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Abstract

In this paper, we consider risk-sensitive sequen-
tial decision-making in Reinforcement Learning
(RL). Our contributions are two-fold. First, we in-
troduce a novel and coherent quantification of risk,
namely composite risk, which quantifies the joint
effect of aleatory and epistemic risk during the
learning process. Existing works considered either
aleatory or epistemic risk individually, or as an
additive combination. We prove that the additive
formulation is a particular case of the composite
risk when the epistemic risk measure is replaced
with expectation. Thus, the composite risk is more
sensitive to both aleatory and epistemic uncertainty
than the individual and additive formulations. We
also propose an algorithm, SENTINEL-K, based
on ensemble bootstrapping and distributional RL
for representing epistemic and aleatory uncertainty
respectively. The ensemble of K learners uses Fol-
low The Regularised Leader (FTRL) to aggregate
the return distributions and obtain the composite
risk. We experimentally verify that SENTINEL-K
estimates the return distribution better, and while
used with composite risk estimates, demonstrates
higher risk-sensitive performance than state-of-the-
art risk-sensitive and distributional RL algorithms.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms, with their recent
success in games and simulated environments [Mnih et al.,
2015], have drawn interest for real-world and industrial
applications [Pan et al., 2017, Mahmood et al., 2018]. In ad-
dition, since in RL the environment is by definition unknown
to the agent, exploring it so as to improve performance and
eventually obtain the optimal policy entails risks. Although
the risk is not an issue in simulation, it is important to con-

sider risks when interacting in the real world [Pinto et al.,
2017, Garcıa and Fernández, 2015, Prashanth and Fu, 2018].
In this paper, we employ a model-free approach that enables
us both to efficient in terms of the amount of data needed,
and to be flexible with respect to the risk metric the agent
should consider when making decisions.

Risk sensitivity in reinforcement learning and Markov De-
cision Processes (MDPs) has sometimes been considered
under a minimax formulation over plausible MDPs [Sa-
tia, 1973, Heger, 1994, Tamar et al., 2014]. Alternative
approaches include maximising a risk-sensitive statistic
instead of the expected return [Chow and Ghavamzadeh,
2014, Tamar et al., 2015, Clements et al., 2019]. In this
paper, we focus on the second approach due to its flexibility.
Either approach requires estimating the uncertainty associ-
ated with the decision-making procedure. This uncertainty
includes both the inherent randomness in the model and
the uncertainty due to imperfect information about the true
model. These two type of uncertainties are called aleatory
and epistemic uncertainty respectively [Der Kiureghian and
Ditlevsen, 2009].

In recent literature, researchers have either quantified epi-
stemic and aleatory risks separately [Mihatsch and Neuneier,
2002, Eriksson and Dimitrakakis, 2020] or considered an
additive risk formulation where their weighted sum is min-
imised by an RL algorithm [Clements et al., 2019].

In this work, we propose a composite risk formulation in
order to accurately capture the combined effect of aleat-
ory and epistemic uncertainty for decision-making in RL
(Section 4). Our composition of risks relies on coherent
risk measures, for which we show that their composition
remains coherent. Our choice of focusing on coherent risk
measures is also motivated by its extensive use and corres-
ponding benefits in control theory Majumdar et al. [2017],
decision theory Pflug and Pichler [2016], and reinforcement
learning theory [Tamar et al., 2016, Ruszczyński, 2010, and
references therein].

We incorporate composite risk measures within the Distribu-
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Figure 1: SENTINEL-K with FTRL-driven composite risk estimator and K CDQNs as return distribution estimators.

tional RL (DRL) framework [Bellemare et al., 2017, Tang
and Agrawal, 2018, Rowland et al., 2019]. The DRL frame-
work aims to model the distribution of returns of a policy
for a given environment (Section 3.2). This highly express-
ive distributional representation allows us to both estimate
appropriate risk measures and to incorporate them in final
decision-making. However, DRL approaches are typically
limited to modelling aleatory uncertainty, with epistemic
uncertainty due to partial information not being explicitly
modelled in terms of the return distribution. We us a boot-
strapping [Efron and Tibshirani, 1985] framework to rep-
resent epistemic uncertainty. Our framework, which we call
SENTINEL-K, is illustrated in Figure 1. At a high level, we
use Categorical Deep Q Network (CDQN) [Bellemare et al.,
2017] to model aleatory uncertainty and a bootstrapped en-
semble for epistemic uncertainty. These can be used with
any coherent measures and ensemble algorithm.

