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Artificial intelligence (AI) in its various forms finds more and more its way into complex distributed
systems. For instance, it is used locally, as part of a sensor system, on the edge for low-latency
high-performance inference, or in the cloud, e.g. for data mining. Modern complex systems, such as
connected vehicles, are often part of an Internet of Things (IoT). This poses additional architectural
challenges. To manage complexity, architectures are described with architecture frameworks, which
are composed of a number of architectural views connected through correspondence rules. Despite
some attempts, the definition of a mathematical foundation for architecture frameworks that are
suitable for the development of distributed AI systems still requires investigation and study.

In this paper, we propose to extend the state of the art on architecture framework by providing a
mathematical model for system architectures, which is scalable and supports co-evolution of different
aspects for example of an AI system. Based on Design Science Research, this study starts by identifying
the challenges with architectural frameworks in a use case of distributed AI systems. Then, we derive
from the identified challenges four rules, and we formulate them by exploiting concepts from category
theory. We show how compositional thinking can provide rules for the creation and management of
architectural frameworks for complex systems, for example distributed systems with AI. The aim of
the paper is not to provide viewpoints or architecture models specific to AI systems, but instead to
provide guidelines based on a mathematical formulation on how a consistent framework can be built
up with existing, or newly created, viewpoints. To put in practice and test the approach, the identified
and formulated rules are applied to derive an architectural framework for the EU Horizon 2020 project
‘‘Very efficient deep learning in the IoT’’ (VEDLIoT) in the form of a case study.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Architectural frameworks provide knowledge structures that
llow for the division of architectural descriptions into different
rchitectural views (Pelliccione et al., 2017). An architectural view
xpresses ‘‘the architecture of a system from the perspective of
pecific system concern’’ (ISO, 2012). The conventions of how an
rchitectural view is constructed and interpreted is given through
corresponding architectural viewpoint. The design of a system-
f-interest needs to account for different concerns of different
takeholders. Therefore, the architecture of the system-of-interest
ust be expressed through many different architectural views.
Designing a large and distributed system is a hierarchical pro-

ess (Murugesan et al., 2019). Several views of the architecture of
he system-of-interest allow for decomposing the design task into

✩ Editor: Raffaela Mirandola.
∗ Corresponding author.

E-mail address: hans-martin.heyn@gu.se (H.-M. Heyn).
ttps://doi.org/10.1016/j.jss.2022.111604
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
smaller and specialised tasks. This hierarchical design process
allows for the co-evolution of requirements and architecture,
known as the ‘‘twin peaks of requirements and architecture’’, as
described in Nuseibeh (2001), Cleland-Huang et al. (2013).

Developing a complex system, which can include some form
of AI, is a highly collaborative act (known as co-design) between
many stakeholders. However, the term co-design can have two
meanings. It can be an acronym for collaborative design, which
means that all required stakeholders, i.e., developers of different
disciplines, customers, business owners, etc, are being heard, and
in some form actively involved in system design process (Fitzger-
ald et al., 2014; Nalchigar et al., 2021). Co-design can also stand
for integrated design of a system, which means that design aspects
of the system, e.g., hardware, software but also quality aspects are
closely coupled to each other. In fact, many different concerns
need to be satisfied with a system that includes a huge variety
of different dimensions which need to be designed in parallel to
ensure a ‘‘safe by design’’, ‘‘secure by design’’, ‘‘ethical by design’’,
or any other required ‘‘quality by design’’ system.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Architecture frameworks can explicitly support various non-
unctional quality requirements. Examples include a framework
or addressing non-functional requirements in computer vision
ystems with AI (Fenn et al., 2016), a framework for archi-
ectural patterns improving operational stability (robustness) of
achine learning systems (Yokoyama, 2019), a framework for
rchitectures of machine learning enabled systems that improve
afety (Serban, 2019), and a framework for architecture frame-
orks of distributed AI systems that emphasise security as-
ects (Mendhurwar and Mishra, 2021).
Each of these examples presents an architecture for AI systems

hich is tailored to only one particular quality aspect. In fact,
rchitectural frameworks for AI systems are typically defined
or one specific application domain. Examples of domain spe-
ific architectural framework include a framework for computer
ision and cognition (Kurup et al., 2011), for self-driving vehi-
les (Schroeder et al., 2015), for smart power grid (Thilakarathne
t al., 2020), and for health systems applications with machine
earning (Moreb et al., 2020). In a systematic literature review on
oftware engineering patterns for AI, Martínez-Fernández et al.
2021) noted that ‘‘at the system level, there are few proposals for
atterns, design standards, or reference architectures’’. Also, in a
eview on architecture and design patterns for designing machine
earning systems, Washizaki et al. (2019) noted that ‘‘developers
re concerned with the complexity of ML systems and their lack
f knowledge of the architecture[...]’’.
Summarising, we believe that the following three limitations

f current architectural frameworks, especially towards AI sys-
ems, exist:

• For complex systems, such as for example AI systems dis-
tributed in the IoT, there is the need of both interpretations
of co-design, i.e., collaborative design and integrated design
to arrive at the desired system.

• If quality aspects are considered in a system architecture,
mostly only certain specific non-functional requirements are
adopted (such as security, or safety, or explainability). Again,
a more generalisable approach is needed that can include
any number of required quality aspects of the system.

• Many architecture frameworks are limited to specific ap-
plication domains only and there is a lack of generalisable
architectural frameworks.

As an example, distributed AI systems combine properties of
I systems with properties of systems in IoT. This also means
hat challenges from both AI system design and IoT system design
eed to be accounted for when designing an architecture frame-
ork that can also support distributed AI systems. This article

nvestigates whether a generalisable architecture framework is
ossible; the architecture framework should be able to cope with
ny number of challenges relevant for complex systems, such as
I systems in IoT.
A viable approach towards a generalisable architecture frame-

ork could be to utilise compositional thinking. Compositional
hinking bases on category theory, which is a formalised way
f representing structures and orders through directed graphs
Awodey, 2010). Censi (2017) proposed to use compositional
hinking to ‘‘co-design’’ functionality aspects of a complex system
nd the required resources such as hardware components. Zardini
t al. (2020) demonstrated how applied category theory sup-
orts the co-design of hardware and software for an autonomous
riving system, and Bakirtzis et al. (2021) applied compositional
hinking to engineering of cyber–physical systems.

The main contribution is a mathematical description for com-
ositional architectural frameworks. We first establish suitable
escriptions of the abstractions levels for architectural views,

heir classification into clusters of concern, and elements from

2

Fig. 1. Regulative cycle of the design science process as proposed in Wieringa
(2009).

category theory to manage the relation between the views. Then,
we show, based on an example, that the compositional approach
to architectural frameworks can have the potential to ease co-
design of systems that combine ‘‘classical’’ system components,
AI components, and concerns when integrating an AI system
into the Internet of Things (IoT), and thereby ease the identi-
fied challenges. Finally, the proposed compositional architectural
framework is demonstrated on a use case taken from a joint
industry project.

2. Research method

The study follows the design-science paradigm, outlined,
among others, in Hevner et al. (2004) and Peffers et al. (2007).
The study contains three major parts: (1) identification and mo-
tivation of the problem, (2) design, development, and validation
of an artefact, and (3) demonstration of the artefact. The different
parts contribute to answering the following research questions:

RQ1: Which challenges are relevant when defining system archi-
tectures for AI systems?

Q2: What guidance can compositional thinking provide to over-
come these challenges for the design of architectures for AI
systems?

Q3: How can a compositional framework be defined and ap-
plied in a realistic context?

Following the concept design science as nested problem solving
roposed by Wieringa (2009), the different parts of the study
epresent a regulative cycle as illustrated in Fig. 1. As reflected
y the research questions, our intention was to investigate a
roblem, designed a solution, validated the solution by applying
t to a realistic context, and finally implement the solution in form
f a demonstrator. Fig. 2 shows the resulting different elements
f this study.
Through literature search and two focus groups with experts,

ection 3 produces a list challenges when developing architec-
ures for distributed AI systems. Section 4 presents the artefact
f the design science study, which encompasses the theory of
ompositional architectural frameworks. In Section 5 the theory
s tested by creating an architectural framework for the joint in-
ustry EU Horizon research project VEDLIoT. Following the design
valuation methods from Hevner et al. (2004), this constitutes
n observational case study. Section 6 shows the outcome of
he solution implementation on a real world use case. According
o Hevner et al. (2004), this constitutes a descriptive evaluation
sing a detailed scenario around the artefact. Section 7 establishes
he relation between the architectural framework theory and
equirements engineering.
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Fig. 2. Structure of this study including the three parts of the research cycle.

3. Challenges with architectural frameworks for complex sys-
tems

We first analysed relevant standards related to architectural
rameworks with special attention to those specific for AI sys-
ems and IoT systems to derive the challenges with architectural
rameworks for distributed AI systems. We complemented this
nalysis with a literature survey in systems engineering for AI to
nderstand the current state of the art in research. We focused
n AI and IoT systems because they represent systems of often
igh complexity that need to be supported by our proposed
ompositional approach to an architecture framework. We also
onducted a workshop and focus groups with practitioners in
rder to truly understand and validate the challenges we need
o account for in an architectural framework, especially towards
ur use case for distributed AI systems.

