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raphy (PET/CT) has emerged as an important imaging technique for prostate cancer. The use
of PSMA PET/CT is rapidly increasing, while the number of nuclear medicine physicians and
radiologists to interpret these scans is limited. Additionally, there is variability in interpretation
among readers. Artificial intelligence techniques, including traditional machine learning and
deep learning algorithms, are being used to address these challenges and provide additional
insights from the images. The aim of this scoping review was to summarize the available
research on the development and applications of AI in PSMA PET/CT for prostate cancer
imaging. A systematic literature search was performed in PubMed, Embase and Cinahl
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. A total of 26 publications were included in the synthesis. The included
studies focus on different aspects of artificial intelligence in PSMA PET/CT, including detec-
tion of primary tumor, local recurrence and metastatic lesions, lesion classification, tumor
quantification and prediction/prognostication. Several studies show similar performances of
artificial intelligence algorithms compared to human interpretation. Few artificial intelligence
tools are approved for use in clinical practice. Major limitations include the lack of external
validation and prospective design. Demonstrating the clinical impact and utility of artificial
intelligence tools is crucial for their adoption in healthcare settings. To take the next step
towards a clinically valuable artificial intelligence tool that provides quantitative data, indepen-
dent validation studies are needed across institutions and equipment to ensure robustness.
Semin Nucl Med 00:1-9 © 2023 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Introduction

Prostate cancer is the second most common malignancy in
terms of prevalence and the sixth leading cause of
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cancer-related death among men globally.1 The disease stage
at diagnosis highly influences treatment planning and prog-
nosis.2 In advanced prostate cancer, measuring changes in
tumor burden over time is crucial to help guide therapy and
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to evaluate treatment effect. As there are no blood-borne
markers to accurately reflect the disease spread, this task
heavily relies on imaging.
Prostate-specific membrane antigen (PSMA) positron

emission tomography/computed tomography (PET/CT) has
become increasingly important in recent years in prostate
cancer imaging. PSMA is a type II transmembrane protein
that is expressed in the epithelium of the prostate,3 but also
in for example proximal renal tubules and salivary glands.4, 5

It is over-expressed in prostate cancer but also in several
other cancer types.5 PSMA expression increases with increas-
ing prostate cancer stage and tumor grade.6-8 PSMA ligands
used for PET/CT imaging bind to the surface receptor and
are internalized within the cells. Several PSMA ligands
labelled with either gallium-68 (68Ga) or fluorine-18 (18F)
exist with slightly different properties. Examples include
[68Ga]Ga-PSMA-HBED-CC ([68Ga]Ga-PSMA-11), [68Ga]Ga-
PSMA-617, [68Ga]Ga-PSMA-I&T, [18F]DCFBC, [18F]
DCFPyL and [18F]PSMA-1007. [68Ga]Ga-PSMA-11 was
introduced in humans in 2012 and is the most studied
PSMA ligand and has been investigated in different stages of
prostate cancer.9-11 [18F]PSMA-1007 is mainly excreted
through the hepatobiliary pathway (instead of the urinary
route common for other PSMA ligands) which might be
advantageous for finding sites of local recurrence close to the
urinary bladder.12-15 [68Ga]Ga-PSMA-11 and [18F]DCFPyL
are approved by the US Food and Drug Administration
(FDA). Using PSMA PET/CT for finding sites of biochemi-
cally recurrent prostate cancer is a widely accepted clinical
indication in many parts of the world, since several studies
have indicated superior detection compared with conven-
tional imaging.2 Evidence is growing that it also is useful for
staging high-risk primary prostate cancer.16-19 It can also be
used to determine eligibility for radioligand therapy using for
example [177Lu]Lu-PSMA-617, and possibly to monitor
treatment effect in advanced prostate cancer.20-23

Considering all possible applications of PSMA PET/CT in a
cancer type that affects a large part of the male population, it
is easy to imagine that the number of PSMA PET/CT scans
will increase faster than the working force of nuclear medi-
cine physicians and radiologists. A problem of inter-reader
variability also exists. Furthermore, the images may carry
valuable information that is not known or clinically used
today, such as predictive information. Artificial intelligence
(AI) could be a part of the solution to these issues. The aim
of this scoping review was to perform a systematic literature
search of available research on development and applications
of AI in PSMA PET/CT for prostate cancer and to summarize
the results.
Artificial Intelligence
The aim of AI is to replicate and even exceed human cogni-
tive capabilities in various domains, including image analysis.
Within image analysis, AI includes tasks such as:

- Image classification, ie, assigning a label or a category
to an entire image,
- Object detection, ie, identifying and localizing of a set
of objects in an image, and

- Semantic segmentation, ie, partitioning an image into
multiple regions by assigning a class label to each
pixel.

