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A B S T R A C T   

Decarbonizing the electricity system in order to contribute to climate change mitigation is a key policy goal. Yet, 
uncertain political and economic conditions (e.g., electricity prices) create uncertainty for energy companies. 
The dynamics of carbon price developments and aversion to uncertainty may have decisive impacts on com-
panies’ investment decisions and thus environmental and distributional outcomes. In this paper, we incorporate 
a dynamic portfolio approach in a simulation model of investments in the electricity sector to explore and 
disentangle the impacts of both uncertainty and risk aversion on companies’ investment decisions. We find that 
policy uncertainty and risk aversion tend to delay the transition to a low-carbon energy system, with higher 
levels of either factor causing even further delays. However, the mechanism for the delay depends on how risk 
aversion is modeled, e.g. whether companies are averse to losses, or variances or if they use a higher discount 
rate in uncertain situations. Employing the loss-averse approach, the company prefers technology with a low 
likelihood of negative returns for the portfolio; meanwhile, the mean-variance approach indicates an aversion to 
both positive and negative deviations in returns. With a high discount rate, investors favor less capital-intensive 
technologies. To account for the impact of risk aversion in policy framework we, therefore, need more empirical 
work on understanding these behavioral traits of energy companies.   

1. Introduction 

Under the United Nations Framework Convention on Climate 
Change, governments around the world have set targets to transit to a 
low-carbon energy system [44]. The transition requires a large number 
of investments in low-carbon technologies and energy infrastructure. 
However, companies in the energy sector often face an array of un-
certainties of different degrees, such as future energy demand and 
electricity prices, the capital cost of technologies, fuel prices, intermit-
tence of variable renewable energy, other companies’ investment de-
cisions, climate policies, geopolitics, etc. These uncertainties may cause 
investments to be risky to different extents. 

Investments in the energy infrastructure are often capital-intensive 
and feature a high degree of irreversibility [11], and investments 
made today may affect a country’s energy landscape and its environ-
mental performance for decades to come [16,45]. In the energy system 
modeling literature, different techniques have been used to model in-
vestment decisions under uncertainty and risks. Much of the literature 

falls into the category of real options modeling. This approach focuses on 
how uncertainties evolve over time and takes into account the irre-
versibility of the investment, the uncertain future cash flows, and the 
timing of the investment [11,14,18]. Using the real option approach, 
previous studies, see for example [5,17–19,35,36,39–41,50,51] have 
found that uncertainties in climate policy would defer investments in 
low-carbon technologies and this may make the transition more costly. 
The value of waiting for more information that defers the investments in 
the real option-based analysis is a risk neutral mechanism and thus does 
not allow for examining how the interplay of uncertainty and risk 
aversion affects investment decisions. 

To incorporate companies’ concerns about uncertainty and risk, 
different approaches have been used in energy system models and 
various decision-making frameworks. For instance, expected utility 
theory is one of the approaches that has been applied. A standard 
assumption in economic models is that consumers maximize a concave 
utility function. Applying expected utility theory, model studies show 
that risk averse companies would make different investment decisions 
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compared to a risk-neutral company, therefore some have suggested 
alternative policy designs for providing adequate system capacity [38] 
and for allocating emission permits [13]. Anwar et al. [1] found that an 
investor’s profitability is not only affected by his/her own risk averse-
ness, but also by the risk preferences of his/her competitors. Szolgayová 
et al. [42] find that assuming that firms are risk-averse, they will not 
only value flexibility, but also risk reductions from diversification over 
the different (carbon mitigation) options including investment in 
abatement innovation. 

Another approach, derived from the expected utility approach, is the 
mean-variance approach or the modern portfolio theory. The underlying 
mechanism is that for a given level of expected return (the mean), an 
asset portfolio would be created that minimizes risk (measured by 
variance or standard deviation), or for a given level of risk, an asset 
portfolio would be created that maximizes expected return [12,33]. 
Studies have shown that the mean-variance approach can suggest ways 
to develop diversified power-generating portfolios with minimized risk, 
see examples such as Awerbuch and Berger [2] and this review paper 
[10]. 

Rather than being averse to variances, companies can also be averse 
to the probability or size of potential losses. In that case, measures of risk 
that capture the tail information of the distribution of the return are 
needed. The Value-at-Risk (VaR) approach was first used in the late 
1980s by major financial firms to measure the risks of their trading 
portfolios, and now it is a widely used metric for losses applied to in-
vestment portfolios [28,31]. It is also used in regulatory requirements of 
banking supervision. β-VaR represents the maximum potential loss 
(denote by α) for a portfolio, with the probability of not exceeding this 
loss being equal to β. In other words, it denotes the β-th quantile of the 
loss distribution, ensuring that the portfolio loss will not surpass α with a 
β probability. The Conditional Value-at-Risk (CVaR), is defined as the 
conditional expectation of losses above the threshold α (at a 
pre-specified probability β) and is a coherent risk measure when losses 
are not distributed normally [8]. CVaR is often used in studying in-
vestments in the energy system, for instance [7,15,25,32,34,47]. Bruno 
et al. [7] found that the higher the risk aversion, the more forward 
contracts are signed (to reduce cash flow uncertainty). Ji et al. [25] 
found that risk aversion leads to higher electricity system investment 
costs and higher operational costs. Maier et al. [32] studied renewable 
investments in Brazil and found that higher risk aversion leads to lower 
system capacity. Munoz et al. [34] investigated the effects of risk 
aversion on transmission and generation investments in the US and 
found that risk aversion has a limited effect on overall levels of trans-
mission and generation investments. However, with a high renewables 
target and high fuel price, higher levels of risk aversion lead, in their 
analysis, to more investment in wind and solar. 

The risk-adjusted discount rate is another approach for incorporating 
risks in energy investment decisions, see e.g. [3,6,24,27,49]. When 
evaluating an investment option that will generate cash flows over many 
years into the future, the company needs to choose a discount rate to 
calculate the Net Present Value (NPV) of future revenues and costs. The 
greater the (perceived) risk the higher the discount rate used by a 
company, which means that a larger (expected) return is required by the 
company [30]. 