.1. Surveying existing standards and literature

Based on the architecture ontology and methodology of ISO
2010 (ISO, 2012), IEEE published a standard for architectural
rameworks for IoT (IEEE, 2019). The purpose of this standard
s to ‘‘provide a framework for system designers to acceler-
te design, implementation, and deployment processes’’. Good
verviews of standardisation attempts for IoT architectures are
iven by Weyrich and Ebert (2016), Ray (2018), and in the
rchitecture section of Mohd Aman et al. (2020).
IoT is a network of cyber–physical devices and systems, and,

lthough it does not directly address IoT, NATOs architecture
ramework provides an architectural framework for large dis-
ributed systems of intelligent agents (NATO, 2020).

tandardisation of architectural frameworks for AI
In 2021, the international standardisation for architectural

rameworks of AI systems is still ongoing. The only published in-
ernational standard relevant for AI systems is currently
SO/IEC TR 20547, which describes a standardisation of big data
eference architectures (ISO, 2020). Table 1 provides an overview
f ongoing international standardisation efforts.

tate of the art for AI systems architecture
In a research agenda for engineering AI systems, Bosch et al.

2020) provide a list of challenges when developing architectures
or systems with AI components: (i) providing the right (quality
f) data used for training, (ii) establishing the right learning
nfrastructure, (iii) building a sufficient storage and computing
nfrastructure, and (iv) creating a suitable deployment infras-
ructure. Indeed, the process of finding the data which provide
3

Table 1
List of ongoing international standardisation related to architecture frameworks
for AI system.
Number Title Status

ISO/IEC 5338 AI system lifecycle processes Preparatory
ISO/IEC 5392 Reference architecture of

knowledge engineering
Preparatory

ISO/IEC 5469 Functional safety and AI systems Proposal
ISO/IEC 23053 Framework for AI systems using

machine learning
Under approval

ISO/IEC 24030 Artificial intelligence - Use cases Under publication
ISO/IEC 24372 Overview of computational

approaches for AI systems
In draft

a ground truth or reference for the AI to train on is often in-
sufficiently documented during requirement engineering (Kon-
dermann, 2013). This is insofar problematic as especially deep
learning models depend on a vast amount of ground truth data
for training and testing (Ries et al., 2021). Therefore, additional
architectural views might be needed to capture the learning
perspective of the AI part of the overall system (Muccini and
Vaidhyanathan, 2021). Because it might only be possible to detect
and correct flaws in an AI systems after deployment, monitoring
under operation of the system needs to become part of a suitable
deployment infrastructure (Bernardi et al., 2019). Of course, an AI
system does not only consist of AI components, but relies also on
conventional software and hardware components. The develop-
ment of AI components and traditional system components must
therefore be aligned to avoid unwanted technical debt (Sculley
et al., 2015).

However, as Woods emphasises, traditional architecture
frameworks, such as the 4+1 architectural view model by
Kruchten (1995), does not account for data and algorithm con-
cerns connected to AI component development (Woods, 2016).

There exist approaches to software architecture that treat data
as explicit viewpoints, such as the one described in Clements et al.
(2011, Chapter 2.6). These data viewpoints provide models and
views for the data flow and data storage/management, which is
relevant for distributed and connected systems, such as the IoT.

Context diagrams are an established method to capture the
operational domain of the system (Woods and Rozanski, 2009),
and architectural frameworks can consider them as own view-
points (Rozanski and Woods, 2012, Chapter 16). However, in a
recent study we identified a number of challenges with context
definitions for AI systems; for example, we found that they are
often not in sync with the system development, and, therefore,
often overly conservative, not well integrated into agile work-
flows, and disconnected from the function developers and other
stakeholders (Heyn et al., 2022).

New stakeholders such as data engineers (Vogelsang and Borg,
2019), or governmental agency overseeing the use of AI in so-
ciety (European Commission, 2020)) must be integrated in the
system design and requirement engineering phases (Altarturi
et al., 2017). A common platform needs to be found for commu-
nicating design decisions between requirement engineers, data
engineers and other new stakeholders (Ahmad et al., 2021). The
AI part can also causes new concerns to arise during system de-
sign, such as a stronger focus on ethical considerations (Aydemir
and Dalpiaz, 2018), fairness or explainability. Aspects such fair-
ness (Habibullah and Horkoff, 2021) and explainability (Chazette
and Schneider, 2020) can be considered new non-functional re-
quirements, which eventually require new architectural views
describing them as quality aspects of the system (Horkoff, 2019).
Developing AI components is a hierarchical, yet also iterative
task: (i) prepare training data and/or environment, (ii) create

a suitable model, (iii) train and evaluate the model, (iv) tune
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Table 2
Participants list for the workshop on challenges relevant for an architectural
framework for VEDLIoT.
No Area of expertise Industry

partner
Academic
partner

1 Industrial IoT ✓
2 Smart home ✓
3 Automotive systems ✓
4 DL optimisation ✓
5 AI hardware ✓
6 Requirement engineering ✓
7 IoT and AI research ✓
8 AI systems development ✓
9 Secure conc. for IoT and AI ✓
10 AI Hardware Research ✓
11 Systems Safety concepts ✓

and repeat training, and finally, (v) deploy and monitor the run-
time behaviour of the trained model (Bosch et al., 2020; Wan
et al., 2020). Its design needs to be decomposed into different
levels of system design, and consistency needs to be ensured in
order to satisfy high level requirements (Giaimo et al., 2010), and
to fulfil the stakeholders’ goals with a system. In addition, the
system design must also allow for ‘‘middle-out design’’, where
existing components need to be integrated in the overall system
design (e.g. transfer-learning from existing AI models or inte-
gration of off-the-shelf components) (Murugesan et al., 2019).
Murugesan et al. propose a hierarchical reference model, which
supports the appropriate decomposition of requirements to the
composition of the system’s components. In their model the
authors define how components can be decomposed into sub-
components. To ensure consistency between the system archi-
tecture and the requirements, they define the terms consistency,
atisfaction, and acceptability. One major advantage of their model
s that, if decomposition of system components is done correctly,
hese components can be independently specified and developed.

.2. Identifying challenges of distributed AI system development in
EDLIoT

Two workshops with industry and academic partners from the
EDLIoT project,1 were conducted with the aim of identifying and
alidating concerns relevant for a reference architecture frame-
ork for distributed AI systems from a practitioner’s point of
iew. VEDLIoT is an excellent candidate for this study, because
he aim of the project is to develop methods and tools for the de-
elopment of distributed systems with deep learning components
y using ‘‘real world’’ use cases.
The first workshop took place in February 2021 and eleven

articipants joined the discussion through the remote conferenc-
ng software Zoom. A list of participants is provided in Table 2.

After explaining the aim of the workshop, the participants
ere presented with fundamental concepts of Architectural
rameworks for the IoT as described in IEEE 2413-2019 (IEEE,
019). Table 1 of that standard provides a list of stakeholders for
oT systems which was distributed to the participants before the
orkshop. After inspecting the table, the participants were asked,

f additional stakeholders need to be considered when consid-
ring IoT systems with AI components. The participants agreed
hat the list of common stakeholders from the standards contains
ost relevant stakeholders, and that additional stakeholder in

egards to the AI components are data scientists and legislator

1 A brief description of the VEDLIoT project is given in Appendix B (accessible
t https://doi.org/10.1016/j.jss.2022.111604) and additional information can be
ound in Heyn et al. (2021).
4

and/or policy makers who might impose additional rules, e.g. for
data privacy, transparency, or explainability of the AI’s decisions.

In a second step, we wanted to identify relevant concerns for
systems that are part of the IoT and, at the same time, contain
AI components. The list of concerns for IoT systems given in
Table 2 of IEEE 2413-2019 (IEEE, 2019) was provided to the
participants in advance of the workshop. During the workshop,
the participants were asked to list all relevant concerns for IoT
systems with AI components that are either on the standard’s list
of concerns, or that are not mentioned by the standard.

The results were collected in a mind-map and, together with
the participants, clustered into what we will call ‘‘clusters of
concern’’. The resulted mind-map is reproduced in Figure C.12
in Appendix C2 and can also be found in a repository holding
a replication package and additional material.3 Concern groups
that are not already covered by IEEE 2413-2019 (IEEE, 2019) have
received an ID in the Figure and are summarised alphabetically in
Table 3, together with the challenges identified from literature.
The identified concerns were validated in a second workshop
with the same participants in March 2021.

3.3. Problem statement

From literature and the workshop we conclude that when
combining architectural aspects for IoT and AI systems, as ex-
amples for the development of complex systems, many new
concerns arise beyond traditional software engineering. Exam-
ples of the new concerns are data quality aspects, heuristic AI
modelling, AI learning, and even ethical considerations. New
stakeholder such as data engineers enter the stage, and com-
mon languages or interfaces need to be managed between the
different stakeholders. Architectural views, governed through
viewpoints, help to capture the different concerns from different
stakeholders. However, typical architectural frameworks, such as
the ISO 42010 (ISO, 2012) or the IEEE 2413 (IEEE, 2019) standard
cannot cope with the large set of architectural views necessary
to satisfy all stakeholders’ concerns. One reason is, that certain
architectural views were not foreseeable at time of creation of
the standards, such as views relating to the explainability or other
ethical considerations of AI systems. Another problem of current
architectural frameworks is the lack of a clear system develop-
ment hierarchy, which would support the early identification
and mapping of dependencies between different architectural
views (Nuseibeh, 2001).

Finally, a major challenge we identified in the workshop is the
difficulty to keep track of dependencies, e.g. through correspon-
dence rules, between the different architectural views. Table 3
lists the challenges identified for developing AI systems in IoT. In
the following, we present our solution to cope with these chal-
lenges and in Section 4.2 we discuss how the proposed solution
mitigates the identified challenges.

4. The concept of compositional architectural frameworks

This section proposes the concept and artefact of a composi-
tional architectural framework. In the regulative cycle shown in
Fig. 1, this section describes the solution design.