We discuss related work in Section 2. This is followed by
some background on risk measures, Markov decision pro-
cesses, and DRL in Section 3. SENTINEL-K is flexible
enough to use any combination of coherent risk measures
for aleatory and epistemic risks, as we explain in Section 4.
The algorithm is described in detail in Section 5, with Sec-
tion 5.1 and 5.2 showing how the ensemble is created and
its members weighted respectively.

Section 6 examines the performance of SENTINEL-K with
a composite CVaR metric on a highway environment with
10 cars. Our results show that our approach leads to fewer
number of crashes than competing algorithms: Variational
DQN (VDQN) [Tang and Agrawal, 2018], CDQN [Belle-
mare et al., 2017], total variance decomposition Uncertainty

Aware-DQN (UA-DQN) [Clements et al., 2019], as well as
SENTINEL-K with additive CVaR estimate, which we used
as an ablation test to showcase the importance of the us-
ing a coherent composite risk. The supplementary material
includes further experiments, showing that SENTINEL-K
features significantly improved estimates of return distribu-
tions, and shows that using FTRL for weighing the ensemble
members measurably improves performance.

2 RELATED WORK

For RL applications in the real world, such as for autonom-
ous driving and robotics, risk-sensitive RL approaches can
avoid the negative consequences of excessive exploration
that may lead to unsafe decisions in real-life. This has ini-
tiated a spate of research efforts [Howard and Matheson,
1972, Satia, 1973, Coraluppi and Marcus, 1999, Marcus
et al., 1997, Mihatsch and Neuneier, 2002, Prashanth and
Fu, 2018] spanning five decades. But the majority of risk-
sensitive RL papers [Howard and Matheson, 1972, Cora-
luppi and Marcus, 1999, Marcus et al., 1997] focused on
discrete state-space MDPs and either aleatory or epistemic
risk. We are interested in designing a general risk-sensitive
framework applicable to any type of state space and risk.

Both aleatory and epistemic uncertainties are important for
risk-sensitive RL. The former expresses the randomness
inherent to the problem and the latter a lack of knowledge
about the problem. Aleatory risk-sensitivity in MDPs was
first considered by [Howard and Matheson, 1972], who in-
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troduced the idea of exponential utilities for the return.1

Epistemic uncertainty in MDPs was investigated by [Satia,
1973], who provided game theoretic and Bayesian solu-
tion methods. Later works [Coraluppi and Marcus, 1999,
Marcus et al., 1997, Mihatsch and Neuneier, 2002] extend
risk-neutral methods to the risk-sensitive setting by using
a non-linear utility [Garcıa and Fernández, 2015]. They
consider aleatory risk-sensitive RL with exponential utility
on the return [Mihatsch and Neuneier, 2002]. Follow-up
works [Chow and Ghavamzadeh, 2014, C. et al., 2015]
focus on scaling up these approaches. Other work on risk-
sensitive RL focuses on CVaR [Chow and Ghavamzadeh,
2014, Tamar et al., 2015, Chow et al., 2015]. There have
been recent works considering epistemic risk [Eriksson and
Dimitrakakis, 2020], wherein problem uncertainty is ex-
pressed in a Bayesian framework as a distribution over
MDPs. Depeweg et al. [2018], Clements et al. [2019] intu-
itively incorporates both of these risks in decision making.
Depeweg et al. [2018] considers the risk in the per-step
rewards obtained in a MDP while Clements et al. [2019]
proposes to use the additive formulation of epistemic and
aleatory risks. Both of them use variance, which is not a
coherent measure [Artzner et al., 1999]. Unlike previous
work, our methodology of composite risk also allows us to
apply any pair of coherent risk measures2 to aleatory and
epistemic uncertainty.

We instead define a generalised composite risk measure that
takes into account both epistemic and aleatory uncertainty,
and their entangled effect. Coherence is important, as we
show that for any two coherent risk measures the composite
risk retains coherence. This gives a principled approach for
combining different application-appropriate risk measures
for epistemic and aleatory uncertainties.