In the literature, some studies apply adjustments to the discount rate, 
e.g. risk premia derived from frameworks such as the Capital Assed 
Pricing Model (CAPM) [37,43], while some other studies used 
rule-of-thumb approaches that generally raise the discount rate as un-
certain situations arise [29]. Jensen and Meibom [24] found that a 
higher discount rate results in a delay of investment in a combined cycle 
gas plant in the Nordic power system. Barazza and Strachan [3] and 
Yang et al. [48], using agent-based models, show that companies with 
lower discount rates are more willing to invest, but Yang et al. [49] have 
also shown that companies who use low discount rates can have a higher 
risk of going bankrupt because their higher willingness to invest implies 
a higher exposure to risk. 

Building on the existing literature, this study seeks to further explore 
the impact of both uncertainty and risk aversion on companies’ invest-
ment decisions and the low-carbon transition of the electricity system. 
The novelty of this study is three-fold. 

First, while existing dynamic investment modeling approaches like 
real options are typically risk neutral, and static portfolio approaches 
fail to capture transitional dynamics under uncertainty, in this study, we 
incorporate a dynamic portfolio approach in a simulation model and 
capture both the investment uncertainty and the aversion against risk 
among the companies. The uncertainty that we investigate in this study 
is about the future carbon price. This uncertainty will have an impact on 
future electricity prices, thus the expected profits of different technol-
ogies and have consequences on how the company chooses to invest. 

Second, there are different approaches to modeling how investors 
react to risk in the energy system. As discussed above, some studies 
assume that investors are concerned about deviations from average 
returns, while some other studies assume that investors are more 
worried about the values that are at risk in the tail of the return distri-
bution, yet other studies assume investors focus on the level of expected 
return using adjusted discount rates. However, previous studies have not 
addressed if and how these different approaches would affect results in 
an energy system simulation model. 

In addition, another contribution of this study is that the electricity 
price, the electricity production, and the development of the production 
mix are endogenously determined in this model. Consequently, the 
covariance between the carbon price and the electricity price is 
endogenously captured and varies as the electricity system changes. 
Hence, our modeling approach will show how investment decisions 
affect both the emissions and the market outcomes. 

Hence, this study advances existing literature on investment 
decision-making under uncertainty and risk aversion in the electricity 
system by offering a comprehensive representation of the system. In 
contrast to other papers that typically focus on a single risk aversion 
modeling approach or do not provide a comprehensive analysis, we 
evaluate three risk aversion modeling approaches and their impact on 
electricity prices and investment profitability and the implications they 
have for the evolution of the electricity system. By analyzing and 
comparing these approaches within a single paper, we facilitate a deeper 
understanding of their traits and their system impacts. 

The remaining part of the paper is organized as follows. In Section 2, 
we present the model structure and the case design. In Section 3, we 
present and discuss the model results regarding the system capacity mix, 
the electricity price, and the CO2 emissions. Lastly, in Section 4, we 
conclude this paper and discuss possible implications. 

2. Method 

2.1. Overall model description1 

The model is built on Jonson et al. [26] and Yang et al. [49]. It 
stimulates the power company’s investment decisions in new power 
plants as well as the supply and demand dynamics in the electricity 
market. 

The electricity system is initialized with coal and gas power plants, 
with installed capacities of 64 GW and 2 GW, respectively. This initial 
capacity corresponds to a stationary state solution for the electricity 
system with a carbon tax set to zero in the base case, given the fuel and 
technology cost parameters as well as the base case discount rate (6% 

1 A full model description can be found online at https://github.com/h 
appiABM/uncertainty_and_risk_aversion. The model code is also uploaded 
there. The model is programmed in Python 3.9. 
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per year) chosen for this paper. The initial plants have different 
remaining lifetimes and will be retired over time. All the initial plants 
belong to one representative company, which will also make all the new 
investments.2 

Each year, plants that reach the end of their lifetime are removed one 
by one, while the power company evaluates all possible new investment 
options and chooses to invest in the one(s) with the highest profitability 
(the profitability evaluation is described in the following section). There 
are five types of technologies the company can choose to invest in coal- 
fired, gas combined cycles (GCC),3 nuclear, wind, and solar PV plants. 

A stylized carbon price scenario is implemented, i.e., the carbon 
price that actually materializes in the model. The price stays at 0 for the 
first 10 years, and then increases gradually by 2 euro/ton CO2 per year 
until it reaches 100 euro/ton CO2, and thereafter it stays constant.4 

The company only knows historical (carbon and electricity) prices. 
Due to the uncertainty in future carbon prices, the power company es-
timates the profitability of investing in each technology by making a 
probabilistic forecast of future carbon prices (see Section 2.2) and how 
the carbon price will affect the company’s estimation of the future 
electricity prices and each technology’s load factor. 

Following Jonson et al. [26], we use 64 times slices to represent wind 
and solar variability as well as variability in electricity demand over the 
year, and the variability parameter represents a country’s weather 
conditions and electricity demand like Germany (the parameter value is 
provided in Table S1 in the Supplementary material). The electricity 
demand is iso-elastic [26] and is assumed constant over years [22]. 

We run the simulation for 100 years in total. As the old plants get 
retired and new investment decisions are made on an annual basis, the 
system capacity mix evolves. 

2.2. Modeling decision-making under carbon price uncertainty and risk 
aversion 

2.2.1. Estimation of future carbon prices 
The company faces uncertainties when making investment decisions. 

The main uncertainty investigated in this study is rooted in the strin-
gency of future climate policy. 

In our model, we address this uncertainty by assuming that the future 
carbon price and its distribution are not known by the investors. To 
account for the uncertainty, the investor is assumed to have a subjective 
probability distribution of future carbon prices. This approach aligns 
with the Knightian concept of uncertainty, as it emphasizes the lack of 
knowledge about the true probability distribution of the carbon price, 
but where the investor uses a subjective probability distribution for 
guiding its investment decisions. 

