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Abstract: The pincer ligand 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (bpmt)
was used to synthesize the novel [Na(bpmt)2][AuCl4] complex through the self-assembly method. In
this complex, the Na(I) ion is hexa-coordinated with two tridentate N-pincer ligands (bpmt). The two
bpmt ligand units are meridionally coordinated to Na(I) via one short Na-N(s-triazine) and two slightly
longer Na-N(pyrazole) bonds, resulting in a distorted octahedral geometry around the Na(I) ion. In
the coordinated bpmt ligand, the s-triazine core is not found to be coplanar with the two pyrazole
moieties. Additionally, the two bpmt units are strongly twisted from one another by 64.94◦. Based
on Hirshfeld investigations, the H···H (53.4%) interactions have a significant role in controlling the
supramolecular arrangement of the [Na(bpmt)2][AuCl4] complex. In addition, the Cl···H (12.2%),
C···H (11.5%), N···H (9.3%), and O···H (4.9%) interactions are significant. Antimicrobial investigations
revealed that the [Na(bpmt)2][AuCl4] complex has promising antibacterial and antifungal activities.
The [Na(bpmt)2][AuCl4] complex showed enhanced antibacterial activity for the majority of the
studied gram-positive and gram-negative bacteria compared to the free bpmt (MIC = 62.5–125 µg/mL
vs. MIC = 62.5–500 µg/mL, respectively) and Amoxicillin (MIC > 500 µg/mL) as a positive control.
Additionally, the [Na(bpmt)2][AuCl4] complex had better antifungal efficacy (MIC = 125 µg/mL)
against C. albicans compared to bpmt (MIC = 500 µg/mL).

Keywords: Na(I) coordination complex; s-triazine pincer ligand; X-ray; Hirshfeld surface;
antimicrobial activity

1. Introduction

One of the most important pharmaceutical concerns in medicine is antibiotic-resistant
microorganisms [1,2]. Efforts to address the serious problems arising from microbial in-
fections include the design of novel antimicrobial agents with minimal side effects and
enhanced chemical and pharmacological characteristics [3,4]. Generally, metal ions play a
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crucial role in biological processes due to their interactions with numerous biomolecules,
including amino acids, enzymes, and serum albumin [5–7]. Thus, the self-assembly of
individual molecules via non-covalent interactions, particularly metal–organic complexes,
is one of the most promising research areas in this field [8–12]. The need to create molecular
structures that can mimic the naturally existing molecules has driven researchers’ interest in
the coordination chemistry of alkali metal ions in recent decades. The best example of alkali
metal ions is Na(I), which is necessary for biological systems [13] and plays a crucial role
in cancer therapy as it can make tumor cells more susceptible to death [14–18]. Recently,
many Na(I) complexes have been reported and analyzed to determine their supramolecular
structures [19–22]. It has been found that Na(I) can form homodinuclear, heterodinuclear,
and trimetallic complexes [23–26]. Additionally, Na(I) can create coordination complexes
with unexpected coordination geometries and various coordination numbers (CN). The
coordination geometry of Na(I) can be tetrahedral (CN = 4), trigonal bipyramidal (CN = 5),
octahedral (CN = 6), pentagonal pyramidal (CN = 7), square antiprism (CN = 8), dodecahe-
dral (CN = 8), and trigonal-dodecahedral (CN = 8) [27–31].