AI typically involves machine learning, which is a subfield
that focuses on enabling computers to learn from data and
make predictions or decisions without being explicitly pro-
grammed. For a long time, machine learning techniques
such as support vector machines and random forests were
popular in image analysis. However, these traditional
machine learning methods can often struggle with the high
dimensionality of raw pixel data and often rely on manually
designed features to perform well. This limits their effective-
ness in complex visual tasks and makes development a rather
tedious process of manual fine-tuning and feature design.

Deep learning is a subfield of machine learning that deals
with algorithms inspired by the structure and function of the
brain, specifically neural networks with several layers. For
image analysis, a special architecture called convolutional
neural networks (CNNs) have proven to be especially useful.
Like other deep learning models, CNNs can learn hierarchi-
cal feature representations directly from raw pixel data allevi-
ating the need for manually designed features.

Although CNNs have been around for more than 30 years,
their real breakthrough came about a decade ago, probably
due to an increased availability of large datasets and more
powerful computing hardware, including graphics process-
ing units. Since then, CNNs and more recently vision trans-
formers, have drastically improved state of the art for a wide
range of image analysis tasks and sometimes coming close to
or even surpassing human performance, particularly when
large annotated datasets are available.

Radiomics is a group of methods closely related to classical
machine learning as it involves the extraction of a large num-
ber of quantitative features from medical images, such as
shape, texture, and intensity characteristics. Machine learn-
ing techniques are then employed to build predictive models
using these radiomic features.
Methods
Literature Search and Screening
The literature search was performed in PubMed, Embase,
and Cinahl between 17 to 21 March 2023. It was a combined
search of AI (including machine learning, deep learning, neu-
ral networks, computer neural networks and conventional
neural networks); prostate cancer; PSMA (including
DCFPyL), and PET/CT. Limitations were set in languages
(only English, Danish, Norwegian, and Swedish) and article
type (editorials, letters, comments, notes, and erratum were
excluded). Deduplication of the results was done in End-
Note. For complete search strategies, see Supplement 1.

The literature search resulted in 199 hits. After deduplica-
tion, 160 unique articles remained. The articles were then



Figure 1 PRISMA flow chart.
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screened in abstract independently by two researchers with
the screening tool Rayyan. Conflicts were solved by consen-
sus. Articles that did not fulfil the objectives of the study, ani-
mal studies and/or articles with the wrong article type or the
wrong language were excluded. The remaining articles were
assessed in full text, or in HTML-format if full text was
unavailable. Only articles that fulfilled the objectives were
included in the synthesis.
Sixty-five articles remained after screening. In the synthe-

sis, 26 articles were included. For more information, see the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow chart (Fig. 1). An overview of all
included original research papers are presented in Supple-
ment 2.
Detection
Many publications present methods that apply AI for auto-
mated detection and segmentation of both primary tumor
and metastatic lesions. This is intuitively appealing given the
possible time-sparing profits, especially in patients with met-
astatic castration-resistant prostate cancer (mCRPC) with
widespread disease. For prostatic lesions, AI-assisted seg-
mentation can be used for radiomic features extraction or to
improve treatment planning for focal radiation therapy.
Two articles were found that focus on detection of lesions

in the pelvic region. Zhao et al.24 developed a model using
[68Ga]Ga-PSMA-11 PET/CT scans from 193 patients with
mCRPC from three different centers. A triple-combining
2.5D U-Net pipeline was trained using manual segmentations
by two physicians. The cohort had a high burden of disease
with a total of 1003 bone lesions, 626 lymph node lesions,
and 127 local lesions in the pelvic region. When evaluated
against the manual segmentations, the sensitivity for
detection of both bone lesions (sensitivity 99%) and lymph
nodes (sensitivity 90%) was high, but low for the detection
of prostatic lesions (sensitivity 61%). The number of false
positives was not stated. The model was subsequently tested
on 35 [68Ga]Ga-PSMA-11 PET/CT scans from a Chinese
patient cohort with similar accuracy.25 In a study by
Tr€aga

�
rdh et al.26 a CNN-based model for detection of pelvic

lymph nodes in [18F]PSMA PET/CT achieved a high sensitiv-
ity of 82%, compared to 77% for physicians. The average
number of false positive lesions per patient was only 1.8. The
study included 211 patients who had performed a [18F]
PSMA PET/CT scan as part of initial staging and did not limit
the field of view to the pelvis, making it difficult to compare
to the study by Zhao et al.

