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On the Best Lattice Quantizers
Erik Agrell, Fellow, IEEE, and Bruce Allen, Member, IEEE

Abstract—A lattice quantizer approximates an arbitrary real-
valued source vector with a vector taken from a specific discrete
lattice. The quantization error is the difference between the
source vector and the lattice vector. In a classic 1996 paper, Zamir
and Feder show that the globally optimal lattice quantizer (which
minimizes the mean square error) has white quantization error:
for a uniformly distributed source, the covariance of the error
is the identity matrix, multiplied by a positive real factor. We
generalize the theorem, showing that the same property holds
(i) for any lattice whose mean square error cannot be decreased
by a small perturbation of the generator matrix, and (ii) for an
optimal product of lattices that are themselves locally optimal in
the sense of (i). We derive an upper bound on the normalized
second moment (NSM) of the optimal lattice in any dimension,
by proving that any lower- or upper-triangular modification to
the generator matrix of a product lattice reduces the NSM.
Using these tools and employing the best currently known lattice
quantizers to build product lattices, we construct improved lattice
quantizers in dimensions 13 to 15, 17 to 23, and 25 to 48. In some
dimensions, these are the first reported lattices with normalized
second moments below the best known upper bound.

Index Terms—Dither autocorrelation, laminated lattice, lattice
theory, mean square error, moment of inertia, normalized second
moment, product lattice, quantization constant, quantization
error, vector quantization, Voronoi region, white noise.

I. INTRODUCTION

LATTICES are regular arrays of points in Rn. They are
obtained as arbitrary linear combinations of (at most n)

linearly independent basis vectors, with integer coefficients.
Hence, lattices are a countably infinite set of vectors, closed
under addition. The remarkable book by Conway and Sloane
[1] provides a comprehensive review of lattices and their
properties.

As fundamental geometric structures, lattices have found
applications in a variety of disciplines, including digital com-
munications [2], experimental design [3], data analysis [4],
and particle physics [5]. In each application, the problem of
designing the best lattice for a given purpose arises. Such
optimization challenges often reduce to familiar mathematical
problems such as sphere-packing, sphere-covering, or quanti-
zation [1, Ch. 1–2].

In this paper, we are concerned with the quantization prob-
lem, which can be defined as follows. Random vectors in Rn

are drawn from some (source) probability distribution, and ap-
proximated by their closest lattice points. This approximation
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(or quantization) process creates a round-off (or quantization)
error: the difference between the vector and its closest lattice
point. Among all lattices having the same number of lattice
points per unit volume, the optimal lattice quantizer is the
lattice with the minimum mean square error. This is equivalent
to minimizing the normalized second moment (NSM), which
is a scale-invariant measure of this mean square error.

As in most work on lattice quantization, we assume that
the lattice is sufficiently dense so that the source probability
distribution is approximately constant over each Voronoi re-
gion. In this case, the optimal lattice does not depend upon
the source distribution of the random vectors.

Tables of the NSM, showing the best known lattices for
quantization in various dimensions are listed in [6], [7], [1,
p. 61], and the quantization performance of some additional
lattices is computed in [8]–[13]. Yet, proofs of optimality are
known only in dimensions up to three [6], [14].

In a pioneering 1996 paper [15], Zamir and Feder show
that the optimal lattice quantizer in any dimension has a white
quantization error. More precisely, the error defined above
(vector difference between a random source vector and its
closest lattice vector) has a covariance matrix which is the
identity matrix, scaled by a positive real constant.

In this paper, we extend the Zamir and Feder result to locally
optimal lattices. These are lattices whose NSM cannot be
reduced by a small perturbation of the lattice generator matrix.
We also consider product lattices, which are the Cartesian
product of two or more lower-dimensional lattices. The NSM
of a product lattice depends on the relative scaling between the
component lattices. A closed-form expression for the optimal
scale factors is derived, and we call a product lattice using
such scale factors an optimal product. If each of the lower-
dimensional lattices is locally optimal, then we prove that the
optimal product is the one for which the quantization error is
white.

Lastly, we apply these methods to explicitly design some
product lattices and analytically optimize their scale factors.
These provide constructive upper bounds on the quantization
performance of the optimal lattices in their respective dimen-
sions. This simple construction yields better lattice quantizers
than previously reported in all dimensions above 12 except for
16 and 24. We also prove that further optimization is possible:
the NSM of such product lattices is a saddle point in the space
of generator matrices, and can be further reduced by certain
perturbations of the generator matrix.

II. MATHEMATICAL PRELIMINARIES AND METHOD

Notation: Bold lowercase letters x denote row vectors,
while bold uppercase letters X denote either matrices or
random vectors. An all-zero vector or matrix of an arbitrary
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size (inferred from the context) is denoted by 0, and identity
matrices are denoted by I . Sets are denoted by uppercase
Greek letters Ω, apart from the integers Z and real numbers
R. Arithmetical operations on sets should be understood as
operating per element, e.g., Ω + λ ≜ {x + λ : x ∈ Ω}.
Definitions are indicated by ≜.

Without loss of generality, we consider n-dimensional lat-
tices Λ that are generated by square invertible n×n generator
matrices B. The lattice consists of the set of points uB for
all row vectors u with integer components. The all-zero row
vector 0 belongs to all lattices. The cubic lattice Zn is the
special case for which B is the identity matrix.

