed pattern 

exits the envelopes, we proceed with the assumption that the underlying FMPP is 

not randomly labelled. Furthermore, it is possible to calculate a p-value based on 

the position of the observed summary statistic within the qth envelopes, following 

Myllymäki et al. (2017). We know, however, that the conclusion drawn from the 

application of the above-mentioned global test pertains to the whole analysed 
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process, indicating whether all the functional marks are randomly labelled or not. 

Motivated by the will to further detect the specific points, and regions, where the 

functional marks really do depend on the other marked points, we propose a 

local test for random labelling. The main idea is to run a global envelope test on 

each point of the analysed pattern by means of the previously proposed local t-

weighted marked inhomogeneous K-functions, to draw different conclusions 

about the individual points, based on the obtained p-values. In Algorithm 1 we 

outline the proposed local test. Note that we alternatively may use sampling 

without replacement in step 5 of Algorithm 1. Moreover, if convinced that multiple 

testing issues are present here, one may adjust the type I error probability α by 

using e.g. the Holm-Bonferroni method.  

Algorithm 1 Local test of random labelling 

1: Set a fixed nominal value α for type I error;  

2: Consider a (functional) marked point pattern 1{( , )} , 1k

j j jx m k x
;  

3: Set a number of simulations, 1Q  ;  

4: for each 1, ,q Q  : do  

5: Randomly sample k (functional) marks, with replacement, from the original k 

ones;  

6: Denote the resulting point pattern by 1{( , )}q k

q j j jx m x
;  

7: end for  

8: for each 1, ,j k  , do  

9: Compute 

1
1( , )

( , )

[0, ]{ ( ; )}
q n

j j i i

max

x m E
j q

tn q r rL r



 x
 for all 1, ,q Q  ;  
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10: Apply global envelope testing, using the functions 
( , ) , 1, ,j q

nL q Q 
, to 

generate the envelopes;  

11: Obtain a p-value pj from the test;  

12: Reject the null hypothesis for the jth point if jp 
.  

13: end for  

6 Motivating example and simulation study 

This section is dedicated to simulation studies to assess the performance of our 

proposed local test. First, section 6.1 provides a motivating example of the use of 

such a test, by means of simulated data resembling seismic events, which in turn 

have motivated this work. In particular, this means simulating the functional 

marks as seismic waveforms, following the typical abrupt change in variance of 

the signal in correspondence with the arrivals of the first P- and S-waves. Then, 

section 6.2 presents an extensive simulation study, showing diverse and more 

general settings. Specifically, we assess the performance of the test by 

summarising the results in terms of classification rates.  

6.1 The need for a local test 

We simulate a homogeneous spatial point pattern with 250 points on the unit 

square, [0,1] [0,1]W   , which represents the ground pattern. For each ground 

point xi, we simulate a functional mark of the from  

2

2

( ) ( ) ( ) ( ), [0,1],

( ) ~ (0, ( ) ),

( ) 0.2 7.5 { 0.4} 5 { 0.6},

if t y t t t t

t N t

t t t







    

    1 1

 

where the mean signal ( )t  is taken to be zero. The spatial ground point pattern 

and the corresponding waveform for a given point are shown in Figure 2(a)-(b). 

Since the marks/waveforms are simulated from the same model, and 
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independently of each other and the spatial locations of the points, we see that 

such a process is indeed randomly labelled.  

Having generated the data, we first run a global envelope test for random 

labelling, by randomly permuting the simulated waveforms, i.e. the functional 

marks, keeping the location of the points fixed. We run the test by means of the t-

weighted marked n-th order inhomogeneous K-function of Ghorbani et al. (2021), 

with n = 2, making it a second order summary statistic, and t given by the test 

function (10), i.e. the functional marked counterpart of the test function for the 

classical variogram. As previously mentioned, we assume that there is a 

common mark distribution which coincides with the reference measure on the 

mark space so that the intensity function is estimated by the ground process 

intensity estimate. To be as objective as possible, we do not use the 

homogeneous intensity estimator 
ˆ (·) ( )/ | |g gY W W 

 here but instead we use a 

kernel intensity estimator, as in practice it would be unknown to us whether the 

actual ground process is (in)homogeneous. We use a Gaussian kernel intensity 

estimator 
ˆ (·)g , where we select the bandwidth, h, according to Cronie and 

Van Lieshout (2018). More specifically, we minimise the discrepancy between 

the area of the observation window and the sum of reciprocal estimated intensity 

values at the points of the point pattern, i.e. we minimise 

2ˆ( ) (| | 1/ ( ; ))g i

i

CvL h W x h 
, where the sum is taken over all the data points xi 

and 
ˆ ( ; )g ix h

 is the kernel intensity estimate with bandwidth h, evaluated in xi. 