Other publications present CNN-based models for whole-
body lesion detection. In a subsequent study, the model by
Tr€aga

�
rdh et al.27 was further developed to detect both pros-

tatic lesions and metastases, and to quantify the whole-body
tumor burden. The material was extended to 660 [18F]
PSMA-1007 PET/CT scans from patients with newly-diag-
nosed high-risk prostate cancer or with suspected recurrent
disease after initial treatment. The model had an average sen-
sitivity of 79% for the detection of primary tumor or local
recurrence with physicians as reference (compared to an
average sensitivity of 78% for physicians when compared to
another reader), 79% for the detection of lymph node lesions
(78% for physicians), and 62% for the detection of bone
metastases (59% for physicians). Thus, the performance of
the AI tool was comparable to human interpretation.

Kendrick et al.28 developed a model using a self-configur-
ing nnU-net framework for fully automated whole-body
lesion segmentation in [68Ga]Ga-PSMA-11 PET/CT from 193
patients with biochemical recurrent prostate cancer. Manual
segmentations were used as ground truth. On a lesion-level,
the model achieved a sensitivity of 73% and positive
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predictive value of 88% with a low false positive prediction
rate (1 per 4.3 scans). On a patient-level, the accuracy, sensi-
tivity and positive predictive value were > 90%, respectively.
The patients had a low burden of disease, and the authors
advocate validation in patients with higher tumor burden.
Capobianco et al. developed CNN-based method to support

image-based staging by using training information from both
[68Ga]Ga-PSMA-11 and [18F]FDG PET/CT.29 The rational was
to pretrain on [18F]FDG information, with fine-tuning on
[68Ga]Ga-PSMA-11 data, given the limited availability of the
latter. The CNN showed an agreement of 81% with expert
assessment for the identification of pelvic lymph node involve-
ment (N1), 62% in metastasis (M) stage assignment and 77%
for identification of any distant metastases (M0 vs M1).
In a radiomics study, Cysouw et al.30 aimed to develop a

machine learning-based model for detecting metastatic dis-
ease in preoperative [18F]DCFPyL PET/CT. They included
76 patients with intermediate- to high-risk prostate cancer
scheduled for radical prostatectomy. Radiomic features
(intensity, morphology and texture features) were extracted
from the delineated primary tumor. The resulting random
forest algorithm achieved a good discriminatory performance
in the detection of both lymph node and distant metastasis
(AUC 0.86, P < 0.01, respectively). The authors conclude
that the model could constitute a noninvasive determination
of low-risk patients that can be spared from extended pelvic
lymph node dissection but would require external validation.
In a conference abstract, Xu et al.31 trained and evaluated

two different CNN-based models (a fully CNN with a
ResNet-101 backbone and a U-Net) using [18F]DCFPyl PET/
CT scans from 526 patients with metastatic prostate cancer.
The sensitivity (44%, not stated for which model) when com-
pared to manual delineation was considerably lower com-
pared to other authors and only up to five lesions per scan
were segmented. Interestingly, proximity to bladder and
lesion intensity (SUVmax > 5) were found to be important
factors for detectability.
The remaining publications in this category include three

conference abstracts and one manuscript.
One of the conference abstracts presents an experimental

CNN-based method for removal of physiological radiophar-
maceutical activity in [18F]DCFPyl PSMA PET/CT,32 and one
introduces a CNN-based model for urinary bladder segmen-
tation in [18F]DCFPyl PSMA PET/CT.33 Neither of the mod-
els are trained to perform lesion detection but can rather be
regarded facilitative presteps. The third conference submis-
sion presents preliminary results from a CNN-based model
for detection of bone lesions in [68Ga]Ga-PSMA PET/CT.34