Until now, we have used “quantization” to denote the map
from a vector in Rn to the closest lattice point. However, for
the proofs in this paper, we consider more general mappings.
A quantization rule or quantizer for a lattice Λ is a function
QΛ(x) such that for all x ∈ Rn

QΛ(x) ∈ Λ, (1)
QΛ(x+ λ) = QΛ(x) + λ for all λ ∈ Λ. (2)

The quantizer’s properties are completely determined by its
behavior in the fundamental decision region

Ω(QΛ) ≜ {x ∈ Rn : QΛ(x) = 0}, (3)

since (2) may then be used to determine the action anywhere.
The translate Ω(QΛ) + λ of the fundamental decision region
is called the decision region of the lattice point λ. All have
the same volume [2, Prop. 2.2.1]

VΛ ≜
∫
Ω(QΛ)

dnx = |detB|. (4)

As indicated by the notation VΛ, this volume depends upon the
lattice Λ, but is independent of the quantization rule. Taken
together, the decision regions of all lattice points cover Rn

without overlap.
As mentioned in the Introduction, the performance of lattice

quantizers does not depend upon the source distribution if
the lattice is sufficiently dense. To prove this, consider a
source probability density function (pdf) pX(x), normalized
by
∫
pX(x) dnx = 1. The mean square quantization error of

the quantization rule is

E[∥x−QΛ(x)∥2] =
∫
Rn

pX(x)∥x−QΛ(x)∥2 dnx. (5)

Since the translates Ω(QΛ) + λ,∀λ ∈ Λ cover Rn without
overlap, the mean square error can be written as

E[∥x−QΛ(x)∥2] =
∫
Ω(QΛ)

∑
λ∈Λ

pX(λ+ x)∥x∥2 dnx, (6)

where we use (2) to write this as an integral over the funda-
mental decision region and (1) to set QΛ(x) = 0 inside that
region. If now Λ is sufficiently dense, then

∑
λ∈Λ pX(λ+ξ) is

approximately constant, independent of ξ. Such a probability
distribution can be obtained by rescaling a smooth base pdf p̃
of compact support, for example as pX(x) = αnp̃(αx) in the

limit as α → 0. In such a limit,
∑

λ∈Λ pX(λ + ξ) = 1/VΛ

for any ξ,1 and the mean square error (6) approaches [16]

E(QΛ) ≜ lim
α→0

E[∥x−QΛ(x)∥2] (7)

=
1

VΛ

∫
Ω(QΛ)

∥x∥2 dnx. (8)

Hence, in what follows, the pdf of the source does not appear.
Important quantities that are closely related to the mean

square error are the NSM or quantizer constant G(QΛ) and
the correlation matrix R(QΛ), which are [6], [2, pp. 48, 71]

G(QΛ) ≜
E(QΛ)

nV
2/n
Λ

, (9)

R(QΛ) ≜
1

VΛ

∫
Ω(QΛ)

xTx dnx. (10)

Note that the NSM G(QΛ) is “dimensionless” in the sense
that it is invariant under uniform rescaling of the lattice. From
(8) and (10), it follows that

E(QΛ) = trR(QΛ), (11)

so the trace of the correlation matrix gives the mean square
error.

It follows immediately from the definition (10) that the cor-
relation matrix R is real, symmetric, and positive definite. If
the quantization error is not white, then R provides “preferred
directions” in the space, for example corresponding to the
eigenvector with the largest or the smallest eigenvalue. In the
case of white quantization error, however, R is proportional
to the identity, and does not generate preferred directions,
since every vector is an eigenvector with the same positive
real eigenvalue.

For a given lattice Λ, the most common and important rule
is the minimum-distance quantization rule, denoted by a hat:

QΛ(x) = Q̂Λ(x) ≜ argmin
λ∈Λ

∥x− λ∥2. (12)

For any vector x, it returns the closest vector in the lattice. Ties
can be broken by any criterion that respects condition (2). This
quantization rule is special because, for a given lattice Λ, it
minimizes E(QΛ) and G(QΛ). This follows immediately from
(7), because the expectation E[∥x − QΛ(x)∥2] is minimal if
∥x − QΛ(x)∥2 is minimized for every x. Hence, Q̂Λ is the
optimal decision rule for a given lattice.

For this rule, the fundamental decision region (3) is the
Voronoi region

Ω(Q̂Λ) ≜ {x ∈ Rn : ∥x∥2 ≤ ∥x− λ∥2, ∀λ ∈ Λ}, (13)

which geometrically consists of all points in Rn whose closest
lattice point is the origin.2 An important property of the
Voronoi region of any lattice is that it is symmetric about 0:
the center of gravity

∫
Ω(Q̂Λ)

x dnx = 0. Hence, the correlation
matrix R(QΛ) is equal to the covariance matrix whenever
QΛ = Q̂Λ (but not for arbitrary quantization rules QΛ).

1This can be proved by writing
∫
p̃(x) dnx = 1 as a Riemann sum over

a shifted and scaled lattice x ∈ α(Λ + ξ).
2More precisely, the interiors of (3) and (13) are equal under the rule (12).

With a slight abuse of notation, we disregard their boundaries, which have
zero n-volume and do not contribute to any integral over a finite integrand.
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Throughout this paper, the word “optimal” is used in several
senses. For a given lattice, the optimal decision rule is the
one which minimizes the NSM, i.e., (12). Among all lattices
of given dimension, the optimal lattice is the one with the
smallest NSM. The optimal product of given lattices is the
one that minimizes the NSM among all Cartesian products of
those lattices, by varying the relative scales between them.

Our main theorem-proving technique is, as in [2, Sec. 4.3],
to construct different decision rules for a given lattice, ex-
ploiting the fact that their NSMs are equal to or greater than
the NSM of the optimal decision rule Q̂. For example, in
Sec. III, if the quantization error of a lattice Λ is not white,
then R provides preferred directions (say, the eigenvectors
with the largest eigenvalue)3. With these, we construct a family
of lattices Λ̃ with nonoptimal decision rules, whose NSM is
smaller than that of the original lattice Λ. Since the NSM of Λ̃
with an optimal decision rule cannot be larger, we have thus
shown that the original lattice is not optimal. A similar proof
technique is applied in Sec. V. Starting with a product lattice,
we generate a new non-product lattice, with a nonoptimal
decision rule, but whose NSM is equal to that of the original
starting lattice. Hence, the optimal decision rule on the new
non-product lattice must yield a smaller NSM than that of the
original product.

III. LOCALLY OPTIMAL LATTICES

Our starting point is the following theorem, which states that
the globally optimal quantizer lattice has a white quantization
error: a covariance matrix proportional to the identity.