Then, once the bandwidth has been selected, the intensity estimate is corrected 

for edge effects through global edge correction (the option diggle=FALSE in the 

spatstat function density.ppp), i.e. dividing the estimate by the convolution of 

the Gaussian kernel with the window of observation (Diggle, 1985). Finally, for w 

we use Ripley’s isotropic edge correction in the summary statistic to correct for 

edge effects. We repeated the procedure 39 times, obtaining the result depicted 

in Figure 2(c). We stress that our approach seems to be robust with respect to 

Acc
ep

te
d 

M
an

us
cr

ipt



the bandwidth specification in this particular scenario setting, i.e. the choice of 

bandwidth selection approach plays a minor role in the final result.  

As evident from Figure 2(c), the observed summary statistic completely lies 

within the envelopes, and this confirms the expected result of lack of spatial 

dependence/structure of the functional marks. This result is further corroborated 

by the non-significant p-value, equal to 0.25.  

6.1.1 Simulating spatially dependent functional marks 

To make the functional marks spatially dependent, we then superimpose a 

homogeneous spatial point pattern with 50 points, generated in the 

[0,0.5] [0,0.5]  square, i.e. the bottom left region of the entire study region W. For 

these additional points, we generate different functional marks than before, 

namely with the underlying trend 
( ) 10 6sin(3 )tt z  

. Consequently, we have 

simulated a FMPP with spatially varying functional marks, i.e. not random 

labelled. We therefore expect a global test of random labelling to confirm this.  

We first run the same global test of random labelling as before. Here, the K-

function is based on a kernel intensity estimate whose bandwidth is selected by 

Diggle (2013)’s rule. It represents a good alternative to Cronie and 

Van Lieshout (2018)’s one, being slightly faster to compute. We use Q = 39 and 

obtain a global p-value of 0.025. This, together with the observed K-function lying 

outside the envelopes (Figure 3(a)), indicates the ability of the global test to 

correctly detect the spatial dependence of the functional marks.  

We know, however, that this conclusion should not be drawn for each point of the 

pattern, if we consider local restrictions of it, but specifically for those in the 

vicinity of the [0,0.5] [0,0.5]  square. We therefore proceed by running our 

proposed local test, based on the proposed second order local K-function 
( , )

,2 ( ), [0, ]
x m

t maxr r r
, in Definition (2), with the same choice of test function (·)t  

and the same intensity estimation scheme as for the global one. Figure 3(b) 
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depicts the points of the simulated point pattern, and it displays as black triangles 

those points for which the local test came out significant. Hence, this illustrates 

that the proposed local test is able to correctly identify some of the points, and 

consequently some parts of the region, where the hypothesis of random labelling 

does not hold locally. Note that a universally preferable option for rmax does not 

exist. In this paper, it is set to 
min( , ) / 4W Wx y

, where xW and yW represent the 

maximum width and height of the observation region W, respectively; note that 

this rule of thumb is supported by Diggle (2013). Indeed, changing the value of 

rmax has an impact on the final results, and we found that our choice provided the 

best compromise among the options.  

6.2 Extended simulation study 

This section aims to study the proposed method’s performance in terms of 

classification rates considering different scenarios, concerning both the ground 

processes and the functional marks’ structures. To this end, we simulate under 

different such scenarios, to obtain a comprehensive understanding of the results 

of the local test in different settings.  