The aim is not to provide a viewpoint catalogue or specific
architectural models for AI systems, but instead to establish a
structure for ensuring consistency and traceability of an archi-
tectural framework applicable to, for example, a distributed AI
system. Based on ideas from category theory and the identified
challenges with architectural frameworks for AI and IoT systems,

2 accessible at https://doi.org/10.1016/j.jss.2022.111604
3 accessible at https://doi.org/10.7910/DVN/VXFFFU

https://doi.org/10.1016/j.jss.2022.111604
https://doi.org/10.1016/j.jss.2022.111604
https://doi.org/10.7910/DVN/VXFFFU
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Table 3
Summary of challenges identified from literature (L) and a workshop (W).
ID Description L W Sources

#1 Additional views needed for describing the AI
model

✓

#2 Data requirements for ensuring the desired AI’s
behaviour must be considered

✓ ✓ Ries et al. (2021), Woods (2016), Kondermann (2013)

#3 Description of context and design domain ✓
#4 Describing the learning setting environment ✓ Muccini and Vaidhyanathan (2021), Bosch et al.

(2020), Woods (2016)
#5 Integration of additional stakeholders (e.g., data

scientists, policy makers)
✓ Ahmad et al. (2021), Vogelsang and Borg (2019),

Altarturi et al. (2017), Sculley et al. (2015)
#6 Management of dependencies and

correspondences between views
✓ Nuseibeh (2001)

#7 New quality aspects (e.g., explainability, fairness) ✓ ✓ Habibullah and Horkoff (2021), European Commission
(2020), Horkoff (2019), Aydemir and Dalpiaz (2018)

#8 Run Time monitoring ✓ ✓ Wan et al. (2020), Bernardi et al. (2019)
#9 Support of decomposition into different levels of

system design
✓ NATO (2020), Giaimo et al. (2010), Nuseibeh (2001)

#10 Support of middle-out design ✓ Murugesan et al. (2019)
T
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propositions are derived which provide ‘‘rules’’ towards build-
ing a compositional architectural framework. Each proposition
is clearly defined and demonstrated with a running example.
We call the framework compositional, because it is built up from
different ‘‘modules’’, called clusters of concern, at different levels
of abstraction.

4.1. Compositional architectural framework theory

Fig. 3 exemplifies three aspects of a system: logical behaviour,
hardware, and cybersecurity. Each box represents a view gov-
erned by an architecture viewpoint on the final system. The rows
represent levels of abstraction. For each aspects, the level of
details increases with each additional level of abstractions. Let us
call the levels, from top (highest level of abstraction) to bottom
(highest level of details), analytical level, conceptual level, design
level, and run time level. We chose these four ‘‘default’’ levels
of abstraction, because we think they represent typical system
development phases. However, depending on the type of systems
and development regime, additional levels of abstraction can be
added or removed, or different names for the levels can apply.
We show that by applying four rules, the architectural views for a
system-of-interest can be arranged in a matrix, sorted by clusters-
of-concern and levels of abstraction. During system development,
different architectural views of the system-of-interest are created
to describe different concerns with the system.

4.1.1. Cluster of concern
We identified in Table 3 that for complex systems, such as for

example distributed AI systems, many different concerns need to
be considered in the final system’s architecture. Clustering the
concerns into sets is a starting point towards the architectural
framework:

Cluster of concern

A cluster of concern is a partially ordered set of architectural views
which represent a specific concern of the system at different levels
of details.

Definition 1 (Cluster of Concern). Let A, B, and C be architectural
views forming a set X called cluster of concern. Assume, that B
conveys more or equal details about the system than A, and C
conveys more or equal details than B. We define a binary relation
≤, such that A ≤ B. It further holds that:

1. A ≤ A (reflexivity);
5

2. if A ≤ B and B ≤ C , then A ≤ C (transitivity);
3. if A ≤ B equals B ≤ A, then A and B are of equal level of

detail (equivalent) and we write A = B.

he pair (X, ≤) is then a partially ordered relation.

xample. The architectural view ‘‘computing resource alloca-
ion’’ contains more details about the final system than the archi-
ectural view ‘‘logical components’’. The architectural view ‘‘func-
ion components’’ contains the least amount of details. These
hree architectural views form an ordered set of architectural
iews considering the concern ‘‘logical behaviour’’. Therefore,
hey form the cluster of concern ‘‘Logical Behaviour’’.

.1.2. Levels of abstraction
The further the system design proceeds, the more details

bout the final system become apparent. This increase in level
f details during system development allows for defining levels
f abstractions. The views are ordered in the sense that the level
f detail increases with each level of abstraction:

Level of abstraction

The set of architectural views with equivalent level of details
about the system-of-interest constitutes a category. A category is a
collection of objects which are related to each other in a consistent
way (Perrone, 2019). We call the category level of abstraction.
Architectural views on a level of abstraction are related to each
other through morphisms. A morphism can exist only between
architectural views on the same level of abstraction.

Definition 2 (Level of Abstraction). The category Cla describing a
level of abstraction has architectural views as its objects. Given
two architectural views A and B, then f ∈ Homla(A, B) : A → B
escribes the morphisms between architectural views of different
oncerns at the same level of abstraction. The identity morphism
s the identify function mapping an architectural view to itself.
urthermore, given an additional architectural view C , and defin-
ng the additional morphism h ∈ Homla(B, C) : B → C ,4 there
xists a morphism f # h such that the composition of f and h is
∈ Homla(A, C) : A → C .

xample. In the example shown in Fig. 3, a morphism is the
orrespondence between the logical components and the system

4 The morphism is called h here instead of the expected g to ensure
consistency with later definitions
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Fig. 3. Order of architecture viewpoints.
hardware architecture on the concept level. This relation can
also exist in both directions: The architecture of the system
hardware architecture can correspond to the logical components.
The morphisms between views that correspond to each other are
therefore isomorphism, i.e. f # f −1

= id, where id is the identity
relation.

4.1.3. Consistency of an architecture
Describing an architecture through category theory yields the

advantage that one can use mathematical tools to show and proof
relations between the elements of an architecture description. For
example, the product of two objects X and Y in category theory
describe ‘‘the most efficient way’’ to have both X and Y . This
can be utilised for finding rules on how to combine architectural
views into a consistent system architecture description:

Consistency of architectures

If the product over all architectural views on a level of abstrac-
tion is valid,a the architectural views consistently describe the
system-of-interest.

a Valid means, informally, that no matter which architectural view
one ‘‘starts at", it is always possible to ‘‘transit" via the correspondence
rules to another architectural view, and still see the same system (from
a different perspective).

Definition 3 (Consistency of Architectures). Let Cla be a category
and let A and B be two architectural views as objects of Cla. The
roduct of A and B consists of a new object Z (this is the product),
nd two morphisms π1 : Z → A and π2 : Z → B. The product is
alid if the following diagrams commutes5:

5 Successfully commuting between different views means to ‘‘look’’ at the
ystem with different architectural views, without encountering inconsistencies
n the system.
6

Example. Two architectural views A and B, for example a system
hardware architecture and a cybersecurity concept, can be com-
bined to a new view Z = A×B which unites, in ‘‘the most efficient
way’’, the hardware architecture and the cybersecurity concept. P
now is any other view, for example the logical components. In ad-
dition to the already existing relations f and g between the views,
there must be a relation φf ,g from the logical components P to the
newly combined ‘‘secure hardware architecture’’ Z . Furthermore,
there must be relations π1 and π2, such that one can go always
from the ‘‘secure hardware architecture’’ Z back to the origin
system hardware architecture A, or to the origin cybersecurity
concept B.

The product is valid, if, and only if, it does not matter if one
first uses correspondence rules to go from the logical components
to the new ‘‘secure hardware architecture’’, and from there to
the origin system hardware architecture (φf ,g # π1); or if one
commutes from the logical components directly to the system
hardware architecture (f ). If it is not possible to commute be-
tween views at the same level of abstraction, one or several
views are not describing completely all necessary aspects of the
system-of-interest.

4.1.4. Mapping of relations
Each level of abstraction is another category but Definitions 2

and 3 only describe relations between architectural views of the
same category (i.e., on the same level of abstraction). However,
another concept from category theory called functors allow for
mappings between different categories (i.e., different levels of
abstraction) that preserve and respect the relations between the
objects (Perrone, 2019):
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Fig. 4. Conceptual model of a compositional architecture framework.

Mapping of relations

Functors map all views of one level of abstraction to corresponding
views of the next lower level of abstraction, and all relations
between views to corresponding relations of the next lower level
of abstraction.

Definition 4 (Mapping of Relations). Let Cla and Clb be categories
representing two levels of abstractions in an architectural de-
scription. A functor F from Cla to Clb maps each object of Cla to a
corresponding object of Clb; and maps each morphism between
the objects in Cla to corresponding morphisms in Clb. Further-
more, unitality holds, i.e. identities id are mapped into identities,
and compositionality holds, i.e. let f and g be morphisms, then
F (f # g) = F (f ) # F (g).

Example. If there exists a relation (morphism) between the
Cybersecurity Concept and the System Hardware Architecture on
the conceptual level, a corresponding relation (morphism) must
exists on the design level between the technical cybersecurity
concept and the component hardware architecture. Note, how-
ever, that the reverse is not necessarily true. If there exists a
relation between two views on a lower level of abstraction, this
relation does not necessarily exist on a higher abstraction level
too.

The final conceptual model of a compositional architecture
framework based on the stated definitions is illustrated in Fig. 4.
Note that an additional object called ‘‘Group of concerns’’ has
been introduced. It serves as a way to order the clusters of
concern into different major aspects of the system.