Theorem 1 (Zamir–Feder [15], [2, Sec. 4.3]): For the
optimal lattice Λ in any dimension n,

R(Q̂Λ) =
E(Q̂Λ)

n
I. (14)

We now generalize this to the locally optimal case.
A locally optimal lattice is a lattice Λ whose NSM G(Q̂Λ)

cannot be decreased by an infinitesimal perturbation of the
generator matrix B [14]. The extension to Theorem 1 is:

Theorem 2: Any locally optimal lattice satisfies (14).
Proof: Our proof is constructive. If the covariance matrix

of Λ is not proportional to the identity matrix, we use it to
build a nearby lattice Λ̃ with a smaller NSM than the NSM
of Λ.

Let Λ̃ = ΛAβ , where Aβ is an invertible n × n matrix
and β is a real parameter to be defined later. As in [15], we
consider the minimum-distance quantizer Q̂Λ(x) on Λ and the
suboptimal quantizer Q̃Λ̃(x) ≜ Q̂Λ(xA

−1
β )Aβ on Λ̃.

It is straightforward to show that Q̃Λ̃(x) satisfies (1)–(2) and
has a fundamental decision region Ω(Q̃Λ̃) = Ω(Q̂Λ)Aβ . Note
that while Ω(Q̂Λ) is the Voronoi region of Λ, the fundamental
decision region Ω(Q̃Λ̃) is generally not the Voronoi region of
Λ̃. By (4), it has volume VΛ̃ = VΛ |detAβ |.

The covariance matrices of the two quantization rules are
easily related using the change of variables (mapping) pro-
vided by Aβ . From (10), the covariance matrix of Q̃Λ̃ is

3A similar argument leads to [17, Eq. 5.1.1].

R(Q̃Λ̃) = AT
βR(Q̂Λ)Aβ [15, Eq. (15)]. Hence, the NSM

is

G(Q̃Λ̃) =
E(Q̃Λ̃)

nV
2/n

Λ̃

=
tr(AβA

T
βR(Q̂Λ))

n(VΛ |detAβ |)2/n
, (15)

where we have used the cyclic property of the trace.
To select Aβ , we follow the approach described earlier,

using R(Q̂Λ) to obtain preferred directions.4 Let R̄ denote
the traceless part, which by assumption is nonzero:

R̄ ≜ R(Q̂Λ)−
trR(Q̂Λ)

n
I, (16)

and let Aβ ≜ exp(βR̄). This choice of mapping is volume-
preserving, since for any square matrix M , det(exp(M)) =
exp(trM) [18, p. 16]. Thus, detAβ = exp(β tr R̄) = 1. Note
that because the covariance matrix is symmetric and real, both
R̄ and Aβ are symmetric and real.

For the proof, we only need Aβ for infinitesimal β:

Aβ = I + βR̄+O(β2). (17)

Substituting Aβ from (17) and R(Q̂Λ) = I trR(Q̂Λ)/n+ R̄
from (16) into (15), the NSM becomes

G(Q̃Λ̃) =
1

nV
2/n
Λ

tr

([
I + βR̄+O(β2)

]2 [ trR(Q̂Λ)

n
I + R̄

])

= G(Q̂Λ) + 2β
tr R̄

2

nV
2/n
Λ

+O(β2), (18)

where we have distributed the trace over additions and used
trR̄ = 0.

It is clear from (18) that for negative β near zero, we
have G(Q̃Λ̃) < G(Q̂Λ). This follows because, since R̄ is a
non-vanishing real symmetric matrix, tr R̄2 must be positive5.
Since the NSM of the minimum-distance quantization rule (12)
on Λ̃ satisfies6 G(Q̂Λ̃) ≤ G(Q̃Λ̃), we have established that for
negative β near zero, G(Q̂Λ̃) < G(Q̂Λ).

To test Theorem 2, we examine a large number of numer-
ically optimized lattice quantizers. These were designed in
1996 using an iterative algorithm, which converges to different
locally optimal lattices [11]. A total of 90 locally optimal
lattices are available as online supplementary material to the
1998 article [19]; we estimate the covariance matrices R(Q̂Λ)
of their quantization errors using Monte Carlo integration. In
all cases, consistent with the theorem, the obtained covariance
matrices are proportional to the identity matrix, apart from
minor round-off errors.

Theorem 2 establishes that local optimality is a sufficient
condition for a white quantization error (14). Is it also a
necessary condition? In other words, is any lattice that satisfies
(14) locally optimal? In the next two sections, we will show
that this is false, using product lattices as a counterexample.

4From here on, our proof deviates from the corresponding proof in [15] for
globally optimal lattices.

5To prove this, write R̄ = UDU−1 where U is orthogonal and D is real
and diagonal, then use the cyclic property of the trace.

6We have no way to directly analyze the performance of Q̂Λ̃ because we
have no simple expression for the Voronoi region Ω(Q̂Λ̃).
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IV. PRODUCT LATTICES

In this section, we study lattices that are formed as the
Cartesian products of lower-dimensional lattices. Gersho ap-
plied this technique to obtain upper bounds on the optimal
NSM for n = 5 and n = 100, without formalizing the
expressions [6, Sec. VII].

Let k lattices in dimensions n1, . . . , nk be denoted by
Λ1, . . . ,Λk, and consider their product Λp = Λ1 × · · · × Λk,
whose dimension is n = n1 + · · · + nk. A generator matrix
for Λp is

Bp =


B1 · · · 0

...
. . .

...
0 · · · Bk

 , (19)

where Bi is a generator matrix of Λi for i = 1, . . . , k. The
Voronoi region, volume, and other properties of a product
lattice are as follows.

Proposition 3: For any k ≥ 1 and Λp = Λ1 × · · · × Λk,

Ω ≜ Ω(Q̂Λp) = Ω1 × · · · × Ωk, (20)

V ≜ VΛp = V1V2 · · ·Vk, (21)

E ≜ E(Q̂Λp
) = E1 + · · ·+ Ek, (22)

G ≜ G(Q̂Λp) =
1

nV 2/n

k∑
i=1

niV
2/ni

i Gi, (23)

R ≜ R(Q̂Λp
) =


R1 · · · 0

...
. . .

