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Abstract—Testing of automotive systems usually follows the
V-Model, a process where sequential testing activities progress
from low-level code structures to high-level integrated systems. In
theory, the V-Model should reduce redundant testing and prevent
gaps in verification. To assess whether such benefits translate in
practice, in a case study at Scania CV AB, we have developed a
framework to identify redundancies and gaps in test cases across
V-model test levels.

Our framework identified both redundancies and gaps in Sca-
nia’s scripted testing efforts. Deviating cases were also identified
where, e.g., requirements were outdated or contained incorrect
details. Factors contributing to redundancy include re-verification
in a new context, difficulties mapping requirements across levels,
and lack of test case documentation. Both redundancies and
gaps result from a lack of communication and traceability of
test results across test levels. We recommend active collaboration
across levels, as well as use of coverage matrices to alleviate these
issues. We offer our framework to help refine testing practices
and to inspire process improvements.

Index Terms—Software Testing, Embedded System, Automo-
tive Software, Testing Process, Traceability

I. INTRODUCTION

Embedded systems are complex combinations of hard-
ware and software, often designed for safety-critical applica-
tions with high expectations on performance and robustness.
Modern vehicles contain dozens of electronic control units
(ECUs)—embedded systems that control mechanical, electri-
cal, and electronic systems. As vehicles grow in their capabil-
ities, the number and complexity of ECUs have also rapidly
increased [1]. Proper verification of software is critical, as it
defines the functional behavior of the vehicle [2]. Testing—the
application of input and analysis of the resulting output—is
the most common form of verification, and ensures that both
individual ECUs and their integration work as intended.

The vehicle itself offers functionalities built on individual
subsystems—ECUs. Those subsystems, in turn, offer a more
specific functionality serviced by code modules. Testing can
take place at multiple points, with focus on either individual
elements or on the integration of those elements to form
higher-level functionality.

The “V-Model” [3] is the de-facto standard in the auto-
motive domain. It structures the development process as a
sequence of design, development, and testing activities. A
generic version of the V-Model is shown in Figure 1. The
left side of this model consists of design activities—e.g.,
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Fig. 1: A generic implementation of the V-Model.

requirements specification—and the right consists of imple-
mentation and testing activities. The V-Model is also being
promoted as the reference model in ISO 26262 functional
safety standard [4]. Companies often adapt the V-Model to
fit their needs (one implementation is shown in Figure 2).

The structuring of testing in the V-Model, in theory, enables
clear scoping and progress visibility [5]. This structure allows
testers to understand and communicate the objectives of each
testing level, with the aim to prevent gaps—e.g., untested
requirements [5]. Additionally, if the correctness of a particular
functionality is established at the certain level in the V-Model,
it should not need to be retested again. As tests at higher
levels are often more difficult to design and more expensive
to run, the V-Model offers potential cost savings by avoiding
redundant testing [5].

It is not clear that such benefits are guaranteed in practice.
Consequently, it is important that organizations can assess
whether their testing process is both efficient and effective—
i.e., that they can assess the extent of redundant testing and
gaps in verification across levels. This is especially true as past
empirical studies of test process efficiency or effectiveness for
embedded systems are rare, and may not be applicable to an
organization’s context.

Our aim is to develop a framework that can identify re-
dundancies and gaps across testing levels. By redundancies,
we refer to multiple test cases overlapping in a substantial
manner—in this research, invoking the same functionality
while applying input from the same equivalence partitions.
By gaps, we refer to untested requirement or prescribed
equivalence partitions not being applied.



We have performed this research in collaboration with
Scania CV AB, a major manufacturer of commercial heavy-
load vehicles. Scania development follows an adaptation of
the V-Model, and we focus in particular in this study on
three levels—the system, user function, and complete vehicle
levels—of their testing process, based on individual ECUs and
forms of ECU integration. At Scania, the testing process is
guided by a set of test strategy documents. The documents
clearly define the scope and the objectives at each (test) level.
However, ensuring efficient verification is difficult, as the over-
all system is complex, and the teams often work in isolation
and use different documentation, tools, and environments to
test. This makes it difficult to assess redundancy and gaps
across levels.

