
ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous
SGD

Downloaded from: https://research.chalmers.se, 2024-03-20 10:13 UTC

Citation for the original published paper (version of record):
Bäckström, K., Papatriantafilou, M., Tsigas, P. (2022). ASAP.SGD: Instance-based Adaptiveness to
Staleness in Asynchronous SGD. Proceedings of Machine Learning Research, PMLR 162:
1261-1271

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Karl Bäckström 1 Marina Papatriantafilou 1 Philippas Tsigas 1

Abstract
Concurrent algorithmic implementations of
Stochastic Gradient Descent (SGD) give rise to
critical questions for compute-intensive Machine
Learning (ML). Asynchrony implies speedup
in some contexts, and challenges in others,
as stale updates may lead to slower, or non-
converging executions. While previous works
showed asynchrony-adaptiveness can improve sta-
bility and speedup by reducing the step size for
stale updates according to static rules, there is no
one-size-fits-all adaptation rule, since the optimal
strategy depends on several factors. We introduce
(i) ASAP.SGD, an analytical framework captur-
ing necessary and desired properties of staleness-
adaptive step size functions and (ii) TAIL-τ , a
method for utilizing key properties of the exe-
cution instance, generating a tailored strategy
that not only dampens the impact of stale up-
dates, but also leverages fresh ones. We re-
cover convergence bounds for adaptiveness func-
tions satisfying the ASAP.SGD conditions, for gen-
eral, convex and non-convex problems, and estab-
lish novel bounds for ones satisfying the Polyak-
Lojasiewicz property. We evaluate TAIL-τ with
representative AsyncSGD concurrent algorithms,
for Deep Learning problems, showing TAIL-τ is a
vital complement to AsyncSGD, with (i) persistent
speedup in wall-clock convergence time in the par-
allelism spectrum, (ii) considerably lower risk of
non-convergence, as well as (iii) precision levels
for which original SGD implementations fail.

1. Introduction
The ascending interest in concurrent SGD is due to the
explosion of data volumes, requiring scalable systems to
process them in ML and Artificial Neural Network (ANN)

1Department of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg, Sweden. Correspondence
to: Karl Bäckström <bakarl@chalmers.se>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

applications. However, parallelization of the inherently
sequential SGD process is non-trivial since each iteration
requires the computation of the previous one. Besides
understanding the dynamics of such executions, achieving
resource-efficiency is a known significant target, since it can
imply significant improvements in energy efficiency.

Traditional synchronous SGD (SyncSGD) conforms to the
sequential SGD semantics by employing iteration-level par-
allelism, and lock-step-style synchronization. In practice,
SyncSGD accelerates updates by data-parallel concurrent
gradient computation, e.g. by GPU-acceleration, or aggre-
gating gradient contributions in distributed settings. Sync-
SGD improves computational efficiency up to a point, but
suffers direct limitations, as each iteration is at least as slow
as the slowest contributing worker. However, from an op-
timization standpoint SyncSGD is analogous to sequential
SGD, with well-understood convergence properties.

In contrast, asynchronous concurrent SGD (AsyncSGD) in-
troduces a higher-level parallelism by relaxing the sequential
SGD semantics, allowing asynchronous reads/updates on
the shared ML model θ. Consequently, AsyncSGD provides
computational benefits, however at the price of asynchrony-
induced noise due to the staleness τ that arises when updates
are not applied to the same states based on which they were
computed, but instead on ones that have been updated τ
times in-between. It was within convex optimization, target-
ing primarily regression problems (Zinkevich et al., 2009;
2010), where it was shown that the asynchrony-induced
noise had small impact on the quality of the updates, and
that the computational benefits of reduced synchronization
provided speedup for certain problems. A relevant example
is HOGWILD! which, with only component-wise atomic ac-
cess to θ (i.e. relaxed consistency by not ensuring atomicity
for the complete vector) showed almost-linear speedup for
strongly convex and sparse problems (Recht et al., 2011; Al-
istarh et al., 2018; Nguyen et al., 2018). Asymptotic bounds
for AsyncSGD were similarly established under strong
convexity and smoothness assumptions, and for non-convex
problems, such as matrix completion (De Sa et al., 2015).

However, these analytical confinements make the conclud-
ing outcomes non-applicable for a wider class of applica-
tions, including Deep Learning (DL), characterized by inher-
ent non-convexity. This is confirmed in recent works (Wei
et al., 2019; Bäckström et al., 2019; Lopez et al., 2020; Bäck-

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

ström et al., 2021), showing challenges in achieving stable
and high-quality convergence with AsyncSGD for ANN
training, due to staleness. The importance of progress
and consistency guarantees of AsyncSGD is emphasized in
(Bäckström et al., 2021), where the introduced lock-free
and consistent Leashed-SGD shows major improvements
in convergence stability (reduced risk of non-convergence)
compared to lock-based AsyncSGD and HOGWILD!.

Recent works show that asynchrony-awareness can reduce
negative effects of staleness, by dampening the step size of
stale updates (Sra et al., 2016; Zhang et al., 2016; Bäckström
et al., 2019; Ren et al., 2020; Damaskinos et al., 2020). In
particular, staleness-adaptiveness has been proven to reduce
the statistical penalty of asynchrony in AsyncSGD, thereby
improving its stability and convergence rate.

Challenges. In summary, stable convergence of
AsyncSGD is critically sensitive to (i) parallelism degree,
(ii) asynchrony-awareness, and (iii) progress and consis-
tency guarantees of the algorithmic implementation, and the
mechanisms to ensure them, e.g. locking. These factors
have been studied mostly in isolation, and there is an im-
minent need to evaluate them in conjunction, to understand
how AsyncSGD can be utilized effectively in practice.

Moreover, existing staleness-adaptive methods either (i) stat-
ically scale the overall system step size at initialization or
(ii) use a pre-defined heuristic or staleness model to regulate
the step size based on the observed staleness. An inherent
pitfall of adapting the step size during execution is that the
overall magnitude might be altered, which by itself will
impact the efficiency. E.g., previous works employ adaptive-
ness strategies that almost exclusively diminish the overall
step size (Sra et al., 2016; Zhang et al., 2016; Ren et al.,
2020; Damaskinos et al., 2020). This is problematic for
several reasons, e.g., (i) it may be fatal for applications sen-
sitive to the choice of the step size (read: Deep Learning),
leading to non-converging executions, and (ii) it introduces
ambiguity regarding the source of potential performance
improvements, reducing comparability between methods.
Besides, these approaches take no consideration of the effect
of underlying system parameters, such as hardware, schedul-
ing, synchronization and consistency properties. These as-
pects, just like the number of workers, and other hyper-
parameters, significantly influence the convergence rate in
general (Ma et al., 2019), and the staleness distribution in
particular (Bäckström et al., 2021) and can even result in
multi-modal ones as we show here. Hence, there are inher-
ent challenges in designing adaptation schemes capable of
incorporating the effects of all of these critical aspects in
conjunction.

Contributions. We introduce the instance-based
asynchrony-awareness paradigm, with the execution-
dynamic TAIL-τ staleness-adaptive step size function. We

also establish a framework for adaptiveness to staleness
in asynchronous parallel SGD (ASAP.SGD), captuting key
properties of such functions in general. In detail:

• ASAP.SGD captures general staleness-adaptive step size
function properties, (i) necessary for maintaining overall
step size magnitudes and ensuring method comparability,
and (ii) desired for prioritizing gradient freshness.

• Within ASAP.SGD, we introduce TAIL-τ , a dynamic
staleness-adaptive step size function, that (i) utilizes the
observed staleness distribution as means to implicitly
take underlying system parameters into consideration, and
(ii) generates an execution-specific adaptation strategy, in
the spirit of instance-based optimization (Kraska, 2021)

• We recover asymptotic convergence bounds for TAIL-τ in
particular, and general ones within the ASAP.SGD frame-
work, for convex and non-convex applications. We estab-
lish novel bounds for loss functions satisfying the Polyak-
Lojasiewicz (PL) condition, which characterizes the shape
of non-convexity, and is satisfied by several relevant ML
loss functions, including least squares, logistic regression,
support vector machines and certain deep ANNs.