...
0 · · · Rk

 , (24)

where Ωi, Vi, Ei, Gi, and Ri denote the corresponding
properties of Λi.

An example of a 3-dimensional Voronoi region Ω, con-
structed according to Proposition 3 as the Cartesian product
of two lower-dimensional Voronoi regions Ω1 and Ω2, is
illustrated in Fig. 1.

Proof: Let x = [x1 · · · xk] and λ = [λ1 · · · λk]. By
definition, Ω in (13) is formed by all vectors xi ∈ Rni for
i = 1, . . . , k such that

∥x1∥2 + · · ·+ ∥xk∥2 ≤ ∥x1 − λ1∥2 + · · ·+ ∥xk − λk∥2,
(25)

for all λi ∈ Λi.
If xi ∈ Ωi for all i, then ∥xi∥2 ≤ ∥xi−λi∥2. Summing over

i = 1, . . . , k implies (25), so Ω1 × · · · ×Ωk ⊆ Ω. Conversely,
if x ∈ Ω, then for a fixed i we set λj = 0 in (25) for all
j ̸= i. This implies ∥xi∥2 ≤ ∥xi − λi∥2 for all λi ∈ Λi,
so that xi ∈ Ωi. Repeating for i = 1, . . . , k shows that Ω ⊆
Ω1 × · · · × Ωk.

Taken together, Ω1× · · ·×Ωk ⊆ Ω and Ω ⊆ Ω1× · · ·×Ωk

prove (20), which in turn proves (21).

Ω

Ω1

Ω2

0

Fig. 1: The Voronoi region Ω of the product lattice Λp =
Λ1 × Λ2, where Λ1 is the two-dimensional hexagonal lattice
A2 and Λ2 is the one-dimensional integer lattice Z. The origin
0 belongs to all three lattices and is the centroid of all three
Voronoi regions. The top and bottom facets of Ω are shifted
copies of Ω1, and the six vertical edges are shifted copies of
Ω2.

The definition (8), applied to a product lattice using (20)
and (21), implies that

E =
1

V

∫
Ω1

· · ·
∫
Ωk

(
∥x1∥2 + · · ·+ ∥xk∥2

)
dn1x1 · · · dnkxk

=
1

V1V2 · · ·Vk
((V1E1)V2 · · ·Vk + · · ·+ V1V2 · · · (VkEk)) ,

(26)

which proves (22). Equation (23) follows by substituting E =
nV 2/nG and the corresponding expressions for Ei into (22),
and simplifying using (21) and n = n1 + · · ·+ nk.

Lastly, to prove (24), we use (20) in (10) to obtain

R =
1

V

∫
Ω1

· · ·
∫
Ωk


xT
1 x1 · · · xT

1 xk

...
. . .

...
xT
kx1 · · · xT

kxk

 dn1x1 · · · dnkxk.

(27)

For the submatrices on the diagonal, whose integrands have
the form xT

i xi, the volumes cancel as in (26), leaving Ri. The
off-diagonal submatrices with integrands xT

i xj for i ̸= j are
separable into products of two integrals such as

∫
Ωi

xi d
nixi.

These vanish because (as pointed out after (13)) the Voronoi
region Ωi is symmetric about zero and thus has its center of
gravity at the origin.

We now generalize the product construction by introducing
a list of real positive scale factors a = [a1, . . . , ak] to build
a family of product lattices Λ(a) = a1Λ1 × · · · × akΛk. A
generator matrix for Λ(a) is

B(a) =


a1B1 · · · 0

...
. . .

...
0 · · · akBk

 . (28)
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The properties of Λ(a) follow by replacing Ωi by aiΩi, Vi by
ani
i Vi, Ei by a2iEi, and Ri by a2iRi in Proposition 3, while

Gi, due to its scale-invariant definition (9), remains unchanged
for i = 1, . . . , k. These substitutions result in

Ω(a) = a1Ω1 × · · · × akΩk, (29)
V (a) = an1

1 · · · ank

k V1 · · ·Vk, (30)

E(a) = a21E1 + · · ·+ a2kEk, (31)

G(a) =
1

nV (a)2/n

k∑
i=1

nia
2
iV

2/ni

i Gi, (32)

R(a) =


a21R1 · · · 0

...
. . .

...
0 · · · a2kRk

 . (33)

For given Λ1, . . . ,Λk, what scale factors a produce the
optimal product Λ(a), in the sense of minimizing G(a)? We
note that G(a) has at least one minimum for finite and positive
a1, . . . , ak, because if one of these scale factors is varied while
keeping the others fixed, then (32) diverges to infinity as the
scale factor tends to either zero or infinity. This minimum is
unique up to a linear scale factor, and has a closed form as
follows.

Theorem 4: For given lattices Λ1, . . . ,Λk, varying only a,
Λ(a) is an optimal product if and only if

ai =
C

V
1/ni

i

√
Gi

, i = 1, . . . , k (34)

for an arbitrary real constant C > 0. An equivalent condition
is

ai = C

√
ni

Ei
, i = 1, . . . , k. (35)

The optimal NSM G(a) is given by

Gn(a) = Gn1
1 · · ·Gnk

k (36)

independently of V1, . . . , Vk.
Proof: The derivative of G(a) in (32) with respect to ai

is
∂G(a)

∂ai
=

1

nV (a)2/n
· 2niaiV

2/ni

i Gi

− 2

n2V (a)1+2/n

∂V (a)

∂ai
·

k∑
j=1

nja
2
jV

2/nj

j Gj . (37)

Substituting

∂V (a)

∂ai
=

ni

ai
V (a), (38)

which follows from (30), into (37) and simplifying yields

∂G(a)

∂ai
=

2ni

nV (a)2/n

aiV
2/ni

i Gi −
1

nai

k∑
j=1

nja
2
jV

2/nj

j Gj

 .

(39)

Equating (39) to zero for i = 1, . . . , k reveals that a2iV
2/ni

i Gi

is constant for all i, which gives (34). Substituting (34) back
into (39) confirms that (34) is not only necessary for (39) being

zero but also sufficient, regardless of C. Then (35) follows
from (34) and (9). Substitute (34) into (30) and (32), and use
n1 + · · · + nk = n. Finally, Vi and C cancel out and (36)
emerges.

