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Abstract: A geometrical method for assessing stochastic processes in plasma turbulence is investi-
gated in this study. The thermodynamic length methodology allows using a Riemannian metric on
the phase space; thus, distances between thermodynamic states can be computed. It constitutes a
geometric methodology to understand stochastic processes involved in, e.g., order–disorder tran-
sitions, where a sudden increase in distance is expected. We consider gyrokinetic simulations of
ion-temperature-gradient (ITG)-mode-driven turbulence in the core region of the stellarator W7-X
with realistic quasi-isodynamic topologies. In gyrokinetic plasma turbulence simulations, avalanches,
e.g., of heat and particles, are often found, and in this work, a novel method for detection is inves-
tigated. This new method combines the singular spectrum analysis algorithm with a hierarchical
clustering method such that the time series is decomposed into two parts: useful physical information
and noise. The informative component of the time series is used for the calculation of the Hurst
exponent, the information length, and the dynamic time. Based on these measures, the physical
properties of the time series are revealed.

Keywords: gyrokinetic simulations; drift waves; stochastic theory; information geometry; time
series analysis

PACS: 52.35.Ra; 52.25.Fi; 52.35.Mw; 52.25.Xz

1. Introduction

Experimental investigations of heat and particle transport in magnetically confined
(MC) plasmas, such as those found in tokamaks and stellarators, are often found to be
elevated compared to what is predicted by collisional predictions [1]. The optimization of
the magnetic field in stellarators was shown to significantly reduce their neo-classical losses.
This makes ion-temperature-gradient (ITG)- and trapped-electron-mode (TEM)-driven
turbulence [1] among the main physical mechanisms responsible for the increased transport
levels in the core stellarator plasma. Furthermore, outside of the bulk plasma, large-scale
events termed blobs and avaloids may be generated that have a significant impact on the
overall transport [2–11]. Moreover, there exist modes that connect the bulk and edge plasma
directly, namely avalanches and streamers. Other types of filaments, such as edge-localized
modes (ELM), may also have a harmful impact on the first wall [9]. The understanding and
characterization of these structures has been elusive due to their intermittent nature and
complicated generation process. Hence, it is of great interest to improve the understanding
and predictive capability of large-scale structures in MC plasmas.

Many different transport models and codes have been developed to study these effects
in different detail and aspects. In this work, we utilize the gyrokinetic model, which is
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among the most promising tools for the study of micro-scale turbulence and its interaction
with large-scale modes, such as the mitigating effects of zonal flows and the detrimental
effects of streamers and avalanches. Here, we numerically evaluate the generated quasi-
stationary time series of the surface-averaged heat flux from the gyrokinetic simulations
of ITG-mode-dominated plasma with adiabatic electrons [1] performed by the GENE
code [12]. These simulations are carried out in order to model turbulence in the core of the
stellarator W7-X at different locations and with varying temperature and density gradients
using a realistic and optimized quasi-isodynamic topology [13].

The analysis of the results is performed by means of singular spectrum analysis (SSA)
and information length estimation. The SSA methodology [14] is a well-known mathematical
method for analyzing the different components of time traces, where deterministic components
are filtered out. In weakly stochastic systems, oscillatory components, such as normal modes,
that are typically superposed on the turbulent signal may conceal interesting turbulent
dynamics and have to be removed before analysis. The SSA method has rendered acclaim
in widely different areas, such as geology [15], economics [16], and medicine [17]; however,
a couple of interesting instances in plasma physics are to be found [18,19]. In Ref. [19], an
analysis using SSA that proved valuable for the detection of intermittent events, such as blobs,
in experimental signals or code simulations was presented. Understanding and characterizing
the effects of large-scale structures is, e.g., possible by employing a probabilistic approach
where the probability density function (PDF) is computed. Although there is a relatively
small likelihood of these intermittent events, they may be spatially extended and have a large
amplitude; thus, the total mediated transport may be significant. In terms of the PDFs, these
events dominate and elevate the tails of the distribution function. Assessing for temporal
changes in the system-state PDF is one option for characterizing intermittent events. Imposing
a metric for the thermodynamic length allows one to measure the distance that a system
travels between thermodynamic equilibrium states, as described by a PDF [20–28]. This is
a novel methodology to measure distance in statistical space. When a PDF continuously
changes with time, the information length measures the total number of different statistical
states that a system passes through in time [26–28].

The work performed in this paper extends the previously described situation by
combining an analysis using the SSA methodology and the possible identification of events
in the time traces, the information length L, with a discussion on the statistical properties
of the time traces, such as variability and persistence.

This paper is organized as follows. The gyrokinetic model and setup of the stellarator
simulations are discussed in Section 2, and the statistical analysis and its interpretation are
explained in Sections 3 and 4, respectively. The paper is concluded with a discussion in
Section 5.