• We implement TAIL-τ , extending existing concurrent
AsyncSGD implementations (Bäckström, 2021), to pro-
mote further exploration of general staleness-adaptiveness
within ASAP.SGD. The results show that TAIL-τ is a vital
complement for fast and stable convergence for any Async-
SGD implementation, across the parallelism spectrum,
due to its dynamic instance-based generation of tailored
step size strategies. In particular, the evaluation, capturing
several representative system features associated with syn-
chronization, parallelism, execution-ordering properties,
shows that for image classification training with LeNet
and MLP, on MNIST, Fashion-MNIST, and CIFAR-10,
TAIL-τ achieves significantly faster convergence persis-
tently (e.g. 60% speedup, on average, for LeNet training
on MNIST), for three fundamentally different AsyncSGD
implementations, and drastically lowers the risk of non-
converging executions, especially to higher precision.

2. Background and related work
Adaptive parallel SGD. (cf. also Table 1) Stale-
ness/asynchrony awareness was first studied for smooth
and convex problems in (Agarwal & Duchi, 2011), intro-
ducing a step size reduction based on worst-case stale-
ness. Adaptiveness to observed staleness was studied in
(McMahan & Streeter, 2014) assuming convexity, sparse
gradients and certain ordering of reads and updates across
threads, and evaluated for logistic regression. (Zhang et al.,
2016), with a 1/τ staleness compensation scheme in a semi-
synchronous distributed settings, show empirically speedup
for ANN training with limited parallelism. For partial asyn-
chrony, (Haddadpour et al., 2019) introduced an adaptive
scheme for regulating synchronization frequency, show-

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Table 1. Staleness-adaptive AsyncSGD: literature highlights and new contributions.

Online Strategy Mean-pres. Prio-pres. Convergence guarantees Evaluation
(Agarwal & Duchi, 2011) × - × - Convex LR1

(McMahan & Streeter, 2014) ✓ - × - Convex LR1

(Zhang et al., 2016) ✓ 1/τ (static) × ✓ Non-convex ANN
AdaDelay (Sra et al., 2016), (Aviv et al., 2021) ✓ O(1/

√
τ) (static) × ✓ Convex LR1

MindTheStep-AsyncSGD (Bäckström et al., 2019) ✓ Model-based (static) ✓ - Convex ANN
(Ren et al., 2020) ✓ O(t−τ) (static) × ✓ Convex+2 LR+2

FLeet (Damaskinos et al., 2020) ✓ O(e−βτ) (semi-dynamic) × ✓ - ANN
ASAP.SGD ✓ Dynamic ✓ ✓ Non-convex, PL ANN

1 Logistic regression 2 includes star- and quasi convex, and the Rosenbrock test function.

ing convergence bounds in non-convex Polyak-Lojasiewicz
functions. In contrast, our work establishes convergence
bounds for fully asynchronous SGD with unbounded stale-
ness, using staleness-adaptive step size strategies, for gen-
eral non-convex functions, as well as ones satisfying the
Polyak-Lojasiewicz condition.

AdaDelay (Sra et al., 2016) proposed O(1/
√
τ) staleness-

adaptive step sizes for smooth, convex problems, showing
scalability improvements. Their analysis was based on a
uniformly distributed staleness model, which (Bäckström
et al., 2019) established to be a simplifying assumption;
the latter also introduced the MindTheStep-AsyncSGD
framework, proposing O(C−τ) and O(C−τ/τ !) schemes
based on a Poisson-based staleness model, showing
improved convergence rates for practical DL. (Aviv et al.,
2021) introduced a regret-based delay-adaptive approach
for convex, smooth settings, while in a Federated Learning
(FL) context, (Damaskinos et al., 2020) adopted an
exponential dampening approach (O(C−βτ)), explored
initially in (Bäckström et al., 2019), where the rate of
decay is based on the s-th percentile of the staleness
distribution. The approach of (Damaskinos et al., 2020)
showed practical benefits for online ML applications at the
edge. In (Ren et al., 2020), a O(t−τ) staleness-adaptive
scheme is proposed, analyzed under quasi- and star-convex
functions, showing improved convergence for projected
GD with artificial noise, under simulated staleness. The
aforementioned works are however mostly static in their
strategy, i.e. are either model-based or based on a heuristic
(e.g. 1/τ).Here we study closely the staleness distribution
and explore how to utilize this information to generate
the strategy itself, which (see Section 6) entails significant
improvements in convergence and robustness.

Non-convex asynchronous SGD. The literature on stan-
dard, non-adaptive, convex AsyncSGD is vast, and a use-
ful overview is in (Ben-Nun & Hoefler, 2019). Here we
highlight recent relevant AsyncSGD results for practical
non-convex applications, including DL. In (Yazdani &
Hale, 2021), linear convergence was established under the
Polyak-Lojasiewicz condition, however assuming bounded
staleness; the empirical evaluation focused on logistic re-
gression, a convex problem. (Wei et al., 2019) proposed

a static method for ensuring data-disjoint concurrent ac-
cesses, showing promising scalability for the non-convex
problem of matrix factorization with SGD; the method is
however, as they state, not applicable to DL in general.
(Lopez et al., 2020) proposed a semi-asynchronous SGD
approach, showing speedup for DL on CPU and GPU ar-
chitectures, requiring a synchronizing master thread which
averages updates (Xie et al., 2020) proposed a byzantine-
tolerant asynchronous SGD framework, using a parameter
server ensuring quality and relevance of updates. Similarly
to ours, their work covers Polyak-Lojasiewicz problems,
however to the best of our knowledge, our work is the first
to do so for instance-based asynchrony-aware algorithmic
implementations of AsyncSGD.

Optimization problem. We consider the unconstrained
optimization problem

minimize
θ∈Rd

LD(θ) (1)

where (i) D is the data set to be processed, (ii) θ ∈ Rd is
the ML model that encodes the learned knowledge of D
and (iii) the target function L : Rd → R+ quantifies the loss
(error) of θ over D. Given some randomly chosen initial θ0,
the first-order iterative optimizer SGD repeats the following:

θt+1 = θt − ηt∇L̃(θt) (2)
where θt ∈ Rd is the state of the model θ, and ηt is the step
size, in iteration t. We assume that L̃ = LB where B ⊂ D
is a uniformly sampled mini-batch of data, and that L̃ is an
unbiased estimator of LD, i.e. E

[
L̃(θ)

]
= LD(θ) ∀θ ∈ Rd.

We assume that mini-batch samples, and hence the stochas-
tic gradients ∇L̃, are mutually statistically independent.
The loss function LD : Rd → R+, θ 7→ LD(θ) quantifies
the performance of an ANN model, parameterized by θ.
SGD is repeated until θ satisfies ϵ-convergence, defined as
∥L(θ)− L(θ∗)∥ < ϵ, θ∗ being a global minimum of L.