Finally, Ghezzo et al.35 present a CNN-based model for seg-
mentation of primary tumor in [68Ga]Ga-PSMA PET/CT with
a median Dice similarity coefficient of 0.77 compared to
manual delineation.
Classification
Other publications focus on classification rather than detec-
tion of suspected metastases. Moazemi et al.36 tested five
different machine learning models for classification of 2419
lesions in 72 patients that had been treatment for either local-
ized or metastasized prostate cancer and referred for a follow-
up [68Ga]Ga-PSMA PET/CT. Lesions were delineated by two
physicians and a total of 80 features (40 from PET and 40
from CT) were calculated from each lesion and utilized in
each algorithm, with an ExtraTrees classifier showing the
best results (AUC 0.98, sensitivity 94%, and specificity
89%). The results showed that the combination of PET and
CT features greatly improved the classification accuracy. In a
similar study, Erle et al.37 compared three different machine
learning radiomics models based on support vector machine,
ExtraTrees and random forest models, respectively. The
models were trained to differentiate between malignant and
physiological uptake in [68Ga]Ga-PSMA-11 images. A total of
2452 hotspots were delineated in 72 patients and marked
either as malignant or physiological. A total of 77 radiomic
features were utilized in each algorithm, with an ExtraTree
classifier showing the best results (AUC 0.95, sensitivity
95%, and specificity 80%).

Leung et al. developed a radiomics model to perform
patient-level and lesions-level classification in [18F]DCFPyl
PET scans from patients with prostate cancer (inclusion crite-
ria or stage not stated).38 Instead of using the maximum rele-
vance and minimum redundancy method or similar to
extract the most important features, a deep learning
approach was used to automatically segment lesions and
extract features.38 A total of 3062 lesions from 214 patients
were used for training and 53 patients with a total of 732
lesions were used to test the model (patient-level AUC 0.90).

Zang et al.39 developed a radiomics model to differentiate
between prostate cancer and benign prostate disease. They
developed a radiomics model score constructed by a linear
combination of coefficients from a selection of nine radiomic
features and used a Least Absolute Shrinkage and Selection
Operator (LASSO) algorithm to tune the parameters using a
training set of 87 patients. The model was validated in a test
set with 36 patients (AUC 0.85, sensitivity 84%, and specific-
ity 77%).

Hartenstein et al. trained CNNs for the binary classifica-
tion of lymph nodes in contrast-enhanced CT scans of 549
histologically confirmed prostate cancer patients (2616 seg-
mented lymph nodes) using [68Ga]Ga-PSMA-11 PET/CT as
ground truth.40 The model achieved an accuracy of 89%
(AUC 0.95, sensitivity 86%, and specificity 92%) and per-
formed comparable to physicians. However, histopatholog-
ical confirmation was lacking and the author's state that the
model lacks generalizability and relies on manual detection
and segmentation of lymph nodes.
Prediction and Prognostication
Assessment of tumor burden could provide prognostic infor-
mation and be used to evaluate treatment response.41-44 To
be clinically useful, tumor burden calculation needs to be
fast and validated. In the study by Kendrick et al.28 an addi-
tional evaluation of the CNN-based model was performed by
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demonstrating that automated global biomarkers derived
from [68Ga]Ga-PSMA PET/CT were significantly associated
with overall survival. Both total lesion volume (TLV) and
total lesion uptake (TLU) were able to stratify patients based
on the median values and a statistically significant difference
in overall survival was seen in the two groups for both TLV
and TLG (P < 0.005, respectively).
In the study from 2022 by Tr€aga

�
rdh et al, fully automated

CNN-based calculation TLV and TLU obtained from prostate
tumor/local recurrence, lymph node metastases, and bone
metastases, showed a significant correlation to tumor burden
estimation by physician’s (range P = 0.53 [TLV lymph node
metastases] to 0.83 [TLU prostate tumor/local recurrence]).27

In a conference abstract, McIntosh et al.45 present a fully
automated method for total tumor burden segmentation,
developed using a CNN and a watershed filtering technique.
The CNN was trained using 48 [68Ga]Ga-PSMA PET/CT
scans and tested in 50 patients and performed comparable to
nuclear medicine physicians. The mean difference for PSMA-

mean, PSMAmax, and PSMAvol derived from the total tumor
burden segmentation was �0.2 SUV, �1.6 SUV and
�153 mL with r 0.98, 0.97, and 0.93, respectively, when
compared to the manual measures.
Other authors have focused on the possible predictive