2. GK Model and Simulation Set-Up

In this section, the GENE gyrokinetic code used to obtain the time series data is briefly
described, and the physical parameter setup in the simulations are presented. Turbulence
produced by plasma micro-instabilities is considered the main reason for the anomalous
transport observed in fusion devices. Small-scale plasma turbulence, meaning fluctuations
of physical observables that present spatial scales in the order of the Larmor radius and
frequencies significantly smaller compared to the cyclotron frequency (gyro-frequency), is
studied by gyrokinetic theory [29]. Many numerical codes have been created to simulate
gyrokinetic turbulence in fusion machines. In this work, we used the GENE (gyrokinetic
electromagnetic numerical experiment), which is a Eulerian δ f code developed by the Gene
Development Team and is publicly available [30]. A detailed description of the equations
solved by the code, as well as their numerical implementation and the produced output of
the code, can be found in Refs. [12,31–35].

We performed gyrokinetic, nonlinear, and flux tube (local) simulations of ITG-mode-
driven turbulence using the realistic magnetic geometry of the W7-X stellarator. Our
specific aim was the modelling and statistical analysis of turbulent heat fluxes in a realistic
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configuration of quasi-isodynamicity. The stellarator’s magnetic geometry that was used
in these simulations was created with the use of the VMEC code, which calculated the
configuration of the MHD equilibrium. The latter served as input for the GIST code,
which calculated the various geometric and physical quantities needed for the gyrokinetic
equations while transforming them in the coordinate system that GENE uses; see, e.g., [36].
We performed non-linear flux tube simulations at two different radial positions. The GIST
code used the toroidal flux as a flux surface label, which was normalized to be in the range
between zero and unity. Thus, s is defined as

s =
Φ

Φedge
with s ∈ [0, 1] (1)

with Φ being the toroidal flux and Φedge being the toroidal flux of the last closed flux surface.
Simulations were performed with s = 0.5, 0.81. GENE uses a field-aligned coordinate
system that takes advantage of the differences in the characteristics of the turbulence
perpendicular to and along the magnetic field lines. Assuming that x, y, and z express
these field-aligned coordinates, x is considered the radial normalized coordinate, which
is defined as x = ρN =

√
s. Applying the latter in the studied test cases, the values of

the radial positions of the flux tubes simulated were x0 = 0.7, 0.9, respectively, to the
mentioned s values. The z coordinate was along the magnetic field line and parameterized
it. In this case, z = θ, where θ is the poloidal Boozer angle ranging in both simulated flux
tubes between z = θ ∈ [−π, π]. The variation of the value of the normalized magnetic
field along the z coordinate for both tubes is presented as calculated by the GIST code in
Figure 1.

Figure 1. Variation of the value of the normalized magnetic field B with respect to z coordinate as
defined for GENE for both flux tubes.

Finally, y represents the binormal coordinate, which is defined in GENE as

y =

√
s0

q0
(qθ − ζ) =

√
s0

q0
α, (2)

where the index 0 denotes flux functions calculated on the selected surface, which are
treated as constants. The quantities θ and ζ are the poloidal and toroidal Boozer angles,
respectively, q0 represents the safety factor value at the radial position x0 =

√
s0 of the flux

tube, q represents the safety factor function, and α = qθ− ζ represents a magnetic line label.
In these simulations, both tubes started from the outboard plane with α = 0.

In the flux tube approximation, a small tube was created along the magnetic field line.
The equilibrium temperature, density, and pressure were kept constant for the tube; their
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parallel dependence was, therefore, neglected, and they were completely determined by
their value on the field line and their radial gradient. In the direction perpendicular to the
magnetic field line, for the x and y coordinate directions, periodic boundary conditions were
assumed, where Lx and Ly were the lengths of the simulation domain in the corresponding
directions creating the tube along the line in the z direction. For both simulated radii,
two different temperature gradients were examined: a/LT = 1.0, 4.0, with a = 0.512 m
being the minor radius of the W7-X stellarator. The minor radius was also used as a
reference length for normalization purposes. All simulations were considered electrostatic,
meaning that fluctuations of the magnetic field are not considered. Simulations that were
extended in time were needed to reach a stationary phase in the evolution of the physical
observables in the time series. For the numerical grid resolution in the x, y, and z GENE
magnetic coordinates, we used typical values for the number of grid points for such (local)
simulations, with nx = 60, ny = 60, and nz = 160. The flux tube of these local simulations
had a radial length Lx = 137.129 in units of the ions’ Larmor radius ρi, and the minimum
wave number used in the simulations in the binormal direction y was kymin = 0.05, which
was used by the code to determine the binormal Ly length of the tube.