3. System model and problem analysis
We consider a system with m concurrent asynchronous
threads or processes. Threads follow the SGD rule of (2)
asynchronously, within the boundaries of the algorithm
which implements it, being responsible for potential guaran-
tees on consistency and progress. An outline of a standard
shared-memory parallel AsyncSGD implementation is pro-

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Algorithm 1 Staleness-adaptive shared-memory AsyncSGD
GLOBAL loss function L, iteration counter t, max. n.o. itera-
tions T , shared state θ, step size function η(τ)

1: Let (t, θ)← (0, rand init()) Randomly initialize θ
2: Each thread:
3: while t < T do
4: (tlocal, θlocal)← copy(t, θ)
5: ∇local ← ∇L̃(θlocal) Compute local random gradient
6: (t′, θ′)← copy(t, θ) Acquire latest state
7: τ ← t′ − t Calculate staleness
8: (t, θ)← (t′ + 1, θ′ − η(τ)∇local)
9: end while

vided in Algorithm 1, showing also how a staleness-adaptive
step size is introduced. In direct shared memory communi-
cation, threads have atomic access to single-word locations
for read and modify operations; in arbitrary contexts, steps
4 and 8 in Algorithm 1 can be executed through the help of
a parameter server, through requests to read and update θ.
Due to asynchronous reads and updates of θ there can be
intermediate updates, hence, the progression of θ follows:

θt+1 = θt − ηt∇L̃(vt) (3)
where vt = θt−τt is the view of the updating thread in it-
eration t, and τt is the staleness, defined as the number of
intermediate updates. When atomicity is not guaranteed,
e.g. HOGWILD!, a total ordering of the updates is not nat-
urally imposed, and has to be defined. Here, we assume a
total ordering as in (Alistarh et al., 2018), and define the
staleness thereafter. By staleness distribution we refer to
the distribution of all observed staleness values throughout
a particular execution of AsyncSGD. We consider staleness
(τt) to be a stochastic process, the elements of which, unlike
the stochastic gradients, are not necessarily mutually inde-
pendent. However, we assume E[τt] = τ̄ ∀t and that the ex-
ecution is non-anticipative in the sense that states are mean-
independent of future instances of the staleness, in particular

E[τt | τt′] = E[τt] ∀t < t′ (4)
since the expected staleness is not influenced by future
staleness. Note that this implies E[τtτt′] = E[τt]E[τt′].
Similarly, we assume that the staleness is mean-independent
of θ, since the statistical properties of the convergence
progress are not expected to influence the delays of individ-
ual threads, which are related to hardware and scheduling.

The step size ηt in iteration t will, unless stated otherwise,
be considered a function of the staleness τt in the same itera-
tion; the details appear in the subsequent section. In the anal-
ysis section, we will generally use the notation E[x] = x̄.

Dampening is not sufficient. The primary focus of previous
approaches has been to dampen the step size of stale updates
(cf. Table 1). However, the overall staleness distribution
changes with higher parallelism (Sra et al., 2016; Bäckström
et al., 2021), in particular for m threads, E[τ] ≈ m − 1
is known to hold (Bäckström et al., 2019). An adaptive
step size which merely diminishes stale updates, will con-

sequently tend to very small values as m increases. This
introduces a scalability issue, especially for non-convex
problems, such as DL, which are step size sensitive, requir-
ing updates of sufficiently coarse granularity to retain the
level of stochasticity necessary for convergence. In fact, the
commonly adopted O(τ−1) scaling, as well as the FLeet
O(e−βτ) exponential dampening, were evaluated in our
study, and compared with both constant step size AsyncSGD,
as well as the staleness-adaptive function TAIL-τ proposed
here. The results show convergence rates orders of magni-
tude slower than just the corresponding non-adaptive variant,
and especially when compared to the proposed TAIL-τ func-
tion (see Section 6).

4. Method
Here we present the ASAP.SGD framework, the staleness-
adaptive TAIL-τ step size function, and their properties.

4.1. The ASAP.SGD framework

We start by formalizing the concept of a staleness-adaptive
step size, and its connection to the overall base step size.

Definition 4.1. A staleness-adaptive step size function
η : N → R+, τ 7→ η(τ : η0), given some base step size
η0 ∈ R+, maps the stochastic staleness τt of the update at
time t onto a step size η(τ : η0) to be used for that update.

The base step size η0 is typically the ’best known’step size
for the problem at hand for standard sequential SGD. A
staleness-adaptive function then alters this step size online,
based on observed staleness. Definition 4.1 implies in par-
ticular that the step size, as a function of the staleness, is
consequently also considered stochastic. The step size ηt at
iteration t is however influenced only by the staleness τt.

A challenge with staleness-adaptive step sizes is that they
may alter the overall magnitude of the updates, which is
undesirable since (i) it induces deviation from the expected
step size magnitude, with unpredictable impact on the con-
vergence, and (ii) makes it inherently different to compare
the convergence impact of different strategies. We introduce
the mean-preservation property to address this.

Definition 4.2 (Mean-preservation). A staleness-adaptive
step size function η is referred to as mean-preserving if

E
[
η(τ : η0)

]
= η0 (5)

Definition 4.2 ensures that the average step size used
throughout an execution of AsyncSGD is exactly η0. Perfor-
mance benefits due to a mean-preserving adaptive step size
can hence be assured to be due to the adaptation strategy,
as opposed to using a step size of an overall different mag-
nitude. In the following, in the context of mean-preserving
step sizes, we use notation η0 and η̄ interchangeably.

Lastly, we introduce the priority-preservation property:

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Definition 4.3 (Priority-preservation). A staleness-adaptive
step size function η is referred to as priority-preserving if η
is non-increasing with respect to τ , i.e.

η(τ + 1 : η0) ≤ η(τ : η0) ∀τ (6)

Definition 4.3 implies not only that stale updates are lower
prioritized, but also that fresh updates can be emphasized.
With the above in mind, we now define the ASAP.SGD frame-
work for staleness-adaptive step size functions:
Definition 4.4 (ASAP.SGD). A function η is an ASAP.SGD
step size function, iff η is staleness-adaptive, mean-
preserving and priority-preserving.

4.2. The TAIL-τ function

Next, within the ASAP.SGD framework we define the
instance-based staleness-adaptive TAIL-τ step size function,
which considers the overall staleness distribution, to dynam-
ically compute an execution-tailored adaptation strategy.
Definition 4.5. A TAIL-τ function is a staleness-adaptive
step size function η which is of the form

η(τ : η0) = CA(τ) · η0 (7)
where the scaling factor CA is given by

CA(τ) = 1 +A · (1− 2Fτ̃ (τ))

Here, Fτ̃ (τ) = P[τ̄ ≤ τ] is the cumulative distribution
function (CDF) of the stochastic staleness.

The amplitude parameter A of the TAIL-τ function specifies
the maximum deviation of η from the base step size η0. The
scaling factor CA(τ) of the TAIL-τ function (7) utilizes the
CDF of τ , implicitly taking the system staleness distribution
into consideration for generating a dynamic adaptive step
size function, tailored to the specific execution. This is
visualized in Figure 1, showing the response of CA(τ) to
different ranges of stochastic staleness. E.g., it enables
tailored treatment of multi-modal staleness distributions,
which may emerge under hyperthreading or congestion for
accessing shared resources. The name TAIL-τ relates to the
1− Fτ̃ (τ) = P[τ̄ > τ] component, which is known as the
tail distribution function.

Practical note. The TAIL-τ function is straight-forward to
apply to any implementation of AsyncSGD, since it requires
only measuring the distribution of the staleness, and com-
puting the corresponding CDF Fτ̄ (τ) = P[τ̄ < τ], to be
used in the step size (7). TAIL-τ introduces negligible over-
head, as measuring τ is a small, constant-time operation,
independently of e.g. architecture size.

Next, we verify that TAIL-τ satisfies the properties of the
ASAP.SGD framework. Proofs appear in the Appendix.
Theorem 4.6. A TAIL-τ function η according to (7) is an
ASAP.SGD step size function, according to Definition 4.4

In the following lemma we show several core properties of
the TAIL-τ function, to be used in subsequent analysis.

Staleness

1-A

1

+
1+A

CA()
P[]
Markov bound
E[CA()]
Std[CA()]

Figure 1. The scaling factor CA(τ) of TAIL-τ , relative a staleness
distribution, with properties from Lemma 4.7. Fresh updates (low
staleness) are emphasized, stragglers are dampened.

Lemma 4.7. For a TAIL-τ adaptive step size η(τ : η0) =
CA(τ) · η0, we have

max
τ

η(τ : η0) = (1 +A)η0 (i)

min
τ

η(τ : η0) = (1−A)η0 (ii)

V ar[η(τ)] = (Aη̄)2/3 (iii)
CA(τ) ≤ 1 + (2(m− 1)/τ − 1)A (iv)

Lemma 4.7 provides useful criteria for deciding the parame-
ters η0 and A in practice, for ensuring that η(τ : η0) stays
within desirable magnitudes suitable for the given problem.

TAIL-τ can be extended in the same spirit as Definition 4.5,
to allow a higher degree of customizability in the instance-
adaptiveness, still satisfying the properties of Lemma 4.7.
In particular, the degree with which the CDF of τ influences
the scaling factor CA, and how much variations of τ values
are reflected in the step size, can be altered, depending on
the application. The general formulation of TAIL-τ enjoys
the convergence guarantees to follow in Section 5, however,
appears in Appendix A.1 due to space constraints.