To express aleatory uncertainty, we rely on a distributional
RL method called CDQN, which incorporates highly ex-
pressive approximators to model continuous and multimodal
return distributions. In addition, we leverage ensemble meth-
ods to express epistemic uncertainty. Ensemble methods
have first been used in risk-neutral RL by for representing
epistemic uncertainty in order to improve exploration [Di-
mitrakakis, 2006, 2007]. This approach was later applied
to MDPs by Osband et al. [2016]. On the other hand, Wi-
ering and Van Hasselt [2008] used ensembles to combine
policies instead. Ensembles have also been used to rep-
resent aleatory [Faußer and Schwenker, 2015, Pacchiano
et al., 2020] uncertainty. Recently, [Depeweg et al., 2018,
Clements et al., 2019] also use multiple Bayesian Neural
Networks (BNNs) to estimate epistemic uncertainty. In the
best of our knowledge, we are the first to use bootstrapped
CDQNs for quantifying epistemic risk, which gives us free-
dom to model distributions on plausible MDPs without any

1Here, we use return to mean the total discounted reward
2For example, CVaR, Wang risk measure [Wang, 2002], Stand-

ard Deviation (SD).

structural assumptions, e.g. Gaussian distribution on para-
meters of Bayesian NNs or Gaussian distribution on state
transitions [Clements et al., 2019]. An additional difference
with prior work is that we use a follow the regularised leader
(FTRL) algorithm to weigh the ensemble members in order
to improve our uncertainty estimates.

3 BACKGROUND

3.1 RISK MEASURES: COHERENCE

The idea of quantifying risk in decision making is long-
studied in decision theory and has found multiple applica-
tions in finance and actuarial science. A risk measure maps
a real-valued distribution to a real number, and quantifies
the probability of occurrence of an event away from the
expectation [Szegö, 2002]. Some well-known risk measures
are variance, Value at Risk (VaR) and Conditional Value
at Risk (CVaR). Coherent risk measures obey a set of ax-
ioms Artzner et al. [1999]: normalisation, monotonicity, sub-
additivity, homogeneity, and translation invariance. Not all
risk measures are coherent: CVaR is coherent, but variance
and VaR do not satisfy respect homogeneity and subadditiv-
ity respectively [Artzner et al., 1999].

If a coherent risk measure also satisfies comonotonic subad-
ditivity [Song and Yan, 2009, Axiom 4], it can be expressed
as an expectation over a distorted distribution function, for
a concave distortion function Uα : [0, 1]→ [0, 1]. Specific-
ally (see [Wang et al., 1997, Theorem 2]) a random variable
Z with associated probability measure P and cumulative
distribution function FZ satisfies:

RiskUα
(Z) ,

∫
Z
Z d(Uα ◦ P )

=

∫
Z
Uα(1− FZ(z)) dz =

∫ 1

0

Uα(t) dq(1− t), (1)

where (Uα ◦ P )(A) , Uα[P (A)] for any A ⊆ Z . The last
line is obtained from substitution of variables [Wirch and
Hardy, 2001]. Here, q is the quantile function, i.e. q(1−t) =
inf{z ≥ 0|FZ(z) ≥ 1− t} = F−1

Z (1− t), U(0) = 0, and
U(1) = 1. Since in this paper we use the risk measures
for decision making, we represent a coherent risk measure
through its corresponding distortion function Uα.

In this paper we focus on the CVaR [Rockafellar et al., 2000]
risk measure. It is extensively used in risk-sensitive RL as it
is coherent, applies to general Lp spaces, and captures the
heaviness of the tail of a distribution. It is the expectation
of the worst α-quantile of a probability distribution, with
α ∈ [0, 1]:

CV aRα(Z) , E[Z |Z ≤ να ∧ P(Z ≥ να) = 1− α]. (2)

For CVaR, Uα(t) = min{ t
1−α , 1}, For α = 1, CVaR re-

duces to the expected value, and thus risk-neutrality.
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Due to generality of our methodology and the composite
risk formulation, we are able to incorporate other coherent
risk measures such as the Wang risk measure [Wang, 2002],
and standard deviation [Cirillo, 2017] (Fig. 4).

