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A Unified View on PAC-Bayes Bounds for Meta-Learning

Arezou Rezazadeh 1

Abstract

Meta learning automatically infers an inductive
bias, that includes the hyperparameter of the base-
learning algorithm, by observing data from a fi-
nite number of related tasks. This paper stud-
ies PAC-Bayes bounds on meta generalization
gap. The meta-generalization gap comprises two
sources of generalization gaps: the environment-
level and task-level gaps resulting from observa-
tion of a finite number of tasks and data samples
per task, respectively. In this paper, by upper
bounding arbitrary convex functions, which link
the expected and empirical losses at the environ-
ment and also per-task levels, we obtain new PAC-
Bayes bounds. Using these bounds, we develop
new PAC-Bayes meta-learning algorithms. Nu-
merical examples demonstrate the merits of the
proposed novel bounds and algorithm in compari-
son to prior PAC-Bayes bounds for meta-learning.

1. Introduction
Based on Mitchell’s definition (Mitchell, 1997), a machine
learns a task from an experience when its performance im-
proves with training examples of the task. In other words,
during the learning process, the learner can produce a hy-
pothesis that performs well on future examples of the same
task. This learning process is done based on the set of
assumptions known as inductive bias (Baxter, 2000). In
many machine learning problems, finding methods for au-
tomatically learning the inductive bias is desirable. Meta
learning also known as learning to learn (Thrun & Pratt,
1998) formalizes this goal by observing data from a number
of inherently related tasks. Then, it uses the gained expe-
rience and knowledge to learn appropriate bias which can

This work has been funded by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No. 893082.
1Department of Electrical Engineering, Chalmers University of
Technology, Gothenburg, Sweden. Correspondence to: Arezou
Rezazadeh <arezour@chalmers.se>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

be fine-tuned to perform well on new tasks. Thus, the meta-
learner speeds up the learning of a new, previously unseen
task (Baxter, 2000). For instance, learning the initialization
and the learning rate of a training algorithm (Finn et al.,
2017; Li et al., 2017), the model architectures of a neural
network (Zoph et al., 2018), or the optimization algorithm of
a neural network (Ravi & Larochelle, 2017), all are within
the scope of meta-learning.

As mentioned, the goal is extracting knowledge from several
observed tasks referred to as meta-training set, and using
the knowledge to improve performance on a novel task. The
meta-learner generalizes well if after observing sufficiently
training tasks, it infers a hyperparameter which contains
good solutions to novel tasks. The good solution means that
meta-generalization loss, which is defined as the average
loss incurred by the hyperparameter when used on a new
task, is minimized. However, since both data and task distri-
butions are unknown, the meta-generalization loss can not
be optimized. Instead, the meta-learner evaluates the em-
pirical meta-training loss for the hyperparameter based on
the meta-training set. Meta-generalization gap is defined as
the difference between the meta-generalization loss and the
meta-training loss. If the meta-generalization gap is small,
it means that the meta-training loss is a good estimation of
the meta-generalization loss.

Thus, bounding the meta-generalization gap is a key tech-
nique to understanding how the prior knowledge acquired
from previous tasks may improve the performance of learn-
ing an unseen task. Here, a key question is ‘how to regu-
larize the meta-learner, to avoid overfitting?’ The probably
approximately correct (PAC)-Bayes generalization bound,
is one way to answer this question.

In this paper, we derive a general framework that gives PAC-
Bayes bounds on the meta-generalization gap. Under certain
setups, different families of PAC-Bayes bounds, namely
classic, quadratic and fast-rate families, can be re-obtained
by the general framework. We also propose new PAC-Bayes
classic bounds which reduce the meta-overfitting problem.

Related Work In statistical meta-learning problems, one
line of research is learning of the parameters of the op-
timization algorithms, and analyzing gradients based on
meta-learning methods (Finn et al., 2017; Konobeev et al.,
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2020). For example, (Balcan et al., 2019; Khodak et al.,
2019) worked on an online convex optimization framework
with the assumption that tasks are close to a global task
parameter. Additionally, (Denevi et al., 2019; 2018) studied
algorithms which incrementally update the bias regulariza-
tion parameter using a sequence of observed tasks. Another
line of research is studying the meta-generalization gap, and
finding bounds on it on average (Jose & Simeone, 2021;
Rezazadeh et al., 2021) or with high probability (Pentina &
Lampert, 2014; Amit & Meir, 2018; Rothfuss et al., 2021;
Liu et al., 2021; Guan et al., 2022).

We recall that in the ordinary learning problem, the bound
for generalization gap can be obtained for average general-
ization error scenario (Russo & Zou, 2016; Xu & Raginsky,
2017; Bu et al., 2019; Negrea et al., 2019) and PAC-Bayes
scenario (McAllester, 1999; Seeger, 2002; Maurer, 2004;
Catoni, 2007; Alquier, 2008; McAllester, 2013; Guedj &
Pujol, 2019; Guedj, 2019; Dziugaite1 et al., 2021; Ohnishi &
Honorio, 2021; Rivasplata et al., 2020). In the former case,
the bound of generalization error is derived by averaging
over the training set and hypothesis. While, the PAC-Bayes
bounds hold with high probability.

Following the initial work of McAllester (McAllester, 1999),
PAC-Bayes bounds for conventional learning have been
widely investigated. Selecting different convex functions,
which link the expected and empirical losses, such as KL-
divergence (Seeger, 2002), square function (Mcallester,
2003) or linear function (Alquier et al., 2016) implies dif-
ferent PAC-Bayes bounds. The dependency on the sam-
ple size, in most of these bounds, is inversely propor-
tional to the square root of the number of samples. In
(McAllester, 2013), by choosing the convex function as
Dγ(a||b) = γa− log(1− b+ beγ), a family of PAC-Bayes
bounds known as fast-rate bounds were obtained. In these
kinds of bounds, the dependence on the sample size can
be improved by the inverse of the number of samples. Di-
rectly relevant to this paper, in (Rivasplata et al., 2020) by
proposing a general approach of finding PAC-Bayes bounds,
various known and also new PAC-Bayes bounds were ob-
tained.

In the meta-learning setup, inspired by the PAC-Bayes
bounds for conventional learning problem, by using dif-
ferent convex functions, different kinds of bounds were ob-
tained (Pentina & Lampert, 2014; Amit & Meir, 2018; Roth-
fuss et al., 2021; Liu et al., 2021; Guan et al., 2022). Initially,
an extension of generalization error bounds to meta-learning
was provided in (Pentina & Lampert, 2014) with a conver-
gence rate O(1/

√
N) + O(1/(N

√
M) + 1/

√
M). To have

tighter bounds, the approaches proposed in (McAllester,
1999) and (Alquier et al., 2016) have been extended to the
meta-learning problem in (Amit & Meir, 2018) and (Roth-
fuss et al., 2021), respectively. In (Amit & Meir, 2018) with

a rate O(
√
log(N)/N)+O(

√
log(NM)/M, by minimizing

the obtained PAC-Bayes bound, a gradient-based algorithm
was proposed. In (Rothfuss et al., 2021) with a convergence
rate O(1/

√
N) + O(1/(N

√
M) + 1/

√
N), by optimizing

the obtained bound, a class of PAC-optimal meta-learning
algorithms was developed. To achieve meta-learning algo-
rithms with rapid convergence ability, (Liu et al., 2021) and
(Guan et al., 2022) have studied fast-rate bounds for the
meta-learning setup with improved complexities.

Contributions Here, we summarize the main contribu-
tions of the paper.

• Firstly, inspired by (Rivasplata et al., 2020), by up-
per bounding arbitrary convex functions, which link the
expected and empirical losses at environment and also
per-task levels, we propose the general PAC-Bayes meta-
generalization bounds (Section 3).

• Proper choices of the convex functions recover known
PAC-Bayes bounds including classic, quadratic and fast-rate
families (Section 4).

• We provide a new fast-rate bound and also a new clas-
sic bound with better performance on the meta-test set and
with convergence rate O(

√
(1/N+ 1/M)) (Section 5). Fol-

lowing the meta-learning by adjusting the priors (MLAP)
algorithm (Amit & Meir, 2018), we develop the MLAP al-
gorithm for our new obtained bounds in the Section 6. We
demonstrate the usefulness of the proposed bounds in an ex-
ample in Section 7. The main merit of our new classic bound
is its significant performance to avoid meta overfitting.

2. Notations, Definitions and Methods
In this paper, the sample Z takes on a value in the instance
space Z . The hypothesis space (named also as model pa-
rameter space) is denoted by W . The non-negative loss
function ℓ : W ×Z → R

+ measures the model parameter
w ∈ W on a datasample z ∈ Z , the hyperparameter space
is represented by U , and the task environment is defined
by a set of tasks T which can be a discrete or a continuous
set. The Kullback-Leibler (KL) divergence between two
Bernoulli distributions with respective parameters p and
q, is given by kl(p, q). In other cases, the KL divergence
between distributions Q and P is denoted by D(Q||P).