5. Convergence analysis
In this section we establish asymptotic convergence bounds
of the method proposed in the previous section, considering:
Assumption 5.1. Expected Lipschitz-continuous gradients

E[∥∇L(x)−∇L(y)∥] ≤ LE[∥x− y∥] ∀x, y (8)
Assumption 5.2. Expected bounded gradient moment

E
[
∥∇L(x)∥2

]
≤ M2 ∀x (9)

These provide the problem additional structure, hold for a
wide set of loss functions in practice, and are widely adopted
in the literature (Agarwal & Duchi, 2011; Zhang et al., 2016;
Alistarh et al., 2018; Bäckström et al., 2019). We consider
general non-convex problems here, but for self-containment
we also establish fundamental convex convergence bounds,
available in the Appendix.

The following lemma shows the expected progression of the
SGD iterates for arbitrary staleness-adaptive step sizes.
Lemma 5.3. Consider the optimization problem of (1), and
follow the SGD step (3). Let ηt = η(τt; η̄) be a staleness-

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

adaptive step size function (according to Definition 4.1).
Then we have the following expected iterative progression:

E[L(θt+1)− L(θt)]

≤ LM2 (E[
η2]/2 +E[τη]E[η]

)
−E[η]E

[
∥∇L(θt)∥2

]
The following lemma establishes the expected iterative pro-
gression of AsyncSGD with ASAP.SGD step sizes:
Corollary 5.4. Under the same conditions as Lemma 5.3,
let in addition η(τt; η̄) be mean- and priority-preserving,
hence an ASAP.SGD step size. Then we have:
E[L(θt+1)− L(θt)] ≤ LM2 (E[

η2]/2 + η̄2τ̄
)
− η̄E

[
∥∇L(θt)∥2

]
Corollary 5.4 follows directly from mean-preservation,
and from that E[τη] ≤ E[τ]E[η] by priority-preservation.
Corollary 5.4 serves as a common starting point for conver-
gence analysis of a wide range of ASAP.SGD step size func-
tions. Using the specifics of the step size function, lemma
5.3 can be used to derive explicit convergence bounds, as
we demonstrate in the following for TAIL-τ .
Corollary 5.5. Assume the conditions of Lemma 5.3, and let
η(τt; η̄) = CA(τ) · η̄ be a TAIL-τ step size function. Then:
E[L(θt+1)− L(θt)] ≤ LM2η̄2 (A2/6 + τ̄

)
− η̄E

[
∥∇L(θt)∥2

]
Corollary 5.5 follows from Corollary 5.4, utilizing the TAIL-
τ properties from Lemma 4.7, and shows the iterative im-
provement for TAIL-τ , to be used in subsequent results.

In the following theorem we establish expected time until
convergence to an approximate critical point of SGD for
general non-convex, smooth functions, using TAIL-τ .
Theorem 5.6. Assume L(θ0) − L(θ∗) < δ, and let
η(τt; η̄) = CA(τ) · η̄ be a TAIL-τ step size function. Then
we have a O(1/

√
T) convergence bound, to an approximate

critical point, after T AsyncSGD iterations. Specifically, if

η̄ =
√
δ/LM2T (A2 + τ̄) (10)

then mint E
[
∥∇L(θt)∥2

]
≤ 2
√
LM2(A2 + τ̄)δ/T

Theorem 5.6 shows that TAIL-τ recovers the standard
bound O(1/

√
T) of SGD on smooth non-convex problems

(Ghadimi & Lan, 2013). However, this is rather pessimistic
as it applies to general non-convex functions. We consider
the following to provide more structure to the problem:
Assumption 5.7. Polyak-Lojasiewicz (PL) condition. A
function L is referred to as µ-PL if, for some µ > 0:

E
[
∥∇L(x)∥2

]
≥ µE[L(x)− L(x∗)] ∀x (11)

PL is a geometric condition characterizing the shape of non-
convex functions. It can be regarded as a generalization
of strong convexity, however without requirements on e.g.
uniqueness of minimizers. Several ML loss functions satisfy
the condition, including least squares, logistic regression,
support vector machines (Karimi et al., 2016) and certain
types of deep ANNs (Charles & Papailiopoulos, 2018).

Next we establish asymptotic convergence of AsyncSGD
with TAIL-τ step size function for smooth, µ-PL functions.

Theorem 5.8. Let L be µ-PL, and L(θ0) − L(θ∗) <
δ. Further, let η(τt; η̄) = CA(τ) · η̄ be a TAIL-τ step
size function. Then we have expected ϵ-convergence in
T = O

(
1
ϵ log

(
2δ
ϵ

))
iterations. More precisely, let

η̄ =
µϵ

LM2(A2/3 + 2τ̄)
(12)

Then we have E[L(θT)− L(θ∗)] < ϵ for

T >
LM2(A2/3 + 2τ̄)

µ2ϵ
log

(
2δ

ϵ

)

The reason for the O(A2) term in Theorems 5.6 and 5.8
(negligible compared to the O(τ) additive term) is due to the
analytical estimation of the variance of TAIL-τ (Lemma 4.7,
(iii)), which must be considered (Cor. 5.5), specifically when
expanding the E[η2] term. As we make no assumptions on
PDF(τ), the bounds reflect the expected worst-case conver-
gence over all possible τ distributions. Additional infor-
mation on the τ distribution can (using Corollary 5.4 as a
starting point) derive tighter algorithm-specific bounds.

6. Evaluation
We complement the analysis with benchmarking the TAIL-τ
function, for implementations of AsyncSGD representative
of a variety of system-execution properties relating with
scheduling and ordering. We evaluate TAIL-τ , comparing
to standard constant step size executions, for relevant DL
benchmark applications, namely training the LeNet (LeCun
et al., 1998) architecture, as well as a 3-layer MLP, for im-
age recognition for image recognition on both MNIST and
Fashion MNIST. The evaluation focuses on convergence
rates, primarily wall-clock time to ϵ-convergence (which is
the most relevant in practice), as well as number of success-
ful executions, for various precision levels ϵ. We include a
broad spectrum of parallelism, giving a detailed picture of
the capability of the methods to scale in practice. We also
study the staleness distributions, the adaptive response of
the TAIL-τ function, and its impact on the convergence.

Implementation. We evaluate the TAIL-τ for three Async-
SGD algorithms, representing fundamentally different syn-
chronization mechanisms and guarantees on progress and
consistency, and in this way capturing a variety of schedul-
ing and ordering system-execution properties: (i) lock-based
AsyncSGD (Zinkevich et al., 2009; 2010; Agarwal & Duchi,
2011) (ii) lock-free, but inconsistent, HOGWILD! (Recht
et al., 2011; De Sa et al., 2015; Alistarh et al., 2018) and
(iii) the lock-free and consistent Leashed-SGD algorithm
(Bäckström et al., 2021), denoted ASYNC, HOG and LSH,
respectively. Executions using our TAIL-τ function are indi-
cated by the suffix TAIL. The implementation extends the
open Shared-Memory-SGD (Bäckström, 2021) C++ library,
connecting ANN operations to low-level implementations
of parallel SGD, and is free to use for research purposes.