This uncertainty will have an impact on the expected profits of 
different technologies and have consequences on what the power com-
pany chooses to invest in. As investments made today will affect the 
whole system’s capacity mix for several decades, there is also 

uncertainty about the future level of installed capacity in the system and, 
since electricity prices are endogenous, this generates uncertainty about 
future electricity prices as well. 

We simulate the company’s expectations about future carbon prices 
in the following way. The company knows the historical carbon prices 
and uses the past five year’s average price as a reference to infer future 
prices. The company’s expectation for the future carbon price is assumed 
to be a discrete uniform distribution: 
[
pCO2

future

]
=pCO2

past

×[ω− 3ΔCO2 ,ω− 2ΔCO2 ,ω− ΔCO2 ,ω,ω+ΔCO2 ,ω+2ΔCO2 ,ω− 3ΔCO2 ]

(1)    

• pCO2
future = a set of possible future carbon prices that the company 

expects. Each value stands for a future price level on average, not for 
a particular year. 

• pCO2
past = the prevailing carbon price. In this study, the power com-

pany uses the past five-year average price.  
• ω = the average/median value of the discrete uniform distribution.  
• ΔCO2 = the step spread in the carbon price. 

In the base case, we use average/median ω = 1.5, i.e. the company 
assumes that the future carbon price will be on average 50% higher than 
the average price of the past five years. When assessing investment 
options, the future carbon prices in the distribution are assumed to be 
constant over the whole lifetime of the power plant. Further, a spread 
ΔCO2 = 0.25 is used, i.e. the [pCO2

future] = pCO2
past × [0.75, 1.0,1.25, 1.5, 1.75,

2.0, 2.25]. 
The future carbon price equals the past five year’s average price 

multiplied [0.75, 1.0,1.25, 1.5, 1.75, 2.0, 2.25]. This means that the 
company expects the price level would range from as low as 75% of and 
up to more than twice as high as the past five year’s average price. 

Given the difficulty of parameterizing the uncertainty in the carbon 
price and how companies perceive the uncertainty, we analyze different 
assumptions on ΔCO2 in the sensitivity analysis. We keep the average/ 
median value unchanged (ω = 1.5), and test for different spreads of the 
ΔCO2 values in the set [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 
0.5]. The result is presented in Section 3.3. 

2.2.2. Evaluation of investment options 
Taking into account the system condition and the carbon price un-

certainty, the company makes a forecast simulation of the future elec-
tricity market and calculates the profitability index for investment in each 
possible technology T. The profitability index is defined in the following 
five steps. 

First, for a given carbon price in the price set [pCO2
future], e.g. the ith point 

in the set, the company calculates a net present value of its portfolio 
profit over the lifetime of technology T, if an investment was made in 
technology T, 

πT(i) =
∑L

t=1

Rt,T (i) − Ct,T (i)
(1 + μ)t − IT (2)    

• πT(i) is the net present value of the portfolio profit when investing in 
technology T and the carbon price is the ith point in the price set 
[pCO2

future].  
• Rt,T(i) and Ct,T(i) respectively are the portfolio revenue and total 

operating cost in year t for the company if an investment was made in 
technology T and the carbon price is the ith point in the price set 
[pCO2

future].  
• IT is the capital cost of technology T.  
• μ = the discount rate. We use 6%/year in the base case. 

2 We also have tested the model for 10 homogenous companies. The result 
was almost identical to the analysis of one representative company, so we 
choose to use one company to save computational time.  

3 The gas-fired plant can be fuelled by either natural gas or biogas, depending 
on which has the lower operating cost when the carbon price is also taken into 
account.  

4 As countries continue to implement stricter emission reduction targets to 
combat climate change, the number of available allowances for emitting 
greenhouse gases becomes more limited. This diminishing supply drives up the 
carbon price over time. This trend is evident in the European Union Emissions 
Trading System (EU ETS), where, following the implementation of Phase III in 
2013, carbon prices have experienced consistent growth. As of March 2023, the 
price has reached 90 euros per ton of CO2. The carbon price could also be 
implemented through carbon taxes. It is also evident from integrated assess-
ment models that the carbon prices need to increase if we are to meet the 
climate targets in the Paris Agreement [46]. 
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• L is the lifetime of plant T. (The value is provided in Table S3 in the 
Supplementary material.) 

Secondly, for the same carbon price level that is used in the first step, 
the company also calculates a net present value of its portfolio profit 
π0(i) over the lifetime of technology T, if no investment would be made, 

π0(i) =
∑L

t=1

Rt,0(i) − Ct,0(i)
(1 + μ)t (3)    

• π0(i) is the net present value of the portfolio profit if no investment 
was made and the carbon price is the ith point in the price set [pCO2

future].  
• Rt,0(i) and Ct,0(i) respectively are the company’s portfolio revenue 

and total operating cost in year t if no investment was made and the 
carbon price is the ith point in the price set [pCO2

future]. 

In the third step, the company calculates the change in the profit of 
investing in technology T, if the carbon price is the ith point in the price 
set [pCO2

future], 

ΔπT(i) = πT(i) − π0(i) (4) 

For every carbon price in the set [pCO2
future], the company repeats the 

calculation of steps one to three above Eqs. (2)–(4), and then in the 
fourth step, the company calculates the expected increase in the port-
folio profitability ET of investing in technology T, 

ET =
1
n
∑n

i=1
ΔπT(i) (5)    

• n = number of points in the set [pCO2
future]. (n = 7 in the base case 

analysis). 

Note that the expected increase in profitability is defined as the 
change in overall portfolio profit for the company if an investment in 
technology T was made. This is different from the profit of investing in 
the technology per se. 

We also make the following assumptions when estimating the com-
pany’s expected profitability:  

• The forecast is based on uncertain, but constant carbon prices over 
the lifetime of technology T, while the actual carbon price in the 
model that will be materialized in the future increases over time.  