4.2. Connecting the theory to the challenges

Table 3 listed the challenges identified for developing AI sys-
tems in IoT. The idea of a compositional architectural framework
can solve these challenges as follows:

• #1: Additional views needed for describing the AI model — Ar-
chitectural views describing e.g., the configuration and hyper-
parameter settings of the AI model can be explicitly taken into
consideration through an own cluster of concern.

• #2: Data requirements must be considered — Depending on
what the data concerns, data aspects can be integrated into
views of different clusters of concern (e.g., training data can be
handled as an own cluster of concern with views representing
7

the data strategy for AI training). Data concerns regarding
communication and information can be separated into another
cluster of concern with own architectural views.

• #3: Description of context and design domain — The context and
operation design domain can be treated as own clusters of
concern, thus making the treatment of the context and design
domain explicit during system development.

• #4: Describing the learning setting/environment — The learning
setting can be integrated as an own cluster of concern, with
independent architectural views. The views can include objec-
tives of the learning, learning scenarios selection, and a view
describing the specific learning settings.

• #5: Integration of additional stakeholders — The proposed ar-
chitectural framework is scalable in the sense that additional
clusters of concern can easily be added. This allows for addi-
tional stakeholders to add their concerns and (architectural)
views for the system in own clusters of concern.

• #6: Management of dependencies and correspondences between
views — A compositional architectural framework provides
rules on how to handle dependencies between architectural
views. The existence of correspondence rules in a composi-
tional architecture is limited by Definitions 2 and 4. Specifi-
cally, correspondence rules should only exist between archi-
tectural views on the same level of abstraction.

• #7: New quality aspects (e.g., explainability, fairness) — New
(quality) concerns such as explainability can be explicitly in-
tegrated in the architectural framework as clusters of concern.
The concept of compositionality allows for an easy scalability,
because any number of additional clusters of concern can be
added to the framework.

• #8: Run time monitoring — Run time concerns, such as run
time monitoring, can be made explicit with an own level of ab-
straction, as suggested in the default setup of a compositional
architectural framework.

• #9: Support of decomposition into different levels of system de-
sign — A compositional architectural framework explicitly sup-
ports the decomposition into different levels of system design.
The number of levels of system design is flexible, and can be
adapted to the needs of the system and company.

• #10: Support of middle-out design — Middle-out design is sup-
ported because it is not required to ‘‘fill’’ the framework with
architectural views from top to bottom. For example, it is
possible to define a component hardware architecture first
(because a certain hardware component must be used in the
system), and then build the system hardware architecture
‘‘around it’’. Definition 3 can be used to ensure that no in-
consistencies between architectural views on the same level
of abstraction exist after finishing the middle-out design.

5. A compositional architecture framework for VEDLIoT

The idea of a compositional architectural framework is tested
by studying the artefact in depth in the VEDLIoT project. The
VEDLIoT project is a suitable test-ground because it combines
conventional systems with deep learning and the IoT. This re-
quires a variety of design decisions with different architecture
views on the resulting systems. Additionally, VEDLIoT aims at
explicitly supporting all necessary non-functional aspects of the
system, such as data privacy, safety, but also non-functional as-
pects particularly relevant to deep learning such as explainability.
The success criteria of the study were that the proposed frame-
work should result in an applicable architecture framework for
VEDLIoT, and that guidelines are found on how the theoretical
framework, described in Section 4, can be applied in a practical

setting.
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Fig. 5. Iterative process of adopting and applying the compositional architecture
framework concept to VEDLIoT.

Table 4
Participating roles in the development of the compositional architectural
framework for VEDLIoT.
No Role Industry

partner
Academic
partner

Years of
experience

1 Researcher ✓ 11
2 Research engineer ✓ 4
3 Researcher ✓ 20+
4 Researcher ✓ 30
5 Developer ✓ 1
6 PhD Student ✓ 3
7 Professor ✓ 15
8 Deep learning developer ✓ 3
9 Developer ✓ 5
10 Project Lead ✓ 15
11 Researcher ✓ 1
12 Researcher ✓ 4
13 Researcher ✓ 2
14 Professor ✓ 20+
15 Professor ✓ 6
16 Developer ✓ 10

5.1. Methodology of the case study

Participants from all involved companies and academic part-
ers met in bi-weekly meetings to analyse the use cases, to
dopt the architectural framework to the needs of the VEDLIoT
roject, and ultimately to apply the compositional architectural
ramework to the use cases. Fig. 5 shows the iterative charac-
er of this process: Initially, the participants were introduced
o a preliminary version of the theoretical idea of a composi-
ional architectural framework. A first step was to find a general
doption of the architecture framework for VEDLIoT, which was
hen continuously applied to the use cases. If the theoretical
ramework or the general adoption did not fit to the use cases,
hanges in the theoretical concept of the architectural framework
ould be proposed and implemented. As is common practice in
orkshops related to solution design,6 the authors of this arti-
le were participants in the meetings, and therefore influenced
he development of the architectural framework for VEDLIoT.
owever, the majority of participants were not involved in the
cademic observations, and therefore could validate or rebut the
deas brought forward by the authors. A list of the roles and
xperience of workgroup’s participants is given in Table 4. The
ntire version history and evolution of the VEDLIoT architectural
ramework can be found in the supplement material.7

.2. Clusters of concern

The challenges of architectural frameworks for distributed AI
ystems, summarised in Table 3, were used as starting point for
iscussions on the necessary clusters of concern during bi-weekly
eetings of the VEDLIoT partners. First, the group identified

our major groups of concerns for the architecture framework.
hen, for each of the groups of concern, the participants of the

6 see Hevner and Chatterjee (2010, Chapter 10).
7 accessible at https://doi.org/10.7910/DVN/VXFFFU
8

bi-weekly meetings analysed the use cases of VEDLIoT and de-
termined the required clusters of concern. The overall aim was
to create as many clusters of concern as the VEDLIoT use cases
require (none missing), yet trying to minimise the amount of
clusters of concern (no cluster of concern can be removed). The
resulting clusters of concern are summarised in Table 5. Note,
that other development project might require different clusters
of concerns. The decision which clusters are required is based on
the use case and business goals, as highlighted in the top row of
the framework.

Some of the clusters of concern are especially relevant towards
distributed AI systems. For example, the Context and Constraints
cluster of concern covers views on the system that define the
context and limits the design domain. An example of a context
viewpoint is described in Rozanski and Woods (2012). For AI
systems, it is beneficial, sometimes even required, to explicitly
state the desired context and to define views on the constraints
and the (operational) design domain of the system. (Ali et al.,
2010) for example state, that the desired context is often ignored
when defining requirements for a system, and Berry (2022) un-
derlines the need of context information for the assessment of
the AI system’s performance. In addition, Knauss et al. argue that
run time uncertainty can be removed by making the context, in
which requirements are valid, explicit (Knauss et al., 2016). The
context, in which the system operates, will influence architectural
decisions (and vice versa), and thus should be made explicit
during the design process.

For distributed AI systems, the concern AI models is relevant,
because it contains views that describe the setup and configu-
ration of the required AI models. Classification of objects in an
optical videostream for example requires a different deep neural
network setup then recognising natural language or predicting
trajectories of other vehicles. Choosing the right AI model is a
design decision which requires suitable views on the AI model
in relation to the overall system. Also, the learning strategy of
the AI model has paramount impact on the final behaviour of
the AI system. Trained with a flawed data sets (e.g. biased data),
the behaviour of the AI system will exhibit the flaws learned
during the learning process (e.g., the trained system will exhibit
a bias). The learning process for the AI model is therefore integral
part of the system design process. For VEDLIoT we decided to
describe the learning process in two clusters of concerns: The
first learning specific cluster of concern, titled Data Strategy,
contains views that allow for the specification of the collection
and preparations of the required training, testing, and run time
data. The second learning-specific cluster of concern is titled
Learning. It covers views that allow for the definition of the
learning environment, for example views that describe what the
AI model is supposed to learn, and how it can learn, i.e., it can
contain views elaborating the optimiser and learning settings for
the training phase. The concerns of AI model and learning have
many dependencies between each other, which will be expressed
through correspondences (morphisms).

Unlike previous architectural frameworks for the IoT, such as
IEEE 2413-2019 IEEE (2019), the compositional thinking in the
architectural framework allows for co-designing the system to
fulfil the explicitly identified quality concerns, such as safety,
security, but also energy efficiency and ethical concerns. It means
that already early in the system development, correspondences
between the views regarding the quality concerns and other
views in the architecture description are established. The final
system can then be said to be ‘‘Safe by design’’, ‘‘Secure by de-
sign’’, ‘‘Efficient by design’’, or ‘‘Fair by design’’. Recent legislation
shows that the ethical aspects become a central concern when
developing AI systems (European Commission, 2020).

https://doi.org/10.7910/DVN/VXFFFU
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Table 5
Description of clusters of concern in the VEDLIoT framework.
Concern Description

Behaviour and context (Group) Aspects that concern the static and dynamic behaviour of the system, as well as the context and constraints for the desired
behaviour.

Logical behaviour Views that are concerned with the static behaviour of the system.
Process behaviour Views concerned with the dynamic behaviour of the system.
Context and constraints Contains views on the system that define the context and limit the design domain.

Means and resources (Group) Contains views on aspects of the system that enable the desired behaviour.

Hardware Includes views on the hardware architecture and component design of the system.
AI models Contains views that describe the setup and configuration of the required AI model. Views can include model design, e.g.,

neural network setup or views detailing the configuration of the AI model.
Data strategy Views that support collection and selection for training, validation, and run time data of the AI model. Views can describe

methods for data creation, data selection, data preparations, and run time monitors of data used by the AI.
Learning Covers views on the system that allow for defining and setting up the learning environment of the AI model. This can

include the definition of training objectives and views that outline the chosen optimiser for training.