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

LeNet 3-layer MLP
M

N
IS

T

4 8 12 16 20 24 28 32
N.o. threads

10
20
30
40
50
60
70
80
90

100

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 50%

4 8 12 16 20 24 28 32
N.o. threads

50
100
150
200
250
300
350
400
450
500

= 5%

4 8 12 16 20 24 28 32
N.o. threads

0

10

20

30
= 50%

4 8 12 16 20 24 28 32
N.o. threads

0
30
60
90

120
150
180
210
240
270

1 2 5 55 5 5 5 1

= 5%

Fa
sh

io
n-

M
N

IS
T

4 8 12 16 20 24 28 32
N.o. threads

10
20
30
40
50
60
70
80
90

100
110

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 50%

4 8 12 16 20 24 28 32
N.o. threads

160
240
320
400
480
560
640
720
800
880

5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 52 5 51

= 15%

4 8 12 16 20 24 28 32
N.o. threads

0

10

20
= 50%

4 8 12 16 20 24 28 32
N.o. threads

20
40
60
80

100
120
140
160
180
200

5 5 5 5 5 5 5 55 5 5 5 5 5 5 55 5 5 5 5 5 5 51 5

= 15%

Figure 2. Convergence rates for LeNet (left) and a 3-layer MLP (right) for MNIST and Fashion-MNIST recognition training with
AsyncSGD, with HOGWILD! (HOG), Leashed-SGD (LSH), and traditional lock-based (ASYNC) implementations. Executions using the
instance-based TAIL-τ staleness-adaptive step size are indicated with the suffix TAIL.

20 40 60
Time (s)

5%
15%

50%

100%

Lo
ss

MNIST

20 40 60
Time (s)

5%
15%

50%

100%
FASHION-MNIST

10 20 30
Time (s)

5%
15%

50%

100%
MNIST

10 20 30
Time (s)

5%
15%

50%

100%
FASHION-MNIST

Figure 3. Loss over time for HOGWILD! (HOG), Leashed-SGD (LSH), and traditional lock-based (ASYNC) AsyncSGD with parallelism
m = 20, with and without the TAIL-τ staleness-adaptive step size (suffix TAIL) for LeNet (left) and a 3-layer MLP (right).

14 16 18 20 22 24
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

Staleness distribution - 20 threads
ASYNC
HOG
LSH

0 5 10 15 20
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 20 threads

ASYNC_TAIL
HOG_TAIL
LSH_TAIL
FLeet dampening
Tau^-1

10 15 20 25 30
Staleness

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ili

ty

Staleness distribution - 20 threads
ASYNC
HOG
LSH

0 5 10 15 20 25 30
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 20 threads
ASYNC_TAIL
HOG_TAIL
LSH_TAIL
FLeet dampening
Tau^-1

Figure 4. Staleness distribution, and the TAIL-τ scaling factor for LeNet (left) and a 3-layer MLP (right), for MNIST and Fashion-MNIST.

C
IF

A
R

-1
0

20 40 60 80 100 120 140
Time (s)

50%

75%

100%

Lo
ss

16 threads

10 12 14 16 18
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

Staleness PDF - 16 threads
ASYNC
HOG
LSH

10 12 14 16 18
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 16 threads
ASYNC
HOG
LSH

Figure 5. Loss over time (left), staleness distribution (center), and the TAIL-τ scaling factor (right) for LeNet training on CIFAR-10.

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Table 2. Results overview - speedup across the parallelism spectrum achieved by the TAIL-τ step size, relative a standard constant one.

Speedup 50%-convergence 5% (15%)-convergence
Dataset Architecture min max avg success∗ min max avg success∗

MNIST LeNet 1.12 1.75 1.51 1.0 1.16 1.92 1.6 1.0
MLP 1.30 2.0 1.66 1.0 1.42 1.99 1.82 3.53

Fashion-MNIST LeNet 1.13 1.90 1.48 1.0 ∞ ∞ ∞ ∞
MLP 1.25 1.8 1.56 1.0 ∞ ∞ ∞ ∞

CIFAR-10 LeNet 1.03 1.45 1.29 1.0 - - - -
∗Ratio between n.o. executions that reached the desired precision for TAIL-τ executions vs. standard AsyncSGD

Experiment setup. We tackle the problem of ANN train-
ing for image classification on the datasets MNIST (Le-
Cun & Cortes, 2010) of hand-written digits, CIFAR-10
(Krizhevsky et al., 2009) of everyday objects, and Fashion-
MNIST (Xiao et al., 2017) of clothing article images. All
datasets contain 60k images, each belonging to one of ten
classes ∈ {0, . . . , 9}. For this, we train a LeNet CNN
architecture, as well as a 3-layer MLP, with 128 neurons
per layer (denoted MLP in the following), for 100 epochs.
We use standard settings and hyper-parameters; For MNIST
and Fashion-MNIST training we use a base step size of
η0 = 1e−4 and mini-batch size 128, while for CIFAR-
10 we use η0 = 5e−3 and a mini-batch size of 16. The
multi-class cross-entropy loss function is used in all exper-
iments. For Leashed-SGD, we use the default setting of
an infinite persistence bound. We use a TAIL-τ step size
function (as in Definition 4.5), that adapts to each unique
execution, based on the measured staleness distribution,
with an adaptation amplitude of A = 1, due to its role in
emphasizing fresh updates and dampening stragglers. The
experiments are conducted on a 2.10 GHz Intel(R) Xeon(R)
E5-2695 two-socket 36-core (18 cores per socket, each sup-
porting two hyper-threads), 64GB non-uniform memory
access (NUMA), Ubuntu 16.04 system.

Plots show averaged values from 5 executions for each
setting, unless otherwise stated. ϵ-convergence is achieved
when L(θ) < ϵ, expressed as % of the initial loss L(θ0).
The number of executions that fail to reach ϵ-convergence
is indicated by ∞ at the top, if such executions occurred.
This is important, since such executions result in models
of insufficient accuracy, and thereby are wasted work.

Convergence speedup and scalability. We measure con-
vergence time to first 50% of the initial error (i.e. 50%-
convergence), and then to higher precision (5% for MNIST,
and 15% for Fashion-MNIST to enable clearer comparison,
since baselines rarely converge to this level of precision)
across the parallelism spectrum. The results (Figure 2) show
that the TAIL-τ step size function yields persistent and sub-
stantial speedup in convergence time (12% in the worst-case,
100% in the best), for all combinations of datasets, archi-
tectures and AsyncSGD implementations (see Table 2 for
details). Training plots, showing loss progression over time,
are shown in Figure 3, demonstrating the convergence speed
being orders of magnitudes faster than standard AsyncSGD.
Similar speedup is observed for training on the CIFAR-10

dataset, shown in Figure 5.

For higher-precision convergence, non-converging execu-
tions are frequent among the standard AsyncSGD algorithms,
especially under higher parallelism. Their ability to con-
verge varies, demonstrating the impact of underlying syn-
chronization and progress guarantees. We observe in partic-
ular that HOGWILD! achieves fastest overall convergence,
while Leashed-SGD provides higher reliability, i.e. lower
risk of non-convergence. However, independently of the
properties of the AsyncSGD implementation, we observe,
in addition to persistently faster convergence, also that the
TAIL-τ step size ensures a significantly lower risk of non-
convergence, hence higher reliability (see Table 2).

Staleness-based dampening according to the commonly
adopted ×τ−1 scheme, as well as the FLeet 1 exponen-
tial dampening (Damaskinos et al., 2020), are evaluated for
MLP and LeNet training on MNIST, compared to standard
AsyncSGD with constant step size. The results (Figure 6)
show, as conjectured in Section 3, convergence of signifi-
cantly slower rate compared to a constant step size, which in
addition (as opposed to TAIL-τ , as well as constant step size)
decays with higher parallelism due to the reduced overall
step size magnitude. The speedup of TAIL-τ compared to
constant step size is shown in Figure 2 and 3.

Instance-based adaptiveness. Figure 4 shows the stale-
ness distribution of the AsyncSGD algorithms for LeNet and
MLP, along with the corresponding TAIL-τ step size scaling
factors, generated dynamically based on the staleness distri-
bution of the particular execution. We observe, as expected
from Section 4, that the staleness-adaptive step size strate-
gies, generated by TAIL-τ , emphasize fresh updates and
diminishe the impact of stale ones, taking into considera-
tion the underlying execution-specific staleness distribution.
This, as shown above, results in increased stability, i.e. low-
ered risk of non-convergence, as well as significant increase
in convergence rates. Note that considering standard SGD
eliminates side-effects of ‘add-ons’, enabling clearer com-
parisons. Other step-size-altering methods (e.g. ADAM or
schedules) can be used in conjunction, by applying them to

1As in the original paper, we use the dampening factor Λ(τ) =
e−βτ , where β satisfies (τthres/2 + 1)−1 = e−βτthres/2, where
τthres is the beginning of the staleness distribution tail, which we
consider to be τthres = m + 1 here, based on observation. The
similarity-based boosting option was not considered here.