2.1. Conventional single-task learning

In conventional learning, each task t ∈ T is associated
with an underlying unknown data distribution PZ|T=t on
Z . For a given task ti ∈ T , the base-learner observes
a data set ZM

i = (Z1
i , . . . , Z

M
i ) of M independently and

identically distributed (i.i.d.) samples from PZ|T=ti . For
the conventional single-task learning, the inductive bias
comprising of the hyperparameter vector u ∈ U of the base-
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learner is fixed. For the fixed u ∈ U , the base-learner uses
u and the training set ZM

i to output a distribution over W .

The goal of the base-learner is to infer the model parameter
w ∈ W that minimizes the per-task generalization loss
(named also as the per-task expected loss)

LPZ|ti
(w) = EPZ|ti

[ℓ(w,Z)] , (1)

where the average is taken over a test sample Z ∼ PZ|T=ti

drawn independently from ZM
i . Since PZ|T=ti is unknown,

the generalization loss LPZ|T=ti
(w) cannot be computed.

Instead, the base-learner evaluates the training loss

LZM
i
(w) =

1

M

M∑
j=1

ℓ(w,Zj
i ). (2)

The difference between the generalization loss and the train-
ing loss is referred to as the generalization gap

∆L(w|ZM
i , u, ti) = LPZ|ti

(w)− LZM
i
(w). (3)

Roughly speaking, if the generalization gap is small, then
with high probability, the performance of the inferred model
parameter w on the training set can be taken as a reliable
measure of the per-task generalization loss. Here, the ques-
tion is that if we want to avoid overfitting and minimize
per-task generalization loss with respect to w, what should
be optimized on the training data ZM

i ? The PAC-Bayes
framework studies this problem.

Given hyperparameter vector u ∈ U , and task ti ∈ T , in the
conventional single-task PAC-Bayes setting (Alquier, 2021),
the base-learner assumes a prior distribution P over W . By
observing the training data ZM

i , the base learner updates the
prior distribution to a data-dependent distribution referred
as posterior distribution Qi. Having a new instance, the
base learner randomly picks a model parameter w ∈ W
according to Qi. To have a guarantee that the performance
of training loss for the picked w holds with high probability
as the performance of per-task generalization loss, we bound
generalization gap averaged over the posterior distribution,
i.e., EW∼Qi

[∆L(W |ZM
i , u, ti)].

Roughly speaking, most PAC-Bayes proofs follow four key
steps. (Alquier, 2021) presents a comprehensive tutorial
about PAC-Bayes bounds. Here, we review the key steps
of finding PAC-Bayes bounds. Let F (a, b) be a convex
function in both a and b. Firstly, a suitable convex func-
tion such as F (·, ·) links the expected loss averaged over
the posterior distribution with the empirical loss averaged
over the posterior distribution. Then, by applying Jensen’s
inequality, the function over the expectation (posterior dis-
tribution) is bounded by the expectation of the function. By
using a change of measure inequality (Ohnishi & Honorio,
2021), we find a bound in terms of a divergence (usually

KL-divergence between posterior and prior distributions),
and the expectation of the function over prior distribution.
Then, by applying Markov’s inequality, we usually bound
the expectation of the function with the logarithm of the
confidence parameter. Thus, the convex function linking the
expected and empirical losses is bounded by a complexity
term, like F (a, b) ≤ c. Usually, a further bounding tech-
nique, which we refer to as the ‘affine transformation’, is
used to bound the expected loss as an affine transformation
of the complexity term. It means that from F (a, b) ≤ c,
one can conclude that a ≤ k · b+G(c), where k ∈ R is a
coefficient, and G : R+ → R.

To look through the mentioned concepts in detail, we con-
sider the conventional PAC-Bayes bound in (McAllester,
1999). In (McAllester, 1999), by setting FTask (a, b) =
2(M − 1)(a − b)2, it is proved that given the prior dis-
tribution P, for any confidence parameter δ ∈ (0, 1), with
probability at least 1− δ,

2(M− 1)
(
EW∼Qi

[
LPZ|ti

(W )− LZM
i
(W )

])2
≤ D(Qi||P) + log

(
M

δ

)
. (4)

The right hand side of (4) is known as the complexity term,
and contains KL-divergence, as the information gain in spe-
cializing from the prior to posterior distributions, and the
log-term, as the dependence expression on the confidence
parameter, and the number of samples M. A learning algo-
rithm with generalization guarantee selects a posterior distri-
bution Qi which minimizes (4). Since minimizing (4) is not
easy, to find bounds which are convenient to minimize, we
apply the affine transformation step. In other words, for the
convex function FTask (a, b) = 2(M−1)(a−b)2, since from
FTask (a, b) ≤ ctsk, we have a ≤ 1.b +

√
ctsk/(2(M− 1)),

the affine transformation leads to kt = 1 and GTask (c) =√
ctsk/(2(M− 1)). It means that from (4), the following

inequality holds uniformly for all posteriors distributions
Qi

EW∼Qi

[
LPZ|ti

(W )− LZM
i
(W )

]
≤

√
D(Qi||P) + log(Mδ )

2(M− 1)
. (5)

2.2. Meta-Learning

The goal of meta-learning is automatically infer the hyper-
parameter u of the base learner from training data pertaining
to a number of related tasks. The tasks are assumed to be-
longing to a task environment, which is defined by a task
distribution PT on the space of tasks T , and by the per-task
data distributions {PZ|T=t}t∈T . The meta-learner observes
a meta-training set ZM

1:N = (ZM
1 , . . . ,ZM

N ) of N data sets.



A Unified View on PAC-Bayes Bounds for Meta-Learning

Without loss of generality, we assume that number of sam-
ples of all tasks equals to M. The obtained results can be
easily generalized to the case where per-task data samples
are not equal. Each ZM

i is generated independently by first
drawing a task Ti ∼ PT and then a task-specific dataset
ZM

i ∼ PZM|Ti
.

The meta-learner uses the meta-training set ZM
1:N to infer

the hyperparameter u. In the PAC-Bayes setup for meta
learning, the goal of the meta-learner is to infer hyperpa-
rameter u from the observed tasks, and then use u as a prior
knowledge for learning new (yet unobserved) tasks from
task environment T . The quality of u is is measured by the
meta-generalization loss when using it to learn new tasks.
Formally, the objective of the meta-learner is to infer the
hyperparameter u that minimizes the meta-generalization
loss

LPTZM (u) = EPTPZM|T

[
EW∼Q[LPZ|T (W )]

]
, (6)

where the expectation is taken over an independently gen-
erated meta-test task T ∼ PT , over the associated data
set ZM ∼ PZM|T , and over the output of the base-
learner. Since PT and {PZ|T=t}t∈T are unknown, the
meta-generalization loss (6) cannot be computed. Instead,
the meta-learner can evaluate the meta-training loss, which
for a given hyperparameter u, is defined as the average
training loss on the meta-training set

LZM
1:N

(u) =
1

N

N∑
i=1

EW∼Qi [LZM
i
(W )]. (7)

Here, the average is taken over the output of the base-learner.
The difference between meta-generalization loss and the
meta-training loss is the meta-generalization gap

∆L(u|ZM
1:N) = LPTZM (u)− LZM

1:N
(u). (8)

Small meta-generalization gap means that with high proba-
bility, the performance of the inferred hyperparameter u on
the meta-training set can be taken as a reliable measure of
the meta-generalization loss (6).

In the PAC-Bayes setup for meta learning, the meta- learner
assumes a hyper-prior distribution P ∈ PU over hyperpa-
rameter space U , observes the meta-training set ZM

1:N, and
updates the hyper-prior distribution to a data-dependent dis-
tribution referred as hyper-posterior distribution Q ∈ PU .
The goal is to use the hyper-posterior distribution for learn-
ing new and unseen tasks. In other words, having a new
task, the meta learner randomly picks u according to hyper-
posterior distribution Q and then use it for learning of pos-
terior Qi.