• When making an investment assessment, the company assumes that 
all the plants existing in the current system will remain in the system 
over the lifetime of the technology that is being assessed.  

• In the forecast simulation, the investment in the plant is based on the 
assumption of price-taking behavior, i.e., the investment is small so 
that the electricity price is not affected by the investment. 

In the fifth and last step, the company calculates the profitability index 
for investing in technology T, which is the expected profitability ET 
multiplied by the Capital Recovery Factor (CRF) and divided by the 
capital cost of this technology T, 

profitability index T = ET ×
CRF

IT
(6)  

CRF =
μ

1 − (1 + μ)− L (7) 

The company evaluates the profitability index for each of the five 
technologies (coal-fired, gas combined cycle, nuclear, wind, and solar 
PV) and then makes the investment decision. If the company is risk 
neutral, it would choose the technology T with the highest positive 
profitability index. However, if the company is risk averse, then the 
selection criteria will be adjusted by the risk measures as described 
below. 

2.2.3. Modeling risk aversion 
As discussed in Section 1, we implement and compare three different 

approaches to representing risk aversion: (1) the VaR approach, (2) the 
mean-variance approach, and (3) the discount rate approach. 

In this study, for the VaR and mean-variance approaches, the 
assessment of a new investment is evaluated against how they affect the 
portfolio risk for the company, while for the discount rate approach, we 
assume that the company applies the same risk premia (a higher dis-
count rate) for all the technologies, even though they may have different 
risk characteristics.  

(1) VaR approach 

When using the VaR approach the company not only evaluates the 
expected profitability ET, but also evaluates the probability that an in-
vestment may result in losses – the company is concerned about the tails 
of the distribution. 

In this study, we calculate the number of cases with positive profits 
(out of a total of seven cases of different carbon prices) and the number 
must be larger than a threshold number λ for the company to consider 
investing. This implies that in the β-VaR notation, we use α = 0, and the 
varying λ corresponds to the β value. 

Fig. 1. An illustration of the expected change in profit (Δπ) under different carbon prices for investing in a coal power plant (left panel) versus investing in a wind 
power plant (right panel). If a company is loss averse using the VaR approach, it will consider how many cases the change in profits will be positive (green) versus 
negative (red). The number of positive cases must exceed the company’s threshold λ. 

J. Yang et al.                                                                                                                                                                                                                                    
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A higher λ value, i.e. the higher the required probability that the 
investment generates positive profits, means a higher aversion to losses. 

For instance, if the company has a loss aversion level of 4 (λ = 4), in 
the case illustrated in Fig. 1, the company will not invest in coal power 
plants, since the expected profits from investing in a coal power plant 
are only positive in three out of a total of seven cases which is lower than 
the company’s required threshold λ. While for wind, since wind only has 
two negative cases, and five positive cases which are larger than the 
company’s λ threshold, the wind will be considered as an investment 
option.  

(2) The mean-variance approach 

The mean-variance analysis takes into account not only the expected 
profit but also the variance of the profits it. Based on Eqs (2–6), the 
variance-adjusted expected profit E′

T and the profitability index of tech-
nology T becomes, 

π′
T(i) =

1
n
∑n

i=1
πT(i) − γ⋅var(πT(i)) (8)  

π′
0(i) =

1
n
∑n

i=1
π0(i) − γ⋅var(π0(i)) (9)  

E′
T = π′

T(i) − π′
0(i) (10)  

profitability index T = E′
T ×

CRF
IT

(11)    

• var(πT(i)) = 1
n
∑n

i=1(πT(i) − πT)
2 is the variance of πT(i). πT is given 

by 1n
∑n

i=1πT(i).  
• var(π0(i)) = 1

n
∑n

i=1(π0(i) − π0)
2 is the variance of π0(i). π0 is given 

by 1n
∑n

i=1π0(i). 

Here γ is the risk aversion parameter in the mean-variance approach. 
The larger the value, the more averse is the company to the variance.  

(3) The discount rate approach 

When evaluating an investment option that generates cash flows 
over many years, it is important for the company to select an appropriate 
discount rate to calculate the Net Present Value (NPV) of future revenues 
and costs. The discount rate is chosen based on the perceived risk 
associated with the investment, with a higher perceived risk resulting in 
a higher discount rate used by the company. This means that a higher 
expected return is required by the company to compensate for the 
additional risk. The theoretical justification behind using a higher dis-
count rate when a single project is uncertain is weak, but it is commonly 
used by practitioners [9]. Therefore, the risk-adjusted discount rate 
approach used in this study can be interpreted as a rule-of-thumb 
approach. 

In this study, the discount rate is used in Eqs. (2), (3), and (7) above. 
we employ a single discount rate to discount the revenues for the 
company’s entire portfolio. This approach does not differentiate be-
tween discount rates among various technologies. By using a single 
discount rate, we aim to provide a simplified analysis while acknowl-
edging that this assumption may not fully capture the nuances in risks 
associated with each technology. 

2.3. Analysis design 

We design the analysis as follows: 
First, we run the model with a risk neutral company. Secondly, we 

compare the risk neutral case with cases when the company is risk 

averse using the VaR approach, the mean-variance approach and the 
risk-adjusted discount rate approach, respectively. Lastly, we run the 
model with different levels of carbon price uncertainty. 

For the risk neutral case, both the VaR parameter (λ) and the mean- 
variance parameter (γ) are set to 0, and the discount rate (µ) is set at 6%/ 
year (assumed to be the risk-free discount rate in this study) i.e. λ = 0, γ 
= 0, µ = 6%year. 

For the VaR approach, we vary the VaR parameter (λ), while keeping 
the mean-variance parameter and the discount rate parameter the same 
as the risk neutral case (γ = 0 and µ = 6%/year). We test 5 different λ 
values to compare different levels of risk aversion.  