Testers can follow our framework to map test-to-
requirements traceability across testing levels. Traceability is
enabled by the existence of a common logical element—
functionality offered by “allocation elements” (AEs), logical
units of computation deployed on each ECU. We have applied
this framework with independent assessment by testers:

• 4.29% of tests were redundant between levels. Contribut-
ing factors include the need to re-verify functionality in
a new context, difficulty mapping testing efforts across
levels, and lack of clarity on which test interactions
contribute to goals of a test and which are part of setup.

• 13.06% of requirements were not fully verified by the
available tests. Deviations in the form of outdated require-
ments, tests that could not be mapped to requirements,
requirements lacking descriptions, and requirements in-
dicating incorrect signals were also detected. In 58.63%
of cases, there was no documentation on why the require-
ments were not fully verified by test automation.

• Both redundancies and gaps result from a lack of com-
munication of traceability and results across test levels.
We recommend active collaboration across levels and use
of coverage matrices to alleviate these issues.

We offer our framework and the results of its implementa-
tion at Scania to help other organizations to refine their testing
practices, and to inspire testing researchers to offer further
improvements to the V-Model and similar processes.

II. BACKGROUND AND RELATED WORK

Automotive Embedded Systems Testing: ECUs contain em-
bedded micro-controllers equipped with software that monitor
and control vehicles functions. ECUs interact through sensors
(i.e., input) and actuators (i.e., output), and share information
through different protocols and technologies—predominantly
CAN and Ethernet1. Modern vehicles may contain 70+ ECUs,
with 2500+ signals sent through sensors and actuators [1].
Increasing ECU complexity makes testing a significant task.

Testing and verification are performed in different envi-
ronments where varying portions of the vehicle are real or
simulated, based on the need to safely test system elements

1For brevity, and without sacrificing the generality of our results, we assume
that all communication is via CAN network.

or due to lack of hardware availability [6]. Model-in-the-
loop (MiL) testing is done in a environment where functions
and the vehicle itself are simulated using models. During
software-in-the-loop (SiL) testing, the software is tested in a
simulated environment. In hardware-in-the-loop (HiL) testing,
hardware and software components—e.g., ECUs—are tested
in a simulated environment. HiL testing has traditionally been
the main approach, but MiL and SiL have become increasingly
common [6]. These techniques allow for fast development
cycles with verification at different levels of abstraction.

V-Model Testing in Automotive: Scania follows a modular
development approach (Figure 2). Modules of the vehicle
are developed separately, and then integrated to deliver a
more complex functionalities. These modules are designed and
developed for reusability, meaning that they can be reused
in many different scenarios to deliver various higher-level
functionalities. The reusability of these modules is facilitated
by the fact that their design, development and integration
follows the basic principles of the contract-based design [7],
which clearly defines the relation between the inputs and the
outputs. A vehicle consists of ECUs (grey boxes in Figure 2),
and each ECU controls certain aspect of a particular vehicle-
level function, often referred to as User Function (UF). ECUs
communicate through signals (red lines in Figure 2). Each
ECU consists of allocation elements (AEs)—logical compo-
nents (blue boxes in Figure 2).

Figure 3 illustrates the advanced emergency braking (AEB)
UF, which is responsible for safely stopping the vehicle when
an obstacle up front is detected based on camera and radar
data. When there is a risk of collision, the function is activated,
first with a light and sound. If the driver does not respond,
braking is activated. To realize this UF, a sequence of func-
tionalities are executed, including a speed check, monitoring,
and lighting. ECUs (and their internal AEs) are responsible
for these functionalities, and the code for the UF coordinates
the AEs.

Companies adapt the traditional V-Model—Scania’s imple-
mentation is shown in Figure 2. Broadly, the left side consists
of design activities—e.g., requirements specification—and the
right consists of sequential implementation and testing activi-
ties. Low-level logical elements of a system interact in service
of performing higher-level functionality. In a typical object-
oriented system, the system can be broken into interacting
subsystems, which can be broken into interacting classes.
In the V-Model, classes would be tested independently, then
their interaction within subsystems would be tested, then the
interactions between subsystems would be tested. Finally, the
system as a whole would be tested.

Scania’s adaptation of V-Model contains four main levels
of testing, where some levels consist of multiple activities2:

• Code Level (Module, Module Integration Test): Unit
and integration testing is performed on software modules
within each individual ECU.