One approach for finding the PAC-Bayes bounds for meta
learning, is decomposing the meta-generalization gap into

environment-level and within-task generalization gaps. We
define the decomposition term as

1

N

N∑
i=1

L̃ti
ZM

i
(U), (9)

where L̃ti
ZM

i
(u) is the average per-task generalization loss

L̃ti
ZM

i
(u) = EW∼Qi

[
LPZ|ti

(W )
]
. (10)

From (6), we can express the meta-expected loss as
LPTZM (U) = EPTZM [L̃T

ZM(U)]. Recalling that FEnv (a, b)
is a convex function in both a and b. In the PAC-Bayes setup
for meta learning, we can follow the mentioned four steps
for both environment-level generalization gap

FEnv

(
EU∼QEPTZM

[
L̃T
ZM(U)

]
,EU∼Q

[
1

N

N∑
i=1

L̃ti
ZM

i
(U)

])
,

(11)

and within-task generalization gap

FTask

(
EU∼Q

(
1

N

N∑
i=1

EW∼Qi

(
LPZ|Ti

(W )
))

,

EU∼Q

(
1

N

N∑
i=1

EW∼Qi
[LZM

i
(W )]

))
, (12)

separately (Pentina & Lampert, 2014; Amit & Meir, 2018;
Rothfuss et al., 2021; Liu et al., 2021; Guan et al., 2022).

3. General Meta-Learning PAC-Bayes Bounds
In this section, inspired by (Rivasplata et al., 2020), we find
a general approach for finding PAC-Bayes bounds for meta-
generalization gap.
Theorem 3.1 (General PAC-Bayes Bounds). Let FTask (a, b)
and FEnv (a, b) be two functions which are convex in both a
and b. Additionally, assuming that the tasks are drawn inde-
pendently from the task environment T according to distri-
bution PT . For the task and environment level priors P and
P , with a probability at least 1− δ, under PT1:NPZM

1:N|T1:N
,

for θtsk, θenv ≥ 0 we have

FEnv

(
EU∼Q

(
LPTZM (U)

)
,EU∼Q

(
1

N

N∑
i=1

L̃Ti

ZM
i
(U)

))

+ FTask

(
EU∼Q

( 1
N

N∑
i=1

L̃Ti

ZM
i
(U)
)
,EU∼Q

(
LZM

1:N
(U)
))

≤
(

1

θtsk
+

1

θenv

)
D(Q||P) +

1

N · θtsk
EQ

(
N∑

i=1

D(Qi||P)

)

+ log

EPT1:N
EP

ZM
1:N

|T1:N

(
Υ

1
N·θtsk
tsk ·Υ

1
θenv
env

)
δ

, (13)
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where

Υenv = EPe
θenvF

Env
(
LP

TZM
(U), 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

)
(14)

Υtsk =

N∏
i=1

EPPe
θtskF

Task
(
LPZ|Ti

(W ),L
ZM

i
(W )

)
. (15)

Proof. See Appendix A.

Generally, to obtain (13), we applied only one Markov’s
inequality. Thus, on the left hand side of (13), we have the
sum of FEnv(·) and FTask(·). A relaxed form of (13), can
be obtained by applying the affine transformation and also
Markov’s inequality two times at the task and environment
levels, separately. As discussed in (5), the affine transforma-
tion leads to a new function denoted by G(). For example,
if the convex function is F (a, b) = (a − b)2, since from
F (a, b) = (a− b)2 ≤ c, we conclude that a ≤ b+

√
c, the

affine transformation leads to k = 1 and G(c) =
√
c. Sim-

ilarly, F (a, b) = kl(a, b) ≤ c leads to k = 1/(1 − 0.5λ),
and G(c) = c/(M.λ(1 − 0.5λ)) (Thiemann et al., 2017) .
The following corollary is a relaxation of (13).

Corollary 3.2. Under the setting of Theorem 3.1, assume
that GTask (·) and GEnv (·) are two functions where from
FTask (a, b) ≤ ctsk (res. FEnv (a, b) ≤ cenv), we can conclude
a ≤ kt · b+GTask (ctsk) (resp. a ≤ ke · b+GEnv (cenv)) for
kt ∈ R+ (resp. ke ∈ R+). In this case, with probability at
least 1− δ, under PT1:N

PZM
1:N|T1:N

, we have

EU∼Q
[
LPTZM (U)

]
≤ ke · kt ·EU∼Q

[
LZM

1:N
(U)
]

+GEnv (BEnv) +
ke
N

N∑
i=1

GTask (BTask) , (16)

where setting Λenv = e
θenvF

Env
(
LP

TZM
(U), 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

)

BEnv =
1

θenv
D(Q||P)+

log

(
2EPT1:N

EP
ZM

1:N
|T1:N

EPΛenv

δ

) 1
θenv

,

(17)

and setting ΛTask = e
θtskF

Task
(
LPZ|Ti

(W ),L
ZM

i
(W )

)

BTask =
1

θtsk
D(Q||P) +

1

θtsk
EQ [D (Qi||P)]

+ log

(
2NEPT1:N

EP
ZM

1:N
|T1:N

EPPΛTask

δ

) 1
θtsk

.

(18)

Proof. See Appendix A.

4. Re-obtaining Existing Results
In this section, by applying different FEnv (·, ·) and
FTask (·, ·) to (16), we re-obtain all the previous main PAC-
Bayes bounds for the meta-learning problem. Table 1, sum-
marizes the results. For the derivation see Appendix B.

5. New PAC-Bayes Bounds for Meta-Learning
In this section, we insert different FEnv (, ) and FTask (, ) in
(13), and then we bound (14) and (15) by using Lemmas
presented in Appendix F. For simplicity, we assume that the
loss function is bounded on the interval [0, 1], and hence it
is sub-Gaussian with parameter 0.5.

Mainly, we present a new fast-rate bound and a new clas-
sic bound. To obtain fast-rate bound, like existing bounds,
we use (16). It means that we apply Markov’s inequality
and affine-transformation steps in both the environment and
task levels. However, to find the classic bound, we find a
lower bound for the left-hand side of (13), and then we apply
the affine-transformation step. It means that to obtain new
classic bound, we apply both Markov’s inequality and affine-
transformation step, once. Firstly, we preset the fast-rate
bound.

Theorem 5.1. Under the setting of Theorem 3.1, for N ≥ 2,
the meta-generalization gap is bounded by

EQ
[
LPTZM (U)

]
≤ min

λe,λt≥0.5

1

1− 1
2λe

·
EQLZM

1:N
(U)

1− 1
2λt

+
λe

1− 1
2λe

(
D(Q||P) + log 2

δ

N

)
+

1

1− 1
2λe

· λt

1− 1
2λt

· 1
N

N∑
i=1

D(Q||P) +EQ [D (Qi||P)] + log 2N
δ

M
,

(19)

where (19) is referred as the fast-rate bound for meta- learn-
ing.

Proof. See Appendix C

Now, we obtain a new classic bound. Setting FTask (a, b) =
2(M−1)(a−b)2 and FEnv (a, b) = (N−1)(a−b)2 in (13),
we will obtain a new bound with a single square, unlike
existing bounds. The key step to find bounds with a single
square is the following inequality

nm

n+m
(a− c)2 ≤ n(a− b)2 +m(b− c)2, (20)

where n,m ∈ N. To show (20), consider the function
f(a, b, c) ≜ n(a − b)2 + m(b − c)2. Since ∂2f/∂b2 =
2(n +m) > 0, the function f is convex with respect to b.
Hence, by setting the first derivative of f with respect to
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Table 1: Existing PAC-Bayes bounds on meta generalization gap can be obtained as a special case of (16)
.

Meta-Learning PAC Bayes Bounds
Bound FTask (a, b) , FEnv (a, b) Other parameters Affine transformation
MLAP
(Amit & Meir, 2018)

FTask (a, b) = 2(M− 1)(a− b)2,
FEnv (a, b) = 2(N− 1)(a− b)2

θtsk = θenv = 1 GEnv (c) =
√

c/(2(N− 1)),
ke = 1, GTask (c) =√

c/(2(M− 1)), kt = 1
PACOH
(Rothfuss et al.,
2021)

FTask (a, b) = (a− b),
FEnv (a, b) = (a− b)

θtsk = β, θenv =
λ

GEnv (c) = c, ke = 1, GTask (c) =
c, kt = 1

λ-Bound
(Liu et al., 2021)

FTask (a, b) = Mkl(a, b),
FEnv (a, b) = 2(N− 1)(a− b)2

θtsk = θenv = 1,
λ ∈ (0, 2)

GEnv (c) =
√

c/(2(N− 1)),
ke = 1, kt = 1/(1− 0.5λ),
GTask (c) = c/(Mλ(1− 0.5λ))

Classic bound
(Guan et al., 2022)

FTask (a, b) = Mkl(a, b) ,
FEnv (a, b) = Nkl(a, b)

θtsk = θenv = 1 kt = ke = 1,
GTask (c) =

√
c/2M,

GEnv (c) =
√

c/2N
Quadratic bound
(Guan et al., 2022)

FTask (a, b) = Mkl(a, b) ,
FEnv (a, b) = Nkl(a, b)

θtsk = θenv = 1 ke = 1,
GEnv (c) =

√
c/2N,

b ≤ (
√

a+ (c/2) +
√
c/2)2

λ bound
(Guan et al., 2022)

FTask (a, b) = Mkl(a, b) ,
FEnv (a, b) = Nkl(a, b)

λ ∈ (0, 2)
θtsk = θenv = 1

kt1/(1− 0.5λ),
GTask (c) = c/(λ(1− 0.5λ))
ke = 1, GEnv (c) =

√
c/2N

b equal to zero, b⋆ = (na + mc)/(n + m) minimizes f .
Since f(a, b⋆, c) ≤ f(a, b, c), and f(a, b⋆, c) equals to the
left-hand side of (20), we conclude (20).