• λ = 0, (β = 0%).  
• λ = 3, at least three out of seven cases (β = 43%) of different carbon 

prices must be positive for considering the investment.  
• λ = 5, at least five out of seven cases (β = 71%) must be positive 

profits.  
• λ = 6, at least six out of seven cases (β = 85%) must be positive 

profits.  
• λ = 7, seven out of seven cases (β = 100%) must be positive profits. 

For the mean-variance approach, we keep the VaR parameter and the 
discount rate parameter the same as the risk neutral case (λ = 0 and µ =
6%/year), while varying the mean-variance parameter (γ), and we test 
five γ values:  

• γ = 0.  
• γ = 0.5⋅10− 11/€.  
• γ = 0.8⋅10− 11/€.  
• γ = 1⋅10− 11/€.  
• γ = 1.3⋅10− 11/€. 

These γ values are determined through trial and error, so that the 
impact on the system evaluation of changing γ is clearly illustrated. 

For the discount rate approach, we vary the discount rate parameter 
µ, while keeping both the VaR parameter and the mean-variance 
parameter to zero (λ = 0 and γ = 0). We test five μ values for the dis-
count rate approach.  

• μ = 6%/year.  
• μ = 7%/year.  
• μ = 8%/year.  
• μ = 9%/year.  
• μ = 10%/year. 

Lastly, we also test how different levels of uncertainty in carbon price 

Table 1 
Values of risk aversion and uncertainty parameters used for each case.  

Parameters VaR 
parameter 
λ 

Mean-variance 
parameter γ 

Discount 
rate 
parameter μ 

carbon price 
uncertainty 
ΔCO2 

Cases 

Risk neutral 
case 

λ = 0 γ = 0 μ =

6%/year 
0.25 

VaR approach λ = [0,3,5,
6,7]

γ = 0 μ =

6%/year 
0.25 

Mean- 
variance 
approach 

λ = 0 γ = [0, 0.5,0.8,
1.0,
1.3]⋅10− 11/€ 

μ =

6%/year 
0.25 

Discount rate 
approach 

λ = 0 γ = 0 μ = [6%,7% 
,8%,

9%]/year 

0.25 

Different 
levels of 
carbon 
price 
uncertainty 

λ = [3,5,7] γ = 0 μ = 6%/

year 
ΔCO2 = [0.1,
0.15, 0.2, 0.25,
0.3, 0.35, 0.4,
0.45, 0.5]
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Fig. 2. The development of system installed capacity over 100 years in the risk neutral case(λ = 0, γ = 0, µ = 6%year). The dashed line is the actual carbon price that 
is materialized in the model. 

Fig. 3. The system installed capacity in cases with different aversion levels to losses (λ>=0,γ = 0,µ = 6%year). It shows that when the company is more averse to 
losses (a higher λ value), there is a further delay in investments in low-carbon technologies, while more investments are in GCC. (Note that the scale is different for 
each panel. The line of λ = 0 is not very visible in this plot as it overlaps with the line of λ = 3.). 
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(together with risk aversion to losses) affect the results, in which we vary 
the carbon price uncertainty level (ΔCO2) and the VaR parameter (λ), 
while keeping the mean-variance parameter (γ) at 0 and the discount 
rate parameter (µ) at 6%/year. 

The design of each case and its key parameters are summarized in 
Table 1. 

3. Results and discussion 

We present the results for different cases in terms of the system ca-
pacity mix, electricity prices, and CO2 emissions. 

3.1. Impact of different levels of risk aversion using VaR 

We first present the installed capacity in the risk neutral case (λ = 0, 
γ = 0, µ = 6%year), and then compare it with risk aversion cases with an 
increased aversion to losses using the VaR approach. In this section, risk 
aversion is implemented by using the VaR approach (λ > 0, γ = 0, µ = 6% 
year), and in the next Section 3.2, we will compare the VaR approach 
with the other two approaches for modeling risk aversion. 

Fig. 2 shows that in a risk-neutral case, the growing carbon price 
causes the system to gradually transition from a fossil-based system to a 
low-carbon system. In the beginning, the system relies heavily on coal 
with some natural gas, and afterward, the carbon price starts to rise and 
the old plants are reaching the end of their life, the system becomes 
gradually dominated by wind, solar, nuclear, and gas combined cycles 
(GCC) which initially are run on natural gas and then after some fifty 
years switch to biogas. It is worth highlighting that after an initial 
expansion, the capacity of wind energy begins to decline around year 30, 
coinciding with the expansion of nuclear capacity. As discussed in one of 
our previous studies (Yang et al. [49], this can be attributed to the 
variation in electricity prices throughout the year. Since wind is a 

variable renewable technology, its revenue per kWh of electricity 
generated may differ from that of nuclear energy, depending on the 
specific time slices during which production occurs. When the installed 
capacity of wind energy reaches sufficiently high levels, the wind 
eventually starts to receive lower revenues per kWh than nuclear energy, 
leading to a halt of investments in wind and eventually to a decline in its 
capacity. This observation underscores the importance of considering 
the dynamic interplay between electricity prices and the revenue gen-
eration potential of various energy technologies. 

When the company is averse to losses, we see delays both in the 
phase-out of fossil technologies and in the expansion of the low-carbon 
technologies (compared to the risk neutral case). 

Fig. 3 shows that with an increasing level of risk aversion (to losses), 
there is a small increase in coal investments and a clear increase in GCC 
investments. In contrast, for low-carbon technologies, we see that the 
more averse to losses, the further the adoption of nuclear is delayed, and 
the slower will be the expansion of wind and solar technologies. 

The results can be interpreted as follows. During the initial 10 years 
of the simulation, when the carbon price is zero, the company deduces 
that the carbon price will remain at zero based on the available obser-
vational data. Consequently, the company estimates that investing in 
low-carbon technologies would not be profitable. Then as the observed 
carbon price grows gradually, the expected profitability of the low- 
carbon technology starts to grow as well. In the risk neutral case, the 
company only checks if the expected profitability is positive, and then 
chooses the technology with the highest expected profitability. How-
ever, when the company is averse to losses, it also takes into account the 
probability that the technology causes a reduction in portfolio profits for 
different expected carbon prices, and that possibility must satisfy the 
company’s criteria for the investment to be considered. 