In the literature, sodium complexes with octahedral coordination geometry are well
known. For example, a 2D polymeric sodium complex with bis-tetrazole type ligand was
reported by Sobral et. al. In this complex, the sodium metal ion has a distorted octahedral
environment with a NaNO5 coordination sphere [32]. Another example is the mononu-
clear octahedral [Prolinate2-Na(MeOH)4]−H+ complex, which has a NaO6 coordination
sphere [33]. In this case, the sodium ion is coordinated with four methanol molecules and
two prolinate anions as monodentate ligands. Furthermore, a new distorted octahedral
sodium complex, [Na(H2O)5(DMF)]·(L) (L=1,5-naphthalenedisulfonate), was obtained, and
its single crystal structure confirmed the NaO6 coordination sphere via one DMF and five
H2O molecules [22]. A hepta-coordinated sodium complex was reported by Gourdon’s
research group with dipicolinic acid as a ligand, and its structure was confirmed using
single crystal X-ray structure, also showing a NaNO6 coordination environment [34]. To the
best of our knowledge, there are no well-known pincer sodium complexes with s-triazine
N-donor ligands and confirmed structures. However, Beer et al. reported a new sodium
complex with bis-triazacyclononane tris-pyridyl N9-azacryptand as ligand [35]. This is
considered the only pincer sodium complex that has been structurally characterized using
single crystal X-ray crystallography (SCXRD) with nitrogen macrocyclic ligands, and it ex-
hibits a NaN9 coordination environment. The most frequent ligands that form coordination
compounds with alkali metal ions are Schiff bases, tridentate ligands (such as o-vanillin
and benzhydryl ligands), crown ethers, etc. [23,36–38]. Generally, multidentate ligands
play a significant role in coordination chemistry as they can form extra-stable metal com-
plexes due to the chelate effect. Among these multidentate ligands, symmetrical triazine
(s-triazine) derivatives are promising due to their diverse biological effects and power-
ful pharmacological properties [39–43]. Moreover, substances containing pyrazoles are
considered effective biological agents [44–46]. Among s-triazine derivatives, the 2,4-bis(3,5-
dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (bpmt) ligand has been extensively
studied by our research team for many reasons [4,47–57]. The bpmt ligand can be easily
prepared with a high yield, and it is classified as a tridentate N-pincer ligand with different
coordination behaviors. In addition, its metal complexes exhibit remarkable biological
activities compared to the free bpmt ligand [4,48,51–53,55,56,58]. The pincer complexes
of bpmt are stable and can be simply synthesized via the self-assembly of the functional
ligand (bpmt) with a metal salt [54,57].

The goal of the current work was to synthesize a new pincer complex of the bpmt
ligand through self-assembly with Na[AuCl4].2H2O. The molecular and supramolecular
structures of the complex were explored using single crystal X-ray diffraction in combi-
nation with Hirshfeld calculations. In addition, the antimicrobial activity of the complex
was evaluated.



Crystals 2023, 13, 890 3 of 14

2. Materials and Methods
2.1. Chemicals and Instrumentations

All chemicals were obtained from Sigma-Aldrich Company. Perkin-Elmer 2400 equip-
ment (PerkinElmer, Waltham, MA, USA) was used to perform the elemental analyses
(CHN). The FTIR spectra in KBr pellets were recorded in the range 4000–400 cm−1 us-
ing a Bruker Tensor 37 instrument (Waltham, MA, USA). NMR spectra were recorded in
DMSO-d6 as a solvent using a JEOL-400 MHz spectrometer (JEOL, Ltd., Tokyo, Japan) at
298 K. Na content was determined using a Shimadzu atomic absorption spectrophotometer
(AA-7000 series, Shimadzu, Ltd., Tokyo, Japan).

2.2. Syntheses

The bpmt pincer ligand was prepared using the procedure previously reported by our
research group [57,59].

Synthesis of the [Na(bpmt)2][AuCl4] Complex

A 10 mL ethanolic solution of Na[AuCl4]·2H2O (39.8 mg, 0.1 mmol) was mixed with
10 mL of a hot ethanolic solution of bpmt (59.8 mg, 0.2 mmol). The resulting clear mixture
was left at room-temperature for slow evaporation. After three days, yellow crystals were
formed, which were collected through filtration and found suitable for single crystal X-ray
diffraction measurements.