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD
L

eN
et

100 200 300 400
Time (s)

5%
15%

50%

100%
Lo

ss
2 threads

100 200 300 400
Time (s)

5%
15%

50%

100%

Lo
ss

4 threads

100 200 300 400
Time (s)

5%
15%

50%

100%

Lo
ss

6 threads
3-

la
ye

rM
L

P

20 40 60 80
Time (s)

5%
15%

50%

100%

Lo
ss

2 threads

20 40 60 80
Time (s)

5%
15%

50%

100%

Lo
ss

4 threads

20 40 60 80
Time (s)

5%
15%

50%

100%

Lo
ss

6 threads

Figure 6. AsyncSGD training on MNIST with HOGWILD! (HOG), Leashed-SGD (LSH), and traditional lock-based (ASYNC) imple-
mentations, comparing executions using the FLeet exponential dampening approach (suffix: FLEET) and the ×τ−1 staleness-adaptive
scheme (suffix: Tau−1) against standard, constant step size.

η0 (Def. 4.4) and is a relevant target of future studies.

System-related insights. The emerging τ distribution of an
AsyncSGD execution is influenced by many underlying fac-
tors, including (i) the compute infrastructure (UMA/NUMA,
hyper-threading), (ii) consistency guarantees, and the associ-
ated synchronization mechanisms (e.g. loose consistency as
in HOGWILD!, lock-based, or Leashed-SGD etc), (iii) gradi-
ent computation vs application time, (iv) number of threads.
Several works (Ben-Nun & Hoefler, 2019; Bäckström, 2021)
are dedicated to studying this, however the nature of this de-
pendency is an open problem. Although this is not the main
scope here, we see that implicitly adapting to the afore-
mentioned aspects, through the PDF(τ) signature, yields
significant practical benefits, as we show with TAIL-τ .

7. Conclusion
We introduce ASAP.SGD - a framework for capturing es-
sential properties of general staleness-adaptive step size
functions for AsyncSGD, providing structure to the domain
of staleness-adaptiveness, and can guide the design of new
adaptive step size strategies. Within ASAP.SGD, we intro-
duce the first instance-based dynamic step size function,
TAIL-τ , which generates a tailored adaptiveness strategy
for each unique execution. We analyze general ASAP.SGD
functions for AsyncSGD, as well as TAIL-τ in particular,
and recover convergence bounds for both convex and non-
convex problems, as well as establish new bounds for ones
satisfying the Polyak-Lojasiewicz condition.

We implement TAIL-τ , extending existing AsyncSGD im-
plementations, to provide a platform for further research in
the domain. The evaluation covers three implementations of
AsyncSGD, with fundamentally different algorithmic prop-
erties, for training LeNet and an MLP for image recognition
on MNIST and Fashion-MNIST. The results show that TAIL-
τ is a vital component for AsyncSGD practical deployments,
due to its ability to, based on the properties of the unique ex-

ecution, generate an adaptiveness strategy tailored to the spe-
cific execution, yielding persistent speedup across the entire
parallelism spectrum, and tremendous increase in reliability
to converge, in particular to high precision. Efficiency
is important not only for timeliness, but also for resource
utilization, considering especially how energy-consuming
is e.g. ANN training (Sorbaro et al., 2020).

Acknowledgements
This work is supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP), Knut and Alice
Wallenberg Foundation; the Swedish Research Council
(Vetenskapsrådet) – projects: “EPITOME” 2021-05424 and
“Relaxed Concurrent Data Structure Semantics for Scalable
Data Processing” 2021-05443; and Chalmers AoA frame-
works Energy and Production, proj. INDEED, and WP
“Scalability, Big Data and AI”.

References
Agarwal, A. and Duchi, J. C. Distributed delayed stochastic

optimization. In Advances in Neural Information Pro-
cessing Systems, pp. 873–881, 2011.

Alistarh, D., De Sa, C., and Konstantinov, N. The con-
vergence of stochastic gradient descent in asynchronous
shared memory. In Proceedings of the 2018 ACM Sym-
posium on Principles of Distributed Computing, pp. 169–
178, 2018.

Aviv, R. Z., Hakimi, I., Schuster, A., and Levy, K. Y. Asyn-
chronous distributed learning: Adapting to gradient de-
lays without prior knowledge. In International Confer-
ence on Machine Learning, pp. 436–445. PMLR, 2021.

Bäckström, K., Papatriantafilou, M., and Tsigas, P.
Mindthestep-asyncpsgd: Adaptive asynchronous parallel
stochastic gradient descent. In 2019 IEEE International

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Conference on Big Data (Big Data), pp. 16–25. IEEE,
2019.

Bäckström, K., Walulya, I., Papatriantafilou, M., and Tsi-
gas, P. Consistent lock-free parallel stochastic gradient
descent for fast and stable convergence. In 2021 IEEE
International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 423–432. IEEE, 2021.

Ben-Nun, T. and Hoefler, T. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

Bäckström, K. shared-memory-sgd. https://github.
com/dcs-chalmers/shared-memory-sgd,
2021.

Charles, Z. and Papailiopoulos, D. Stability and generaliza-
tion of learning algorithms that converge to global optima.
In International Conference on Machine Learning, pp.
745–754. PMLR, 2018.

Damaskinos, G., Guerraoui, R., Kermarrec, A.-M., Nitu, V.,
Patra, R., and Taiani, F. Fleet: Online federated learning
via staleness awareness and performance prediction. In
Proceedings of the 21st International Middleware Con-
ference, pp. 163–177, 2020.

De Sa, C. M., Zhang, C., Olukotun, K., and Ré, C. Taming
the wild: A unified analysis of hogwild-style algorithms.
Advances in neural information processing systems, 28,
2015.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and
Cadambe, V. Local sgd with periodic averaging: Tighter
analysis and adaptive synchronization. Advances in Neu-
ral Information Processing Systems, 32, 2019.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 795–811. Springer, 2016.

Kraska, T. Towards instance-optimized data systems,
keynote. 2021 International Conference on Very Large
Data Bases, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y. and Cortes, C. MNIST handwritten digit
database. 2010. URL http://yann.lecun.com/
exdb/mnist/.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lopez, F., Chow, E., Tomov, S., and Dongarra, J. Asyn-
chronous sgd for dnn training on shared-memory par-
allel architectures. In 2020 IEEE International Paral-
lel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 1–4. IEEE, 2020.

Ma, Y., Rusu, F., and Torres, M. Stochastic gradient de-
scent on modern hardware: Multi-core cpu or gpu? syn-
chronous or asynchronous? In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pp. 1063–1072. IEEE, 2019.

McMahan, B. and Streeter, M. Delay-tolerant algorithms
for asynchronous distributed online learning. Advances
in Neural Information Processing Systems, 27, 2014.

Nguyen, L., Nguyen, P. H., Dijk, M., Richtárik, P., Schein-
berg, K., and Takác, M. Sgd and hogwild! convergence
without the bounded gradients assumption. In Interna-
tional Conference on Machine Learning, pp. 3750–3758.
PMLR, 2018.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A lock-
free approach to parallelizing stochastic gradient descent.
Advances in neural information processing systems, 24,
2011.

Ren, Z., Zhou, Z., Qiu, L., Deshpande, A., and Kalagnanam,
J. Delay-adaptive distributed stochastic optimization. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5503–5510, 2020.

Sorbaro, M., Liu, Q., Bortone, M., and Sheik, S. Optimizing
the energy consumption of spiking neural networks for
neuromorphic applications. Frontiers in neuroscience, pp.
662, 2020.

Sra, S., Yu, A. W., Li, M., and Smola, A. Adadelay: Delay
adaptive distributed stochastic optimization. In Artificial
Intelligence and Statistics, pp. 957–965. PMLR, 2016.