An interesting special case is when the sublattices Λi are
locally optimal for all i = 1, . . . , k. If the scale factors a are
optimally chosen according to Theorem 4, which we denote by
aopt, then Λ(aopt) also has white quantization error. We state
this in a way similar to Theorems 1 and 2, but with different
conditions.

Corollary 5: If Λ1, . . . ,Λk are locally optimal lattices,
Λ(a) = a1Λ1 × · · · × akΛk, and [a1, . . . , ak] = aopt, then

R(aopt) =
E(aopt)

n
I. (40)

Furthermore, G(aopt) is locally minimal with respect to any
perturbations in the submatrices on the diagonal of (28).

Proof: From Theorem 2, Ri = (Ei/ni)I for i =
1, . . . , k. Using this together with (35) in (33) yields
R(aopt) = C2I = (E(aopt)/n)I , where the latter equality
is proved by substituting (35) into (31).

To prove the local optimality of G(aopt), we let a′i ≜
aiV

1/ni

i and B′
i ≜ BiV

−1/ni

i , where as before Vi = detBi.
Then the submatrices on the diagonal of (28) can be written
as aiBi = a′iB

′
i for all i, where V ′

i ≜ detB′
i = 1. We will

consider variations in a′i and B′
i separately. First, if a′i is varied

for any fixed (not necessarily optimal) B′
i, then Theorem 4

applies and the minimal NSM is attained when a′i = C/
√
Gi.

Consequently, the optimal scale factors ai = a′i/V
1/ni

i follow
(34), and (39) is zero. Second, we consider variations in B′

i

for any fixed (not necessarily optimal) a′i, keeping detB′
i = 1.

Then the NSM in (32) is locally minimal when Gi is locally
minimal, i.e., when Λi is a locally optimal lattice.

Theorem 2 and Corollary 5 are curiously related to each
other: both give sufficient (but not necessary) conditions for
a white quantization error. Is Corollary 5 perhaps a special
case of Theorem 2? In other words, is the optimal product
Λ(aopt), to which Theorem 4 and Corollary 5 apply, also a
locally optimal lattice, as defined in Sec. III? We will see in
the next section that the answer is “no”; for any lattice of
the form (28) with a = aopt, the NSM can be decreased by
perturbing any of the off-diagonal submatrices written as 0 in
(28).

V. UPPER BOUND

In this section, we show that the NSM of any lattice is
bounded above by that of a product lattice, which is given by
(23) or (32). For brevity, we develop the case k = 2 explicitly
and then show that k > 2 follows by induction.

Consider a square generator matrix of the form

B =

[
B1 0

H B2

]
, (41)

where B1 is n1 × n1 and B2 is n2 × n2. Let Λ1, Λ2, and Λ
be the lattices generated by B1, B2, and B, respectively, and
let Λp = Λ1 × Λ2 as in Sec. IV.
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0

(a) Q̂Λp

0

(b) Q̃Λ

0

(c) Q̂Λ

Fig. 2: An example of Theorem 7 with n1 = n2 = 1. Each cell is the decision region of the lattice point it contains, and the
shaded cells are the fundamental decision regions. Comparing (a) and (b) shows that the NSMs of Q̂Λp and Q̃Λ are equal,
because their fundamental decision regions are identical. Comparing (b) and (c) shows that Q̃Λ cannot have a smaller NSM
than Q̂Λ, because the lattices are identical and Q̂Λ(x) minimizes the quantization error for every x.

Lemma 6: For any H , G(Q̂Λ) ≤ G(Q̂Λp
), with equality if

H = 0.

Proof: The method of proof is to define a suboptimal
quantizer Q̃Λ for which G(Q̃Λ) = G(Q̂Λp

). The lemma then
follows, because by the definition of Q̂Λ, G(Q̂Λ) ≤ G(Q̃Λ).
The decision regions for the three different quantizers are
illustrated in Fig. 2.

We construct the suboptimal quantization rule from the
optimal quantization rules for Λ1 and Λ2. As earlier, write
the source vector as x = [x1 x2], where x1 and x2 have
respective dimensions n1 and n2. Our suboptimal quantization
rule is defined by the following four-step algorithm:

x̂2 ≜ Q̂Λ2(x2), (42)

z1 ≜ x̂2B
−1
2 H, (43)

x̂1 ≜ Q̂Λ1(x1 − z1), (44)

Q̃Λ(x) ≜ [x̂1 + z1 x̂2]. (45)

Quantities with subscript “1” lie in the subspace spanned by
the first n1 coordinates (horizontal in Fig. 2) and the quantities
with subscript “2” lie in the subspace spanned by the final n2

coordinates (vertical in Fig. 2). We first show that this is a
quantization rule: it satisfies the conditions (1)–(2).

Condition (1): Since Q̂Λ1
(x1 − z1) ∈ Λ1 and Q̂Λ2

(x2) ∈
Λ2, there exist integer vectors u1 and u2 such that x̂1 = u1B1

and x̂2 = u2B2. Then by (43), z1 = u2H and by (45),
Q̃Λ(x) = [u1B1 + u2H u2B2] = [u1 u2]B, which shows
that Q̃Λ(x) ∈ Λ.

Condition (2): Consider Q̃Λ(x+λ) for an arbitrary λ ∈ Λ.
Let λ ≜ [v1 v2]B = [v1B1 + v2H v2B2], where v1 and
v2 are integer vectors. Let x′ ≜ [x′

1 x′
2] ≜ x + λ, and let

x̂′
2, z′

1, x̂′
1, and Q̃Λ(x

′) denote the quantities obtained via the
algorithm (42)–(45) when x is replaced by x′. Since Q̂Λ1

and

Q̂Λ2 satisfy (2), one finds

x̂′
2 = Q̂Λ2

(x2 + v2B2)

= x̂2 + v2B2, (46)

z′
1 = (x̂2 + v2B2)B

−1
2 H

= z1 + v2H, (47)

x̂′
1 = Q̂Λ1

(x1 + v1B1 + v2H − z1 − v2H)

= x̂1 + v1B1, (48)

Q̃Λ(x
′) = [x̂1 + v1B1 + z1 + v2H x̂2 + v2B2]

= Q̃Λ(x) + λ. (49)

Thus, since it satisfies both conditions, Q̃Λ is a valid quanti-
zation rule.