Now, in (20), we set a = EU∼Q(LPTZM (U)), b =

EU∼Q(
1
N

∑N
i=1 L̃

ti
ZM

i
(U)) and c = EU∼Q(LZM

1:N
(U)).

usually the right hand side of (20) gives us the left hand
side of (13). Thus, if the right hand side of (20) is upper
bounded by B, from (20) we conclude that

∣∣∣EU∼Q

[
LPTZM (U)− LZM

1:N
(U)
]∣∣∣ ≤√n+m

nm
B. (21)

Now, in view of (20), we insert various convex functions
to (13). In the following, we present one of them where
we set FTask (a, b) = 2(M − 1)(a − b)2 and FEnv (a, b) =
(N− 1)(a− b)2 in (13), and n = (N− 1), m = 2(M− 1),
in (20).

Theorem 5.2. Under the setting of Theorem 3.1, N ≥ 2,
the meta-generalization gap is bounded by

∣∣∣EU∼Q

[
LPTZM (U)− LZM

1:N
(U)
]∣∣∣ ≤√ (N− 1) + 2(M− 1)

2(N− 1)(M− 1)

·

√√√√2D (Q||P) +EQ

[
1

N

N∑
i=1

D(Qi||P)

]
+ log

M
√
N

δ
.

(22)

Proof. See Appendix D.

We recall that (22) is expressed in terms of a single square.
Thus, compared to existing bounds, minimizing (22) is less
complicated and one can enjoy the properties of presented
bounds in (Rothfuss et al., 2021). In other words, it may
reduce the problem of meta overfitting.

In this sections, we only presented a member of fast-rate
and a member of classic families. We can apply different
FEnv (a, b) and FTask (a, b) functions, and obtain new differ-
ent bounds. For more new bounds, see Appendix E.

6. Meta-Learning Algorithm
By minimizing the bounds obtained in Section 5, we can de-
velop PAC-Bayes bound-minimization algorithms for meta-
learning with deep neural networks. Here, for (22), and in
view of (Amit & Meir, 2018) we obtain a meta-learning
algorithm. Similar algorithms can be found for all bounds
presented in Section 5. Following previous work (Amit &
Meir, 2018), we consider W = {hw, w ∈ Rd} as a set of
neural networks with certain parameters. For Np, d ∈ N,
let U ⊂ R

Np and W ⊂ R
d for all tasks ti. Like previous

works, (Amit & Meir, 2018; Guan et al., 2022), we set the
hyper-prior distribution as

P ≜ N (0, κ2
pINp × INp), (23)

where κ2
p > 0 is a predefined constant. We limit the space

of hyper-posteriors as a family of isotropic Gaussian distri-
butions defined by

Q ≜ N (θ, κ2
sINp

× INp
), (24)
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Table 2: Comparison of different PAC-Bayes bounds on 20 test tasks. During the meta-training phase, each task is
constructed with 8000 images, and during the meta-test phase, each task is constructed with 2000 images. The number of
training task is set as N = 5. The number of epochs is 100.

Meta-Learning PAC Bayes Bounds: Test Error (%)
Bound 100-Swap Shuffled pixels Permuted labels
MLAP (Amit & Meir, 2018) 31.4 with STD 1.99% 7.95 with STD 0.441%
kl-Bound (Liu et al., 2021) 26.7 with STD 1.14% 9.86 with STD 0.915%
λ-Bound (Liu et al., 2021) 28.1 with STD 1.28% 9.8 with STD 0.859%
Bound 1 (Guan et al., 2022) 31.8 with STD 1.31% 8.026 with STD 0.356%
Bound 2 (Guan et al., 2022) 32 with STD 1.44% 11.06 with STD 0.588%
Bound 3 (Guan et al., 2022) 28.8 with STD 1.6% 10.3 with STD 0.784%
Our classic bound (22) 9.39 with STD 0.454% 3.1 with STD 0.279%
Our fast-rate bound (19) 25.2 with STD 1.23% 9.77 with STD 0.824%

where θ ∈ RNp is the optimization parameter, and κ2
s > 0

is a predefined constant.

Next, we consider the posterior and prior distributions over
W . For all tasks ti ∈ T , W can be seen as a family of func-
tions parameterized by a weight vector ad = [a1, . . . , ad].
For a given hyperparameter u, let the weight vector is de-
noted by ad. We define the prior distribution as factorized
Gaussian distributions

P(ad|u) =
d∏

k=1

P(ak|u) =
d∏

k=1

N (ak;µu(k), σ
2
u(k)),

(25)

meaning that, before observing data, the k-th weight de-
noted by ak, takes values according to Gaussian distribution
with mean µu(k) and variance σ2

u(k). After observing data,
for task ti ∈ T , ak takes values according to Gaussian dis-
tribution with mean µi(k) and variance σ2

i (k). Thus, the
posterior distribution of task ti is

Qi(a
d|zMi

i , u) =

d∏
k=1

N (ak;µi(k), σ
2
i (k)). (26)

From (23) and (24), it can be verified that

D(Q||P) =
||θ||22 + κ2

s

2κ2
p

+ log
κ2
p

κ2
s

− 1

2
. (27)

Similarly, from (25) and (26), for task ti, we find that

D(Qi||P) =
1

2

d∑
k=1

(
log

σ2
u(k)

σ2
i (k)

+ log
σ2
i (k) + (µi(k)− µu(k))

2

σ2
u(k)

)
. (28)

Inserting (27) and (28) into (22), it remains to select the pa-
rameters of posterior distribution Qi minimizing (22). Since

the square root function is strictly increasing, an equivalent
optimization problem is the minimization of the objective
function inside the square of (22).

Following the optimization technique described in
(Amit & Meir, 2018), approximating the expectation
EU∼N (θ,κ2

sINp×INp )
by averaging several Monte-Carlo sam-

ples of U , the optimal posterior distribution can be obtained
by evaluating the gradient of (22) with respect to (µi,σ

2
i )

as described in Section 4.4 of (Amit & Meir, 2018).

We recall that, like (Rothfuss et al., 2021), the minimization
problem of (22) is equivalent to the simpler problem than the
optimization of existing classic bounds. In fact, it suffices to
minimize an objective function, which is linear with respect
to KL-divergences. This leads to Gibbs posteriors, and
might be the reason why the obtained algorithm reduces the
meta-overfitting problem.

7. Numerical Results
Using the same experiment given by Section 5 of (Amit &
Meir, 2018) and also (Liu et al., 2021; Guan et al., 2022),
we compare our bounds with previous works. We reproduce
the experimental results of our method by directly running
the online code1 from (Amit & Meir, 2018), and run our
algorithm by replacing others’ bounds with our bounds.

In image classification, the data samples z = (x, y), consist
of a an image, x and a label y. We consider an experiment
based on augmentations of the MNIST dataset. We study
two experiments, namely permuted labels and permuted
pixels. For permuted labels, each task is created by a random
permutation of image labels. For permuted pixels each task
is created by a permutation of image pixels. The pixel
permutations are achieved by 100 location swaps to ensure
the task relatedness.

The network architecture used for the permuted-label ex-

1https://github.com/ron-amit/meta-learning-adjusting-priors2
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(b) Meta-test error

Figure 1: The average training and test errors versus the number of training-tasks. The number of training examples for each
task is 600 images, and during the meta-test phase, each task is constructed with 100 images. The number of epochs is 100.
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Figure 2: The average test error of learning a new task
versus N. The number of training example of each task
8000. The number of epochs is 400.

periment is a small CNN with two convolutions layers,
a linear hidden layer and a linear output layer (Amit &
Meir, 2018). With a learning rate of 10−3, we use the
hyper-prior, prior, hyper-posterior and posterior distribu-
tions given by (23), (25), (24) and (26), respectively. We set
κ2
p = 100, κ2

s = 0.001, and δ = 0.1. For each task τi, and
k = 1, . . . , d, the posterior parameter log(σ2

i (k)) initialized
by N (−10, 0.01), µi(k) is initialized randomly with the
Glorot method (Glorot & Bengio, 2010). Then, for different
bounds, by using backpropagation, we evaluate the gradi-
ent of the bound with respect to µi = (µi(1), . . . , µi(d)).
Then, we set µi(k) and σi(k) as the means and variance of
k-th weight. The parameters µu(k) and σu(k) are similar
in structure, and the parameter θ is the vector containing the
weights of N tasks (Amit & Meir, 2018).