Communication (Group) Contains views of data, connectivity and communication between nodes or components of the desired system.

Information Accumulates views on the system that model the information and data exchanged in and through the system-of-interest.
Connectivity Contains views on the means of communication available to the system and its resources.

Quality concerns (Group) Encompass quality aspects which can be described through non-functional requirements which affect the architecture of the
system.

Ethics Views that regulate ethical aspects, such as fairness or transparency of the system.
Security Views that ensure the security aspects of the system.
Safety Contains views governing the safety aspects of the system. The views can stem from standards such as ISO 26262.
Energy efficiency This cluster of concern contains views ensuring energy efficiency, especially for mobile devices.
Privacy Here views can be contained that ensure privacy requirements, such as for example requested by regulatory authorities.
Table 6
Description of the levels of abstraction (LoA).
LoA Description

Analytical level The first level of abstraction includes architectural views that provide an abstract and high level view on the
system-of-interest. On that level, all views provide a way to describe the system and context on a knowledge level, which
provides information for further, more concrete system development. For example, the high level AI model view could
elaborate on which functions should be fulfilled through an AI.

Conceptual level On the next level of abstraction, the views provide a more concrete description of the overall system-of-interest.
Components are not detailed yet, but the overall system composition becomes clear and the context of operation is clearly
defined. For example, the AI model could be concretely shaped as a Deep Learning Network with the required amount of
layers. All views on this level combined provide a system specification that sets the system-of-interest in context and
elaborates on how the desired functionality is fulfilled.

Design level The most concrete level at design time of the system is the design level, which includes views that concretely shape the
final system-of-interest. Resources are allocated to components, the AI model is configured to work most efficiently in the
given environment, and the concrete component hardware architecture is defined. The solution specification describes the
final embodiment of the system-of-interest.

Run time level Complex systems, both AI driven and conventional, often require forms of monitoring and operations control. The purpose of
the run time monitoring can be manifold: On one hand, monitoring of a deployed system at run time provides valuable
feedback about its performance and reliability to developers and product owners. DevOps is an essential component of an
agile development framework, and early detection of issues in a deployed system allows for a swift response from the
developers.
5.3. Levels of abstraction

The architectural views are not only sorted by clusters of
oncern but also by their represented level of abstraction, as was
iscussed in Section 4.1.
For VEDLIoT, the workgroup decided to follow the four pro-

osed default levels of abstraction introduced in Section 4. They
re the analytical level providing a high level view, the conceptual

level providing a more concrete but not too detailed description
of the system, the design level detailing concrete design decisions,
and the run time level. Detail descriptions for each level are given
in Table 6.

The run time level of abstraction is of special interest because
some requirements of an AI system might not be exhaustively
testable before deployment. Russel describes in his book Human
Compatible: AI and the Problem of Control the example of an
AI algorithm commonly found in social media that maximises
click-through, i.e., ‘‘the probability that the user clicks on the
presented items’’ (Russel, 2020). Russel highlights that such an
algorithm not necessarily ‘‘presents items that the user likes to
9

click on’’, but instead could (inadvertently) change the user’s
behaviour in a manner to make him or her more predictable in
his preferences e.g., by favouring extreme political views (Russel,
2020). By constantly monitoring the decisions of the AI algorithm,
such deviations from the intended behaviour can be detected and
mitigated, e.g., through retraining or by ‘‘pulling the plug’’. Most
AI systems are not ‘‘adaptive’’. They are trained and tested with a
data set representing the desired context in which the AI system
is intended to operate in under the assumption of stationarity in
the probability distribution of the data. In reality, the assumption
of stationarity of the probability distributions does not hold in
most case, for example when the context, in which the AI op-
erates in, can change over time. Concepts like continual learning
allow the AI to handle drifts in data distributions (Lesort et al.,
2021). However, continual learning requires run time monitoring
concepts to detect deviations from the currently learned context,
and automatic data collection (and labelling) for autonomous
retraining of the AI model.
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Fig. 6. An architecture framework for VEDLIoT categorising views in different clusters of concern on different levels of abstraction.
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.4. Architectural views

Finally, the workgroup populated the matrix with architec-
ural views for the different clusters of concern at different levels
f abstraction. The final matrix of architectural views for VEDLIoT
s given in Fig. 6.

Systems using the VEDLIoT toolchain will contain a significant
mount of ‘‘traditional’’ system components around the AI com-
onents in order to facilitate the desired behaviour. In this paper,
e will not detail architectural viewpoints corresponding to these
oncerns since they are well covered in literature, e.g., in IEEE
2019) or the extensive viewpoint catalogue in Rozanski and
oods (2012, Part III). However, other architectural viewpoints

hat aim to facilitate the design of AI components for the system
re novel and will be the focus of this section. Table F.8 in
ppendix F8 provides a list of viewpoints, which govern archi-
ectural views in the architecture framework for VEDLIoT, that we
ssume to be relevant specifically towards the AI components of
he system. Note that, we do not specify pre-defined models or
iagrams suitable for the views because it is not the intention of a
ompositional architectural framework to provide a catalogue of
rchitecture viewpoints and their models. Instead, the proposed
ramework aims at providing a method for constructing a co-
erent architectural framework with architectural views defined
hrough the concerns relevant to fulfil all necessary requirements
f the use case. It is the choice of the system architects, devel-
pers, and other stakeholders which viewpoints and models are
uitable to create the views. Section 6 provides some example
f diagrams for the AI specific views of one particular use case,
ut other use cases might want to use different viewpoints with
ifferent models.
In the proposed architectural framework, quality concerns

re explicitly represented by architectural views on each level
f abstraction. From a traditional system architecture point of
iew, one might question how, for example, a hazard analysis in
orm of a Hazard and Risk Assessment (HARA), can be constituted
n architectural view. Tekinerdogan and Sözer (2011) proposed

8 accessible at https://doi.org/10.1016/j.jss.2022.111604
10
an approach to explicitly include quality architectural views into
architectural frameworks to overcome challenges when match-
ing quality concerns with architectural elements representing
functional aspects of the system.

The main challenge is that one cannot meaningfully analyse
different quality aspects of the system without some prior knowl-
edge of the system’s architecture. On the other hand, improving
quality aspects often entail changes in the system’s functional
architecture.

To give an example, we revisit the need of including the hazard
analysis in the architectural framework: A work product that
serves as input to a hazard analysis in accordance with ISO 26262
is the Item Definition. The item definition contains a boundary
diagram that depicts the elements of a system which are ‘‘in
scope’’ of the safety relevant system. This includes all functional
components. Defining which elements are included in the bound-
ary diagram is an architectural decision, and requires information
provided through other, mostly functional, views of the system
(i.e. there exist morphisms from functional views towards the
hazard analysis view). The hazard analysis will return a set of
safety goals that the ‘‘item’’ has to achieve. How the safety goals
are achieved is conceptualised in the Functional Safety Concept. A
ommon solution is to distribute the safety risk through safety
ecomposition, which often leads to the introduction of redun-
ancies in the system. Again, introducing redundancies is a clear
rchitectural decision, which has direct consequences e.g., for
he system hardware architecture (i.e., we create a morphism
rom the Functional Safety Concept towards the system hardware
rchitecture view).
Fig. 6 presents the compositional architectural framework for

EDLIoT that aims at mitigating the identified concerns for dis-
ributed AI systems presented in Section 3.

.5. Defining a compositional architectural framework

Based on the experience of applying a compositional archi-
ectural framework to VEDLIoT, the following guidelines can be
rovided:

https://doi.org/10.1016/j.jss.2022.111604
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Fig. 7. Steps for defining a compositional architectural framework.

• Step 1: Clusters of concern are identified based on the use case
and business goals. Initially, larger groups of concerns (such
as functionality, hardware, communication, quality) can be
defined, which are then refined into atomic clusters of concern
(Definition 1).

• Step 2: Levels of abstractions are identified. The number of re-
quired levels, and the level of detail on each of these levels de-
pend on the size and complexity of system-of-interest and the
development settings of the company. Three to four different
levels of abstraction seem a good default (Definition 2).

• Step 3: Known architectural decisions are entered into the ma-
trix. Most development projects do not start from scratch, but
instead have to reuse or integrate into existing architectures.
Prior knowledge, such as an existing component architecture,
can be entered into the appropriate clusters of concern and
levels of abstraction in the architecture matrix.

• Step 4: Architectural views are added. Relations (morphisms)
are created between the architectural views at each level of
abstractions (Definition 2) such that no inconsistencies occur
when looking at the system-of-interest from different archi-
tectural views (Definition 3).

• Step 5: All relations between architectural views must be
mapped onto corresponding views of the next lower level
of abstraction (Definition 4). If a relation between two ar-
chitectural views on a higher level of abstraction does not
have a correspondence on the next lower level of abstraction,
the relation might be unnecessary and can be removed, or a
corresponding relation needs to be created.
11
• Step 6: During the system development, additional clusters of
concern might be discovered and they are iteratively added.

All steps are illustrated in Fig. 7.

6. Demonstration of the proposed framework on a use case

This section presents the results from applying the proposed
compositional architectural framework for VEDLIoT on the de-
velopment of an automatic emergency braking system, one of
the use cases of VEDLIoT. The aim of this demonstration is to
answer Research Question RQ3, which asks how a compositional
framework can be applied in a realistic context.