2We focus on the system (ECU system test), UF, and integration (complete
vehicle integration test) levels.



Market 
Requirements Acceptance Test

Combined User 
Function 

Requirements

Complete Vehicle 
System Test

Complete Vehicle 
Integration Test

Customer

Complete Systems Integration Test GroupFunction Allocation 
Diagram, CAN signal 

mapping

User Function 
Requirements Function TestFunction Owner, Local Test Group

System 
Allocation 

Description, 
Allocation 
Element 

Requirements, 
Subsystem 

Requirements

Part System 
TestSystem Owner, Local Test Group

Part Integration 
Test

ECU System 
Test

Module Integration 
Documentation

Module 
Integration Test

Module TestModule 
Documentation

Module 
Development

Developer, Local Test Group

Developer

Complete Vehicle Integration Level

User Function Level

System Level

Code Level

{ .. }

Complete Systems Integration Test Group

Fig. 2: V-Model development process, as implemented at Scania. Activities on the left relate to requirements specification.
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Fig. 3: Advanced emergency braking slows the vehicle to avoid
collision. Makes use of functionality from three AEs (in two
ECUs): speedometer, radar, camera, light indicator.

• System Level (ECU System, Part Integration, Part
System Test): In ECU system testing, each ECU is tested.
In Figure 3, ECU system testing verifies the light, camera,
and speed checking AEs while testing their respective
ECUs. Part-system integration testing verifies interface
and communications of an ECU. Part system testing
focuses on verification of highly-interdependent ECUs.

• User Function Level (Function Test): UFs are tested.
The full advanced emergency braking system in Figure 3
would be verified at this level.

• Integration Level (Complete Vehicle Integration,
Complete Vehicle System, Acceptance Test): End-to-
end functionality testing, including tests where the AEB

UF from Figure 3 is activated3. Finally, acceptance testing
ensures that the customer requirements are met.

There are challenges in performing development under the
V-Model [8]. Development and verification is strictly divided
between the levels. However, automotive systems have com-
plex dependencies between functionalities and ECUs. Strictly
dividing by level introduces challenges in cross-functional
cooperation between teams, requirements traceability, overlap-
ping of test cases, and lack of documentation [9], [10].

Related Work: Several studies have been conducted on
redundancy and gaps in testing efforts. The large volume
of test cases needed for complex systems carries risks of
redundancies [10]–[12]. However, redundancy can improve
quality, and should not always be avoided [11]. Redundancy
has been assessed using code coverage criteria [13], string
similarity [12], and clone detection tools [14], among other
measurements. Reusing test cases at different levels can avoid
wasted effort on redundant testing [11].

Our study differs from related work in its method—based
on traceability between tests and requirements across levels
of the V-Model. Our method is highly flexible, makes use
of domain and project knowledge absent from methods based
on, e.g., code coverage, and avoids dependencies on particular
languages or technologies.

Annapurna et al. proposed a strategy for avoiding redun-
dancies and gaps by enhancing requirements with semi-formal

3The distinction between UF and integration levels is that—at the UF
level—only the involved ECUs are connected. At the integration level, all
ECUs are connected and multiple UFs run simultaneously.



use cases and scenario-based modelling [15]. Traceability is
established across testing levels and system views at each
level are mapped to the enhanced requirements. Their study
was conducted at Scania, across the same levels. We focus
on identifying redundancies and gaps after tests are designed.
Therefore, our approaches are complementary.

III. PROPOSED FRAMEWORK AND METHODOLOGY

We have conducted a case study at Scania, following Rune-
son and Höst’s guidelines [16], to address following questions:

• RQ1: How can test redundancy and gaps be identified
across different levels of test abstraction?

• RQ2: In our case example, to what extent does test
redundancy exist between the integration and preceding
levels in the V-Model?

– RQ2.1: How many redundancies are identified?
– RQ2.2: What factors led to redundancies?

• RQ3: In our case example, to what extent do gaps in
testing exist between the integration and preceding levels?

– RQ3.1: How many gaps are identified?
– RQ3.2: What factors led to gaps?