The NSM of Q̃Λ is determined by its fundamental decision
region, defined by (3). From (45) and (43), Q̃Λ(x) = 0 if and
only if x̂1 = 0 and x̂2 = 0. Hence, (3) yields

Ω(Q̃Λ) = {x ∈ Rn : Q̂Λ1
(x1) = 0 and Q̂Λ2

(x2) = 0}
= Ω(Q̂Λ1

)× Ω(Q̂Λ2
)

= Ω(Q̂Λp
). (50)

Thus, the fundamental decision region of the (suboptimal)
quantization rule for Λ is identical to the fundamental decision
region of the optimal quantization rule for Λp. This can be
intuitively understood by comparing Figs. 2(a) and 2(b).

Since the fundamental decision regions of Q̃Λ and Q̂Λp

are identical, so are all properties derived from these regions,
e.g., E(Q̃Λ) = E(Q̂Λp

), R(Q̃Λ) = R(Q̂Λp
), and G(Q̃Λ) =

G(Q̂Λp
). But since the optimal decision rule for Λ satisfies

G(Q̂Λ) ≤ G(Q̃Λ), our proof is complete: G(Q̂Λ) ≤ G(Q̂Λp
).

Equality if and only if H = 0 follows, since B in (41) and
Bp in (19) are equal if and only if H = 0.

In digital communications, the suboptimal quantization rule
Q̃Λ is known as successive interference cancellation [20]. In
that scenario, x1 and x2 represent information received on
two parallel communication channels, which interfere with
each other. If x̂2 is detected first (42), its effect on x1 can
be calculated (43) and cancelled (44) before x̂1 is detected in
(45). If (42)–(45) are extended to n steps of one-dimensional
quantization, then the resulting suboptimal quantization rule
yields the Babai point [21].

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3291313

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON INFORMATION THEORY, TO APPEAR, 2023 7

The extension to k > 2 follows immediately. Let Λ be the
lattice generated by

B =


B1 0 · · · 0

H2,1 B2 · · · 0
...

...
. . .

...
Hk,1 Hk,2 · · · Bk

 , (51)

Λi be the lattice generated by Bi for i = 1, . . . , k, and Λp =
Λ1 × · · · × Λk.

Theorem 7: For given B1, . . . ,Bk and any Hi,j , G(Q̂Λ) ≤
G(Q̂Λp), with equality if Hi,j = 0 for all i, j.

Proof: By induction. If the theorem holds for the upper-
left (k− 1)× (k− 1) part of (51), then it extends to k× k by
Lemma 6.

Like Proposition 3, Theorem 7 can also be extended by scale
factors a. Specifically, if B1, . . . ,Bk in (51) are multiplied
by scale factors a = [a1, . . . , ak], then the NSM G(a) of the
resulting lattice is bounded by (32) for arbitrary given a or by
(36) for optimal a.

We now return to the question of whether the optimal
product Λ(a) generated by B(a) in (28) is always locally
optimal at a = aopt. It was observed in Corollary 5 that
if Λ1, . . . ,Λk are locally optimal, then G(aopt) is locally
minimal with respect to perturbations in any submatrix aiBi

about its local optimum. On the other hand, it follows from
Theorem 7 that G(aopt) is locally maximal with respect
to perturbations about 0 in any submatrix below the block
diagonal of B(aopt). The same theorem holds if (51) is
replaced by an upper-triangular matrix B. This proves that
G(aopt) is also locally maximal with respect to perturbations
about 0 above the block diagonal of B(aopt). Since the
NSM increases for any perturbations in the submatrices on
the diagonal of (28) and decreases for any perturbations in
submatrices either below or above the block diagonal, the first
derivative of G with respect to these entries must vanish: the
NSM has a saddle point at B(aopt). In conclusion, all lattices
that fulfill (14) are not locally optimal.

One way to construct lattices is by lamination of a lower-
dimensional lattice. To build an n-dimensional laminated lat-
tice Λ, take a generator matrix B1 for an (n−1)-dimensional
lattice Λ1 and an arbitrary (n−1)-dimensional vector h. Then
construct the n× n generator matrix

B =

[
B1 0

h a

]
. (52)

Here a > 0 is a real number, which is the distance between
the shifted lattice copies in the direction orthogonal to their
subspace, and the vector h is the stacking offset in the (n −
1)-plane. Fig. 1 illustrates the Voronoi region of a laminated
lattice with n = 3 and h = 0.

In the classical lattice literature, “laminated lattices” are
built recursively in this way, to maximize the packing density,
starting from Z. So B1 is itself the generator for a laminated
lattice, and in each recursive iteration, h and a in (52) are
selected to maximize the packing density. This construction
gives rise to the well-studied Λ and K series in [22], [23], [1,
Sec. 4 of Ch. 5 and Ch. 6].

In this paper, our focus is the NSM rather than the packing
density, so we use “laminated lattice” more broadly for any
lattice generated via (52). This broader meaning is consistent
with [13], [24]. Note that to maximize the packing density,
the optimal choice of h is a “deep hole” in Λ1 (a vertex of
the Voronoi region most distant from the origin). This is also
(intuitively) a good choice to minimize the NSM, although it
may not be optimal.

An upper bound on the quantization performance of a
laminated lattice follows directly from the results of Secs. IV
and V, as follows.