Systems that mitigate frontal collisions are considered stan-
dard equipment in road vehicles today and standards exists that
help design and test these systems (ISO, 2013). However, to-
day’s system yet do not exploit all the opportunities given by
advanced AI. For example today’s systems are very limited in their
capability of differentiating what specific object is detected as
obstacles, in which context the vehicle is operating in, and how
the hardware in the entire vehicle, and beyond on the edge and
in the cloud, can be used more efficiently for processing-intensive
tasks.

The use case serves as a detailed scenario to demonstrate
the utility of the proposed artefact, i.e., the compositional archi-
tectural framework. Specifically, the aim is to demonstrate how
the different challenges outlined in Table 3 can be solved in a
real-world scenario with the proposed compositional approach
to an architectural framework. We demonstrate how the logical
behaviour, the distribution over different processing notes, and
the hardware components can be planned concurrently using the
compositional architectural framework approach. The demon-
strator also shows how deep learning models can be designed
concerted to other design decisions, such as context definition,
data strategy, and learning concept. Lastly, we demonstrate how
a quality concern such as safety influences other architectural
views through morphisms between views. The presented demon-
strator entails only a small part of the use case development
in VEDLIoT and does not cover the entire system development,
because this would be outside the scope of this study. For a more
detailed description of the use case development in VEDLIoT, the
reader can refer to the VEDLIoT project and its deliverables, such
as Meierhöfer et al. (2021).

6.1. Evolution of logical components and hardware architecture

Fig. 8 illustrates a simple example of the idea of co-design
using the compositional architectural framework concept. The
figure is an extract of the overall system architecture and de-
picts the logical behaviour design, the hardware architecture,
and connectivity. On the highest level of abstraction, the func-
tion components view contains four main logical components:
Obstacle detection, road characterisation, warning and brake re-
quest, and performance monitoring. Also, a high level view of
the hardware architecture and connectivity is provided. On the
next level of abstraction, the conceptual level, the function com-
ponents are refined into logical components. Concurrently, the
hardware architecture is refined into more details and first cor-
respondences/morphisms are created: E.g., the need to use a
visual camera in the system hardware architecture will cause a
morphism towards the ‘‘find objects in FOV’’ component, because
the required algorithms for finding objects can be technology
depending. A concept of connectivity between the hardware com-
ponents is drafted; it outlines the desired network interfaces
and connections. There are now morphisms between the sys-

tem hardware architecture and the connectivity concept because
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Fig. 8. Co-Design of logical components, hardware design, and connectivity. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
changes of hardware components can require changes in the
node connectivity. On the design level of abstraction, the compo-
nent hardware architecture provides detailed information on the
hardware components. This is required, because the computing
resource allocation view assigns the logical components to the
different available hardware components. Several morphisms ex-
ist now between the computing resource allocation view and the
component hardware architecture. A consistent system solution
can only be obtained if the logical components are mapped to the
hardware components represented in the component hardware
architecture view. If logical components were mapped to hard-
ware component that do not exist (let us say an additional ARM
processor core), the morphism between the component hardware
architecture and the computing resource allocation would be
broken, and a consistent system solution could not be obtained.
Furthermore, knowing the component allocation to hardware
allows for specifying bandwidths and latency needs in the design
level connectivity view. This example showed how the identified
challenges #6: Management of dependencies and #9: Support of
ifferent levels of system design, depicted in Table 3, are solved by
he application of the compositional architectural framework.

.2. Correspondences between context, data strategy, learning, AI
odel, and hardware

The second example, provided in Fig. 9, illustrates the par-
llel evolution of the context and constraints of the system,
he data strategy, the learning concept, and the AI model. This
xample demonstrates how the development of an AI compo-
ent can be seen as a hierarchical process which needs to stay
n synchronisation with the remaining concerns of the system
evelopment.
On the highest level of abstraction, the context assumptions

ake direct influence on the required learning objectives (i.e., there
xists a morphism from the assumption (‘‘Pedestrians can either
e in lane, or on the road but not in the lane, or the road is
mpty’’ to the learning object of classification of objects into three
lasses).
12
On the conceptual level, the context definition clarifies the
earlier context assumptions. This provides input to the data selec-
tion view in which feature attributes are specified for the data. By
establishing morphisms from the system hardware architecture
view, the context definition can also take into account limita-
tion of the hardware, e.g., the mounting position of the camera
influences the minimum height of a human (e.g., 1.00 m) to be
detected. Now, the AI model can be conceptualised because input
data, required output data and objective of the AI model are
known.

On the design level, the design domain view provides clear
constraints for the system’s operability. Furthermore, the learn-
ing procedure’s and AI model’s configuration are set. This also
includes a view on necessary data preparations or data manip-
ulations. For example, after some time in operation the camera
might suffer from random pixel failures. These pixel failures can
be simulated by randomly disturbing pixels in the training data.
The result is an AI model that is more robust against random pixel
failures. Finally, the run time level provides views that explain
which monitoring concepts and run time reconfiguration might
be required during operation of the system. We can take the AI
model run time view as an example: Two monitors can check the
feature map activity in the feature extraction section of the deep
neural network, and uncertainty monitoring can be applied to the
classification output of the network.

In summary, this example showed how the challenges (see
Table 3) #1: Additional views for AI modelling, #2: Consideration of
data requirements, #3: Context definition, #4: Description of the AI’s
learning environment, and #8: Run time monitoring are mitigated
by the architectural framework.

6.3. Example of correspondences between a quality concern and the
remaining architecture concerns

This example demonstrates how a quality concern influences
via morphisms other architectural views. This is an example on
how quality aspects (even novel aspects such as explainability)
can be explicitly handled in the architectural framework (Chal-
lenge #7 in Table 3). A common quality concern for automotive
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Fig. 9. Co-Design of context and constraints, data strategy, learning concept, AI model, and hardware.
ystems is safety. Assume the system shall trigger the brakes
henever a person is detected in the lane in front of the vehicle.
ssume further that, through the HARA, the following safety goal
as been identified: ‘‘The system shall not trigger the emergency
rake unintentionally (ASIL.9 B)’’ An extract of the high-level sys-

tem architecture is illustrated in Fig. 10(a). While the brakes are
designed to a high safety integrity level, the camera and object
detection algorithm might not be able to achieve the required
ASIL B. Therefore, a safety decomposition in accordance with
ISO 26262 results in redundancy in the sensing system, and a
lower ASIL on each component: In the functional safety concept,
an additional lidar sensor, together with a second object detection
algorithm specifically designed for detecting objects in lidar point
clouds, allow for the reduction of the required safety integrity
level of all redundant components to ASIL A(B). The additional
sensing system must be independent from the first object de-
tection algorithm. The final high level system architecture after
safety decomposition is illustrated in Fig. 10(b).

By introducing the safety decomposition in the functional
safety concept, correspondences (morphisms) to the system hard-
ware architecture view and the logical components view were
established. On the next level of abstraction, the technical safety
concept establishes a view on the overall system’s architecture
that allows the fulfilment of the functional safety concept. For
example, the technical safety concept provides a view on the
system architecture that requires the logical component ‘‘Visual
object detection’’ to be deployed on safety certified hardware
components, which creates a correspondence to the computing
resource allocation view; or that the object detection algorithm
only works at daylight, which creates a correspondence to the
constraints/design domain view.

9 Automotive Safety Integrity Level.
13
Fig. 10. Safety decomposition in the system architecture for an automatic
emergency brake system.

A major advantage of the compositional architectural frame-
work is the ability to trace morphisms (i.e., links or correspon-
dences) between the different architectural views. Assume, that
after years of service the system’s hardware shall be upgraded
and it is decided to replace the two independent processing
units with a more powerful single unit. Then, the morphism
between the system hardware architecture and the functional
safety concept reminds the system designer of the safety concern
that triggered the original design decision of having separated
and independent processing units for the two independent object
detection algorithms, even years after the original development.

6.4. Feedback from industry partners in vedliot

In this article, we presented only one of four use cases to
which the compositional architectural framework approach was
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pplied to. The other use cases were a fault detection system
or high voltage switching, a system for electric motor condition
lassification, and a smart mirror as part of a smart home setup.
ecause it is beyond the scope of this article to detail all demon-
trator, we used semi-structured interviews to collect feedback
n the usability, the consistency of the compositional architecture
ramework for VEDLIoT, as well as feedback on possible im-
rovements, how well the approach fits with their use case, and
omparisons to current system architecture frameworks applied
n the company. We interviewed four use case developers, one
rom each use case. The interviews allowed us to gain opinions
nd feedback from participants who had experienced the compo-
itional architecture framework and to explore yet un-identified
ssues with the subject (Hancock, 2006). The interviews contained
hree sets of questions: (I) Questions about the interviewee’s role
nd experience with architecting complex systems; (II) A set of
eedback questions on the usefulness and applicability of the
ompositional architecture framework; (III) The role of run time
onitoring in the VEDLIoT systems and their architectures. The

nterview guide with all questions is available in the replication
ackage of this article.10 Due to data privacy reasons, contact

information to the use case owners is not included in this article.
But general contact information to the companies can be found
on the website of the VEDLIoT project.11

ackground of the interviewees. The four interviewees have all a
background in system architecting with different years of experi-
ence. One interviewee was a PhD candidate in charge of develop-
ing a prototype system, two interviewees work as project leader
and system developer for a multinational company (>10.000
mployees) with 4 and 10 years of experience, and one intervie-
ee is a research specialist for system design in an automotive
upply company (>1.000 employees) with more than 20 years of
xperience in system development.

hallenges solved through the architectural framework. We pre-
ented the challenges discussed in Section 3 to the interviewees
nd asked which of the challenges they encountered and in what
egree the architectural framework helped mitigating them. All
nterviewees mentioned that the explicit treatment of quality
spects as part of the architectural framework was helpful. It
ased finding trade-offs between competing quality aspects, and
t allowed for better cooperation between different teams dealing
ith different quality aspects of the system.
Having explicit cluster of concerns for data strategy and learn-

ng helped all partners in defining data sets and training con-
igurations. One partner mentioned, that, in contrast to previous
n-house processes they used, the architectural framework estab-
ished a much better connection between the context description,
he hardware architecture, the AI model and the data sets used
or training. Establishing connections early between the context
nd the data strategy reduced the need for data creation in a
aboratory, which reduced the costs of the project.