In detail, we consider three types of ground process structures, all with an 

expected point count of 200: (1) a homogeneous Poisson process; (2) an 

inhomogeneous Poisson process with intensity function 

1 2 2( ) ( , ) exp(3.5 3 ),g gx x x x x W    
; (3) a Thomas process, with intensity of 

the Poisson process of cluster centres equal to 25, standard deviation of random 

displacement of a point from its cluster centre equal to 0.05, and mean number of 

points per cluster equal to 7. They are all generated in W, i.e. the unit square, 

and will be referred to as the base patterns. Then, we superimpose additional 

simulated patterns in the [0,0.5] [0,0.5]  square, coming from the same 

generating processes, but with an expected number of points of 50; hereby the 

expected total number of points on [0,0.5] [0,0.5]  is 50 200 / 4 100   and on its 

complement it is 150. These additional patterns will be referred to as feature 
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patterns. A graphical representation of these three ground patterns comes in 

Figure 4 (a) - (c).  

As for the functional marks, we consider the time domain [0,10]  and, 

practically, we sample each simulated mark function in 100 equally spaced time 

points in . We assume that each functional mark satisfies 
( ) ( , )i if t Z x t

, where 

xi is the ith ground point and  

( , ) ( , ), ( , ) ,Z x t x t x t W      (11) 

for a zero-mean stationary Gaussian random field ξ with covariance function C(h, 

u); here h and u denote the spatial and the temporal lags, respectively. For the 

base patterns, we consider μ = 5 and a pure nugget effect model with covariance 

function 
2 2( , ) { 0}, 0.01C h u h   1 . In other words, each fi is random noise 

with mean 5 and variance 0.01 and all fi’s are iid; see the grey curves in Figure 4 

(d) - (f). For the feature patterns, we consider three different marking models:  

1. Shifted base model: We here let ξ have the same form as in the base 

model but let 5.5  .  

2. Decreased variance base model: We here let ξ have the same form as in 

the base model but let 
2 0.001  .  

3. Non-separable space-time model: We here let μ = 5 and consider a space 

isotropic covariance function given by 
/2( , ) ( ( ) 1) ( / ( ) 1)C h u u h u    

. 

Here,   is a normal mixture and the corresponding covariance function 

only depends on the distance between two points, while ψ is a variogram 

model, which we choose according to a fractal Brownian motion with 

fractal dimension α = 1; this is an intrinsically stationary isotropic 

variogram model. 

We note that the first two of these scenarios represent independent but not 

identically distributed marks, whereas in the third scenario we additionally have 
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that the marks are also dependent. In Figure 4 (d) - (f), the functional marks 

corresponding to the marking models in item 1, 2, and 3 are depicted.  

We show the results of the local test in terms of true-positive rate (TPR), false-

positive rate (FPR), and accuracy (ACC), averaging over 100 simulated point 

patterns in Table 1. The rates are defined as  

true positives false negatives true positives and negatives
, , .

positives negatives positives and negatives
TPR FPR ACC    

We of course wish to have TPR and ACC close to 1 and FPR close to 0.  

As shown in Table 1, the performance of the local test in terms of classification 

rates strongly depends on the difference in the functional marks. Specifically, 

changing only the mean of the underlying random field is not enough for properly 

identifying the points of the feature patterns. This sufficiently improves when 

changing the variance only, but the best result is obtained when the whole model 

is changed, that is, changing the correlation structure. The effect of the type of 

ground pattern is less evident but still present. The inhomogeneous Poisson 

scenario reports the best classification rates, followed by the Thomas and 

homogeneous Poisson ones.  

Finally, we found that the test function (·)t  based on the L2 distance in Equation 

(9) gave the better results overall. To further explore how the choice of test 

function influences the test, we also compared to a test function incorporating a 

derivative function accounting for the shape of the functional marks. This yielded 

similar results but turned out to be more computationally demanding.  

7 Real seismic data analysis 

We analyse data coming from the ISTANCE dataset, presented in Section 2. 

More specifically, we analyse a sample dataset provided at 

http://www.pi.ingv.it/instance/. The observed point pattern consists of 300 seismic 
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events which occurred in a period ranging from 21st July 2012 to the 9th 

December 2016. As shown in Figure 5, the observation area is 

[6.729,18.002] [36.64,46.46] , including also seismic events occurring around 

Italy. They tend to gather into two main clusters. The northernmost originated in 

May 2012, when two major earthquakes struck Northern Italy, causing 27 deaths 

and widespread damage. The events are known in Italy as the 2012 Emilia 

earthquakes, because they mainly affected the Emilia region. Then, Central Italy 

seismic sequence began in August 2016, and it is now defined by the INGV as 

the Amatrice-Norcia-Visso seismic sequence. The analysed events’ magnitudes 

vary between 0.5 to 4.8.  