In gyrokinetic theory, the fast gyromotion is averaged out through transformations
that remove the dependence of the equations from the gyro-angle used for describing the
cyclotron motion of particles. The latter results in the so-called gyrokinetic Vlasov equation,
which describes the evolution of the perturbating part of each particle species distribution
function in a five-dimensional space with three spatial and two velocity coordinates instead
of the usual six dimensions. The remaining two coordinates of the velocity space are the
velocity component parallel to the magnetic field, u‖, and the magnetic moment µ, which is
related to the component of the velocity perpendicular to the magnetic field. The number
of grid points used in discretizing the velocity space for the parallel velocity u‖ and the
magnetic moment µ are, respectively, nv = 40 and nw = 20, where the symbols u‖, µ,→ v,
and w are used. In the velocity space, the extent of the direction of the parallel velocity
is lv = 3.0 in the units of the thermal velocity, while the length of the simulation grid in
the direction of the magnetic moment µ is lw = 9.0 in units of T0ref/Bref, with T0ref being
the value of the ions’ temperature at equilibrium and Bref being the reference value of
the magnetic field strength provided by the GIST magnetic geometry file. The value of
the plasma beta is assumed to be close to zero for both tubes. Finally, for the tube at the
radial position x0 = 0.7, the safety factor is equal to q0 = 1.114, and the magnetic shear is
ŝ0 = −0.145, while for the tube at the radial position x0 = 0.9, the safety factor is equal to
q0 = 1.066, and the magnetic shear is ŝ0 = −0.23. Moreover, the density gradient is set to
a/Ln = 0, 1, and the electrons are considered adiabatic.

We examined the time series of the ions’ radial heat flux calculated by volume aver-
aging the normalized velocity space moment of the fluctuating part of their distribution
function F1i(x, u), which can be defined as

Qi(x) =
∫∫∫

F1i(x, u)vx
ξ

miu2

2
d3u (3)

where miu2

2 is the ion kinetic energy and vx
ξ is the contravariant component of the general-

ized E× B velocity used for taking the radial projection of the heat flux. Concerning the
units of the various physical observables, one must take into account that GENE uses the
gyrokinetic equations in their dimensionless form; thus, its calculated quantities are also
dimensionless, meaning that normalization is used throughout the code implementation.
We selected as reference length Lre f the minor radius of the stellarator a, as already men-
tioned. Due to the latter, time was measured in units of a/ci, with ci the ions’ sound speed
under radial heat flux was measured in gyro-Bohm units; see Figure 2. GENE produces
time series with a varying time step selected during the simulation for optimized accuracy.
The statistical tools used demanded data equally spaced in time; thus, the time series was
interpolated with the use of cubic splines and re-evaluated at equidistant data points in
time without changing the simulated time interval or the number of data points evaluated.
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Figure 2. Ion heat flux Qi in gyro-Bohm units QgB for the cases without density gradients.

3. Statistical Methods

The output generated by the GENE gyrokinetic code forms a weakly steady-state
time series with complex features due to the non-linearly interacting plasma modes. The
structural behavior of the stochastic time series can be analyzed by the singular spectrum
analysis (SSA) method [37]. Inspired by Ref. [19], where the SSA was used for the statistical
analysis of intermittent transport events in the tokamak scrape-off layer, the SSA method
is used here for the analysis of the heat flux (Q) time series provided by the nonlinear
gyrokinetic code GENE. Compared to the SSA method of Ref. [19], the SSA is implemented
here in conjunction with a clustering method. In this way, the time series is decomposed
to its physical components, as will be described later on. In general, the SSA method
accepts a time series in the form X = (x1, x2, . . . , xN) as input and yields a decomposition
of X into identifiable subseries components, X = X1 + X2 + . . . + Xm. SSA consists of
four steps: embedding, decomposition, grouping, and reconstruction. The embedding step
involves the linear map TSSA : TSSA(X) = X̃, where X̃ is defined as the trajectory matrix (a
Hankel matrix where the entries are equal on the anti-diagonals). X̃ is of size L× K, where
K = N− L + 1 and L is a window length (lag) specified based on the application at hand [37].