Table 2 shows the comparison of different PAC-Bayes
bounds for both permuted pixels and labels experiments.
The performance of our classic bounds is significantly better
than the existing bounds. Our fast-rate bound achieves com-

petitive performance on novel tasks. For permuted labels,
Figure 1a compares the average training error, and Figure
1b shows the test error of learning a new task for different
bounds. As shown in Figure 1a, the training error of our
classic bound (22) is comparable with other bounds. How-
ever, in Figure 1b, for new tasks, the performance of our
bound is much better than other bounds. Figure 2 compares
the test error when the larger number of training examples is
available. Again, our classic bound has better performance.

7.1. Conclusion

In this paper, for meta-learning setup, we have derived a gen-
eral PAC-Bayes bound which can recover existing known
bounds and proposes new bounds. Based on our extended
PAC-Bayes bound, we have obtained a bound from the fast-
rate family and also a bound from the classic family. The
fast-rate bound yields to competitive experimental results
on novel tasks with respect to existing methods. Unlike
existing bound, to obtain the classic bound, we used only
one Markov’s inequality and by lower bounding the sum of
environment-level and task-level convex functions, we end
up with a new classic bound. Practical examples show that
the new obtained classic bound reduces the meta overfitting
problem. The main property of the new classic bound is that
it is expressed in terms of one square. Thus, minimizing
the new PAC-Bayes bound leads to a simpler optimization
problem, i.e., minimizing an objective function which is
linear with respect to KL- divergences of posterior and prior
distributions. We guess that due to this property, the new
proposed bound has better performance on the meta-test set.

Potentially, our general PAC-Bayes bound holds for both
bounded and unbounded loss functions, as well as data-
dependent or data-free prior distributions. Here, we only
focused on data-free priors and bounded loss functions. Gen-
eralizing to other scenarios is left to future work.
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A. Proof of Theorem 3.1
To bound the meta-generalization gap, we bound the generalization gap at task and environment levels, separately. At
the task level, for the task ti, the base-learner uses a prior and the samples ZM

i to output a distribution over hypotheses.
Here, we consider the prior over hypothesis (P,P) as a joint distribution of one hyper-prior P and the prior P depends
on the hyper-prior. Note that the posterior over the hypothesis can be any distribution, particularly a tuple (Q,Qi) where
firstly the hyperparameter U is sampled from the hyper-posterior Q, and then the model parameter W is sampled from Qi.
Considering this approach, for any θtsk ≥ 0, we have

θtskF
Task
(
EQEQi

(
LPZ|ti

(W )
)
,EQEQi

(
LZM

i
(W )

))
≤ θtskEQEQi

[
FTask

(
LPZ|ti

(W ),LZM
i
(W )

)]
(29)

≤ D(QQi||PP) + log

(
EPPe

θtskF
Task

(
LPZ|ti

(W ),L
ZM

i
(W )

))
(30)

= D(Q||P) +EQ [D (Qi||P)] + log

(
EPPe

θtskF
Task

(
LPZ|ti

(W ),L
ZM

i
(W )

))
, (31)

where L̃ti
ZM

i
(u) and LZM

i
(w) are defined in (10) (2), respectively. Since FTask(·) is convex, in (29) we applied Jensen’s

inequality, and (30) follows from the Donsker-Varadhan theorem (99). Finally, (31) follows from the definition of the
KL-divergence.

Next, we average both sides of (31) over N tasks. Recalling that FTask (a, b) is convex in both a and b, we have
FTask

(
1
N

∑N
i ai,

1
N

∑N
i bi

)
≤ 1

N

∑N
i FTask (ai, bi). By applying this fact, in view of (9) and (7), using log

∏
i ai =∑

i log ai, we find that

θtskF
Task

(
EU∼Q

(
1

N

N∑
i=1

L̃ti
ZM

i
(U)

)
,EU∼QLZM

1:N
(U)

)
≤ D(Q||P) +

1

N
EQ

(
N∑

i=1

D(Qi||P)

)

+
1

N
log

(
N∏

i=1

EPPe
θtskF

Task
(
LPZ|ti

(W ),L
ZM

i
(W )

))
︸ ︷︷ ︸

Υtsk

. (32)

Similarly, at the environment level, by setting hyper-prior and hyper-posterior as P and Q, respectively, using Jensen’s
inequality, and applying the Donsker-Varadhan theorem (99), for θenv ≥ 0 we have

θenvF
Env

(
EU∼Q

(
LPTZM (U)

)
,EU∼Q

(
1

N

N∑
i=1

L̃ti
ZM

i
(U)

))

≤ D(Q||P) + log

(
EPe

θenvF
Env

(
LP

TZM
(U), 1

N

∑N
i=1 L̃

ti

ZM
i

(U)

))
︸ ︷︷ ︸

Υenv

. (33)

Now, dividing both sides of (32) (resp. (33)) by θtsk (resp. θenv), summing up both sides of the obtained inequalities, and
using the fact that log(a) + log(b) = log(a.b), we finally obtain

FEnv

(
EU∼Q

(
LPTZM (U)

)
,EU∼Q

(
1

N

N∑
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L̃ti
ZM

i
(U)
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+ FTask
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1

N
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L̃ti
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)
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1:N
(U)

)

≤ 1

N · θtsk
EQ
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D(Qi||P)

)
+

(
1

θtsk
+

1

θenv

)
D(Q||P) + log

(
Υ

1
N·θtsk
tsk ·Υ

1
θenv
env

)
. (34)
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Finally, by applying the Markov’s inequality, i.e., P[Υ ≥ E[Υ]/δ] ≤ δ to the Υ
1

θN·tsk
tsk ·Υ

1
θenv
env term, from (34), we conclude

that with probability at least 1− δ

FEnv

(
EU∼Q

(
LPTZM (U)

)
,EU∼Q

(
1

N

N∑
i=1

L̃Ti

ZM
i
(U)

))
+ FTask

(
EU∼Q

(
1

N

N∑
i=1

L̃Ti

ZM
i
(U)

)
,EU∼QLZM

1:N
(U)

)

≤ 1

N · θtsk
EQ

(
N∑

i=1

D(Qi||P)

)
+

(
1

θtsk
+

1

θenv

)
D(Q||P) + log

EPT1:N
EP

ZM
1:N

|T1:N

(
Υ

1
N·θtsk
tsk ·Υ

1
θenv
env

)
δ

,

(35)

which proves (13).

Next, to prove (16), we apply Markov’s inequality to both (31) and (33). From (31), we find that with probability at least
1− δi under distribution PT1:N

PZM
1:N|T1:N

, we have

θtskF
Task
(
EQEQi

(
LPZ|Ti

(W )
)
,EQEQi

(
LZM

i
(W )

))

≤ D(Q||P) +EQ [D (Qi||P)] + log

EPT1:N
EP

ZM
1:N

|T1:N
EPPe

θtskF
Task

(
LPZ|Ti

(W ),L
ZM

i
(W )

)

δi

 . (36)

Recalling that from FTask (a, b) ≤ ctsk , we can conclude a ≤ kt · b + GTask (ctsk), from (36), by dividing both sides of
a ≤ kt · b+GTask (ctsk) by N, with probability at least 1− δi, we have

1

N
EQEQi

(
LPZ|Ti

(W )
)
≤ kt

N
EQEQi

(
LZM

i
(W )

)
+

1

N
GTask (Bt) , (37)

where

Bt =
1

θtsk
D(Q||P) +

1

θtsk
EQ [D (Qi||P)] +

1

θtsk
log

EPT1:N
EP

ZM
1:N

|T1:N
EPPe

θtskF
Task

(
LPZ|Ti

(W ),L
ZM

i
(W )

)

δi

 . (38)

Here, in Lemma F.1, we set fi as the left hand side of (37) and ai as the right hand side of (37). Thus, from Lemma F.1, we
conclude that with probability at least 1−

∑
i δi,

EU∼Q

[
1

N

N∑
i=1

EW∼Qi

(
LPZ|Ti

(W )
)]

≤ kt
N

N∑
i=1

EQEQi

(
LZM

i
(W )

)
+

1

N

N∑
i=1

GTask (Bt) . (39)

Finally, in view of (9) and (7), (39) can be written as

EQ

[
1

N

N∑
i=1

L̃Ti

ZM
i
(U)

]
≤ kt ·EQ

[
LZM

1:N
(U)
]
+

1

N

N∑
i=1

GTask (Bt) . (40)

Similarly, at the environment level from FEnv (a, b) ≤ cenv, we can conclude a ≤ ke · b+GEnv (cenv). Considering this fact,
by applying the Markov’s inequality to (33), with probability at least 1− δ0, we have

EQ
(
LPTZM (U)

)
≤ ke ·EQ

( 1

N

N∑
i=1

L̃Ti

ZM
i
(U)
)
+GEnv (Be) , (41)

where

Be =
1

θenv
D(Q||P) +

1

θenv
log

EPT1:N
EP

ZM
1:N

|T1:N
EPe

θenvF
Env

(
LP

TZM
(U), 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

)

δ0

 . (42)
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Here, again we use Lemma F.1. In Lemma F.1, we set N = 2, f1 and a1 as the ke ≥ 0 times of the left and right hands side
of (40), respectively, and also f2 and a2 as the left and right hands side of (41), respectively. Thus, with probability at least
1−

∑
i δi − δ0,

EQ
[
LPTZM (U)

]
≤ ke · kt ·EQ

[
LZM

1:N
(U)
]
+GEnv (Be) +

ke
N

N∑
i=1

GTask (Bt) . (43)

Finally, setting δ0 = δ
2 , δi = δ

2N in (43), we conclude (16).