We first compute the proposed local K-function. Figure 6 depicts the estimated 

local summary statistics. In particular, the steady black lines represent the global 

statistics, while the grey ones represent the individual contributions. In dashed 

lines we also represent the theoretical value. In panel (a), the K-function is based 

on a kernel intensity estimate whose bandwidth is selected by Diggle (2013)’s 

rule, while in panel (b) the bandwidth is chosen as in Cronie and 

Van Lieshout (2018). We observe some relevant differences: while with Cronie 

and Van Lieshout (2018)’s rule we depict different local K-functions deviating 

from the global one, following Diggle (2013), we find a unique outlying local K-

function. This may be explained by the fact that Cronie and Van Lieshout (2018)’

s approach tends to yield a bit too large bandwidths when large parts of the study 

region contain no points, while Diggle (2013)’s approach tends to yield too small 

bandwidths in general; see Cronie and Van Lieshout (2018) for details. Note that 

by increasing the bandwidth we decrease the intensity estimate and, as a 

consequence, the summand denominators in (8) are decreased. Therefore, we 

run the proposed local test of random labelling with both options for the 

bandwidth selection and, as expected, the differences observed in the 

computation of the local K-functions are reflected in the results of the test.  
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Figure 7 displays the significant points (black triangles) and the non-significant 

ones (grey points). Panel (a) shows the results with Diggle (2013)’s bandwidth 

while the ones in panel (b) are obtained with Cronie and Van Lieshout (2018)’s 

bandwidth. For both choices, we selected a significance level of 0.1. We observe 

that the significant points tend to be similar in both cases, therefore the choice of 

bandwidth (selection method) does not seem to be crucial. We note that such 

bandwidth-induced differences were missing in the previously run simulation 

study. We attribute this sensitivity of the procedure to the shapes of the functional 

marks, that are obviously more variable, if compared to the simulated ones.  

Nevertheless, both bandwidths lead to significant events belonging to important 

well known Italian seismic sequences. Of course, these sequences are likely 

generated by different underlying processes, giving rise to long-term and highly 

correlated aftershocks. The implication of this result is twofold. On one hand, we 

have been able to correctly identify seismic events belonging to important well-

known Italian seismic sequences. On the other hand, we have found that the 

shocks related to these sequences exhibit different local dependence structure 

and therefore, these events are likely generated by different underlying 

processes, corresponding to different seismic sources.  

8 Conclusions 

In this work, we have proposed a general form for local summary statistics for 

marked point processes, which has been exploited to define the family of local 

inhomogeneous mark-weighted summary statistics for spatial point processes 

with functional marks, i.e. Functional Marked Point Processes (FMPP). We have 

employed such local summary statistics to construct a local test for random 

labelling, that is, to identify points, as well as regions, where this hypothesis does 

not hold.  

More specifically, we first introduce a general local function for marked point 

patterns. With this specification, we are able to show that this function may be 

Acc
ep

te
d 

M
an

us
cr

ipt



exploited to generate most summary statistics established in the literature. With 

particular reference to the functional marked context, we define the family of local 

t-weighted marked n-th order inhomogeneous summary statistics based on the 

K-function, which is a local contribution to a global summary statistic estimator. 

We obtain a result for the expectation of the general local summary statistic and 

exploit it to derive an expression for the expectation of our t-weighted local 

statistics.  

Having access to these tools, we have proposed a local test of random labelling, 

resorting to the second order version of our proposed local estimator, obtaining a 

local test useful for identifying specific regions where a global test would not 

detect atypical behaviour of the points.  

To study the performance of the test in terms of classification rates, we have 

conducted a simulation study, considering a number of scenarios with different 

ground processes and structures for the functional marks. Such simulations have 

shown that in many settings, the local test performs well in identifying points of a 

pattern where the hypothesis of random labelling is not verified.  