The yield of the reaction was 89%. The analytical calculation for C28H34AuCl4N14NaO2
yielded the following percentages: C, 35.02; H, 3.57; N, 20.42; Na, 22.99%. Upon analysis,
the found percentages were as follows: C, 35.19; H, 3.45; N, 20.28%; Na, 22.78%.

The FTIR spectra of [Na(bpmt)2][AuCl4] exhibited peaks at the following wavenum-
bers (cm−1): 3421, 3107, 2956, 2930, 1601, 1548, 1417, 1367, 1221, 1123, 1046, 971, 813, and
750 (Figure S1, Supplementary Data). The FTIR spectra of the ligand (bpmt) displayed
peaks at the following wavenumbers (cm−1): 3392, 3313, 2986, 2930, 1597, 1558, 1408, 1373,
1224, 1128, 1041, 973, 812, and 751 (Figure S2, Supplementary Data). The 1H NMR spectrum
of [Na(bpmt)2][AuCl4] (500 MHz, DMSO-d6) revealed the following chemical shifts: δH
6.23 (s, 2H, Ar-H), 4.02 (s, 3H, OCH3), 2.64 (s, 6H, 2CH3), 2.19 (s, 6H, 2CH3) ppm. The 13C
NMR spectrum (125 MHz, DMSO-d6) displayed the following chemical shifts: δC 172.4,
164.8, 152.6, 144.7, 112.2, 56.3, 15.9, 14.1 ppm (Figure S3, Supplementary Data).

The 1H NMR spectrum of the ligand (bpmt) (500 MHz, DMSO-d6) exhibited the
following chemical shifts: δH 6.22 (s, 2H, Ar-H), 4.01 (s, 3H, OCH3), 2.64 (s, 6H, 2CH3),
and 2.16 (s, 6H, 2CH3) ppm. The 13C NMR spectrum (125 MHz, DMSO-d6) displayed
the following chemical shifts: δC 172.3, 164.8, 152.4, 144.6, 112.2, 56.3, 15.9, and 14.1 ppm
(Figure S4, Supplementary Data).

2.3. Crystal Structure Determination

The crystal of [Na(bpmt)2][AuCl4] was immersed in cryo-oil, mounted in a loop, and
measured at a temperature of 170 K. The X-ray diffraction data were collected using a
Bruker Kappa Apex II diffractometer with Mo Kα radiation. The Denzo-Scalepack [60]
software package was used for cell refinement and data reduction. A multi-scan absorption
correction based on equivalent reflections (SADABS [61]) was applied to the intensities
before the structure solution. The structure was solved using the intrinsic phasing method
with SHELXT [62] software. Structural refinement was carried out using SHELXL [63]
software with the SHELXLE [64] graphical user interface. All the hydrogen atoms were posi-
tioned geometrically and constrained to ride on their parent atoms, with C-H = 0.95–0.98 Å
and Uiso = 1.2–1.5 Ueq (parent atom). The crystal data and structure refinement details are
shown in Table 1.
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Table 1. Crystal data for [Na(bpmt)2][AuCl4].

CCDC 2252757

empirical formula C28H34AuCl4N14NaO2
fw 960.45
temp (K) 170(2)
λ(Å) 0.71073
cryst syst Monoclinic
space group P21/c
a (Å) 10.24060(10)
b (Å) 14.12690(10)
c (Å) 26.0992(3)
β (deg) 96.2770(10)
V (Å3) 3753.08(6)
Z 4
ρcalc (Mg/m3) 1.700
µ(Mo Kα) (mm−1) 4.264
No. reflns. 63394
Unique reflns. 9264
Completeness to θ = 25.242◦ 99.2%
GOOF (F2) 1.038
Rint 0.0365
R1 a (I ≥ 2σ) 0.0335
wR2 b (I ≥ 2σ) 0.644

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2.

2.4. Hirshfeld Surface Analysis

The topology analyses were performed using the Crystal Explorer 17.5 program [65]
to generate 2D fingerprint plots and Hirshfeld surfaces [66].