The i-th column of the trajectory matrix is of the form Xi = (xi, xi+1, . . . , xi+L−1)
T. Next, the

trajectory matrix X̃ is decomposed into a sum of rank-1 components as X̃ = X̃1 + ... + X̃d,
X̃i = σiUiVT

i , where Ui and Vi are the L and K dimensional vectors of the unit norm,
respectively, and σi are non-negative numbers (singular values). The above decomposition
is the singular value decomposition (SVD) of X̃i, and d = max{j : σj > 0} = rank

(
X̃i
)
.
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A grouping strategy is applied to the rank-1 components of the trajectory matrix X̃. If
it is assumed that the index set I = {1, ..., d} is partitioned into m disjoint sets I1, . . . Im,
the grouped matrix decomposition of the trajectory matrix is X̃ = X̃I1 + . . . + X̃Im , where
Ik = {i1, ..., ip(k)} ⊂ I and X̃Ik = X̃i1,k + . . . + X̃ip,k ., k = 1 . . . m. The partition of I into
m disjoint sets is achieved using hierarchical clustering based on the weighted series
distance matrix dw = 1 − ρw, where ρw(i, j) ≡

(
Xi, Xj

)
w/
(
‖Xi‖w

∥∥Xj
∥∥

w

)
, (X, Y)w ≡

∑N
l=1 wlXlYl , wl = card

(
{x(l) ∈ X̃}

)
, ‖X‖w =

√
(X, X)w, and Xi and Xj are reconstructed

series obtained from the corresponding trajectory matrices X̃i and X̃j.
Hierarchical clustering (HC) is a clustering method that produces a hierarchy of

clusters. In this work, agglomerative HC is considered, which is a bottom-up approach in
the sense that each observation forms its own cluster and observations are then merged
in an additive manner as we move up the hierarchy. Each observation is one of the
reconstructed series Xi, i = 1, . . . , d. The distance between observations i, j is given by
(dw)i,j. In the first HC step, pairs of observations i, j form a cluster if i = agr mini∗(dw)i∗ ,j .
In the second HC step, since clusters have been formed, there must be a definition of cluster
distance. This is provided by the linkage clustering method, for which there are many
choices, including single-linkage, complete-linkage, average-linkage, and Ward-linkage
clustering. The single-linkage clustering method is used here, where the clusters A and B
are at a distance min

(
(dw)i,j, i ∈ A, j ∈ B

)
. The HC steps continue with upwards clustering

until the desirable number of clusters, nc, are formed (the HC stopping criterion in this
work) or until the clusters are too far apart to merge. In Figure 3, the SSA method with
the HC automatic grouping of the eigenvalues is tested on a signal y = x + sin(2πx) + n
containing white Gaussian noise n (with a signal-to-noise ratio of SNR = 10 dB), a trend,
and oscillation. Running the SSA with HC where three clusters of eigenvalues are created
results in the correct identification of the three subseries corresponding to noise, trend,
and oscillation.

Finally, in the reconstruction step on each of the trajectory matrices X̃Ik of the grouped
matrix decomposition X̃ = X̃I1 + . . .+ X̃Im , a projection operator PH is applied, which is just
antidiagonal averaging followed by the inverse embedding transform T−1. It is proven [37]
that the reconstructed series XIk is optimal in the sense that it minimizes

∥∥X̃Ik − T
(
XIk

)∥∥
F,

where ‖M‖F is the Frobenius norm of the matrix M. From SSA, we obtain a time subseries
of Xi, where i = 1, . . . , d are the SSA components, and it is possible to calculate their
dynamic time and information length. The dynamic time τ(t) is a time scale over which
the probability of Xi changes, on average, at time t (denoted as p(Xi, t)). The probability
p(Xi, t) is estimated from a subset (window) of Xi samples of length WL produced around
the time index t. In particular, first, the samples of Xi are interpolated to equally spaced
time instances (separated by dt); then, from the samples of each window w of size WL,
the p(Xi, t) is calculated at the time instant t at the middle of the window’s time interval.
Then, the window w is moved (running window) by one time sample, and p(Xi, t + dt)
is calculated at the time instant t + dt, and so on. The calculation of p(Xi, t) is carried
out based on the histogram of w samples. Usually the histogram-produced p(Xi, t) is
non-smooth and a smoothing Gaussian kernel is applied. In particular, the probability p is
approximated by

p̂(y) =
1

WL · hK

WL

∑
m=1,im∈w

K
(

y− Xim
hK

)
, (4)

where K(x) is a positive function (the kernel) and hK is the bandwidth parameter. A
Gaussian kernel (standard normal pdf) and an optimum bandwidth h∗K (for the Gaussian
kernel) are chosen as [38]

h∗K =

(
2

3WL

)1/5
min

(
σ̂R, ˆiqrR

)
, (5)
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where σ̂R and ˆiqrR are the empirical standard deviation and interquartile deviation, respec-
tively. σ̂R is optimal in the sense that it minimizes the `2 approximation error ‖p− p̂‖2.

0 2 4 6 8 10

x

-1

0

1

y

Original

series of class1 (noise)

0 2 4 6 8 10

x

-1

0

1

y

Original
series of class2 (trend)

0 2 4 6 8 10

x

-1

0

1

y

Original

series of class3 (oscillation)

y=x+sin(2  x)+n

Figure 3. Validation of the SSA method by applying it on the time series y, where y = x + sin(2πx) +
n and n is white Gaussian noise. Obviously, y contains a noise part, a trend part, and an oscillatory
part. All three components are correctly identified by the SSA method.