We can draw a number of future work paths. Nevertheless, the local functions 

proposed in this paper can be considered as a very informative synthesis of the 

local second order behavior, useful for characterising the study area by an 

extended marked model, based on the FMPP theory. Incorporating local 

characteristics as functional marks would become part of the so called 

Constructed functional marks (CFMs), which are marks reflecting the geometries 

of point configurations in neighbourhoods of the individual points.  

Concerning the application to seismic data, we aim at including also auxiliary 

(non-functional) marks into the analysis. These could contain synthetic 

information about the waveforms, such as the arrival times of the seismic event, 

or the inter-time between the two. The achievement of the unification of 

earthquake data and the FMPP theory would result in building a framework 
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where it would be possible to exploit the available information of the seismic point 

process altogether.  

A final comment concerns the possible extension of this paper’s tools to spatio-

temporal ground processes, which of course are of importance for processes 

which typically exhibit spatio-temporal interactions, such as the seismic one. 

Undoubtedly, such extensions would be crucial for accounting for the temporal 

dimension of the seismic events, whose realization depends on their past history, 

as proved by the existence of aftershocks. This would mean to consider a spatio-

temporal marked point process 1{( , )}N

i i iY x m 
, with ground points xi in the 3-

dimensional space 
2   and exploit the methodological framework introduced 

in this paper. Moreover, local summary statistics in space and time are well 

established, both theoretically (Siino et al., 2018; Adelfio et al., 2020) and 

computationally (Gabriel et al., 2021). Although such an extension could be 

straightforwardly achieved by essentially having our summary statistic functions 

incorporate an additional argument, t, which controls the temporal lags (cf. Iftimi 

et al. (2019)), this adds another level of complexity which we believe is out of the 

scopes of this paper, but it surely represents an interesting path to cover in 

future.  

Supplementary material 

Supplementary material contains the source codes to reproduce experimental 

results.  
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Fig. 1 The Italian seismic dataset for machine learning (INSTANCE). (a) 

Earthquake locations; (b) Seismic stations used for waveforms extraction. The 

symbol sizes are proportional to earthquake magnitude and number of arrival 

phases recorded by stations, respectively; (c) Seismic waveforms of some 

events with magnitude in the range [2, 4]. Vertical lines indicate the seismic 

waves’ arrival times. Source: Michelini et al. (2021). 
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Fig. 2 (a) Simulated earthquake locations. (b) Simulated waveform marking the 

highlighted point on panel (a). (c) Result of the global test. 
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Fig. 3 (a) Result of global test for the spatially dependent simulated data. (b) 

Output of the local test: the black triangles are the significant points for which the 

hypothesis of random labelling is rejected. 

 

Fig. 4 Simulation scenarios. (a) - (c) Spatial ground patterns; (d) - (f) Functional 

marks of model (11) (in grey) and of the marking models in item 1, 2, and 3, 

respectively (in black). 
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Fig. 5 Earthquake locations 

 

Fig. 6 Local K-functions. (a) The K-function is based on a kernel intensity 

estimate whose bandwidth is selected by Diggle (2013)’s rule. (b) The bandwidth 

is chosen as in Cronie and Van Lieshout (2018). 
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Fig. 7 Results of the local test at 0.1  . Non-significant events are displayed as 

grey points and significant events are the black triangles. (a) The K-function is 

based on a kernel intensity estimate whose bandwidth is selected by 

Diggle (2013)’s rule. (b) The bandwidth is chosen as in Cronie and 

Van Lieshout (2018). 
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Table 1 Results of the local test averaged over 100 simulated point patterns with 

an expected point count of 250 each. 

Ground process  Marking model TPR FPR ACC 

Homogeneous Poisson  (1)  0.112 0.346 0.583 

Homogeneous Poisson  (2)  0.583 0.066 0.820 

Homogeneous Poisson  (3)  0.870 0.024 0.896 

Inhomogeneous Poisson (1)  0.032 0.585 0.449 

Inhomogeneous Poisson (2)  0.648 0.084 0.856 

Inhomogeneous Poisson (3)  0.895 0.023 0.932 

Thomas  (1)  0.109 0.394 0.571 

Thomas  (2)  0.637 0.088 0.846 

Thomas  (3)  0.865 0.025 0.925 
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