For the risk neutral company, given that the investment in low- 
carbon technology takes place, the chance of losses is compensated by 

Fig. 4. Average electricity price in cases with different aversion levels to losses (λ>=0, γ = 0, µ = 6%year). The more averse to losses (a higher λ value), the higher 
the electricity price. (The line of λ = 0 is not very visible as it overlaps with the line λ = 3.) The higher electricity price associated with higher λ is due to lower 
investments and hence lower installed capacity as a result of the higher degree of risk aversion. 
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the positive profits that may take place if the carbon price is on the high 
end of the set of plausible future carbon prices pCO2

future, while in the case 
that the company is averse to losses, the chance(s) of negative profits 
may determine the decision. An investment option can have positive 
expected profits, but the probability of losses may be too high for the 
company to consider investing. In addition, the company considers that 
a lower carbon price than the expected price can materialize, i.e. when 
the carbon price is in the lower range of the set of pCO2

future, the investment 
may in such cases turn out to be unprofitable for low-carbon technolo-
gies. The probability of generating negative profits by investing in low- 
carbon technologies decreases as the observed carbon price continues to 
grow, while the opposite holds for coal power. Therefore, we observe 
that the more risk averse the company is, the later it starts to invest in 
nuclear and solar. 

The reason for the slower expansion of wind technology is that 
compared to a risk neutral company, a company that is averse to losses 
would require a higher electricity price. As more wind installations 
would bring down the average electricity price, we see that the more risk 
averse the company is, the slower the expansion of wind. 

The reason for more investments in gas-fired plants and also slightly 
more in coal-fired in the case of higher aversion to losses is that initially 
the system is dominated by coal-fired and some gas-fired power plants. 
This implies that the electricity price is set by the running cost of coal or 
gas most of the time slices. Consequently, there will be a large covari-
ance between the assumed carbon prices and the estimated electricity 
prices when evaluating the different possible investments. This causes 
the variability in profits to be smaller for coal and gas investments than 
the CO2-neutral technologies, causing the CO2-neutral technologies to 
be riskier in the beginning. As the carbon price grows over time, more 
and more CO2-neutral technologies have been installed in the system 
while old coal plants get retired, the system becomes less and less 
dominated by fossil fuel technologies, consequently, the covariance 
between the assumed carbon prices and the estimated electricity price 

decreases over time. In addition, with the gas combined cycle, the 
company also has the option to use either natural gas or biogas leading 
to additional flexibility to choose the type of fuel depending on the 
carbon price. 

We also observe in Fig. 3 that when the company is averse to losses, 
the total installed capacity is overall lower, especially for nuclear, solar 
and wind before year 40.5 This also means that the overall electricity 
output will be lower and that the average electricity price is higher when 
the company is more risk-averse (Fig. 4). Fewer investments are being 
made because of the aversion to losses. Since the overall production 
capacity drops, due to fewer investments overall, and there is also a 
higher reliance on technologies with high running costs (especially with 
higher carbon prices) (Fig. 5), the average electricity prices will be 
larger, which in turn incentivizes investments in all technologies. 

Fig. 4 shows that the electricity prices rise during years 10 – 50, and 
this is primarily linked to the increasing carbon price. As discussed in 
our previous paper [49], when the carbon price rises, it raises the fuel 
costs for coal and natural gas, which in turn increases the electricity 
price during hours when coal or natural gas determines the electricity 
price. After approximately year 50, all coal power plants are decom-
missioned, and biogas replaces natural gas around the same time. 
Consequently, the electricity price no longer increases with the carbon 
price. However, the electricity price remains higher than at the begin-
ning of the modeling period, since the costs of the technologies that 
replaced coal are higher than that of coal plants. It is important to 
acknowledge that technological advancements may play a vital role in 
lowering electricity production costs, but given the scope of this study, 
we did not incorporate such mechanisms in this paper. 

Furthermore, as more fossil-fuel technologies are used for electricity 

Fig. 5. Annual electricity production from coal-fired and gas-fired power plants in cases with different levels of risk aversion.The greater the aversion to losses (a 
higher λ value), the higher the reliance on coal and gas becomes. Consequently, this leads to increased CO2 emissions. 

5 We use an iso-elastic demand function in this model, therefore, the elec-
tricity demand is still met. 
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Fig. 6. System installed capacity of each technology over time for different risk aversion approaches. (A) the mean-variance approach; (B) the adjusted discount 
approach. Similar to the VaR approach, we observe a delay in investments in low-carbon technologies while more investments are in GCC. (Note that the scale is 
different for each panel). 
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production in cases where the company is more averse to losses, there 
are higher CO2 emissions due to the increased usage of coal plants. As 
shown in Fig.5, in the initial years, when the carbon price is low, 

electricity production is primarily dominated by coal-fired power plants, 
with a small contribution from gas power plants. As the carbon price 
rises over time, the operating costs for both coal and natural gas also 

Fig. 7. Average electricity price for cases using different risk aversion approaches. All three approaches tend to generate higher electricity prices when a higher risk 
aversion level is assumed. 

Fig. 8. Cumulative CO2 emissions for cases using different risk aversion approaches. All three approaches tend to generate larger CO2 emissions when a higher risk 
aversion level is assumed. 
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increase. However, since coal has a higher emission intensity than nat-
ural gas, its running costs escalate more rapidly, resulting in a decline in 
electricity production from coal power plants over time. (In contrast, 
production from zero-carbon emission technologies experiences a steady 
increase). Around year 40, coal and gas switch places in the merit order 
as the carbon price becomes sufficiently high. Gas power plants transi-
tion from using natural gas to biogas as their fuel source around year 50. 
This shift occurs because biogas becomes more cost-effective than nat-
ural gas when the carbon price is factored in. Therefore, no emissions 
from the gas-fired plant thereafter. For a comprehensive depiction of the 
production profile across all technologies, please refer to Figure S1 in the 
supplementary material. 