Then, τi(t) of the Xi subsequence is given by [28]

τi(t)
2 = 1/

∫
dXi

1
p(Xi, t)

(
∂p(Xi, t)

∂t

)2
. (6)

From the dynamic time, the information length, Li(t), can be directly calculated [28]:

Li(t) =
∫ t

0
ds

1
τi(s)

. (7)

In the implementation of Equations (6) and (7), since Xi and t are discrete, the integrals
and differentiations become summations and differences, respectively.

Another quantity of interest is the Hurst exponent [39] of X. In general, 0 < H < 1
but if H = 0.5, the series is considered random (uncorrelated); if H > 0.5, the series has a
long-term positive autocorrelation, meaning that high (low) values in the series X will have
a higher probability of being followed by another high (low) value. Conversely, if H < 0.5,
in the long run, with high probability, high (low) values in X will have a higher probability
of being followed by another low (high) value. The Hurst exponent is calculated by the
rescaled range (RS) method as the exponent H such that E[R(n)/S(n)] = CnH for n→ ∞,
where C is a constant, E[x] is the expected mean, S(n) is the standard deviation of the series
X1, X2, . . . , Xn, and R(n) is the range of the n cumulative deviations from the mean; that is,
R(n) = max(Z1, Zs, . . . , Zn)−min(Z1, Zs, . . . , Zn), Zj = ∑

j
i=1(Xi −m), m = (∑n

i=0 Xi)/n.
Then, H is calculated as the slope of the line that fits the log(R(n)/S(n)) data as a function
of log(n).
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4. Results and Discussion

All data obtained from the GENE code are based on the variation of three parameters:
the normalized radius of the stellarator s ∈ {0.5, 0.8}, the normalized temperature gradient
R/LT ∈ {1, 4}, and the normalized density gradient R/Ln ∈ {0, 1}. Note that the threshold
for instability is non-linearly dependent on both density and temperature gradients such
that, with a linear increase in the density gradient, the corresponding growth rate changes
in a non-linear way; see, e.g., Ref. [40]. Using the fluid model, the critical gradient is
R/LT = 2.7 for R/Ln = 0 and R/LT = 3.0 for R/Ln = 1.0 in the local limit (k|| = 0). This
indicates that the realizations with R/LT = 1 are just below the stability limit, whereas
R/LT = 4 is in the unstable regime. In addition, the data have been normalized to zero
mean and unit variance. In the following table, the Hurst exponent is shown for all
8 realizations of the parameters s, R/LT , and R/Ln for the complete or full-time series
including oscillating and noise parts.

It is noted that cases (0.8, 1, 1), (0.5, 1, 1) are of less importance since the heat flux Q is
close to zero and not in a quasi-stationary state and is thus difficult to compare with the
other cases. Note that although the cases with higher density gradients yielded almost zero
flux in comparison with the lower density gradient case, this may be indicated from the
linear dynamics, where the driving is a competition between the density and temperature
gradients. These almost-zero heat flux cases are neglected in the following analysis. Note
that the information length in the zero heat flux cases are several orders of magnitude
larger than the cases discussed here. Furthermore, all cases of interest in Table 1 exhibit
Hurst exponents larger than 0.5, which is an indication of a positive autocorrelation in the
time series, as discussed previously. In short, a Hurst exponent of 0.5 indicates that the
signal is uncorrelated and thus mostly dependent on random events; however, if H > 0.5,
as is the case here, there is a persistence in the time series such that there is a higher
probability of having repeated similar values. It is also of interest to discuss the effect
of oscillatory components. A pure sinusoidal component is an example of deterministic
dynamics that would have a Hurst exponent H = 1.0 for time lags much smaller than
the period. The values obtained here, [0.57, 0.70], is in the same range as those found in
Ref. [41] by the Langmuir probe measurement of turbulent fluctuations in edge plasmas,
which were estimated to be in the range of 0.62 to 0.72 as measured in a collection of widely
different devices such as tokamaks, stellarators, and one reverse field pinch (RFP). It is known
that competing low-frequency, large-scale phenomena have significant impacts on the heat
flux. These are primarily attributed to mitigating zonal flows and detrimental avalanches,
which would both lead to increased Hurst exponents. A general observation regarding the
time traces is that the comparable signal-to-noise ratio is vastly different for the different
parameters, thus influencing the Hurst exponent. This will be discussed further below.