information contained in the primary tumor. Yi et al.46 devel-
oped a machine learning-based radiomics model to predict
undetected prostatic lesions on [68Ga]Ga-PSMA-11 PET/CT.
They manually segmented the prostate gland in 64 patients
for training and 36 patients for testing the model. The ten
most predictive features were selected, and a random forest
model was used to predict the presence of undetected tumor
tissue (AUC 0.93, sensitivity 85%, and specificity 88.5%).
Yao et al.47 used a support vector machine-based radiomics
model on [18F]PSMA‑1007 PET scans to predict Gleason
score, extracapsular extension, and vascular invasion, and
evaluated how different thresholds of the segmentation pro-
cess affect the prediction accuracy. Bezzi et al.48 and Feliciani
et al.49 have in contribution to conferences described [68Ga]
Ga-PSMA-11 machine learning-based radiomics models to
predict International Society of Urological Pathology (ISUP)
score in patients with primary prostate cancer.
Evaluation for [177Lu]Lu-PSMA-
617 Therapy and Dosimetry
[177Lu]Lu-PSMA-617 is an intravenous radioligand therapy
combining a PSMA-targeting agent with the therapeutic
radionuclide lutetium-177 (177Lu). It has been reported to
improve both progression-free survival and overall survival
in patients with advanced prostate cancer who do not
respond to any other available treatment.20 In 2022, [177Lu]
Lu-PSMA-617 therapy for patients with PSMA-positive
mCRPC who have received androgen receptor pathway inhi-
bition and taxane-based chemotherapy was approved by
both the FDA and the European Commission. As a theranos-
tics approach, a pretreatment PET/CT scan using PSMA-
targeting radiopharmaceuticals is routinely performed.
Despite confirmed PSMA positivity, up to 1 of 3 of patients
receiving [177Lu]Lu-PSMA-617 therapy progress during
treatment.50 Strategies to discriminate responders from non-
responders are therefore needed. Moazemi et al.51 developed
a method for treatment response prediction in 83 patients
undergoing [177Lu]Lu-PSMA-617 therapy based on baseline
[68Ga]Ga-PSMA PET/CT using a machine learning approach,
with an AUC of 0.80 and a sensitivity and specificity of 75%,
respectively.

Another challenge in [177Lu]Lu-PSMA-617 treatment
planning is to estimate the absorbed radiation dose in
advance of therapy. In current practice, all patients are usu-
ally administered a fixed activity without individualized dose
application. This opposes the European Commission direc-
tive which mandates the use of dosimetry-based treatment
planning and verification for radiopharmaceutical thera-
pies.52 AI has been applied to bridge the gap to dosimetry-
guided [177Lu]Lu-PSMA-617 treatment planning. Xue
et al.53 used features from pretreatment [68Ga]Ga-PSMA
PET/CT and blood tests as input to train a traditional
machine learning technique (random forest) and an artificial
neural network. Both models showed a more accurate perfor-
mance than population-based dosimetry on dose prediction
for target organs.
Available Tools for Research or
Clinical Use
If AI-based methods are to be incorporated into clinical rou-
tine, and thereby add benefit in the clinical work-up, vali-
dated and approved products are necessary. To date, only
one product for automated image analysis of PSMA PET/CT
is approved by regulatory authorities. aPROMISE is CE-
marked and FDA-cleared since 2021. The software offers
quantitative analysis of hotspots and standardized reporting
of PSMA PET/CT scans (Fig. 2). aPROMISE was trained to
segment organs of low-dose CT based on a U-net architecture
and [18F]DCFPyL PET/CT scans were used for hotspot detec-
tion, based on classical blob detection within the relevant
organ or region mask. In a retrospective study, the sensitivity
for detecting suspicious metastases was found to be high,
ranging between 87% (for bone) and 92% (for regional
lymph nodes) depending on study cohort using the manually
selected lesions as reference method.54 However, the number
of false positive lesions per patient was rather high, ranging
from eight instances per patient for bone lesions and 90
instances per patient for lymph node lesions. In another ret-
rospective setting, a high inter-reader agreement (Cohen
pairwise kappa agreement of 0.77-0.90 for different stages)
was found when using aPROMISE assisted reading.55 The
readers were able to accept or override the lesions suggested
by the software. No information regarding the need for man-
ual corrections was provided in the article. The reading time,
from selecting a patient to generating a report, ranged from 2
to 6 minutes per patient. It is not known how the software