2.5. Antimicrobial Studies

The antimicrobial activity [67] of the investigated ligand and its Na(I) complex were
determined, as described in Method S1 (Supplementary Data).

3. Results and Discussion
3.1. Synthesis and Characterizations

The novel [Na(bpmt)2][AuCl4] complex was synthesized using a self-assembly tech-
nique by reacting Na[AuCl4].2H2O with the bpmt ligand (Scheme 1). Several spectroscopic
techniques were used to confirm the structure of the resulting complex. Figures S1 and S2
(Supplementary Data) show the FTIR spectra of the [Na(bpmt)2][AuCl4] complex compared
to the free bpmt ligand. The FTIR spectra of the [Na(bpmt)2][AuCl4] complex revealed
the main vibrational characteristics of the functional organic ligand (bpmt) with slight
variations. The stretching modes υ(C=N) and υ(C=C) in the free bpmt appeared at 1597 and
1558 cm−1, respectively. In the [Na(bpmt)2][AuCl4] complex, these stretching modes were
observed at 1601 and 1548 cm−1, respectively. It was observed that the coordination of
Na(I) with bpmt resulted in a blue shift for the υ(C=N) mode and a red shift in the υ(C=C)
mode [55,57]. Thus, the complexation had an impact on both vibrational bands compared
with the free ligand. Moreover, single crystal X-ray diffraction combined with Hirshfeld
surface analysis was used to specifically determine the molecular and supramolecular
structures of the [Na(bpmt)2][AuCl4] complex.
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Scheme 1. Synthesis of the [Na(bpmt)2][AuCl4] complex.

3.2. Crystal Structure Description

The X-ray structure of the [Na(bpmt)2][AuCl4] complex unequivocally confirmed the
coordination between Na(I) and the bpmt ligand. The asymmetric unit of the resulting
complex is shown in Figure 1, consisting of one formula unit of the cationic complex
[Na(bpmt)2][AuCl4]. In this complex, the Na(I) ion coordinates with two units of the pincer
ligand bpmt via the N-atoms of the two pyrazolyl moieties and one N-atom from the
s-triazine core, while the tetrachloroaurate serves as the counter anion. The Na-N bond
distances with the s-triazine core were found to be 2.443(3) Å (Na1-N5) and 2.429(3) Å
(Na1-N12). It is worth noting that the two s-triazine cores of the two bpmt ligand units
were found to be coordinated with the Na(I) ion in a trans configuration. The N5-Na-N12
angle was found to be 171.65(10)◦, which was slightly deviated from the ideal value of 180◦.
Hence, the two bpmt ligand units were meridionally coordinated to the Na(I) ion. The
Na-N bonds with the pyrazolyl moieties are generally slightly longer (2.438(3)–2.538(3) Å)
than the Na-N(s-triazine) bond. The bite angles of the bpmt pincer chelate were in the range
of 63.96(9)–64.98(9)◦. In addition, the trans N(pyrazole)-Na-N(pyrazole) angles significantly
deviated from the ideal value of 180◦. The N(1)-Na(1)-N(7) and N(8)-Na(1)-N(14) angles
were determined to be 128.40(9) and 128.18(9)◦, respectively. The Na-N and N-Na-N angles
are listed in Table 2.
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O: red; C: grey; Au: yellow; Cl: green; H: light green; Na: purple.
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Table 2. Bond lengths (Å) and angles (◦) for [Na(bpmt)2][AuCl4] complex.