B. Re-obtaining the known PAC-Bayes Bounds
In this section, we present the derivation of bounds, summarized in Table 1. Firstly, to obtain Theorem 2 of (Amit & Meir,
2018), in (16), we set θtsk = θenv = 1, and FTask (a, b) = 2(M− 1)(a− b)2, FEnv (a, b) = 2(N− 1)(a− b)2. These choices
lead to ke = kt = 1, GTask (c) =

√
c

2(M−1) and also GEnv (c) =
√

c
2(N−1) . To simplify BTask and BEnv given by (18)

and (17), we use Lemma F.2. Since the prior in independent of the data, by interchanging the order of expectations over
PT1:NPZM

1:N|T1:N
and priors, in view of (18) and (17), we find that

EPPEPT1:N
P

ZM
1:N

|T1:N

[
e
2(M−1)

(
LPZ|ti

(W )−L
ZM

i
(W )

)2]
≤ M, (44)

EPEP
ZM

1:N

[
e
2(N−1)

(
LP

TZM
(U)− 1

N

∑N
i=1 L̃

ti

ZM
i

(U)

)2]
≤ N, (45)

where for (44) (res. (45)), we used Lemma F.2 by setting λ = 2(M−1)
M (resp. λ = 2(N−1)

N ) and σ = 0.5. We recall that since
in (Amit & Meir, 2018) the loss function is bounded on [0, 1], we set σ = 0.5 in Lemma F.2. Now, inserting (44) and (45)
into (18) and (17), from (16) we conclude that

EU∼Q
(
LPTZM (U)

)
−EU∼QLZM

1:N
(U) ≤

√
D(Q||P) + log

(
2N
δ

)
2(N− 1)

+
1

N

N∑
i=1

√
D(Q||P) +EQ [D (Qi||P)] + log 2NM

δ

2(M− 1)
, (46)

which is the same as the bound presented in Theorem 2 of (Amit & Meir, 2018).

Next, to obtain Theorem 2 of (Rothfuss et al., 2021), in (13) we set FEnv (a, b) = FTask (a, b) = (a − b), θtsk = β, and
θenv = λ, and these choices leads to kt = ke = 1 and GTask (c) = GEnv (c) = c. To simplify the log-term, since the prior in
independent of the data, by interchanging the order of expectations over PT1:N

PZM
1:N|T1:N

and priors, and recalling that the
loss function is bounded on the interval [0, 1], and hence it is sub-Gaussian with parameter σ = 0.5, we can conclude

EU∼Q
(
LPTZM (U)

)
−EU∼QLZM

1:N
(U) ≤ min

β,λ≥0
(
λ

8N
+

λ

8M
)− 1√

N
log δ

+
1

β
EQ

(
N∑

i=1

D(Qi||P)

)
+

(
1

β
+

1

λ

)
D(Q||P) , (47)

which is the same as Theorem 2 of (Rothfuss et al., 2021).

Next, we re-obtain Theorem 1 of (Liu et al., 2021). Firstly, in (16), we set θtsk = θenv = 1, and FTask (a, b) = Mkl(a, b) and
FEnv (a, b) = 2(N − 1)(a − b)2. These choices lead to ke = 1 GEnv (c) =

√
c

2(N−1) , and using further relaxation, from

Mkl(a, b) ≤ ctsk, it can be proved that a ≤ b/(1 − 0.5λ) + ctsk/(M.λ(1 − 0.5λ)) for λ ∈ (0, 2) (Thiemann et al., 2017).
Thus, we have kt and GTask (c) = c/(Mλ(1− 0.5λ)). It remains to obtain the log-terms of BTask and BEnv given by (18) and
(17). Again, assuming the prior in independent of the data, by interchanging the order of expectations over PT1:NPZM

1:N|T1:N
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and priors, we find (45), and

EPPEPT1:N
EP

ZM
1:N

|T1:N
e
Mkl

(
LPZ|Ti

(W ),L
ZM

i
(W )

)
≤ 2

√
M, (48)

where in (48), we used Lemma F.5. Applying all these facts to (16), we obtain

EU∼Q
[
LPTZM (U)

]
≤ 1

(1− 0.5λ)
EU∼Q

[
LZM

1:N
(U)
]
+

√
D(Q||P) + log 2N

δ

2(N− 1)

+
1

N

N∑
i=1

D(Q||P) +EQ [D (Qi||P)] + log 4N
√
M

δ

(Mλ(1− 0.5λ))
, (49)

which is the same as Theorem 1 of (Liu et al., 2021).

Similar approach can be applied to the bounds presented in (Guan et al., 2022). For the three bounds considered in (Guan
et al., 2022), KL-divergence is chosen for both task level and environment level. To bound the log-terms of (18) and (17), we
need to use Lemma 2 of (Guan et al., 2022). For the affine transformation steps, at the environment level, we use Pinsker’s
inequality.

C. Proof Theorem 5.1
To prove Theorem 5.1, in (16), we set θtsk = θenv = 1, FEnv (a, b) = NDγ(b, a) and FTask (a, b) = MDγ(b, a). Using
Lemma F.7, from NDγ(b, a) ≤ ce, we conclude that for γ ∈ (−2, 0), a ≤ b/(1 + 0.5γ)− ce/(N.γ(1 + 0.5γ)). In other
words, ke = 1/(1 + 0.5γ) and GEnv (c) =

−c
Nγ(1+0.5γ) (similarly for the task level). It remains to determine the log-terms

appeared in BTask and BEnv given by (18) and (17), respectively. Since the prior is independent of the data, by interchanging
the order of expectations over PT1:N

PZM
1:N|T1:N

and priors, using Lemma F.6, in view of (18) and (17), we find that

EPEPT1:N
EP

ZM
1:N

|T1:N
e
NDγ

(
1
N

∑N
i=1 L̃

Ti

ZM
i

(U),LP
TZM

(U)

)
≤ 1, (50)

EPPEPT1:N
EP

ZM
1:N

|T1:N
e
MDγ

(
L
ZM

i
(W ),LPZ|Ti

(W )

)
≤ 1. (51)

Applying all these facts to (16), we find that

EU∼Q
[
LPTZM (U)

]
≤ 1

(1 + 0.5γe)
· 1

(1 + 0.5γt)
·EU∼Q

[
LZM

1:N
(U)
]
−

D(Q||P) + log 2
δ

Nγe(1 + 0.5γe)

− 1

N(1 + 0.5γe)

N∑
i=1

D(Q||P) +EQ [D (Qi||P)] + log 2N
δ

Mγt(1 + 0.5γt)
. (52)

Setting λe = −1/γe and λt = −1/γt, we conclude the proof.