Wei, J., Gibson, G. A., Gibbons, P. B., and Xing, E. P. Au-
tomating dependence-aware parallelization of machine
learning training on distributed shared memory. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019, pp.
1–17, 2019.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, C., Koyejo, S., and Gupta, I. Zeno++: Robust fully
asynchronous sgd. In International Conference on Ma-
chine Learning, pp. 10495–10503. PMLR, 2020.

https://github.com/dcs-chalmers/shared-memory-sgd
https://github.com/dcs-chalmers/shared-memory-sgd
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Yazdani, K. and Hale, M. Asynchronous parallel noncon-
vex optimization under the polyak-łojasiewicz condition.
IEEE Control Systems Letters, 2021.

Zhang, W., Gupta, S., Lian, X., and Liu, J. Staleness-aware
async-sgd for distributed deep learning. In Proceedings
of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, pp. 2350–2356, 2016.

Zinkevich, M., Langford, J., and Smola, A. Slow learn-
ers are fast. Advances in neural information processing
systems, 22, 2009.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. Paral-
lelized stochastic gradient descent. Advances in neural
information processing systems, 23, 2010.

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

A. Technical Appendix
A.1. General TAIL-τ function definition

We introduce an additional degree of generalization for the TAIL-τ function, which allows significantly broader flexibility in
design choices, while still satisfying the properties of the ASAP.SGD framework, and enjoying the convergence guarantees
established in Section 5.

Theorem A.1. Let a staleness-adaptive step size function η be
η(τ : η0) = Cs,ϕ(τ) · η0

where the scaling factor is given by
Cs,ϕ(τ) = 1 +A · (1− 2 ϕ(Fτ̃ (τ)))

for some amplitude factor A ∈ [0, 1] and some non-decreasing function ϕ : [0, 1] → [0, 1]. If ϕ satisfies∫ 1

0

ϕ(x) dx =
1

2
, ϕ(0) = 0, ϕ(1) = 1 (13)

then η is (i) mean-preserving and (ii) priority-preserving.

The choice of the function ϕ now allows customizing the rate with which η adapts to different ranges of staleness.

Proof of Theorem A.1. (i) Mean-preservation follows from

E[Cs,ϕ(τ)] =

∞∑
τ=1

(1 +A · (1− 2 ϕ(Fτ̃ (τ)))) pτ̃ (τ)

= 1 +A ·

(
1− 2

∞∑
τ=1

ϕ(Fτ̃ (τ))pτ̃ (τ)

)
Let f extend p so that fτ̃ (t) = pτ̃ (τ) for t ∈ (τ − 1, τ). Then we have

E[Cs,ϕ(τ)] = 1 +A ·
(
1− 2

∫ ∞

τ=0

ϕ(Fτ̃ (τ))fτ̃ (τ) dτ

)
= 1 +A ·

(
1− 2

∫ 1

0

ϕ(Fτ̃ (τ)) dFτ̃ (τ)

)
= 1

(ii) Priority-preservation follows directly from that Fτ̃ (τ) is a CDF, hence non-decreasing, and the assumptions on A
and ϕ.

A.2. Proofs of Lemmas and Theorems that appear in the main part of the paper

In this section we present the proofs omitted in the main text.

Proof of Theorem 4.6. The statement is a special case, and follows from, Theorem A.1, with ϕ(τ) = τ , which satisfies the
requirements on ϕ(τ) (13).

Proof of Lemma 4.7. (i)-(ii) follow directly from Definition 4.5.

(iii):
V ar[η(τ)] = E

[
η(τ)2

]
− η̄2

=

∞∑
τ=1

(1 +A(1− 2F (τ))η̄)
2
pτ̄ (τ)− η̄2 =

(
1

6A
(1 +A(1− 2F (τ)))

3
∣∣∣0
τ=∞

− 1

)
η̄2

=

(
1

6A

(
(1 +A)3 − (1−A)3

)
− 1

)
η̄2 =

1

3
(Aη̄)2

(iv):
CA(τ) = 1 +A(1− 2F (τ))

= 1 +A (2 (1− F (τ))− 1)

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Markov’s inequality now gives

CA(τ) ≤ 1 +A

(
2
E[τ]

τ
− 1

)
Now, assuming E[τ] ≈ m− 1, m being the number of threads, concludes the proof. Based on empirical studies, it has been
observed that such an assumed condition is reasonable, generally holding in practice (Bäckström et al., 2019; Zhang et al.,
2016).

Proof of Lemma 5.3. From assumption 5.1 we have in particular

L(θt+1)− L(θt)− ⟨∇L(θt), θt+1 − θt⟩ ≤
L
2
∥θt+1 − θt∥2

From the SGD step we have

L(θt+1)− L(θt)− ηt

〈
∇L(θt),−∇L̃(θt) +

(
∇L̃(θt)−∇L̃(vt)

)〉
≤ L

2
η2t ∥∇L̃(vt)∥2

⇒L(θt+1)− L(θt) + ηt

〈
∇L(θt),∇L̃(θt)

〉
− ηt∥∇L(θt)∥∥∇L̃(θt)−∇L̃(vt)∥

≤ L
2
η2t ∥∇L̃(vt)∥2

We have by assumption 5.1, and the triangle inequality

∥∇L̃(θt)−∇L̃(vt)∥ ≤ L∥θt − vt∥ = L

∥∥∥∥∥
τt∑
i=1

θt−i+1 − θt−i

∥∥∥∥∥ ≤ L
τt∑
i=1

ηt−i∥∇L̃(θt−i)∥

⇒L(θt+1)− L(θt) + ηt

〈
∇L(θt),∇L̃(θt)

〉
− ηtL∥∇L(θt)∥

τt∑
i=1

ηt−i∥∇L̃(θt−i)∥

≤ L
2
η2t ∥∇L̃(vt)∥2

Take expectation conditioned on the last staleness τt. From mean-independence, we have

E[L(θt+1)− L(θt) | τt] + ηtE
[
∥∇L(θt)∥2

]
− ηtL

τt∑
i=1

E[ηt−i]E
[
∥∇L(θt)∥∥∇L̃(θt−i)∥

]
≤ L

2
η2tE

[
∥∇L̃(vt)∥2

]
≤ L

2
M2η2t

Applying Hölder’s inequality, and that E[τt] = E[τ] ∀t

E[L(θt+1)− L(θt) | τt] + ηtE
[
∥∇L(θt)∥2

]
− ηtE[η]L

τt∑
i=1

√
E[∥∇L(θt)∥2]E

[
∥∇L̃(θt−i)∥2

]
≤ L

2
η2tE

[
∥∇L̃(vt)∥2

]
≤ L

2
M2η2t

⇒E[L(θt+1)− L(θt) | τt] + ηtE
[
∥∇L(θt)∥2

]
− τtηtE[η]LM2 ≤ L

2
M2η2t

Now, take full expectation

E[L(θt+1)− L(θt)] +E[η]E
[
∥∇L(θt)∥2

]
−E[τη]E[η]LM2 ≤ L

2
M2E

[
η2
]

which concludes the proof.

Proof of Theorem 5.6. From Corollary 5.5, we have

E
[
∥∇L(θt)∥2

]
≤ E[L(θt)− L(θt+1)]

η̄
+ LM2η̄

(
A2

6
+ τ̄

)
⇒ 1

T

T−1∑
t=0

E
[
∥∇L(θt)∥2

]
≤ δ

η̄T
+ LM2η̄

(
A2

6
+ τ̄

)
which implies in particular that mint E

[
∥∇L(θt)∥2

]
satisfies the above upper bound as well. The bound now rewrites as in

the statement by substituting η̄ for (10), which concludes the proof.