Bond Length/Å Bond Length/Å

Bond distances
Na(1)-N(5) 2.443(3) Na(1)-N(12) 2.429(3)
Na(1)-N(1) 2.438(3) Na(1)-N(8) 2.469(3)
Na(1)-N(7) 2.497(3) Na(1)-N(14) 2.538(3)
Bond angles
N(12)-Na(1)-N(1) 112.14(9) N(5)-Na(1)-N(7) 64.02(8)
N(12)-Na(1)-N(5) 171.65(10) N(8)-Na(1)-N(7) 84.75(9)
N(1)-Na(1)-N(5) 64.48(8) N(12)-Na(1)-N(14) 63.96(9)
N(12)-Na(1)-N(8) 64.98(9) N(1)-Na(1)-N(14) 83.42(9)
N(1)-Na(1)-N(8) 108.21(9) N(5)-Na(1)-N(14) 121.75(9)
N(5)-Na(1)-N(8) 108.19(9) N(8)-Na(1)-N(14) 128.18(9)
N(12)-Na(1)-N(7) 118.36(9) N(7)-Na(1)-N(14) 127.72(9)
N(1)-Na(1)-N(7) 128.40(9)

It is worth noting that the s-triazine core and the two pyrazole moieties were not
coplanar in the two bpmt ligand units. The N7N6C10C12C13 and N1N2C4C3C1 mean
planes of the two pyrazole moieties formed angles of 5.32(7) and 4.81(8)◦, respectively, with
the N5C6N3C7N4C9 s-triazine core mean. The angles between the mean plane of the other
s-triazine core N12C23N11C21N10C20 and the two pyrazole rings N13C24C26C27N14 and
N9N8C15C17C18 were 11.18(9) and 8.42(8)◦, respectively. Hence, the two pyrazole arms
were twisted from the s-triazine core in both ligand units. In addition, the two bpmt ligand
units were significantly twisted from each other, with a twist angle between their mean
planes of 64.94(8)◦, which significantly deviated from 90◦. This deviation was possibly
due to the steric preferences of the two bulky ligand units. The molecular packing of
the [Na(bpmt)2][AuCl4] complex was controlled by the important C-H···Cl and C-H···O
interactions shown in Figure 2. A list of these interactions along with their corresponding
geometric parameters are given in Table 3.
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Figure 2. The important C-H···Cl and C-H···O contacts in the crystal structure of [Na(bpmt)2][AuCl4].

Table 3. The geometric parameters of the C-H···Cl and C-H···O interactions in [Na(bpmt)2]
[AuCl4] complex.

D-H···A D-H/Å H···A/Å D···A/Å D-H···A/◦

C8-H8A···O2 0.98 2.470 3.214(4) 132
C12-H12···Cl2 0.95 2.948 3.776(3) 146.5
C22-H22B···Cl3 0.98 2.933 3.750(5) 141.5
C25-H25B···Cl3 0.98 2.865 3.839(4) 172.7
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The molecular packing of the [Na(bpmt)2][AuCl4] complex was controlled by three
important interactions: C12-H12···Cl2, C22-H22B···Cl3, and C25-H25B···Cl3. These interac-
tions exhibited donor to acceptor distances of 3.776(3), 3.750(5), and 3.839(4) Å, respectively.
Additionally, the molecular packing was controlled by weak C8-H8A···O2 interaction. The
donor C8 to acceptor O2 distance was 3.214(4) Å, while the C8-H8A···O2 angle was 132.5◦.
A view of the molecular packing is shown in Figure 3.
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(B) interactions along ac and bc planes, respectively.

Furthermore, there were different levels of C-H···π interactions between H22C from
the methoxy group and the pyrazole ring C24C26C27N14N13. The distance between
H22C and the respective pyrazole atoms were 2.762, 2.673, 2.608, 2.665, and 2.718 Å.
The H22C···centroid distance was calculated to be 2.420 Å, indicating significant C-H···π
interactions. A view of the possible C-H···π interactions in the [Na(bpmt)2][AuCl4] complex
is shown in Figure 4.
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3.3. Hirshfeld Surfaces Analyses

An analysis of the various intermolecular interactions that occurred in the crystal
structure of [Na(bpmt)2][AuCl4] was done using Hirshfeld surface calculations (Figure 5).
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Figure 5. Hirshfeld surfaces mapped with dnorm (left), shape index (middle), and curvedness (right)
for the [Na(bpmt)2] [AuCl4] complex.