Applying the Wiener-–Khinchine theorem, the second-order structure function is the
Fourier-transformed power spectrum. There is a relationship between the fractality of the
process and the Hurst exponent, which yields a power spectrum of the form

S(ω) ∝ ω−β, (8)

where β = 2H − 1 if the time series is indeed self-similar. This indicates a weak power-law
scaling, which is in the same range as those indicated in gyrokinetic simulations of ITG
turbulence in Ref. [42].
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Table 1. The Hurst exponent and the β for all 8 realizations of the parameters s, R/LT , and R/Ln of
the full time series.

(s, R/LT , R/Ln) H β = 2H − 1

(0.5, 1, 0) 0.7039 0.4078

(0.5, 4, 0) 0.5687 0.1374

(0.5, 1, 1) 0.6937 0.3874

(0.5, 4, 1) 0.6316 0.2632

(0.8, 1, 0) 0.6954 0.3908

(0.8, 4, 0) 0.5851 0.1702

(0.8, 1, 1) 0.5993 0.1986

(0.8, 4, 1) 0.5859 0.1718

In Figure 4, the information length (L), computed using Equation (7), is shown for
different values of the parameters (s, R/LT , R/Ln). For the calculation of L, as described
previously, a number of subseries samples, WL, of the running window were used. The
subseries Xi used corresponds to the non-noise part of the series X, as identified by the HC
method. In particular, Xi = ∑

|nn|
j=1,j∈nn Xj, where the set nn contains the subseries indices

belonging to the class of noise-free Xj subseries. Initially, these samples were used for the
calculation of the probability p(Xi, t) at sample time t in the middle of the running window.
It is observed that the information length is monotonously increasing due to the positive
definiteness inherent in its definition. It is thus pertinent to point out that the information
length describes any change in the system (as defined by a change in the PDF of the system)
with an increasing function; a system in a steady state would have a constant PDF and thus
a constant information length (see Equation (7)). It is found, as expected, that the system is
close to a quasi-steady state with an almost linearly or stepwise linearly increasing information
length over time. However, in order to compute the PDFs, a finite number of sampling points
must be used; thus, the accuracy of the PDF is dependent on the time and sampling points to
estimate the PDF. Moreover, the sampling time cannot be too long since then rapid changes
in the dynamics will not be captured. Thus, several tests with varying sampling points and
window length were performed; see Figure 3 for a subset of these tests.
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Figure 4. Information length (L) as a function of time samples, where running windows of samples
have been used with different lengths WL (a) for WL = 21, (b) for WL = 101, and (c) for WL = 201.

In Figure 5, the 1/τ parameter is presented as a function of the time samples for
different values of the Hurst exponent (H), as given in Table 1 for the corresponding
parameters (s, R/LT , R/Ln). It is observed that peak values of the 1/τ parameters occur
at the same time samples where the information length changes abruptly. This is to
be expected since the information length is the integral of 1/τ, as seen in Equation (7).
However, only consistent or persistent sampling over the time scale in the value of 1/τ in
the integration will make significant changes in the information length. This persistence in
the time series is a property that is related to the Hurst exponent.

When WL increases, a more accurate estimation of p(Xi, t) and consequently of L is
obtained. However, as WL increases, the sampling length for the PDF results in a decreased
number of time intervals or instances, t (which is N−WL), where the information length L
is determined. It is observed in Figure 4 that as WL increases roughly by a factor of 5 from
Figure 4a,b, the values of L decrease by roughly a factor of 20, while from Figure 4b,c, it can
be seen that L decreases by a factor of 3 when WL increases by a factor of 2. Considering
also that as WL increases, more time samples of the time trace are used, L is more accurately
estimated for increasing values of WL, and convergent results are to be expected for
WL = 201. Fewer data points for the estimation of the PDF will result in situations where
higher moments are not well-represented and the integration approximated by summation
of the PDFs may become questionable. Since the dynamic time is related to the information
length, it was also calculated for WL = 201.



Entropy 2023, 25, 942 11 of 21

0 200 400 600 800 1000 1200 1400 1600 1800 2000

sample number

0

0.1

0.2

0.3

0.4

0.5

0.6

1
/

1/  for window length:201

H = 0.5658

H = 0.6954

H = 0.5851

H = 0.5859

H = 0.6316

H = 0.7039

Figure 5. 1/τ as a function of time samples for various values of the Hurst exponent H of Table 1.

In analyzing the effect of increased density gradients (R/Ln), it is pertinent to remem-
ber that, as mentioned previously, there is a threshold value for turbulence. A change in
linear stability is indicative of changes in the plasma state, whichis here approximated
by the PDFs; e.g., in Figure 4c, the information length approaches an almost stepwise
linear function in the cases of R/Ln = 1. A linear increase in information is found in
linear and non-linear Fokker–Planck models with linear time evolution. Note that several
combinations of density and temperature gradients indicate conditions close to marginal
stability where the dynamical system is expected to rapidly change between different states,
including the effects of large-scale modes such as zonal flows. Due to this, the influence
of the normalized radius and density and temperature gradients on information length
will not be a linear relationship; however, the triplet (s, R/LT , and R/Ln) will determine
the path in the phase space and yield a Hurst exponent depending on the persistence or
randomness of the resulting fluctuations. In particular, it is interesting to observe if there is
a relationship between the final value of the information length according to Equation (7)
and the triplet, as summarized in Table 2.