We asked in what degree the guidelines of the architectural
ramework helped them in finding the right architecture for
heir system, compared to other approaches or processes they
sually apply in their respective company. A common answer
as that, compared to previous architectural framework they
sed, the guidelines helped in keeping an overall structure and
verview of the system development. The differentiation into
ifferent level of abstractions prevented that design decisions
re taken too early, which could have created boundaries in the
ater system development. Also, one interviewee highlighted that
he proposed framework fit better into an agile development

10 accessible at https://doi.org/10.7910/DVN/VXFFFU
11 www.vedliot.eu
14
environment, because the guidelines can help different teams in
keeping a consistent architecture.

Furthermore, according to two interviewees, the guidelines es-
tablished an easier traceability of design decisions, which helped
in documenting causes for architectural decisions and in fulfilling
documentation requirements for certification (e.g., for fulfilling
safety standards, or ethical aspects of AI as governed by new EU
regulations) of the products.

All use case owners agreed that the explicit treatment of run
time behaviour in the architectural framework is helpful. One use
case owner used the views in the run time level to design explicit
feedback mechanisms allowing the user to report on the run time
experience of the system. Two use cases created run time views
that ensured that legal regulations are met and controlled at run
time.

Missing aspects or negative experiences. We asked if any infor-
mation or aspects were missing in the architectural framework.
One interviewee mentioned that it was difficult to decide on the
importance of the cluster of concerns and where to start the
system design process. The interviewee suggested to highlight
those clusters of concern that are most likely compulsory for
each system development (e.g., logical behaviour, context and
constraints, and hardware) and use them as starting point for the
system development. Another use case owners said he wished
for more software architecture concerns, such as views on the
operation system and middleware. Furthermore, the same use
case owner said that, although the guidelines helped significantly
in establishing traceability of design decision for certification
of e.g., safety aspects, an explicit treatment of certification and
standardisation aspects in the framework would be appreciated.
Lastly, one use case owner mentioned that a cluster of concern
could be established on human–machine-interfaces, containing
views on the interaction with the users or operators of the sys-
tem. All use case owners agree that some form of tool support for
the architecture framework would be highly appreciated.

7. Discussing the relation to requirement engineering

The three examples of applying the architectural framework
given in Section 6 show an interdependence between the sys-
tems engineering and requirements engineering. For example, the
functions selected for deployment on the Jetson NX (highlighted
in blue on the Design Level in Fig. 8) set performance require-
ments on the processing unit (Jetson NX). Indeed, based on the
twin peaks model, Nuseibeh (2001), emphasise in their hierar-
chical requirements reference model the importance of the inter-
relation between system design and requirements. We realised
that the compositional architectural framework provides a refine-
ment structure, which complements and supports requirement
engineering.

7.1. Traceability of design decisions

Based on the feedback from the use case owners on applying
the compositional architectural framework in VEDLIoT, we learnt
that the framework helped in establishing traceability in design
decisions through morphisms between the architectural views.
Fig. 11 shows how the relations between the architectural views
evolved for the example discussed in Section 6.2. It illustrates
that design decisions made in one architectural view can cause
requirements on elements in another architectural view. Through
formalising the correspondences in the architectural framework,
traceability of the design decisions can be established. Therefore,
it extends existing architectural frameworks, such as Viewpoints
+ Perspectives (Rozanski and Woods, 2012), by providing a math-
ematical foundation to establish traceability of design decisions in
the architectures through the rules outlined in Section 4.

https://doi.org/10.7910/DVN/VXFFFU
http://www.vedliot.eu
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Fig. 11. Directed graph illustrating the evolution of relations between architec-
tural views in the compositional architectural framework. A table of all relations
for this example is available in Appendix G12

.2. Support of middle-out design

Traditionally, requirement engineering would be organised
n a top-down fashion. However, the architectural framework
upports middle-out systems engineering, which is a widely com-
on practice, combining traditional top-down systems design
ith integration of designated lower level hardware, software, AI
odels, or other components (Davis and Yen, 2019). The need

or middle-out design has also been identified as Challenge #10
n Table 3. Knowledge can become available on all levels of the
rchitectural framework at any time. For example, a new desired
unction shall utilise an existing AI model and run on a predefined
ardware platform. Thus, the aim of requirement engineering
s to ensure completeness of missing views on a conceptual or
nalytical level based on existing design level views.
Another example is that of user stories: User stories, can mix

roblem and solution descriptions. For example, ‘‘as a driver, I
ant the vehicle to brake automatically so that I do not hit an
bstacle on the road’’, transmits a problem to be solved. However,
‘as product owner, I want the automatic emergency braking function
o execute on an existing hardware platform’’. transmits a solu-
ion description. Because the compositional architectural frame-
ork supports middle-out development, the solution descriptions
ould influence the design level, while the problem descriptions
ffect the analytical level of the architecture description.

.3. Defining the scope of the system

The concrete design domain of a solution is found by iterating
etween the problem and solution space. The analytical level
f the architectural framework accumulates information about
he problem space. The further the design proceeds, the more
nformation from a solution space perspective is added to the
ystem architecture and its design domain. This became evident
n the example shown in Section 6.1: Concrete hardware so-
utions which are part of the solution space are defined only
n the design level of the architecture (e.g., the selection of a
etson NX platform in Fig. 8). The conceptual level is mostly,
nd the analytical level is completely hardware agnostic and

12 accessible at https://doi.org/10.1016/j.jss.2022.111604.
15
therefore they represent information from the problem space.
Finally, in the design phase, it mostly will be the solution space
that provides additional information. As an example, assume a
certain hardware component can only operate correctly in a
temperature range of −30 degrees to 60 degrees. The component
hardware thus limits the design domain in regards of allowed
temperature range. This would also create a correspondence to
the ‘‘Constraints/Design Domain’’ view in the ‘‘Context & Design’’
cluster of concern, and thus would make this constrain, and its
relation to the hardware component, explicit in the architecture
(Need of context and design domain descriptions, Challenge #3
in Table 3).

7.4. Ensuring the desired behaviour of an AI system

The behaviour of an AI system depends on the available data,
and the context. Rao et al. (2021) therefore propose to reference
the context and data definitions together with the use cases. We
saw in the use case demonstration in Section 6.2 that all elements
of the information model proposed by Rao et al. can be repre-
sented by the compositional architectural framework: Context,
and Context Elements are described in the Context and Constraints
cluster of concern; data requirements and data sources are de-
scribed through Information cluster of concern, and the Learning
cluster of concern; and quality attributes are represented through
the group of Quality clusters of concern. Explicit knowledge of
the necessary data quality and context of operations is a pre-
requisite for defining run time monitors, which was depicted as
Challenge #8 in Table 3.

7.5. Defining quality goals

Quality goals can be distinguished into quality attributes (such
as performance requirements, or specific quality requirements)
and constraints (Glinz, 2007). A first step to determine which
quality attributes need to be represented in the architectural
framework explicitly in the form of clusters of concern, a quality
grid analysis can be formed (Lauesen, 2002). The quality grid is
essentially a table with relevant quality attributes in the first
column and then an indication on whether this attribute is more
or less important than in comparable products. Quality attributes
that rank high in this analysis can then be made a cluster of
concern in the compositional architectural framework. By rep-
resenting a quality attribute as explicit quality concern in the
architectural framework, the fulfilment of that quality attribute
becomes part of the overall system design process (i.e., safety-by-
design, security-by-design, etc.). This eases the inclusion of novel
quality concerns, such as explainability and the integration of
additional stakeholders, such as social scientists (ethical require-
ments) or public authorities (privacy requirements) in the system
development (Challenges #5 and #7 in Table 3). Their concerns
are explicitly reflected as clusters of concern in the architecture
of the system.

Open targets for quality requirements
An additional advantage of including quality attributes as con-

cerns with different levels of abstraction is the ability to support
open metrics, or open targets. According to Lauesen (2002), it
is good practice to defer the selection of metrics and its target
values for quality attributes to a late stage in the systems devel-
opment. This strategy avoids a false sense of accuracy and even-
tually over-designed solutions. The quality concerns can contain
target values as late as in the design level of the compositional
architectural framework. At the highest level, the analytical level,
it is only important to understand what quality attributes are
relevant for the general system design.

https://doi.org/10.1016/j.jss.2022.111604
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. Conclusion

nswer to RQ1: Which challenges are relevant when defining system
rchitectures for AI systems?

The article outlined challenges and concerns when develop-
ng systems that can include AI components. Together with in-
ustry partners, these concerns were collected for distributed
ystems with deep learning components. Specifically, the em-
irically identified challenges include concerns related to data
uality aspects, AI modelling, or setting up a correct learning
nvironment for the AI. Additionally, existing quality aspects such
s security and safety have to be combined with novel aspects
uch as ethical considerations or explainability. New stakeholders
nter the stage of systems engineering, such as data engineers
hich bring their own views (on the system) and language. This
reates a huge variety of different architectural views, for which
xisting standards for architectural frameworks are not sufficient.
specially identifying and mapping of dependencies between the
rchitectural views has been identified as a critical challenge.

nswer to RQ2: What guidance can compositional thinking provide
o overcome these challenges for the design and management of
rchitectures for AI systems?