Corollary 8: An n-dimensional lattice Λ obtained by lam-
ination of an (n − 1)-dimensional lattice Λ1 satisfies, for an
arbitrary offset h and the optimal layer separation a,

G(Q̂Λ) ≤
G(Q̂Λ1

)1−
1
n

12
1
n

. (53)

Proof: Setting n2 = 1, Λ2 = aZ, and H = h in Lemma
6 yields

G(Q̂Λ) ≤ G(Q̂Λp
), (54)

where Λp = Λ1× aZ. Furthermore, setting n2 = 1, Λ2 = aZ,
G1 = G(Q̂Λ1

), and G2 = G(Q̂Z) = 1/12 in Theorem 4 yields

G(Q̂Λp
) ≤ G(Q̂Λ1

)1−
1
n

12
1
n

. (55)

Combining (54) and (55) completes the proof.
As a curiosity, we note that (53) would have been more

appealing if G had been defined a factor of 12 larger than
the standard definition (9). With that alternative definition,
Zn would have an NSM of 1 in any dimension and the
denominator would disappear from expressions like (53) and
(55).

VI. BEST KNOWN LATTICE QUANTIZERS

The upper bound in Corollary 8 has interesting implications.
These call to mind an observation made by Cohn in the context
of sphere packing [27]. Referring to a plot of sphere-packing
density as a function of dimension, he comments that “Certain
dimensions, most notably 24, have packings so good that
they seem to pull the entire curve in their direction. The fact
that this occurs is not so surprising, since one expects cross
sections and stackings of great packings to be at least good,
but the effect is surprisingly large.” Indeed, the sphere-packing
density in a given dimension n is bounded by a function of
the sphere-packing density in dimension n − 1 according to
Mordell’s inequality [1, Eq. (19) of Ch. 6]. Here, in the context
of lattice quantizers, Corollary 8 does precisely this for NSMs.
A lattice with particularly small NSM G in dimension n− 1
makes it possible to also obtain a small NSM in dimension n,
and hence “pulls down the NSM curve” for larger dimensions.
More generally, Theorem 7 can pull down the curve over
intervals of more than one dimension.

We designed product lattices in dimension n by applying
Theorem 4 with k = 2 to the best known lattices in dimensions
n1 and n2 = n − n1, for n1 ranging from 1 to n − 1.
There is no need to explicitly consider k > 2, although
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TABLE I: The best known lattice quantizers. Columns 2–3 list the smallest normalized second moments (NSM) G previously
reported in dimension n, while columns 4–5 list the conjectured lower and upper bounds, respectively. Columns 6–7 list our
best product lattices. Columns 8–9 indicate if the product lattice in Column 7 provides a smaller NSM than previously reported
in Column 2 (<G) and/or is below the upper bound of Column 5 (<U). NSMs that are are known exactly are listed with nine
decimals, whereas NSMs with five decimals are derived from numerical estimates in [8].

Best previously reported Generic bounds Best product
n NSM Lattice Lower [25] Upper [26] NSM Lattice Better?