3.2 RL: MDP AND DISTRIBUTIONAL RL

MDPs. We consider problems that can be modelled by a
Markov Decision Process (MDP) [Sutton and Barto, 2018].
An MDP is a tuple µ , (S,A,R, T , γ). S ∈ Rd is a state
space of dimension d. A is the set of admissible actions.
T is a transition kernel that determines the probability of
successor states s′ given the present state s and action a. The
reward functionR quantifies the goodness of taking action
a in state s. In the risk-neutral setup, the goal of the agent
is to find a policy π : S → A to maximise expected value
of cumulative rewards given a time horizon T : V π(s, a) =

E
[∑T

t=0 γ
tR(st, at)

]
. Here, st ∼ T (.|st−1, at−1), at =

π(st), s0 = s, a0 = a, and the discount factor γ ∈ (0, 1).
Distributional RL. The variable at the core of both risk-
neutral and risk-sensitive RL is usually the accumulated
discounted reward Zπ(s, a) ,

∑T
t=0 γ

tR(st, at). Zπ(s, a)
is called the return of a policy π. In distributional RL, the
goal is to learn the return distribution Zπ(s, a) obtained by
following policy π from state x and action a under the given
MDP.

In this work, we choose to extend CDQN by Bellemare et al.
[2017], as it permits richer representations of distributions,
and flexibility to compute different statistics. The intuition
of using this distributional framework for risk-sensitive RL
is its flexibility to model multimodal and asymmetrical dis-
tributions, which is important for an accurate estimate of
risk.

4 QUANTIFYING COMPOSITE RISK

In risk-sensitive RL, we encounter two types of uncertain-
ties: aleatory and epistemic. Aleatory uncertainty is en-
gendered by the stochasticity of the MDP model µ and the
policy π. Epistemic uncertainty exists due to the fact that the
MDP model µ is unknown. In the Bayesian setting, this is
represented as a belief distribution β over a set of plausible
MDPs Θ. Hence, risk measures can also be defined with
respect to the MDP distribution. Consequently, as an agent
learns more about the underlying MDP, the epistemic risk
vanishes. The aleatory risk is inherent to the MDP µ and
policy π, and thus persists even after correctly estimating
the model µ. Let us now define risk measures for aleatory
and epistemic uncertainties, and then combine them into a
composite risk measure.

Aleatory Risk. Given a coherent risk measure with dis-
tortion function UA

α , the aleatory risk is quantified as the
deviation of total risk of individual models from the risk of

the average model.

A(UA
α , β) ,

∫
Θ

∫
Z
Z d(UA

α ◦ P)(Z|θ) dβ(θ)

−
∫
Θ

∫
Z
Ẑ d(UA

α ◦ P)(Ẑ)

Here, P(Ẑ) =
∫
Θ
P(Z|θ) dβ(θ), i.e. the return distribution

of the average model. The centered definition of aleatory
risk is necessary to show that additive risk is a special case
of composite risk.

Epistemic Risk. Given a coherent risk measure with distor-
tion function UE

α , the epistemic risk quantifies the uncer-
tainty invoked by not knowing the true model. Thus, the risk
can be computed over any statistics of the models, such as
expectation.

E(UE
α , β) ,

∫
Θ

∫
Z
Z dP(Z|θ) d(UE

α ◦ β)(θ)

Composite Risk under Model and Inherent Uncertainty.
In typical risk-sensitive RL settings, the true MDP model is
both unknown and inherently stochastic. Thus, the overall
uncertainty is a composition of aleatory and epistemic un-
certainties. For that reason, quantify it using what we call
the composite risk.

Definition 1 (Composite Risk). For two coherent risk meas-
ures with distortion functions UA

α1
and UE

α2
, belief distribu-

tion β on model parameters θ ∈ Θ, and a random variable
Z ∈ Z , the composite risk of epistemic and aleatory uncer-
tainties is defined as

FC(UA
α1
, UE

α2
, β) , RiskUE

α2
(RiskUA

α1
(Z|θ)|β)

=

∫
Θ

∫
Z
Z d(UA

α1
◦ P)(Z|θ) d(UE

α2
◦ β)(θ)

=

∫ 1

0

∫ 1

0

UE
α2
(v)UA

α1
(u) dqZ|θ(1− u) dqβ(1− v) (3)

Here, qZ|θ and qβ are quantile functions of Z condi-
tioned on θ and that of θ respectively. For brevity, we
also denote FC(UA

α1
, UE

α2
, β) as RiskUE

α2
◦ RiskUA

α1
(e.g.

CVaR ◦ CVaR), whenever it is clear from the context.

Theorem 2 (Coherence). If UA
α1

and UE
α2

are distortion
functions for two coherent risk measures, the composite risk
measure FC(UA

α1
, UE

α2
, β) is also coherent.