To address these questions, we performed the following:
1) We analyzed requirement and test artifacts from the case

company to gain insights about their testing process.
This process also included interviews with testers and
study of existing literature. This process yielded insights
towards answering RQ1 (Section III-A).

2) We proposed a framework for identifying redundancies
and gaps across levels in the V-Model testing process.
This allows us to answer RQ1 (Section III-B).

3) We applied the framework to selected systems to identify
redundancies and gaps in their testing efforts. The identi-
fied redundancies and gaps were independently verified
by testers from the case company. We also identified
common explanatory factors. This allowed us to answer
RQ2 and RQ3 (Section III-C).

A. Data Collection and Analysis

Interviews: To understand the systems and testing process,
we interviewed four system owners, two UF owners, and two
system test engineers. We omit interview questions due to
space constraints. However, questions were open-ended and
related to test objectives, how testing is conducted, system
importance, testing responsibility, documentation, documents
and test locations, and understanding signals used by ECUs
and AEs. The developers gave us an overview of the develop-
ment and testing architecture and the testing process.

Documentation Analysis: We collected and analyzed data
(Table I) relevant for establishing traceability between tests
(natural language scripts or code) and requirements across
levels. Testing at each level is performed according to a test
strategy document that defines the scope and the objectives.
To analyze documents in a consistent manner, we implemented
an open coding method based on four themes: documentation
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of correct behavior, testing goals, test objects, and testing
activities. We had limited documentation for the user function
level, as much of the UF testing is exploratory.

B. Framework to Identify Redundancies and Gaps

We present our framework for identifying redundancies
and gaps across levels of granularity. Although we base this
framework on the Scania’s adaptation of the V-Model, it can
be adapted to other organizations with a similar context (e.g.,
the automotive domain) or testing process.

Based on initial exploration, we base our framework on
traceability of requirements with tests. Tests are based on
requirements at each testing level, using the data in Table I.
However, it is not possible to automatically establish traceabil-
ity across levels as requirement formats, test templates, and
automation frameworks differ. Instead, we employ a manual
process where traceability is established from bottom-up. At
each level, tests are mapped to specifications at that level.
Traceability across levels can be established based on logical
system elements that persist.



TABLE I: Data collected for each testing level.

System Level Requirements: AE Requirements (AER) Functional requirements for AEs; also contains diagnostic trouble code (DTC) requirements
and hazard analysis. DTC requirements concern situations where AE has failed. Hazard
analysis relates to failure impact.

System Interaction Requirements (SIR) Functional requirements for ECU interactions. E.g., SIR for ECU A contains requirements
on its interactions with ECUs B and C.

Test Strategy: Test Strategy Document Defines testing objectives and activities to be carried out at the system level.
Test Cases: Executable Executable test cases written for various automation frameworks in either Python or C#.

UF Level Requirements: UF Requirements (UFR) Describes background, description, functional requirements, variant information, and hazard
analysis for each UF.

Test Strategy: Test Strategy Document Test strategy for the UF level.
Test Cases: Manual Natural language tests, with test steps, acceptance criteria, and prerequisites. Additional

exploratory testing takes place, but is not documented.
Integration Level Requirements: Scenarios Scenarios derived from UFs. Consist of tasks based on user interaction with vehicle.

E.g., UF advanced emergency brake system (Figure 3) may include scenarios based on
activation and deactivation in different automobile variants (truck, bus).

Message Sequence Charts (MSC) Visualization of signal flow between ECUs via a CAN connection. Explains how ECUs
should communicate with each other.

Test Strategy: Test Strategy Document Test strategy for the integration level.
Test Cases: Manual Natural language tests (subset), with test steps, acceptance criteria, and prerequisites.

Executable Executable test cases written in Python. Automation differs from system level.

At Scania, a common logical element is functionality of-
fered by the AEs. ECUs are tested individually at the system
level, and requirements are based on AE functionality. We
trace AE functionality to requirements, then to tests. ECUs
are then integrated at the UF and complete vehicle levels. UF
requirements and integration scenarios can also be mapped to
AE functionality, thus establishing traceability across levels.
The traceability is possible because the design, development
and integration of all of the aforementioned concepts follows
the contract-based principle [7]. This allows us to reason about
the composability of those elements only with respect to their
inputs and outputs. The internal state of the elements is usually
not taken into account when designing a test case, however,
in the cases when it is, it is loosely considered to be a part of
the system under test being in ‘testable” state.