Figure 2 aPROMISE is the only CE-marked and FDA-cleared AI tool for analysis of PSMA PET/CT. It is based on a
machine-learning model to detect high local intensity regions of interest (pink) in the PET series. The hotspots selected
by the user are automatically quantified as shown in the table to the left.
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works on other PSMA radiopharmaceuticals or if a diagnostic
CT with intravenous contrast is used.
Two other authors have made their AI tools freely available

to other researchers in order to promote independent
Figure 3 The not-for-profit organization RECOMIA invites rese
PET/CT on their own PET/CT studies. The tool detects and qu
and bone lesions (yellow).
validation. The tool used in the studies by Tr€aga
�
rdh

et al.26,27 is available at https://www.recomia.org (Fig. 3).
The CNN-model by Ghezzo et al. for automatic segmentation
of prostatic lesions in [68Ga]Ga-PSMA PET/CT is available at
archers to apply the artificial intelligence tool for PSMA
antifies prostate tumor (blue), lymph node lesions (red),

https://www.recomia.org
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https://gitlab.com/dejankostyszyn/prostate-gtv-
segmentation.35
Discussion and Future
Applications
In this scoping review, we have found several research proj-
ects that develop AI algorithms for PSMA PET/CT in prostate
cancer. Research groups have worked on different aspects,
such as lesion detection, lesion classification, quantification
of tumors and prediction/prognostication. One CE- and
FDA-approved product was found, trained on [18F]DCFPyL
PET/CT scans. Some of the other studies have made their
code or AI tools freely available for other researchers.
PSMA PET/CT is increasingly used in a time when radiol-

ogists and nuclear medicine physicians are faced with a high
and increasing workload. Time to learn how to distinguish
normal and abnormal patterns of the relatively new PSMA
tracers is often limited for inexperienced readers. At the same
time, the emergence of precision medicine comes with the
need for quantitative data, ie, imaging biomarkers. The com-
mon qualitative way to report PET/CT studies will not be suf-
ficient and manual segmentation of tumors is a very time-
consuming task. In this context, AI tools will play an impor-
tant role in supporting radiologists and nuclear medicine
physicians to improve interpretation accuracy, decrease
inter-reader variability, save reporting time, and to provide
clinicians with quantitative data.
Several AI tools have been presented and the results show

the feasibility of developing a tool for clinical use. The study
of Tr€aga

�
rdh et al.26 showed sensitivity on par with human

readers at a reasonable level of false positive detection and
also illustrated the well-known problem with inter-reader
variability. AI tools have the potential to harmonize interpre-
tations and quantifications of PET/CT studies.
To take the next step towards a clinically valuable AI tool

that provides quantitative data, independent validation stud-
ies are needed. Most models in this literature search have
been trained and tested with data from a specific site, where
images have been collected in a specific way regarding cam-
era system, amount and type of radiopharmaceutical given,
acquisition time and accumulation time between administra-
tion of activity and scan time. These parameters affect image
noise, contrast and resolution and the activity distribution in
the patient.15,56-59 All these variables affect the generalizabil-
ity of the models. Also, the CE-marked and FDA-cleared AI
tools for PSMA PET/CT studies aPROMISE (also marketed as
PYLARIFY AI) have not been independently validated.54,55

These issues need to be handled before use of AI can be gen-
erally clinically valuable, which in part can be addressed by
for example following the EARL harmonization for imaging
or using the ComBat harmonization of imaging
biomarkers.60,61

An example of how to establish a clinically valuable imag-
ing biomarker is the validation process of the Bone Scan
Index. Preanalytic and analytic validation studies followed by
a clinical validation based on data from a large phase 3 study
was performed to qualify the Bone Scan Index as a clinically
valuable imaging biomarker.62-64 A similar process would be
of great value for AI tools in PSMA PET/CT.
Conclusion
The use of AI techniques shows promise in addressing the
challenges associated with the analysis and interpretation of
PSMA PET/CT in prostate cancer. The performance of several
AI models is equivalent to that of experienced nuclear medi-
cine physicians. However, there are limitations that need to
be addressed for the widespread adoption of AI tools in clini-
cal practice. These limitations include the lack of external val-
idation and prospective design in most of the reviewed
studies. To ensure the robustness of AI tools, independent
validation studies and trials assessing the real-world impact
on patient outcomes are needed. Overcoming these obstacles
requires collaboration among researchers, healthcare pro-
viders and regulatory bodies. Demonstrating the clinical util-
ity and impact of AI tools is crucial for their integration into
healthcare setting and for improving patient care.
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