1 0.083333333 Z 0.083333333 0.083333333

2 0.080187537 A2 0.080187537 0.080267223 0.083333333 Z⊗ Z
3 0.078543281 A∗

3 0.077874985 0.079723711 0.081222715 A2 ⊗ Z
4 0.076603235 D4 0.076087080 0.078822518 0.079714343 A∗

3 ⊗ Z
5 0.075625443 D∗

5 0.074654327 0.078731261 0.0779043017 D4 ⊗ Z <U
6 0.074243697 E∗

6 0.073474906 0.077779975 0.076858706 D∗
5 ⊗ Z <U

7 0.073116493 E∗
7 0.072483503 0.076858058 0.075478834 E∗

6 ⊗ Z <U
8 0.071682099 E8 0.071636064 0.075654034 0.074321725 E∗

7 ⊗ Z <U
9 0.071622594 AE9 0.070901661 0.075552237 0.072891732 E8 ⊗ Z <U

10 0.070813818 D+
10 0.070257874 0.074856027 0.072715487 AE9 ⊗ Z <U

11 0.070426259 A3
11 0.069688002 0.074026177 0.071869620 D+

10 ⊗ Z <U
12 0.070095600 K12 0.069179323 0.073098569 0.071420842 A3

11 ⊗ Z <U
13 0.074873919 D∗

13 0.068721956 0.072400247 0.071034583 K12 ⊗ Z <G <U
14 0.074954492 D∗

14 0.068308096 0.071672217 0.071455542 K12 ⊗A2 <G <U
15 0.075039738 D∗

15 0.067931488 0.071008692 0.071709124 K12 ⊗A∗
3 <G

16 0.06830 Λ16 0.067587055 0.070399705 0.071668753 K12 ⊗D4

17 0.075216213 D∗
17 0.067270625 0.069886791 0.06910 Λ16 ⊗ Z <G <U

18 0.075304924 D∗
18 0.066978741 0.069403282 0.06953 Λ16 ⊗A2 <G

19 0.075392902 D∗
19 0.066708503 0.068958664 0.06982 Λ16 ⊗A∗

3 <G
20 0.075479665 D∗

20 0.066457468 0.068548490 0.06988 Λ16 ⊗D4 <G
21 0.075554858 A∗

21 0.066223553 0.068173104 0.06998 Λ16 ⊗D∗
5 <G

22 0.075577414 A∗
22 0.066004976 0.067826205 0.06987 Λ16 ⊗ E∗

6 <G
23 0.075601888 A∗

23 0.065800200 0.067506055 0.06973 Λ16 ⊗ E∗
7 <G

24 0.06577 Λ24 0.065607893 0.067208741 0.06941 Λ16 ⊗ E8

25 0.075655156 A∗
25 0.065426891 0.066939780 0.06640 Λ24 ⊗ Z <G <U

26 0.075683386 A∗
26 0.065256179 0.066685133 0.06678 Λ24 ⊗A2 <G

27 0.075712385 A∗
27 0.065094858 0.066446178 0.06708 Λ24 ⊗A∗

3 <G
28 0.075741975 A∗

28 0.064942137 0.066222221 0.06722 Λ24 ⊗D4 <G
29 0.075772009 A∗

29 0.064797312 0.066012092 0.06737 Λ24 ⊗D∗
5 <G

30 0.075802366 A∗
30 0.064659756 0.065814436 0.06738 Λ24 ⊗ E∗

6 <G
31 0.075832940 A∗

31 0.064528911 0.065628191 0.06736 Λ24 ⊗ E∗
7 <G

32 0.075863646 A∗
32 0.064404271 0.065452387 0.06720 Λ24 ⊗ E8 <G

33 0.075894409 A∗
33 0.064285386 0.065286162 0.06732 Λ24 ⊗AE9 <G

34 0.075925169 A∗
34 0.064171846 0.065128681 0.06722 Λ24 ⊗D+

10 <G
35 0.075955874 A∗

35 0.064063282 0.064979253 0.06720 Λ24 ⊗A3
11 <G

36 0.075986480 A∗
36 0.063959359 0.064837252 0.06718 Λ24 ⊗K12 <G

37 0.076016949 A∗
37 0.063859771 0.064702115 0.06757 Λ24 ⊗K12 ⊗ Z <G

38 0.076047252 A∗
38 0.063764240 0.064573335 0.06781 Λ24 ⊗K12 ⊗A2 <G

39 0.076077363 A∗
39 0.063672511 0.064450455 0.06799 Λ24 ⊗K12 ⊗A∗

3 <G
40 0.076107259 A∗

40 0.063584352 0.064333062 0.06677 Λ24 ⊗ Λ16 <G
41 0.076136923 A∗

41 0.063499548 0.064220781 0.06713 Λ24 ⊗ Λ16 ⊗ Z <G
42 0.076166341 A∗

42 0.063417902 0.064113272 0.06736 Λ24 ⊗ Λ16 ⊗A2 <G
43 0.076195500 A∗

43 0.063339234 0.064010223 0.06753 Λ24 ⊗ Λ16 ⊗A∗
3 <G

44 0.076224390 A∗
44 0.063263376 0.063911352 0.06761 Λ24 ⊗ Λ16 ⊗D4 <G

45 0.076253004 A∗
45 0.063190174 0.063816399 0.06770 Λ24 ⊗ Λ16 ⊗D∗

5 <G
46 0.076281336 A∗

46 0.063119483 0.063725126 0.06770 Λ24 ⊗ Λ16 ⊗ E∗
6 <G

47 0.076309381 A∗
47 0.063051171 0.063637315 0.06768 Λ24 ⊗ Λ16 ⊗ E∗

7 <G
48 0.076337136 A∗

48 0.062985115 0.063552764 0.06577 Λ24 ⊗ Λ24 <G

7Proposed as an upper bound in [6, Tab. I].
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recursive application of Theorem 4 with k = 2 can generate
product lattices with larger k. The minimal NSM obtained in
each dimension provides a constructive upper bound on the
optimal NSM. It follows from Theorem 7 that better lattice
quantizers can be found among lattices of the form (51), where
B1, . . . ,Bk are the best known lattices in their dimensions,
for example by lamination if ni = 1 for any i.

Tab. I summarizes the best known lattice quantizers in
dimensions n ≤ 48. The first such list was compiled in
1979 for n = 1 to 5 [6]. It was extended to n ≤ 10 in
1982 [7], which also analytically calculated the NSMs of the
classical lattices An, A∗

n, Dn, and D∗
n for any n. Since then,

progress has been much slower. Better lattices were reported
for n = 6 and 7 in [8] and for n = 9 and 10 in [11], although
the NSMs of these lattices were only computed numerically.
Reference [8] also gave the best known lattice quantizers for
n = 12, 16, and 24 with numerically computed NSMs. Later,
the corresponding exact NSMs were calculated for n = 6 [9],
n = 7 [10], n = 9 [13], and n = 10 and 12 [12]. In the latter
reference, a new best known lattice quantizer was identified
for n = 11. NSM results for n ≤ 15 were summarized in [4].

In Tab. I, we also include the best known lower and upper
bounds on the NSM. The lower bound is a conjecture by
Conway and Sloane [25], which we evaluated numerically by
high-resolution trapezoidal integration. The upper bound is by
Torquato in [26, Eq. (105)]8 and improves on a well-known
bound by Zador [16, Lemma 5]. The Torquato upper bound
is for arbitrary quantizers, which might not be lattices. We
conjecture that there is always at least one lattice quantizer
satisfying this bound. For the best known packing densities,
which are needed to evaluate [26, Eq. (105)], we use [1,
Tab. I.1]. Taken together, these two results provide conjectured
lower and upper bounds on the NSM of optimal lattice
quantizers. While intuitively plausible, these remain unproven.

For each dimension, the last four columns of Tab. I list the
best product lattice that can be constructed from the lattices
given on the preceding rows of the table. While Theorem 7
establishes that these lattices are not even locally optimal, they
nevertheless improve significantly on the previously lowest
reported NSMs. For brevity, we use ⊗ to denote the Cartesian
product of lattices with the optimal choice of relative scale.
More precisely, Λ1 ⊗ · · · ⊗ Λk ≜ a1Λ1 × · · · × akΛk with
[a1, . . . , ak] given by Theorem 4.

The first dimension in which this construction provides a
better lattice quantizer than previously reported is n = 13,
where our best product lattice is K12 ⊗ Z. With an NSM of
0.0710, it is the first reported 13-dimensional lattice whose
NSM falls below the generic upper bound 0.0724. It is sig-
nificantly better than the currently best known 13-dimensional
lattice quantizer D∗

13, whose NSM is 0.0749. Our optimized
product lattices are also the first reported lattices which lie
below the upper bound in dimensions n = 14, 17, and 25.

8See [28, Note 31] for corrections.

VII. CONCLUSIONS

As far as we know, Table I is currently the most extensive
published table of record NSM lattices.9 Previous tables have
not gone beyond n = 16, apart from a numerical estimate
for n = 24. It is disconcerting that in many dimensions the
smallest known NSMs are for product lattices, since we have
proven that these cannot be optimal. This reflects the complex-
ity of designing good lattices and of evaluating their NSMs.
The theoretical results in this paper provide some properties
of optimal lattice quantizers, which in combination with the
tabulated product lattices may hopefully provide guidance and
benchmarks for further progress in lattice quantization. An
analytic or algorithmic method to optimize H in (41) or h in
(52) would be highly desirable.
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