We present the framework for identifying redundancies and
gaps in Figure 4. In short, the framework follows these steps:

1) We trace system tests with AE requirements, UF tests to
UF requirements, and integration tests with scenarios.

2) We trace AE requirements, UF requirements, and sce-
narios to AE functionality.

3) We compare tests from the system, UF, and integration
levels that invoke common AE functionality.

If multiple tests invoke the same functionality, and with inputs
belonging to the same equivalence partition, we consider those
tests redundant. If a requirement is not tested or an equiv-
alence partition for an input prescribed in the requirements
has not been covered by a test at any level, or if—across all
levels—a AE functionality is not tested, we identify a gap.

Tests that invoke the same functionality should not auto-
matically be considered redundant. At Scania, test inputs are
selected based on partitioning of the input domain into value
classes. If the same value classes are chosen, we consider tests
redundant, subject to verification by a tester.
Framework Elements: The core elements needed to establish
traceability include requirements, functionality, and signals.
Each level has different requirements. AE requirements focus
on functionality of a single AE, while UF requirements
and scenarios focus on user-observable functionality. Sample

requirements relevant to the advanced emergency braking UF
are described in Table III.

At the system level, tests verify AE requirements. Each
AE offers a specific functionality. In Figure 3, one ECU
manages sensors, and its AEs offer functionality related to,
e.g., detecting vehicles with a camera. Tracing requirements
to AE functionality links system level tests to higher levels,
where this functionality is invoked by the user functions.

ECUs interact through signals—input through sensors and
output through actuators [17]. AEs are invoked and issue
output through specific signals. Establishing traceability to
higher testing levels can be done concretely through signals.
For example, the AE referenced in Table III issues output
through signal X.1. Requirements at the UF and integration
levels may not mention this functionality by name, but the
test cases may monitor X.1. If a reference exists to X.1 in,
e.g., an integration level test case, we know that the test case
interacts with that functionality.

Mapping Example: We offer an example based on Figure 3.
Abbreviated traceability results are shown in Table II.

At the system level, the tester iterates over each AE. They
use AE requirements to identify functionality, and assign each
an identifier. They identify signals corresponding to each
functionality. They then analyze the system level tests, and
map each to corresponding requirements. They note the value
classes applied as input in each test. The system level portion
of Table II indicates that four functions were identified—
e.g., test case STC1 invokes function F1 and verifies that
requirement PREQ1 is met.

At the UF level, the tester maps each UF requirement to
functionalities invoked. The AEB UF invokes a functionality
related to, e.g., radar sensing. Tests at this level should be
mapped to the UF requirements. These tests are performed
manually and signals are not typically documented. However,
AE functionalities can be identified using UF requirements.
This establishes traceability to the system level. In the UF
level in Table II, e.g., requirement UFR1 is traced to test case
UTC1, and functions F2 and F3 are invoked.

At the integration level, the tester identifies the UFs



TABLE II: Example of establishing traceability between system, UF, and integration level, based on AE functions F1-F4.

System Level UF Level Integration Level
AE Req. ID System TC ID Function ID UF Req. ID UF TC ID Function ID SCN ID Integration TC ID Function ID
REQ1 STC1 F1 UFR1 UTC1 F2 SCN2 ITC5 F1
REQ2 STC2 F1 UFR2 UTC2 F1 SCN1 ITC2 F1
REQ3 STC4 F2 SCN2 ITC3 F2
REQ4 F3 SCN3 ITC4 F1
REQ5 STC6 F1 SCN4 ITC5 F4

TABLE III: Example requirements for each level for the
advanced emergency braking system (Figure 3)

Type Requirements
AE Requirement The camera must identify the preceding vehicle and share

information about the vehicle through CAN signal X.1.
UF Requirement A warning message must be displayed to the user when

advanced emergency braking conditions are valid
Scenario Activate advanced emergency braking.

TABLE IV: Data collected for evaluation.