The proof of Theorem 2 is available in Supplementary ma-
terial. The generic nature of our composite risk definition
allows us to use different risk measures compatible with
epistemic and aleatory risks. This is demonstrated in exper-
iments (Figure 4) using different combinations of CVaR,
Wang risk, and standard deviation for quantifying epistemic
and aleatory uncertainties. This flexibility was absent in pre-
vious risk-sensitive RL literature [Eriksson and Dimitraka-
kis, 2020, Depeweg et al., 2018, Clements et al., 2019].
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Figure 2: Estimation of total CV aRα from a mixture of
100 Gaussians sampled from a posterior distribution. Total
CV aRα[Data] is based on the marginal distribution of r as
in Example 1. We compare this with composite and additive
estimates and illustrate results over 100 runs. Here, lower
value of CVaR indicates higher mass on the left tail of the
distribution and higher risk of obtaining low returns.

Comparison with Additive Risk Formulations. Clements
et al. [2019], Depeweg et al. [2018] use a weighted sum of
epistemic and aleatory variances as their risk measure. This
formulation has mainly two problems. First, variance is not a
coherent risk measure as it does not follow the homogeneity
and subadditivity properties, as shown in [Cirillo, 2017].
Secondly, we show that even if we replace the variance
with a coherent risk measure, the additive formulation is
equivalent to considering UE

α as an identity function. Thus,
it is less sensitive to the effect of epistemic uncertainty than
composite risk. More formally:

Theorem 3. We are given two sources of aleatory and
epistemic uncertainties ξ1 and ξ2. If UA

α1
and UE

α2
are

distortion measures for two coherent risk measures quan-
tifying aleatory and epistemic risks respectively, then, i)
FA(UA

α1
, β) = FC(UA

α1
, I, β), where I is the identity func-

tion, and ii) FC(UA
α1
, UE

α2
, β) ≥ FA(UA

α1
, β), if α2 6= 1.

Example 1 (A Reductive Empirical Evaluation of Com-
posite and Additive Risks). We consider a mixture of
100 Gaussians: p(r) =

∑100
i=1 φiN (µi, σ

2
i ), where Φ ∼

Dir([0.5]100), µ ∼ N (0, 1), and σ2 ∼ Γ−1(2, 0, 1). We
compute CV aRα[r] using the data generated from this mix-
ture over 100 runs. We further estimate composite risk with
UE , UA = CV aRα and additive risk with UA = CV aRα.
The results illustrated in Figure 2 show that the additive
CVaR risk strictly underestimates the total CVaR risk com-
puted from the data, whereas the composite risk is closer to
the one computed from data. Specifically, for lower values of
α (specifically, α ≤ 0.5), i.e. towards the extreme end of the
left tail where events occur with low probability, the addit-
ive CVaR risk deviates significantly from data whereas the

composite measure yields closer estimation. Such values of
α’s are typically interesting for risk-sensitive applications.

This means that for given sources of aleatory and epistemic
uncertainties the additive risk which only considers expecta-
tion over epistemic uncertainty will always underestimate
the composite effect of epistemic risk. Thus, we observe
that additive risk leads to worse risk-sensitive performance
than composite risk in RL problems (Table 1 and Figure 3).

5 ALGORITHM: SENTINEL-K

Now, we outline the algorithmic details of SENTINEL-K
that estimates composite risk over returns using an ensemble
of K distributional RL estimators, namely CDQN, in tan-
dem with an adaptation of FTRL for estimator selection,
and leverage the estimates for decision making.

Sketch of the Algorithm. Pseudocode of SENTINEL-K
with composite risk is given in Algorithm 1. It has two main
blocks: obtaining K estimates of return distribution with
distributional RL framework (Lines 4- 13), and using them
to compute composite risk for each action (Lines 15- 21). Fi-
nally, following the mechanism of Q-learning [Watkins and
Dayan, 1992], it chooses the action with maximal composite
risk in the decision making step (Line 23).

In the first block (Lines 4- 13), we specifically use an en-
semble of K CDQNs. Each CDQN uses target and value
networks for estimating the return distribution. We set a
schedule for updating the target networks Γ1 and a more
frequent one (Γ1 ∪ Γ2) for the value networks (Section 5.1).

The second block (Lines 15- 21) is used for decision-making
and iterated at every time step. It adapts the FTRL algorithm
(Section 5.2) for aggregating the K estimated return distri-
butions and to compose aleatory risk QA

i (st, a) of each of
the estimators to provide a final estimate of the composite
risk QC(st, a) for each action, and then selecting the action
with highest QC(st, a).