Table 2. Maximum value of information length and Hurst exponent as a function of the parameter
triplet s, R/LT , and R/Ln.

Case Number s R/LT R/Ln max(L) H

1 0.5 1 0 41.3 0.7039

2 0.5 4 0 18.4 0.5687

3 0.5 4 1 58.0 0.6316

4 0.8 1 0 55.8 0.6954

5 0.8 4 0 43.4 0.5851

6 0.8 4 1 46.3 0.5859

It is found that, for s = 0.5, an increased density gradient R/Ln in combination with
a higher temperature gradient R/LT = 4 yield increased information length. However,
keeping the density gradient constant (R/Ln = 0) results in decreased information length.
In the case with s = 0.8, the increased density gradient results in decreased information
length. Furthermore, it is observed that an increase in s gives an increased information
length for both temperature gradients, except for the case with R/LT = 4 and R/Ln = 1.
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One other interesting property of the time trace is the fractality, which seems to have an
impact, as indicated by the varying Hurst exponent. Arranging the maximum information
lengths with increasing Hurst exponents indicates that randomness and persistence in
the time series give smaller values of information length. This could be explained by the
closeness to marginal stability; the case with a Hurst exponent of 0.70 is close and may
be impacted by non-linearly generated flows, yielding an increased Hurst exponent and
a smaller information length. On the other hand, the smallest Hurst exponent is close to
0.5, indicating more randomness. This case is further from marginal stability, and the time
trace is thus more prone to randomly generated transport events.

In Figures 6–11a, it is observed that the case R/LT = 4 seems to mainly consist of
the oscillatory component, whereas the random part is small compared to the case of
R/LT = 1. This property seems to hold independently of the s and R/Ln values. It
has been suggested that the dynamic time can indicate large changes in the plasma state
since it is the instantaneous distance between two PDFs describing the state. Although
the information length is monotonously increasing, there exist large fluctuations in the
dynamic time for all window lengths WL, indicating rapid changes in the plasma state.
However, to have significant changes in the dynamics, a consistent trend is needed, as
can also be seen in the information length. Thus, by analyzing the information and the
dynamic time in tandem, a change in dynamics can be indicated. There are a few examples
visible in the information length for WL = 201 and (s, R/LT , R/Ln) = (0.8, 1, 0) around a
time step of 700–800. In this case, there is also a consistent minimum in the dynamic time,
yielding, on average, a larger contribution (see Figure 10) to the information length since
the dynamic time is inversely proportional to the information length. In Figure 7, there
is a consistent minimum around time step 1500, which coincides with a rapid change in
information. Quantification of the noise and oscillatory parts of the time trace is needed to
delve deeper in the dependence of the Hurst exponent and the persistence of the properties
of the oscillatory and noise parts since it was noted that it seems that the different cases
have largely varying degrees of stochastic and oscillatory parts that may influence the
information length and the Hurst exponent.

In Table 3, the signal-to-noise ratio (dB)is computed as SNR = 10× log10

( Psignal
Pnoise

)
(where Pi denotes the power), or variances of the oscillatory and noise parts of the time
trace are presented. It is interesting to compare the time traces in Figures 7 and 10 with the
highest and lowest signal-to-noise ratios with the same gradients. It is observed that in
Figure 7, the noise is only a very small part of the total time trace, whereas in Figure 10, the
noise is a significant part of the signal. The information length is widely different (18.4 in
Case 2 and 43.4 in Case 5), whereas the Hurst exponent is very similar (0.5687 in Case 2
and 0.5851 in Case 5). In comparing the cases with the largest Hurst exponents, such as
Case 1 (0.7039) and Case 4 (0.6954), where these cases also have the same gradients, the
signal-to-noise ratio is in the middle range. However, the information length increases from
Case 1 (41.3) to Case 4 (55.8), which is due to the different position s. Note that in comparing
Cases 3 and 6, it seems that these are quite similar in the sense that they are identified
to have not too different Hurst exponents and information length in the mid range with
similar signal-to-noise ratios. There are differences, in particular, in the information length,
which is likely to be due to different conditions in the core and edge.