System Level Requirements: AER Document (Systems 1, 2)
SIR Document (System 3)

Test Cases: Executable (Python; Systems 1, 2)
Executable (C#; System 3)

Integration Level Requirements: Scenarios, Message Sequence Charts
Test Cases: Executable (Python)

invoked in each scenario, establishing traceability to the UF
level and indirectly to the system level. The tester then maps
each test to its scenarios. Manual tests at this level can be
linked to UFs invoked. Executable test cases are based on
signals, allowing direct traceability to the system level.

The tester then checks for potential redundancies or gaps. In
Table II, we see that STC1, STC2, and STC6 invoke function
F1 at the system level, UTC2 invokes F1 at the UF level, and
ITC2, ITC4, and ITC5 invoke F1 at the integration level.
They compare these seven tests, and check whether they apply
the same input value classes. Functionality F3 is not tested at
any level (and requirement REQ4 at the system level is not
tested). These represent gaps.

C. Framework Evaluation

Case System Selection: The examined vehicle consists of 24
ECUs. Out of these 24 ECUs, three were selected, based on
their importance from a safety point-of-view, time constraints,
and the availability of test artifacts. These ECUs relate to front-
end displays and back-end processing. Significant portion of
the functionalities provided by these ECUs is a part of safety-
critical user functions. We selected ten AEs from the first ECU
and five AEs from each of the other two ECUs. Due to time
constraints of the study, the AEs with the highest safety hazard
severity were selected.

Application of the framework on selected systems: Auto-
mated test cases and requirements were gathered for the three
ECUs across each level, as shown in Table IV.

At the system level, tests are based on either an AER
document (Systems 1 and 2) or a System Interaction (SIR)
document (System 3). At the integration level, automated test
cases are derived from scenarios. A message sequence chart
was used to understand the signal flow between the ECUs.
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Fig. 5: Redundancies and gaps identified using the proposed
framework. The Y-axis for redundancies represents the number
of redundant test cases. The Y-axis for gaps represents the
number of requirements not covered by test cases.

Exploratory testing was conducted to test UFs, and the test
artifacts were not maintained. Therefore, we lacked sufficient
information to consider the UF level.

For Systems 1 and 2, the framework was applied as de-
scribed. Minor adaptations had to be made for System 3, as
system tests were based on a SIR document. SI requirements
are similar to AE requirements, but are not linked to AEs.
To identify integration test cases for the corresponding SIR,
we need to know the respective AE. Therefore, we identified
the AE using the signals. At the system level, functionalities
were extracted from the SIR document. The system level
automated test cases and SIR requirements were mapped with
the functionalities.



Independent Verification: Two Scania test engineers working
at the integration level reviewed identified redundancies and
gaps. We presented our framework, along with its components
and motivation. The identified redundancies and gaps were
presented and discussed with both testers. Their responses
were incorporated into the final results. This verification helps
to confirm redundancy and gap validity, and lessons from false-
positive identifications improve the framework.

IV. RESULTS AND DISCUSSION

Figure 5(a) presents the results of our redundancy analysis
between the system and integration testing levels, before and
after independent verification by Scania testers. The post-
verification redundancies are shown, by system, in Figure 5(b).
Figure 5(c), likewise, presents the results of our gap analysis
before and after independent verification. A small number of
additional “deviations” were also identified during verification.
Post-verification gaps are illustrated, by system, in Figure 5(d).

A. Redundancy Across Test Levels

We initially identified 11 redundant test cases between the
system and integration levels. Scania testers deemed two of
the redundancies as invalid. However, they identified three ad-
ditional redundant tests as a result of discussing the presented
redundancies. Thus, a final total of twelve redundant test cases
were identified—six for System 1, one for System 2, and five
for System 3. Of a total of 213 system level and 67 integration
level tests, 4.29% were redundant.

Testers noted reasons that redundancies were invalid. Al-
though it seemed that two test cases overlapped, they actually
verified part of a requirement differently. It was noticed that
this requirement was written ambiguously. In a second case,
our interpretation of how inputs should be partitioned differed
from the interpretation of the testers.

They also identified additional redundancies. At the system
level, input is provided to System 3 directly. At the integration
level, System 3 reacts to ECUs that it is integrated with.
Multiple environmental conditions, based on the state of
the other ECUs, can trigger different output behaviors from
System 3. As part of the initial evaluation, we considered
these different trigger conditions to be unique. However, the
testers determined that these differences were localized to the
test environment and were treated by System 3 as equivalent
input. Therefore, three additional tests at the integration level
were considered redundant to system level tests for System 3,
as they did not verify additional functionality.