D. Proof of Theorem 5.2
Setting θtsk = θenv = 1, FTask (a, b) = 2(M− 1)(a− b)2 and FEnv (a, b) = (N− 1)(a− b)2 (13), leads to

(N− 1)

(
EU∼Q

(
LPTZM (U)

)
−EU∼Q

(
1

N

N∑
i=1

L̃Ti

ZM
i
(U)

))2

+ 2(M− 1)

(
EU∼Q

( 1
N

N∑
i=1

L̃Ti

ZM
i
(U)
)
−EU∼Q

(
LZM

1:N
(U)
))2

≤ D(Q||P) +
1

N
EQ

(
N∑

i=1

D(Qi||P)

)
+ log

EPT1:N
EP

ZM
1:N

|T1:N

(
Υ

1
N

tsk ·Υenv

)
δ

. (53)
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Then, following the same steps to obtain (20), we can show that

2(M− 1)(N− 1)

2(M− 1) + (N− 1)

(
EU∼Q

(
LPTZM (U)

)
−EU∼Q

(
LZM

1:N
(U)
))2

≤ (N− 1)

(
EU∼Q

(
LPTZM (U)

)
−EU∼Q

(
1

N

N∑
i=1

L̃Ti

ZM
i
(U)

))2

+2(M− 1)

(
EQ
( 1
N

N∑
i=1

L̃Ti

ZM
i
(U)
)
−EQ

(
LZM

1:N
(U)
))2

, (54)

and hence

2(M− 1)(N− 1)

2(M− 1) + (N− 1)

(
EU∼Q

(
LPTZM (U)

)
−EU∼Q

(
LZM

1:N
(U)
))2

≤ D(Q||P) +
1

N
EQ

(
N∑

i=1

D(Qi||P)

)
+ log

EPT1:N
EP

ZM
1:N

|T1:N

(
Υ

1
N

tsk ·Υenv

)
δ

. (55)

Now, the log-term appeared in (55) can be bounded as

EPT1:N
EP

ZM
1:N

|PT1:TN

(
Υ

1
N

tsk ·Υenv

)
≤
√
EPT1:N

EP
ZM

1:N
|PT1:TN

(
Υ

1
N

tsk

)2
·EPT1:N

EP
ZM

1:N
|PT1:TN

(Υenv)
2
, (56)

where in (56), we applied Cauchy-Schwartz inequality (or Hölder’s inequality). Next, by setting κ = 2, θtsk = θenv = 1,
FTask (a, b) = 2(M− 1)(a− b)2 and FEnv (a, b) = (N− 1)(a− b)2, in (14) and (15), we have

EPT1:N
EP

ZM
1:N

|PT1:TN

(
Υ

1
N

tsk

)2
= EPT1:N

EP
ZM

1:N
|PT1:TN

(
N∏

i=1

EPPe
θtskF

Task
(
LPZ|Ti

(W ),L
ZM

i
(W )

)) 2
N

(57)

≤

(
EPT1:N

EP
ZM

1:N
|PT1:TN

N∏
i=1

EPPe
2(M−1)

(
LPZ|Ti

(W )−L
ZM

i
(W )

)2) 2
N

(58)

=

(
N∏

i=1

EPPEP
TiZ

M
i

e
2(M−1)

(
LPZ|Ti

(W )−L
ZM

i
(W )

)2) 2
N

(59)

≤

(
N∏

i=1

M

) 2
N

= M2 (60)

where in (57) we applied (15). In (58), since a2/N is a concave function for N ≥ 2, we used Jensen’s inequality. Since, tasks
are assumed to be independent, and the prior is independent of the data, by interchanging the order of expectations over
PTZM

i
and PP, we obtained (59). Finally, in (60), we used Lemma F.4. Recalling that the loss function is bounded on [0, 1],

we face with sub-Gaussian variables with parameter σ = 0.5. By setting λTsk = 2(M − 1)/M (where λTsk ≤ 1/2σ2) in
Lemma F.4, and recalling that σ = 0.5, from (80), we found (60).
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Similarly, inserting (14) into (85) , we find that

EPT1:N
EP

ZM
1:N

|PT1:TN
(Υenv)

2
= EPT1:N

EP
ZM

1:N
|PT1:TN

(
EPe

θenvF
Env

(
LP

TZM
(U), 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

))2

(61)

≤ EPT1:N
EP

ZM
1:N

|PT1:TN
EP

(
e
(N−1)

(
LP

TZM
(U)− 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

))2

(62)

= EPT1:N
EP

ZM
1:N

|PT1:TN
EPe

2(N−1)

(
LP

TZM
(U)− 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

)
(63)

= EPEPT1:N
EP

ZM
1:N

|PT1:TN
e
2(N−1)

(
LP

TZM
(U)− 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

)
(64)

≤ N (65)

where in (62), since a2 is a convex function, we applied Jensen’s inequality. In (63), we used the fact that exp(a)b = exp(a.b).
Since the prior is independent of the data, by interchanging the order of expectations over PT1:NPZM

1:N|T1:N
and prior, we

obtained (64). Finally, in (65) we used Lemma F.4. By setting λEnv = 2(N− 1)/N (where λEnv ≤ 1/2σ2) in Lemma F.4,
and recalling that σ = 0.5, from (81), we found (65).

Inserting (60) and (65) into (56), we have

EPT1:N
EP

ZM
1:N

|PT1:TN

(
Υ

1
N

tsk ·Υenv

)
≤

√
M2N = M

√
N. (66)

Next, we focus on the affine transformation. Since from 2(M− 1)(a− b)2 ≤ ctsk (resp. (N− 1)(a− b)2 ≤ cenv), we can
conclude that a ≤ b+

√
ctsk/(2(M− 1)) (resp. a ≤ b+

√
cenv/(N− 1)).

Inserting (66) into (55), and applying affine transformation, we conclude the proof.

E. Presenting New PAC-Bayes Bounds
Theorem E.1. Under the setting of Theorem 3.1, for k ∈ N = {1, 2, ...} and N ≥ 2, the meta-generalization gap is
bounded by

∣∣∣EU∼Q

[
LPTZM (U)− LZM

1:N
(U)
]∣∣∣ ≤

√
(N−N

1
2k ) + 2(M−M

1
2k )

2(N−N
1
2k )(M−M

1
2k )√√√√2D (Q||P) +EQ

[
1

N

N∑
i=1

D(Qi||P)

]
+ log

(
√
N ·M)

1
2−

1
4k

δ
. (67)

Proof. We set θenv = θtsk = 1, FEnv (a, b) = (N − N
1
2k )(b − a)2 and FTask (a, b) = 2(M −M

1
2k )(b − a)2. To bound the

log-term, we use Lemma F.4, and in (82) and (83), we set σ = 0.5, λTsk = 2− 2M−1+1/(2k) and λEnv = 2− 2N−1+1/(2k).
By following exactly the same steps presented in the proof of Theorem 5.2, we conclude the proof.

Theorem E.2. Under the setting of Theorem 3.1, for N ≥ 2, the meta-generalization gap is bounded by∣∣∣EU∼Q

[
LPTZM (U)− LZM

1:N
(U)
]∣∣∣ ≤√0.5N +M

0.5N ·M√√√√D(Q||P) +EQ

[
1

N

N∑
i=1

D(Qi||P)

]
+ log

2
√
2

δ
. (68)

Proof. We set θenv = θtsk = 1, FEnv (a, b) = 0.5N(b− a)2 and FTask (a, b) = M(b− a)2. To bound the log-term, we use
Lemma F.4, and in (82) and (83), we set σ = 0.5, λTsk = 1 and λEnv = 1. By following exactly the same steps presented in
the proof of Theorem 5.2, we conclude the proof.
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We can apply different FEnv (a, b) and FTask (a, b) functions, and obtain different bound.

F. General Lemmas
In this appendix, we provide a number of general lemmas that will be used throughout the paper.

Lemma F.1. Let Xi for i = 1, ...,N be independent random variables. Suppose that for given ai ∈ R+, and measurable
function fi

PXi [fi(Xi) ≥ ai] ≤ δi, (69)

where δi ∈ [0, 1]. Then,

PX1:N

[∑
i

fi(Xi) ≤
∑
i

ai

]
≥ 1−

∑
i

δi. (70)

Proof. Firstly, we show that{
(x1, ..., xN) :

∑
i

fi(xi) ≥
∑
i

ai

}
︸ ︷︷ ︸

A

⊆
⋃
i=1

{xi : fi(xi) ≥ ai}︸ ︷︷ ︸
B

. (71)

Let (x1, ..., xN) /∈ B. It means that for all i = 1, ...,N, fi(xi) < ai which leads that
∑

i fi(xi) <
∑

i ai, or (x1, ..., xN) /∈
A. Thus, Bc ⊂ Ac, or equivalently A ⊂ B.

Next, from (71), one can conclude

PX1:N

[∑
i

fi(Xi) ⩾
∑
i

ai

]
≤
∑
i

PX1:N
[fi(Xi) ⩾ ai] =

∑
i

PXi
[fi(Xi) ⩾ ai] ≤

∑
i

δi (72)

where the last inequality follows from (69). The proof can be concluded from (72).

Lemma F.2. Let X1, ..., Xm be independent random variables, and g : X → R be a sub-Gaussian function with parameter
σ. Assume ∆ ≜ E[g(X)]− 1

m

∑m
k=1 g(Xi), where for ϵ > 0, we have P[∆ ≥ ϵ] ≤ exp(−mϵ2

2σ2 ). Then

E

[
eλm∆2

]
≤ 1

1− 2λσ2
, (73)

for λ ≤ 1
2σ2 .