This indicates that it is possible to identify time instances where relatively sudden
changes in the plasma state happen by investigations of the dynamic time and information
length. However, unless the PDFs are investigated, there is no classification of what type of
event it is. It is merely an indicator that the state is changing rapidly, which might be due
to the generation of a high-transport event, such as an avalanche. If it is some other type of
mode, it is not visible in the information length, and it is encoded in the PDF itself.
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Table 3. The signal-to-noise ratio in dB and the variance of the oscillatory and noise parts.

Case Number (s, R/LT , R/Ln) SNR (dB) VAR (Oscillatory) VAR (Noise)

1 (0.5, 1, 0) 6.9 0.64 0.13

2 (0.5, 4, 0) 20.1 0.92 0.01

3 (0.5, 4, 1) 8.9 0.76 0.10

4 (0.8, 1, 0) 13.4 0.81 0.04

5 (0.8, 4, 0) 3.8 0.52 0.22

6 (0.8, 4, 1) 9.4 0.78 0.09
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Figure 6. Case 1: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201.
Here, nc is the maximal number of clusters, as defined in Section 3.
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Figure 7. Case 2: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201.
Here, nc is the maximal number of clusters, as defined in Section 3.
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Figure 8. Case 3: (a) Hierarchical clustering results and (b) dynamic time calculation for WL = 201.
Here, nc is the maximal number of clusters, as defined in Section 3.
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Figure 9. Case 4: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201.
Here, nc is the maximal number of clusters, as defined in Section 3.
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Figure 10. Case 5: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201.
Here, nc is the maximal number of clusters, as defined in Section 3.
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Figure 11. Case 6: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201.
Here, nc is the maximal number of clusters, as defined in Section 3.

5. Discussion

In this work, time series generated by gyro-kinetic (GENE) simulations were investigated
using the information geometric paradigm. The aim of this investigation was to quantify if
changes in turbulent states could be identified by changes in information. As a testbed for
the statistical analysis, we performed gyrokinetic simulations of ITG-mode-driven turbulence
at two different magnetic flux radii, s = 0.5 and s = 0.8, with adiabatic electrons, which
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were relevant for the experimental conditions of the W7-X stellarator. The modeling and
statistical analysis of turbulent heat fluxes in realistic configurations of different degrees of
quasi-isodynamicity were the specific aims of the current paper. In order to create a reasonable
test bed for the analysis, variations in density and temperature gradients were included
in the test cases; however, only electrostatic perturbations were considered. The statistical
analysis required long time series, where the statistics in the quasi-stationary state of the
physical observables in the time series were of interest. These long time series (in terms of
many turn-over times of the turbulence) were needed to capture the higher moments of the
probability distributions (PDFs).

In this paper, we investigated the time series data from these simulations using the
Hurst exponent, cluster analysis, and the information length approach. The Hurst exponent
provided information on the long-term memory of the time series and was calculated by
the RS method. The time series were further analyzed by the SSA method. In particular, the
series were decomposed into subseries corresponding to the eigenvalues of the trajectory
matrix, as described in the SSA. These eigenvalues were classified by the hierarchical
clustering algorithm, which was built upon an appropriate weighted distance measure
of the corresponding subseries. The eigenvalues were classified into three groups: noise,
trends, and oscillatory parts. The part of the time series where noise was subtracted was
then used to calculate the dynamic time and the information length.

A summary of the most important findings in this paper is presented in the following list.

1. The instantaneous change in information length is stored in the dynamic time, in-
dicating that this could be a measure of instantaneous change in the plasma state.
However, the dynamic time exhibits rapid fluctuations, and to have a consistent
change in dynamics, a significant change in the information over a short interval is
needed due to the effects of inertia on the dynamics.

2. We find several distinct changes in state, from a quiescent state to a state with in-
creased transport where large-scale transport events occur and are caused by the
plasma turbulence in W7-X. In particular, the Hurst exponent (H) is consistently
above H > 0.5, suggesting that in this case, larger transport events can indeed oc-
cur. This methodology provides another tool in finding coherent transport events
mediating large fluxes.

3. By analyzing the information and the dynamic time in tandem, a change in dynamics
can be indicated. Here, it is pertinent to remember that due to inertial effects, to have a
significant change in the dynamics, a consistent change in the dynamic time is needed,
as is then indicated in a rapid increase in information. It is only by the analysis of the
original time trace that the properties of persistence can be elucidated, e.g., observing
the fluctuations and oscillatory parts.

This study paves the way for further work on analyzing different types of plasma and
investigating the possible usefulness of the information regarding the change of plasma
state. However, it would be even more interesting to see if there are trends or possibilities
in predicting changes in the dynamic time from a previous knowledge of the system, such
as by statistical or specific types of machine learning techniques. Then, sudden changes
in dynamics could be predicted by looking at series of PDFs describing the system. In
particular, to validate the methodology, analyzing other time series data from simulation or
experiments is necessary.
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