3.2. Compare different approaches for modeling risk aversion 

In this section, we compare the model outcome when using various 
risk aversion approaches. Additionally, we explore the underlying 
mechanisms behind each of these methods to provide a clearer under-
standing of their distinctions. 

3.2.1. Comparing the system outcomes 
Fig. 6A and B show the development of the system installed capacity 

for different levels of risk aversion when using the mean-variance 
approach (Fig. 6A) and discount rate approach (Fig. 6B). Together 
with Fig. 3, we observe that the three approaches share many similar-
ities. In particular, when the company is more risk averse, investments 
in low-carbon technologies are delayed, while investments in gas power 
plants are higher. In addition, for all approaches, the more risk averse 
the company, the higher the electricity price (Fig. 7), and the higher 
cumulative CO2 emissions will be (Fig. 8). The results are summarized in 
Table 2. 

3.2.2. Comparing the underlying mechanisms 
The underlying mechanisms behind the three approaches are 

different. Using the VaR approach means that the company favors 
technology that has a low probability of negative returns for the port-
folio, whereas using the mean-variance approach means the company is 
averse to both positive and negative deviations in the returns, i.e. a high 
risk aversion parameter would favor the technology that has a low re-
turn variance for the portfolio. For the discount rate approach, a high 

Table 2 
A summary of the outcomes for technology investments, cumulative emissions, and electricity prices when employing three distinct risk aversion strategies. Detailed 
information on cumulative investments can be found in the supplementary material, specifically within section S3.2.  

Result Low-carbon technology investment Fossil technology investment Cum. emissions Electricity price 
Cases 

Risk neutral Reference Reference Reference Reference 
VaR approach  (1) Delay expansion of nuclear and wind.  

(2) lower cumulative investments in nuclear, wind 
and solar 

more cumulative investments in GCC and 
slightly more in coal 

increases with the 
aversion level 

increases with the 
aversion level 

Mean-variance 
approach  

(1) delayed expansion of nuclear and solar  
(2) lower cumulative investments in nuclear, more 

in wind and solar 

more cumulative investments in GCC increases with the 
aversion level 

increases with the 
aversion level 

Discount rate 
approach  

(1) delayed investments in wind, nuclear and solar.  
(2) lower cumulative investments in nuclear, and 

slightly more in wind 

more cumulative investments in GCC and 
coal 

increases with the 
aversion level 

increases with the 
aversion level  

Fig. 9. Cumulative CO2 emissions over the whole simulation period (100 years). The level of carbon price uncertainty is represented by ΔCO2, the higher ΔCO2, the 
higher the uncertainty. Each line represents a different averse level to losses, and the higher the λ, the higher the risk aversion. Cumulative CO2 emissions increase as 
the carbon price uncertainty or risk aversion increases. (Note that the line of λ = 0 is not visible in this plot as it overlaps with the line of λ = 3.). 
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discount rate means that the investor prefers less capital-intensive 
technologies, whereas a low discount rate tends to favor capital- 
intensive technologies [20,49]. 

Take the delayed expansion of nuclear technology for example. In 
the VaR approach: the reason for the delay is that in the beginning when 
the expected carbon price is low, the probability of having negative 
returns is high, so the probability of negative returns decreases with 
increasing carbon prices, and hence, the more aversion against losses, 
the longer the company waits to invest. In the mean-variance approach, 
however, it is because the expected profit of nuclear has a relatively 
large variance compared to other technologies: the more the company is 
averse to variance, the more it would disfavor nuclear investments. In 
the discount rate approach, it is because low-carbon technologies such 
as nuclear and wind plants have high capital costs that cause delays and 
a lower level of investments when the discount rate increases. 

The different underlying mechanisms for each approach indicates a 
need for more empirical research to understand the underlying prefer-
ences and risk attitudes of real-world investors and companies for more 
realistic modeling assumption and for providing more accurate policy 
insights. 

3.3. Impact of different levels of uncertainty 

This section discusses how different levels of uncertainty in the 
carbon price, together with risk aversion, would affect the investment 
decision and the transition to a low-carbon electricity system (see Eq. (1) 
for how uncertainty is modeled and see Table 1 for the case design.) 

Fig. 9 displays the system’s cumulative CO2 emissions for different 

levels of carbon price uncertainty under different levels of aversion 
against losses. The result shows that if the company is risk neutral, or 
exhibits a relatively low level of aversion against loss (λ = 3), cumulative 
emissions stay at almost the same level as the carbon price uncertainty 
increases, but if the company has a relatively high level of aversion 
against losses (λ = 5 and λ = 7), the cumulative CO2 increase along with 
the uncertainty level of the carbon price. 

The increase in CO2 emissions here is caused by the delayed adoption 
of low-carbon technologies, which leads to higher usage of fossil power 
plants for electricity production. With a higher uncertainty level (a 
higher ΔCO2 value), the uncertainty range of the carbon price in pCO2

future 

will be larger. This leads to a higher probability that a low-carbon 
technology would be not profitable, and fewer investment decisions 
are taken overall. Further, as discussed above, initially when the system 
is dominated by coal and gas, these technologies are in most time slices 
on the production margin causing a high degree of covariance between 
the carbon price and the electricity price. This implies that the vari-
ability of the returns (including the probability of a loss) in these tech-
nologies is smaller than for nuclear, solar and wind. 