Based on our observations and discussions, we have identi-
fied the following factors that may contribute to redundancies:

• Necessary repetition in a new context: Not all redun-
dancy is negative. In some cases, the integration teams
must verify the same requirements at a different scope
or in a different test environment (e.g., different combi-
nations of simulations and ECUs). Behavioral differences
may emerge in new environments, and there can be value
in redundant testing in such cases.

• Test teams work in isolation: Because of level-wise
division of responsibilities, teams at different levels only
collaborate in limited ways. This can lead to a loss of
information. Even though test artifacts can be accessed,
it may not be clear how to map tests, test objects and
documentation between levels.

• Test setup at integration level: If a functionality is trig-
gered in an integration level test, that does not mean that
the objective of that test is to verify that specific function.
For instance, an AE functionality is often triggered as part
of test setup at the integration level to meet prerequisites
for testing end-to-end flow of specific UFs. This can lead
to overlap if an integration test does nothing “new” other
than activate functionality in a way that was already done
at the system level. Testers at the integration level should
clearly indicate the interactions that are part of test setup
and ensure that the complete test does not overlap with
a system level test.

B. Gaps Across Test Levels

As shown in Figure 5(c), we initially identified 64 gaps in
the verification of 444 requirements across the three ECUs—
either complete requirements or input partitions that were not
tested4. Scania testers determined that 58 of the identified
gaps were valid (13.06% of requirements). As shown in
Figure 5(d), there were 42 gaps for ECU1 and 16 for ECU2.

The remaining six gaps were not invalid, but were found
to not match our definition of a gap. These “deviations”
correspond to anomalies in the requirements or test cases.
Three deviations were identified for System 1 and three for
System 3. All deviations were from the system level.

In two cases, a requirement document had not been up-
dated, leading to a mismatch between the test cases and
the requirements due to outdated requirements. In another
case, a test could not be mapped to any requirement. Two
deviations were matched cases where requirements existed,
but lacked full descriptions. Finally, one deviation was due
to incorrect mapping of a signal with an SI requirement. The
signal indicated in the requirement did not match the AE.

For 24 of the 58 requirements (41.37% of gaps), the testers
were unable to properly set up the ECU at the system level or
adequately monitor the ECU at the integration level to verify
that the requirements were met.

For the other 34 requirements (58.63%), we could not find
corresponding test cases. Potentially, this could be due to the
fact that these requirements have been tested using exploratory
test methods, which do not require documenting the test cases
and linking them to requirements. The data as to whether these
requirements have been tested is stored in the test management
system, however, that data was not included in our study, as
we were only looking into the scripted test cases only.

4It should be noted that we could only consider available testing artifacts.
It is likely that many of these requirements were covered during exploratory
testing or were documented in unavailable artifacts.



C. Advice for Practitioners

Our framework can be applied in organizations with a
similar testing process to help the testers better understand
their own efforts. Such application is useful when tests have
already been created, and can help enrich an existing test suite
to cover any gaps. Redundant test cases could be adjusted
to apply different inputs to potentially detect new faults.
However, it is also important to examine why redundancies
and gaps may exist in the first place and ensure that future
projects are better tested.

The rigid segmentation of testing teams can potentially
hinder testing efforts. In our analysis, limited sharing of
information is a clear factor that causes overlap and gaps. If
teams collaborate—and documentation is kept and rigorously
updated—then gaps can be minimized and the scope for new
testing efforts can be better established. We recommend:

Collaboration between teams: Detailed results about what
is tested and how should be shared between teams across
levels. The integration team could narrow their scope based
on the requirements coverage of the preceding test levels (UF
or system level), or include additional scenarios that are not
considered at the system level. At the integration level, the
resources and time required to perform testing are high, so any
reduction in unnecessary redundancy is important. Teams must
share test cases, documentation, and test results across levels.
It is also very important to document when requirements
cannot be verified, and why this was the case. Documentation
should be kept up to date and stored in a known location. It
should also be documented who was responsible for testing in
case follow-up information is needed.