Proof. The proof is similar to Lemma 3 of (McAllester, 1999). For completeness, we repeat it again. Let f⋆ denotes the
density function maximizing E[eλm∆2

] subject to the constraint that P[∆ ≥ ϵ] ≤ exp(−mϵ2

2σ2 ). The maximum occurs when
Pf⋆ [∆ ≥ ϵ] = exp(−mϵ2

2σ2 ) leading to

f⋆(∆) =
m∆

σ2
exp

(
−m∆2

2σ2

)
1{∆ ≥ 0}. (74)

Thus, we have

E

[
eλm∆2

]
≤
∫ ∞

0

exp
(
λm∆2

) m∆

σ2
exp

(
−m∆2

2σ2

)
d∆ =

1

1− 2λσ2
, λ <

1

2σ2
. (75)
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Lemma F.3. Let X1, ..., Xm be independent random variables. Assume ∆ = E[g(X)]− 1
m

∑m
k=1 g(Xi), where g(·) is

sub-Gaussian function with parameter σ. Then ,

E

[
eλm∆2

]
≤ 1√

1− 2λσ2
, (76)

for λ ≤ 1
2σ2 .

Proof. The proof is similar to Theorem 2.6 (Wainwright, 2019). For completeness, we repeat it again. Since g(·) is
sub-Gaussian, we have

E
[
eλ∆

]
≤ exp

(
λ2σ2

2m

)
. (77)

Multiplying both sides of (77) by exp(−λ2σ2

2sm ) for s ∈ (0, 1), we find that

E

[
eλ∆−λ2σ2

2sm

]
≤ exp

(
−λ2σ2

2ms
(−s+ 1)

)
. (78)

Next, we take integration with respect to λ. Since (78) is valid for any λ ∈ R, by using Fubini’s theorem, we exchange the
order of expectation and integration, leading to

E

[
exp

(
sm∆2

2σ2

)]
≤ 1√

1− s
, for 0 < s < 1. (79)

By defining λ = s
2σ2 , we conclude the proof.

Lemma F.4. Consider LPZ|ti
(wi), LZM

i
(wi), LPTZM (u), LZM

1:N
(u) and L̃t

ZM
i
(u) defined by (1), (2), (6), (7) and (10),

respectively. Assume that the loss function ℓ(·, ·) is bounded on the interval [0, 1], and hence it is sub-Gaussian with
parameter σ = (b− a)/2. For λEnv, λTsk ≤ 1/2σ2, and data-free priors we have

EPT1:N
EP

ZM
1:N

|T1:N
EPPe

λTskM(LPZ|Ti
(W )−L

ZM
i

(W ))2 ≤ 1

1− 2λTskσ2
, (80)

EPT1:N
EP

ZM
1:N

|T1:N
EPe

λEnvN

(
LP

TZM
(U)− 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

)2

≤ 1

1− 2λEnvσ2
, (81)

and also

EPT1:N
EP

ZM
1:N

|T1:N
EPPe

λTskM(LPZ|Ti
(W )−L

ZM
i

(W ))2 ≤ 1√
1− 2λTskσ2

, (82)

EPT1:N
EP

ZM
1:N

|T1:N
EPe

λEnvN

(
LP

TZM
(U)− 1

N

∑N
i=1 L̃

Ti

ZM
i

(U)

)2

≤ 1√
1− 2λEnvσ2

. (83)

Proof. We recall that since the prior is independent of the data, by interchanging the order of expectations over
PT1:N

PZM
1:N|T1:N

and priors To show (80), and (82), we note that PTiZM
i

is the marginal distribution of PT1:N
PZM

1:N|T1:N
.

Since the priors are data-free, we have

EPT1:N
EP

ZM
1:N

|T1:N
EPPe

λTskM(LPZ|Ti
(W )−L

ZM
i

(W ))2

= EP
TiZ

M
i

EPPe
λTskM(LPZ|Ti

(W )−L
ZM

i
(W ))2

(84)

= EPPEP
TiZ

M
i

e
λTskM(LPZ|Ti

(W )−L
ZM

i
(W ))2

. (85)

Next, we set ∆ = LPZ|ti
(W )−LZM

i
(W ), and m = M in Lemma F.2, and also Lemma F.3, for λTsk ≤ 1

2σ2 , we respectively
conclude that

EP
ZM

i
|Ti

e
λTskM(LPZ|Ti

(W )−L
ZM

i
(W ))2 ≤ 1

1− 2λTskσ2
, (86)

EP
ZM

i
|Ti

e
λTskM(LPZ|Ti

(W )−L
ZM

i
(W ))2 ≤ 1√

1− 2λTskσ2
, (87)
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where by averaging both sides of (86) and (87) over Ti, from (86) and (87), we find that

EPPEP
TiZ

M
i

e
λTskM(LPZ|Ti

(W )−L
ZM

i
(W ))2 ≤ 1

1− 2λTskσ2
, , (88)

EPPEP
TiZ

M
i

e
λTskM(LPZ|Ti

(W )−L
ZM

i
(W ))2 ≤ 1√

1− 2λTskσ2
. (89)

Inserting the right hand-sides of (88) and (89) into (85), we conclude (80), and (82).

Similarly, to show To show (81), and (83), we use the fact that LPTZM (U) = EPTZM [L̃T
ZM(U)]. Using the fact that prior

is data-free, by setting ∆ = EPTZM [L̃T
ZM(U)]− 1

N

∑N
i=1 L̃

Ti

ZM
i
(U), and m = N in Lemma F.2, and also Lemma F.3, for

λEnv ≤ 1
2σ2 , we respectively conclude that

EPEPT1:N
EP

ZM
1:N

|T1:N
e
λEnvN

(
EP

TZM
[L̃T

ZM (U)]− 1
N

∑N
i=1 L̃

Ti

ZM
i

(U)

)2

≤ 1

1− 2λEnvσ2
, (90)

EPEPT1:N
EP

ZM
1:N

|T1:N
e
λEnvN

(
EP

TZM
[L̃T

ZM (U)]− 1
N

∑N
i=1 L̃

Ti

ZM
i

(U)

)2

≤ 1√
1− 2λEnvσ2

, (91)

concluding (81), and (83).

Lemma F.5. Let X1, ..., Xn be i.i.d random variables, and f : X → [0, 1] be a bounded function. For all n > 8, we have

E

[
enD(

1
n

∑
i f(Xi)||E[f(X)])

]
≤ 2

√
n. (92)

Proof. See Theorem 1 of (Maurer, 2004), then for n ≥ 8, the right hand side of Eq. 5 of (Maurer, 2004) is smaller than√
n.

Lemma F.6. Let X1, ..., Xn be i.i.d random variables. For the given function f : X → [0, 1], we have

E

[
enDγ( 1

n

∑
i f(Xi)||E[f(X)])

]
≤ 1, (93)

where Dγ(a||b) = γa− log(1− b+ beγ).

Proof. See Equation (18) of (McAllester, 2013). For completeness, we repeat it again. Since for a ∈ [0, 1] and γ ∈ R, we
have eγa ≤ 1− a+ a · eγ , we conclude e

γ
n

∑
i f(Xi) ≤ 1− 1

n

∑
i f(Xi) + eγ 1

n

∑
i f(Xi), by taking expectation from both

sides, we find that E
[
e

γ
n

∑
i f(Xi)

]
≤ 1−E [f(X)] + eγE [f(X)]. Taking logarithm from both sides leads to

E

[
e

γ
n

∑
i f(Xi)−log(1−E[f(X)]+eγE[f(X)])

]
≤ 1 (94)

Now, since Xis are independent

EPX1:n

[
enDγ( 1

n

∑
i f(Xi)||E[f(X)])

]
= EPX1:n

[
n∏

i=1

eDγ( 1
n

∑
i f(Xi)||E[f(X)])

]
(95)

=

n∏
i=1

EPXi

[
eDγ( 1

n

∑
i f(Xi)||E[f(X)])

]
(96)

=

n∏
i=1

EPXi

[
e

γ
n

∑
i f(Xi)−log(1−E[f(X)]+eγE[f(X)])

]
≤ 1, (97)

where the equality in (97) and the last inequality follow from the definition of Dγ and (94), respectively.

Lemma F.7. Let Dγ(a||b) = γa− log(1− b+ beγ). For λ > 0.5 and C ∈ R, if D− 1
λ
(a||b) < C, then

b ≤ a+ λC

1− 1
2λ

. (98)
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Proof. See Lemma 2 of (McAllester, 2013).

As mentioned before, to find PAC-Bayes bounds, usually we have four steps, namely choosing a suitable convex function,
applying Jensen’s, change of measure and Markov’s inequalities. For the most PAC-Bayesian proofs, Donsker-Varadhan’s
inequality is used as the change of measure inequality:

Lemma F.8. For any measurable function ϕ(·), and two distributions P and Q, we have

EQ[ϕ(X)] ≤ D(Q||P) + log
(
EP

[
eϕ(X)

])
. (99)