Moreover, Fig. 10 shows that when a company is highly averse to 
losses (λ=5 and λ=7), a higher uncertainty in the carbon price would 
lead to higher electricity prices, consequently, the electricity price could 
be mitigated by reducing the perceived uncertainty level in the carbon 
price among the investors (lower ΔCO2 value). The higher electricity 
price is due to an overall lower amount of investments in nuclear, solar 
and wind, but more investments in gas-fired capacity (Fig. 11), which 
has a relatively high running cost, and a larger load factor of existing 
coal plants, which also have a high running cost when the carbon price 

Fig. 10. Electricity price for different levels of carbon price uncertainty at years 30, 50, and 80. The level of carbon price uncertainty is represented by ΔCO2. The 
higher ΔCO2, the higher the uncertainty. Each line represents a different level of aversion to losses. The higher the λ value, the more averse the company is to losses. 
It can be seen that the electricity price rises as the uncertainty or the aversion level raises. (Note that the line of λ=0 is sometimes not visible as it overlaps with the 
line of λ = 3.). 
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grows. This relates to the covariance of the carbon and electricity prices 
as discussed above. 

4. Conclusion 

Timely investments in low-carbon technology are crucial for the low- 
carbon transition of the electricity system. In this study, we model 
companies’ investment decisions in new power plants under climate 
policy (specifically, carbon price) uncertainty and risk aversion. We 
explicitly model companies’ expectations about future carbon prices and 
analyze how the perceived uncertainty in the prices combined with 
different levels of risk aversion affects companies’ investment decisions, 
and in turn, how these investments affect the low-carbon transition of 
the electricity system. 

Additionally, by reviewing the literature on the energy system study, 
we found that different methods have been used to model risk aversion, 
but there is a lack of an explicit comparison of how these different ap-
proaches affect investment decisions and the response of the overall 
system. In this study, we compare three different approaches to 
modeling risk aversion, where we distinguish the aversion against losses 
(the Value-at-Risk approach), aversion against fluctuations in average 
returns (the mean-variance approach), and the risk-adjusted discount 
rate approach. 

Three main conclusions can be drawn from this study. 
First, we find that uncertainty in the carbon price together with risk 

aversion will delay the transition to a carbon-free electricity system. As 
the uncertainty surrounding carbon prices increases, or as an investor 
becomes more risk-averse, the delay in transitioning to low-emission 
electricity production grows, resulting in higher cumulative CO2 emis-
sions from electricity generation. This implies that to avoid delays and 
low levels of investments in low-carbon technologies, it is helpful if 
policymakers can provide credible policy commitments that could lower 

investors’ perceived risk. In addition, a high level of carbon price un-
certainty and risk aversion would also lead to an overall lower invest-
ment level, which leads to a higher electricity price for the consumer. As 
increases in energy prices have a significant distributional impact, and 
are especially adverse for low-income households [4], there may be a 
need for policymakers to take measures to reduce the impact if they are 
induced by uncertainty in policy frameworks. 

As emphasized by the IEA [21], establishing robust, consistent, and 
long-term policy signals for CO2 emission reduction is crucial. Govern-
mental plans, roadmaps, and targets play a vital role in determining the 
trajectory and speed of the transition. These should be supported by 
mandatory CO2 reduction policies that grow increasingly stringent over 
time, including mechanisms like emissions trading schemes, carbon 
taxes, or transferable CO2 performance standards. In addition to policy 
certainty, other risk mitigation instruments can be employed to reduce 
investors’ risk aversion when investing in renewable energy. As noted by 
IRENA [23], governments and development banks may implement risk 
mitigation tools, including guarantees (e.g., loan guarantees and 
off-taker guarantees), insurance products, and partnerships among in-
vestors, local financial institutions, and national governments. These 
measures aim to reduce investors’ exposure to risks such as political, 
policy, credit, and currency fluctuations. This paper does not aim to 
provide a definitive policy recommendation but rather to list a range of 
policy options that could be further explored in future research. 

Second, from a methodological modeling perspective, this study 
shows that the timing and amount of the investment differ between risk 
neutral and risk averse companies. This implies that when modeling 
investment decisions, it is important to take into account companies’ 
risk aversion behavior. This also calls for more empirical research to 
better understand the investor’s attitude towards uncertainty and risks. 
Specifically, this research should focus on examining how investors 
react to deviations from average returns and losses occurring in the tail 

Fig. 11. Installed capacity of each technology for different levels of carbon price uncertainty. When the uncertainty level is higher (a higher ΔCO2), we observe a 
further delay in investments in low-carbon technologies and more investments in GCC. (Note that the scale is different for each panel. The risk aversion parameters in 
this plot are set as λ = 7,γ = 0,µ = 6%/year). 
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end of the return distribution. 
Finally, by implementing three different approaches – the VaR 

approach, the mean-variance approach, and the discount rate approach 
– to model how investors behave when facing risk, we find that in 
general, these three approaches give similar results, which is that risk 
aversion tend to delay the transition. Nonetheless, the reason for the 
delays and the specific mechanisms dictating preferences for technology 
investments differ across the three approaches. Using the VaR approach 
means the investor focuses on the tail of the profit distribution, whereas 
the mean-variance approach means the investor is averse to the spread 
of the returns, and using the risk-adjusted discount rate approach means 
that the investor becomes averse to capital-intensive technologies. The 
implication is that when modeling risk aversion, modelers should un-
derstand the behavior and decision criteria of companies in order to 
choose the method that suits the research question best. Only in this 
way, modeling results can then be productively transferred to the poli-
cymaking sphere. 

Data availability 
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[42] J. Szolgayová, A. Golub, S. Fuss, Innovation and risk-averse firms: options on 
carbon allowances as a hedging tool, Energy Policy 70 (2014) 227–235. 

[43] L. Tolulope, A. Lukman Shina, D. Damilola Deborah, Analysis of capital asset 
pricing model on Deutsche bank energy commodity, Green Finance 2 (2020) 
20–34. 

[44] UNFCCC, NDC Registry, UNFCCC secretariat, 2022. https://www4.unfccc.int/sites 
/NDCStaging/Pages/All.aspx. 

[45] G.C. Unruh, Understanding carbon lock-in, Energy Policy 28 (2000) 817–830. 
[46] H.L. van Soest, L. Aleluia Reis, L.B. Baptista, C. Bertram, J. Després, L. Drouet, 

M. den Elzen, P. Fragkos, O. Fricko, S. Fujimori, N. Grant, M. Harmsen, G. Iyer, 
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