Improving collaboration is especially important because
ECUs have requirements written in different standards, differ-
ent languages and frameworks are used for testing at different
levels, and different test environments are employed (e.g.,
hardware or software-in-the-loop). Multiple types of system
understanding are needed to test a complete automobile. Teams
must educate each other and work together to adequately
verify the complete vehicle.

Improving collaboration between test teams might sound
like an obvious recommendation for improving the process,
but in reality, making this improvement can be quite complex.
As a vehicle can contain dozens of ECUs, establishing and
maintaining traceability between requirements, test cases, and
functionality can quickly become impractical. Consequently,
there is an imperative need for designing a lean processes
and tools to support collaboration without imposing too much
added complexity. The exact form this collaboration should
take, and identification of the scope and limits of this collab-
oration, are areas that must be explored in future research.

Requirement traceability and coverage matrices: The inte-
gration team is often unaware of what requirements have been
verified, and how they were verified. A traceability matrix
could be shared between teams to help higher level teams
shape their testing efforts. This matrix should indicate which
test cases cover which requirements at each level. It should

also indicate input partitions applied, testing methods applied
(e.g., manual, executable tests, exploratory testing), and which
testing environments the tests took place in.

Such matrices can help each team avoid gaps and redun-
dancies. If requirements could not be covered at a lower
level, then it may be possible that a team at a higher level
could add tests to cover them—e.g., they may be able to
create required setup conditions when employing real ECUs
that could not be created purely in simulation. They can also
avoid repetition and use the matrix to help brainstorm new
scenarios for test suite diversification. Again, it should be
noted that documentation and matrices must efficiently provide
information to testers without overwhelming them or requiring
expertise in all functionality and requirements at all testing
levels. Research should be conducted to establish an efficient
means to inform testers of information they need in a form
they can comprehend without significant burden.

V. THREATS TO VALIDITY

Construct Validity: Interviews were performed to understand
the testing process. Interview questions may not be interpreted
in the way that we intended. To overcome this threat, questions
were developed based on Scania’s documentation and test
strategy documents by two of the authors of this study, and
were evaluated independently by the other two authors.
Internal Validity: The application of the framework was
performed by the authors of this study, leading to potentially
biased results. We mitigate this potential bias through inde-
pendent verification by Scania testers. Our conclusions are
also potentially biased by the selection of ECUs and AEs
when developing and evaluating our framework. To mitigate
this threat, we selected case examples through a severity
analysis, as suggested by Scania testers. We focused on the
most important ECUs and AEs for analysis.
External Validity: Due to artifact availability and time con-
straints, only a limited set of systems were considered for
both developing and evaluating the framework. In addition, our
case study is performed within a single organization. This may
limit the generalizability of our findings. However, we have de-
signed our framework to be adaptable to other contexts—while
it makes use of the specific documents available at Scania, the
process of mapping across levels should be possible with other
document types. At minimum, it should be applicable to other
organizations in the automotive domain or that adapt a version
of the V-Model. In future work, we will examine applying this
framework at other organizations in order to generalize and
solidify its design.

VI. CONCLUSION

We propose a framework that can be applied to identify
redundancies and gaps in test cases across levels in the V-
Model. We observed that factors contributing to redundancy
include the need to re-verify functionality in a new context,
difficulty in mapping testing efforts across levels, and lack of
clarity on which test interactions contribute to goals of a test
case and which are part of setup. Deviating cases were also



identified where requirements were outdated, tests could not be
mapped to requirements, requirements lacked descriptions, and
requirements indicated incorrect signals. Both redundancies
and gaps result from a lack of communication of traceability
and test results across test levels. We recommend active
collaboration across levels and use of coverage matrices to
alleviate these issues.

We offer our framework case study to help refine testing
practices and to inspire process improvements. Ultimately,
the adoption and value of a framework such as ours will be
judged through the prism of added complexity to an already-
complex development and verification process. Therefore, in
future work, we aim to further refine both this framework and
the surrounding development process. We will consider re-
quirement severity to prioritize redundancies and gaps, explore
how our framework can be automated to the extent possible,
and apply this framework at additional organizations. We will
also explore how teams can better collaborate across levels,
including both the scope and forms of collaboration.
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