In this ionic complex, the Hirshfeld analysis was performed on the cationic (A) and
anionic (B) units separately. The percentages of all possible contacts in the cationic complex
[Na(bpmt)2]+ (A) and anion [AuCl4]− (B) are presented in Table 4, and are presented
graphically in Figure 6.

Table 4. The percentages of all possible contacts in [Na(bpmt)2][AuCl4] complex.

Contact %Contact Contact %Contact Contact %Contact

[Na(bpmt)2]+ (A) [AuCl4]− (B)

Au···N 0.3 O···N 0.8 Au···O 0.1
Au···C 0.2 O···C 0.2 Au···N 1.0
Au···H 0.5 O···H 4.9 Au···C 0.6
Cl···O 0.8 N···N 0.5 Au···H 5.7
Cl···N 2.0 N···C 0.6 Cl···O 3.7
Cl···C 1.9 N···H 9.3 Cl···N 7.6
Cl···H 12.2 C···C 0.6 Cl···C 7.1
Na···O 0.1 C···H 11.5 Cl···H 74.1
Na···H 0.2 H···H 53.4
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Figure 6. All of the possible intermolecular contacts in the [Na(bpmt)2][AuCl4] complex. A and B
refer to the cationic and anionic parts of the [Na(bpmt)2][AuCl4] complex, respectively.

The Hirshfeld surfaces of the [Na(bpmt)2][AuCl4] complex, mapped with dnorm, shape
index, and curvedness, are shown in Figure 5. Short contacts are apparent as deep red
areas, while the white areas are related to contacts near the van der Waals radii sum
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of the interacting atoms, which were considered the most important in the molecular
packing. Conversely, the blue areas represent long-distance interactions. The bright red
spots on the dnorm maps represent the areas where H···H, Cl···H, C···H, N···H, and O···H
interactions occurred. The decomposition of the fingerprint plot indicates their percentages
in the cationic [Na(bpmt)2]+ (A) unit were 53.4, 12.2, 11.5, 9.3, and 4.9%, respectively.
These contacts also appeared as sharp spikes in the fingerprint plots (Figure 7). The
other intermolecular contacts, which appeared as blue areas in the dnorm maps, were less
significant, and their intermolecular contacts were typically weak. The absence of red/blue
triangles in the shape index map revealed that no aromatic π-π stacking contacts were
present. Furthermore, the curved green regions in the curvedness map confirmed the
absence of π-π stacking interactions.
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Figure 7. The dnorm maps and fingerprint plots of the most important interactions in the cationic
complex unit [[Na(bpmt)2]+ (A).

For the anionic unit [AuCl4]− (B), the significant contact observed was the Cl···H
interaction, while other contacts had less significance. In this unit, the percentage of the
Cl···H contacts was 74.1%. This type of non-covalent interaction exhibits the characteristics
of short interactions, as clearly depicted in Figure 8.
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3.4. Antimicrobial Studies

The antimicrobial activity of the free bpmt and its [Na(bpmt)2][AuCl4] pincer complex
against a number of specified pathogenic microorganisms was evaluated. The minimum
concentration that showed no observable microbial growth was determined as the mini-
mum inhibitory concentration (MIC), and the results are listed in Table 5. The MIC data
demonstrated that the free bpmt had no antibacterial activity against any of the stud-
ied strains except for K. pneumonia (50) and A. baumannii (8). On the other hand, the
[Na(bpmt)2][AuCl4] complex showed improved antimicrobial activity against most bacte-
rial strains compared to bpmt. The only exceptions were K. pneumonia (50), K. pneumonia
(R124), and A. baumannii (8), where both compounds exhibited similar actions. The corre-
sponding MIC values were 62.5, 500, and 125 µg/mL, respectively.

Table 5. MIC values (µg/mL) of the [Na(bpmt)2][AuCl4] complex and its free ligand bpmt.