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Proof of Theorem 5.8. With Corollary 5.5 as a starting point, we have by assumption 5.7

E[L(θt+1)− L(θt)] + η̄µE[L(θt)− L(θ∗)] ≤ LM2η̄2
(
A2

6
+ τ̄

)
⇒E[L(θT)− L(θ∗)] ≤ (1− η̄µ)E[L(θT−1)− L(θ∗)] + LM2η̄2

(
A2

6
+ τ̄

)
= (1− η̄µ)

T
δ + LM2η̄2

T−1∑
i=0

(1− η̄µ)i
(
A2

6
+ τ̄

)
≤ (1− η̄µ)

T
δ +

LM2η̄

µ

(
A2

6
+ τ̄

)
<

ϵ

2
+

ϵ

2
= ϵ

A.3. Convex convergence

For the sake of self-containment, we establish fundamental convex convergence bounds for (i) arbitrary staleness-adaptive
step size functions, (ii) ones satisfying the ASAP.SGD properties, as well as (iii) the TAIL-τ function. For this, we will require
also strong convexity:

Assumption A.2. L is strongly convex with parameter C
E
[
(x− y)T

(
∇L(x)−∇L(y)

)]
≥ C∥x− y∥2 ∀x, y

Theorem A.3. Consider the unconstrained optimization problem of (1). Under Assumptions 5.1, 5.2, and A.2, for any
precision ϵ > 0, and for any staleness-adaptive step size function η (Definition 4.1), there is a number T of AsyncSGD
iterations, of the form (3) such that E[∥θT − θ∗∥2] < ϵ, where T is bounded by:

T ≤ ln (∥θ0 − θ∗∥2ϵ−1)

2
(
C − LMϵ−1/2E[τη]

)
η̄ − ϵ−1M2E[η2]

Corollary A.4. Under the same conditions as Theorem A.3, let ηt be ASAP.SGD adaptive step size function. Then we have
the following bound on the expected number of iterations until expected convergence:

T ≤ ln (∥θ0 − θ∗∥2ϵ−1)

2Cη̄ − ϵ−1M (M + 2L
√
ϵτ̄)E[η2]

(14)

Corollary A.5. Under the same conditions as Theorem A.3, let additionally ηt be TAIL-τ step size function. Then we have
the following bound on the expected number of iterations until expected convergence:

T ≤ ln (∥θ0 − θ∗∥2ϵ−1)

2Cη̄ − ϵ−1M (M + 2L
√
ϵτ̄)
(
1 + A2

3

)
η̄2

(15)

The proofs for Theorem A.3, and Corollary A.4, A.5 build on and extend the results in (Bäckström et al., 2019), and follow
from the properties of ASAP.SGD and TAIL-τ , specified in Section 4.

A.4. Additional Empirical Results

Figure 7 provides an overview of the scalability of all algorithms evaluated here for MNIST and Fashion-MNIST, respectively,
over a large parallelism spectrum. We observe speedup until around 32 threads, at which the system saturates and does not
benefit from higher parallelism. The different algorithms perform differently at different parallelism levels. In particular,
under hyper-threading (m > 36), the AsyncSGD implementations suffer a slower convergence due to increased computational
overhead and asynchrony-induced noise. However, in all instances, TAIL-τ provides significant speedup, independently of
the algorithm, dataset, and parallelism level.

Figure 8 and 9 show staleness distributions of the considered AsyncSGD algorithms for LeNet and MLP training, respectively,
together with the corresponding scaling factors CA of the staleness-adaptive TAIL-τ step size functions. The AsyncSGD
implementations have fundamentally different staleness distributions, due to the underlying algorithmic mechanisms for
progress and consistency. Moreover, we observe multi-modality in some executions, in particular under hyper-threaded
parallelism (m > 36), and for lock-based AsyncSGD due congestion about the locks. The execution-specific staleness
distributions are utilized by TAIL-τ to generate an instance-based adaptiveness strategy, accommodating for algorithmic
differences and underlying system aspects, enabling the improvements in convergence rates and stability that are observed
in Section 6.

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

MNIST Fashion-MNIST
L

eN
et

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

10
20
30
40
50
60
70
80
90

100

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 50%

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

10
20
30
40
50
60
70
80
90

100
110

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 50%

M
L

P

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

0

10

20

30

40

50

60

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 50%

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

0

10

20

30

40

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 50%

Figure 7. AsyncSGD convergence rates over a wide parallism spectrum, inluding hyper-threading (m > 36), for HOGWILD! (HOG),
Leashed-SGD (LSH), and lock-based (ASYNC), comparing executions using the staleness-adaptive TAIL-τ (suffix: TAIL) against
standard, constant step size.

18 20 22 24 26 28
Staleness

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

Staleness PDF - 24 threads
ASYNC
HOG
LSH

30 40 50 60
Staleness

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ili

ty

Staleness PDF - 40 threads
ASYNC
HOG
LSH

30 40 50 60 70 80
Staleness

0.00

0.01

0.02

0.03
Pr

ob
ab

ili
ty

Staleness PDF - 56 threads
ASYNC
HOG
LSH

18 20 22 24 26 28
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 24 threads
ASYNC
HOG
LSH

30 40 50 60
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 40 threads
ASYNC
HOG
LSH

30 40 50 60 70 80
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 56 threads
ASYNC
HOG
LSH

Figure 8. Staleness distributions for the considered AsyncSGD algorithms (upper row) and the corresponding scaling factors CA of the
generated staleness-adaptive TAIL-τ step sizes, as in Definition 4.1 (bottom row) for LeNet training on MNIST and Fashion-MNIST.

A.5. Evaluation of staleness-based static dampening

Figure 10 and 6 show convergence rates and training plots under varying parallelism for the ×τ−1 scheme which, with
some variation, appears often in previous works (Sra et al., 2016; Zhang et al., 2016; Ren et al., 2020), compared to standard
AsyncSGD with constant step size.

For both LeNet and MLP training for MNIST recognition, we observe significant challenges with achieving convergence
rates within the same order of magnitude as traditional, constant step size, AsyncSGD. This, in contrast with TAIL-τ which,

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

10 15 20 25 30 35
Staleness

0.00

0.05

0.10

0.15

0.20
Pr

ob
ab

ili
ty

Staleness PDF - 24 threads
ASYNC
HOG
LSH

10 20 30 40 50 60 70
Staleness

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty

Staleness PDF - 40 threads
ASYNC
HOG
LSH

20 40 60 80 100
Staleness

0.00

0.05

0.10

0.15

Pr
ob

ab
ili

ty

Staleness PDF - 56 threads
ASYNC
HOG
LSH

10 15 20 25 30 35
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 24 threads
ASYNC
HOG
LSH

10 20 30 40 50 60 70
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 40 threads
ASYNC
HOG
LSH

20 40 60 80 100
Staleness

0.0

0.5

1.0

1.5

2.0

Sc
al

in
g

fa
ct

or

Step size scaling factor - 56 threads
ASYNC
HOG
LSH

Figure 9. Staleness distributions for the considered AsyncSGD algorithms (upper row) and the corresponding scaling factors CA of the
generated staleness-adaptive TAIL-τ step sizes, as in Definition 4.1 (bottom row) for MLP training on MNIST and Fashion-MNIST.

as shown in Section 6, provides persistent, and significant, speedup in convergence rates. The straight-forward ×τ−1 step
size suffers significant challenges in achieving convergence, especially under higher parallelism, as explained in Section 3.

L
eN

et

2 3 4 5 6 7 8
N.o. threads

40
80

120
160
200
240
280
320
360
400

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

1 1 1

= 50%

2 3 4 5 6 7 8
N.o. threads

40
80

120
160
200
240
280
320
360
400

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 75%

2 3 4 5 6 7 8
N.o. threads

40
80

120
160
200
240
280
320
360

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 95%

3-
la

ye
rM

L
P

2 3 4 5 6 7 8
N.o. threads

10
20
30
40
50
60
70
80
90

100
110

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

1 1 11 1 11 1 1

= 50%

2 3 4 5 6 7 8
N.o. threads

10
20
30
40
50
60
70
80
90

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

1 11 11 1

= 75%

2 3 4 5 6 7 8
N.o. threads

0

10

20

30

40

50

60

70

Ti
m

e
(s

) t
o

co
nv

er
ge

nc
e

= 95%

Figure 10. Convergence rates on MNIST for LeNet and a 3-layer MLP with AsyncSGD, with HOGWILD! (HOG), Leashed-SGD (LSH),
and traditional lock-based (ASYNC) implementations, comparing executions using the ×τ−1 staleness-adaptive scheme (suffix: Tau∧-1)
against standard, constant step size.