For the purpose of defining and managing architectural views,
theoretical approach to a compositional architectural frame-
ork based on ideas from category theory was proposed. Four
uggested propositions can be translated into rules that provide
uidance for the creation and management of a compositional ar-
hitectural framework, see the Rules for compositional architecture
ox on this page.
Unlike previous approaches to architectural frameworks for

he IoT and AI systems, such as the IEEE 2413 standard (IEEE,
019), the proposed idea for compositional architectural frame-
orks allow for system architectures that are scalable to the
umber of architectural views required for complex systems such
s distributed AI systems. Furthermore, it provides guidance for
anaging dependencies between the architectural views, some-

hing that for example the 4+1 view model by Kruchten (1995)
s not considering. Rules based on mathematical considerations
elp in organising different views with different levels of details,
eeping consistency between all views, and they help in ensuring
raceability of design decisions. This extends existing architec-
ural frameworks such as Viewpoints + Perspectives (Rozanski
nd Woods, 2012). We showed how the idea of a composi-
ional architectural framework supports requirement engineering
fforts for complex systems by explicitly supporting context de-
criptions of the system, middle-out system engineering, and any
umber of required quality goals.

nswer to RQ3: How can a compositional framework be defined and
pplied in a realistic context?

By following the proposed rules, a workgroup of 16 partici-
ants from academia and industry created a compositional archi-
ectural framework for the VEDLIoT project. The group started
y identifying the necessary clusters of concern, levels of ab-
tractions, and finally necessary architectural views for VEDLIoT.
he created framework for VEDLIoT was demonstrated on a use
ase from the automotive industry. The demonstration showed
hat the framework can handle different architectural views for
oncerns such as logical behaviour, hardware, context, data strat-
gy, learning environment, AI model, and safety aspects. The
ompositional framework integrates and complements require-
ents activities in a favourable way, thus supporting middle-out
16
Rules for compositional architectures

A cluster of concern is partially ordered set of architectural views which
represent a specific concern of the system at different levels of abstraction.

Rule 1: Clusters of concern shall contain architectural views
with different levels of details of a certain aspect of the
system-of-interest.

The set of architectural views with equivalent level of details about
the system-of-interest constitutes a category called level of abstraction.
Architectural views on a level of abstraction are related to each other
through morphisms. Morphisms exist only between architectural views
on the same level of abstraction.

Rule 2: Architectural views shall be sorted into levels of ab-
straction. Views on the same level of abstraction shall have
an equivalent level of details about the system-of-interest.
Correspondences shall exist only between architectural views
on the same level of abstraction.

If the product over all architectural views on a level of abstraction is
valid, the architectural views consistently describe the system-of-interest.

Rule 3: By using correspondence rules, it shall be possible to
arrive at different architectural views of the system-of-interest
without encountering inconsistencies.

Functors map all views of one level of abstraction to corresponding views
of the next lower level of abstraction, and all relations between views to
corresponding relations of the next lower level of abstraction.

Rule 4: Architectural views, and relations between them, on a
higher level of abstraction shall be mapped onto corresponding
views and relations on the next lower level of abstraction.

design and decomposition of requirements for AI systems. The
feedback from four use case owners who applied the architectural
framework in their projects was favourable. They highlighted
that, compared to previously used frameworks and processes, the
compositional architecture framework helped their development
in keeping a more structured and better overview of the archi-
tecture, in finding trade-offs easier between quality aspects, in
establishing traceability of design decisions, and in supporting an
agile development of the system architecture.

8.1. Threats to validity

While we assume that the theoretical idea behind the compo-
sitional architecture framework is valid due to the mathematical
definitions of the underlying principles, the application of these
principles to VEDLIoT can contain threats to validity. First of
all, VEDLIoT concentrates on the application of deep learning in
distributed systems, which only represents one of many possi-
ble applications of the compositional framework. Furthermore,
the composition of the workgroup and focus groups involved in
the creation and discussion of the architectural framework for
VEDLIoT contains mostly people from both academia and indus-
try dealing with advanced research projects. Out of 16 partici-
pants, four participants work as developers for systems with deep
learning in industry. While all other participants have significant
knowledge in system architecture design, system development,
and requirement engineering, experience ‘‘from the field’’ of deep
learning development could only be provided by 25% of the par-
ticipants. This potentially can be a cause of mismatch in the case
study. By conducting review interviews with additional use case
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Table 7
Additional suggestions for validation, including hypotheses and actions.
ID Description Relates to section

1 The construction of the proposed architecture framework followed a clearly defined research methodology described in Fig. 2. The
framework is built on awareness on the state of the art through a survey of published literature and standards. Furthermore, we
identified the state of practice by conducting workshops within the VEDLIoT project, because the aim of the case study was to
develop an architecture framework suitable for VEDLIoT. Validating the awareness of the state of practice outside of VEDLIoT requires
empirical data from practitioners external to the project.

3.2

Hypothesis 1: The state of practice and specifically the challenges identified within VEDLIoT can also be representative for other project.
→ Action 1: Validate the state of practice with practitioners external to the VEDLIoT project.

2 A mapping between the theory of compositional architecture frameworks and the identified challenges of constructing systems within
the VEDLIoT project is derived from both the state of the art as defined through literature and standards, and empirical data collected
within VEDLIoT. The identified challenges themselves, and the mapping towards the theory of compositional architecture frameworks
need to be validated outside of the VEDLIoT project in order to establish better generalisability of the mapping.

3.2, 4.2

Hypothesis 2: The mappings between the challenges and the theoretical framework can also be applied to other projects.
→ Action 2: Validate the mapping between the theory of compositional architecture frameworks and the challenges through independent experts. A

possible experiment setup could take the form of different surveys that validate the challenges listed in Table 3 and elicits additional challenges. An
additional survey can then check the mapping between the theory and the challenges.

3 In order to validate the instantiation of the compositional architecture framework within the VEDLIoT project, the participants of the
project are most suitable, because they are the ones knowing the needs of the project and, therefore, they can assess the applicability
and usefulness. This can depend on prior knowledge and usage of architecture frameworks, and therefore different projects might
evaluate the applicability and usefulness of the proposed approach differently.

5.5, 6.4

Hypothesis 3: The applicability and usefulness of the proposed approach to apply compositional architecture frameworks in system design can also be
shown in other projects.

→ Action 3: Instantiate the compositional architecture framework to further use cases and validate the success of this instantiation with the practitioners
responsible for the new use cases based on their prior usage of architecture framework.

4 For validating the generalisability of the guidelines on how the theoretical framework is instantiated, independent of the case
company and VEDLIoT project, there is the need of involvement of practitioners outside the project.

5.5

Hypothesis 4: The guidelines on how to build a compositional architecture framework can be transferable to other projects.
→ Action 4-a: Apply the guidelines towards building a compositional architecture framework to another case.
→ Action 4-b: Scrutinise each guideline by external experts, both via questionnaires and interviews to collect quantitative and qualitative aspects that

might lead to identify risks and benefits of each guideline.

5 For evaluating the applicability of the compositional approach towards architecture frameworks in a realistic context, there is a need
of experts of the domain of that context. In Section 6, we demonstrated the applicability on the development of an automatic
emergency braking system. We used experts from the automotive domain to apply and validate the approach. Arguing for the
applicability of the approach in other contexts requires additional use cases.

6

Hypothesis 5: A compositional architecture framework built on the described theory can also be applied in other realistic contexts outside the
automotive industry.

→ Action 5: Apply the proposed approach towards compositional architecture frameworks in additional realistic contexts outside of VEDLIoT.
owners, we received feedback on the utility of the framework
by additional industry practitioners. The interviews were also an
effort to reduce the confirmation bias by including participants
not involved in the creation of the framework.

8.2. Additional steps towards validation

The theoretical model of a compositional architectural frame-
ork was tested in practice through a case study conducted
ithin a company from the automotive industry in the context
f distributed deep learning systems. Additional practitioners
utside of the case company confirmed through interviews the
sefulness of the compositional approach described through the
roposed mathematical model towards defining system archi-
ectures. Further validation steps can help in increasing exter-
al validity of the findings presented in this article. Especially
election bias can be a concern because we only applied the
roposed mathematical concept of compositional architectures to
ne concrete case in the context of automotive distributed deep
earning. Table 7 details additional validation steps, including ref-
rences to different sections of this article and proposed actions
or validation.

.3. Further research

Besides the additional steps towards validating the proposed
heoretical contribution to compositional architecture
rameworks, further research can be conducted in how to apply
ategory theory to system and software architectures. Category
17
theory is a very broad field of mathematics, which is why it is
difficult to find a starting point to develop ideas from it for a
given problem. However, looking at the concepts of profunctors
and monoidal categories, there are many interesting concepts to
be found in applied category theory that could solve problems we
today face in requirement engineering and systems engineering.
This paper gives a starting point by introducing categorification
to an architectural framework. The article’s main focus was on
evaluating this starting idea by creating a compositional archi-
tectural framework for systems with deep learning components.
The VEDLIoT project includes an open call with the aim to apply,
among other tools, the VEDLIoT toolchain to new use cases. The
open call can serve to further validate the idea of a compositional
architectural framework and to collect best practices on how to
work with and apply the VEDLIoT architectural framework to new
use cases. Further research is proceeding in developing software
tools that support the ideas of a compositional architectural
framework. One such tool could be built upon the idea of using
textual architectural description and a distributed version control
system such as git, see for example Knauss et al. (2018).
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