Tested Compound bpmt [Na(bpmt)2][AuCl4] Control

Gram-positive bacteria

S. aureus (ATCC 25923) 500 125 ≤7.8 a

MRSA (ATCC43300) 500 125 >500 a

MRSA (1) 500 125 >500 a

E. fecium (31) 500 125 >500 a

Gram-negative bacteria

E. coli (ATCC 25922) 500 125 62.5 a

K. pneumonia (ATCC 700603) 500 125 >500 a

P. aeruginosa (ATCC 29853) 500 125 125 a

A. baumannii (ATCC 19606) 500 125 >500 a

P. miabilis 500 125 125 a

K. pneumonia (50) 62.5 62.5 >500 a

K. pneumonia isolates (R124) 500 500 >500 a

P. aeruginosa (5) 500 125 500 a

A. baumannii (8) 125 125 >500 a

Fungi

C. albicans 500 125 15.6 b

a Amoxicillin; b Nystatin.

Interestingly, the MIC values of the [Na(bpmt)2][AuCl4] complex were in the range
of 62.5–125 µg/mL, indicating higher antibacterial activity against most of the investi-
gated bacteria compared to Amoxicillin (MIC > 500) as a standard antibiotic. It is clear
that the [Na(bpmt)2][AuCl4] complex had higher MIC values (125 µg/mL) than Amox-
icillin only for S. aureus and E. coli (≤7.8 and 62.5 µg/mL, respectively), and exhibited
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similar MIC values to Amoxicillin for P. aeruginosa, P. miabilis, and K. pneumonia (R124)
(125, 125, and 500 µg/mL, respectively). In contrast, the free ligand bpmt demonstrated
good antibacterial activity against only two bacterial strains, K. pneumonia (50) and A. baumannii
(8), with MIC values of 62.5 and 125 µg/mL, respectively, compared to Amoxicillin
(MIC > 500).

The [Na(bpmt)2][AuCl4] complex exhibited better antifungal activity than the free
ligand bpmt. The MIC values were determined to be 125 and 500 µg/mL, respectively.
Compared with Nystatin (MIC = 15.6 µg/mL), a standard antifungal medication, the
[Na(bpmt)2][AuCl4] complex and its free bpmt ligand had lower antifungal activity against
the studied fungus, C. albicans. Thus, the results revealed that the [Na(bpmt)2][AuCl4]
complex had significant antibacterial properties against most of the gram-positive and
gram-negative bacteria. Additionally, the [Na(bpmt)2][AuCl4] complex showed promising
antifungal activity against C. albicans when compared to bpmt.

4. Conclusions

The novel [Na(bpmt)2][AuCl4] complex was obtained as highly crystalline product by
reacting the bpmt pincer ligand with Na[AuCl4].2H2O using the self-assembly technique.
Its structure was analyzed using single crystal X-ray diffraction, FTIR, and NMR spectro-
scopic techniques, in addition to elemental analysis and Hirshfeld topology analysis. The
mononuclear homoleptic [Na(bpmt)2][AuCl4] complex had hexa-coordinated Na(I) with
a distorted octahedral geometry. Hirshfeld studies were used to explore the importance
of the H···H, Cl···H, C···H, N···H, and O···H contacts in the supramolecular structure of
the [Na(bpmt)2][AuCl4] complex. Antimicrobial evaluation of the studied Na(I) complex
revealed promising antibacterial and antifungal activities compared to the free bpmt ligand.
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https://www.mdpi.com/article/10.3390/cryst13060890/s1, Figure S1: FTIR spectra of the free
ligand bpmt; Figure S2: FTIR spectra of the [Na(bpmt)2][AuCl4] complex; Figure S3: 1H and 13C
NMR spectra of the free ligand (bpmt); Figure S4: 1H and 13C NMR spectra of [Na(bpmt)2][AuCl4];
Method S1: Antimicrobial activity assay.
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