5.1 ENSEMBLING AND BOOTSTRAPPING
K-ESTIMATORS

The ensemble of SENTINEL-K consists of K distribution
estimators. Each estimator gets its own dataset {Di}Ki=1 ⊆
D, value network {θi}Ki=1 and target network {θ−i }Ki=1.
The K datasets are created from the original dataset D by
data masking (Line 5). For each transition st, at, rt, st+1,
a fixed weight vector ut ∈ [0, 1]K is generated such that
uj
t ∼ Ber( 13 ). Thus, on an average, each estimator i has

access to 1
3 of the dataset. Details about data masking are in

Supplementary material.

After preparing the datasets for the estimators, the target
and value networks of the CDQN have to be updated and
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optimised. For i-th estimator, it begins with sampling mini
batches of data τ from the respective dataset Di (Line 7).
Then, this dataset is used to compute the composite risk for
all actions a ∈ A and to obtain a∗ (Lines 8- 9). Obtain-
ing the composite risk first involves estimating the aleat-
ory risk with QA

i (st, a) =
∫
Z Z d(UA

α1
◦ P)(Z|θi) for a

particular estimator i. This quantity can be attained by
considering each of the estimators separately, however,
as we turn to compute the epistemic risk the estimators
jointly contribute to this risk. Then, we compose the aleat-
ory risk of all the estimators to compute QC(st, a) =
RiskUE

α2
({QA

i (st, a)}Ki=1). Here, RiskUE
α2

is the risk meas-
ure corresponding to the distortion UE

α2
. Finally, the op-

timal action a∗ = argmax
a

QC(st, a), and the risk estim-

ates QC(st, a) are used to update the value and network
parameters {θi}Ki=1 and {θ−i }Ki=1 (Lines 10- 11) by minim-
ising the cross-entropy loss of the current parameters and
the projected Bellman update as described in [Bellemare
et al., 2017].

Ensembling estimators have been shown to outperform indi-
vidual estimators as seen in [Wiering and Van Hasselt, 2008,
Faußer and Schwenker, 2015, Osband et al., 2016, Pacchi-
ano et al., 2020]. Further, incorporating multiple estimators
introduces uncertainty over the estimators. Because of hav-
ing separate data sets, each of the estimators learn different
parts of the MDP. Thus, uncertainty over estimators acts as
a quantifier of the model uncertainty. In Section 6, we show
that this ensemble-based approach leads SENTINEL-K to
achieving superior performance.

5.2 WEIGHING ESTIMATES WITH FTRL

Now, the question is to adaptively and accurately aggregate
the K estimated return distributions. Pacchiano et al. [2020]
shows that adaptive model selection can boost performance
in comparison to model averaging. The rationale for this
can be given by seeing that some estimators might be overly
optimistic or pessimistic. By weighing these less, you can
effectively have a more robust ensemble. Further discussion
of this issue is given in Supplementary material.

We adapt the Follow The Regularised Leader (FTRL) al-
gorithm [Cesa-Bianchi and Lugosi, 2006] studied in bandits
and online learning for adaptively weighing the estimators.
FTRL puts exponentially more weight on an estimator de-
pending on its accuracy of estimating the return distribution.
Since we do not know the ‘true’ return distribution, we
use the KL-divergence from the posterior of a single estim-
ator i, P(Z | θi), to the posterior marginalised over β(θ), i.e.
l(θi, β) , DKL

(
P(Ẑ) ||P(Z | θi)

)
, as proxy of estimation

loss of estimator i. FTRL selects estimator i with weight

wi =
eλl(θi,β)∑
j e

λl(θj ,β)
, λ ∈ [0,∞). (4)

Using FTRL weights for aggregating the K return distri-
butions is analogous to using an exponentially weighted
average forecaster [Cesa-Bianchi and Lugosi, 2006] on the
K learners to create a final estimate of the return distribu-
tion and corresponding composite risk. This leads to a better
aggregation of individual estimates than equally weighted
average or a greedy selection of the best estimate [Cesa-
Bianchi and Lugosi, 2006, Theorem 2.2]. Having computed
the weights w (Line 16), we compute the weighted com-
posite risk measure by first computing the aleatory risk of
each of the estimators, QA

i (st, a) =
∫
Z Z d(UA

α1
◦P)(Z|θi)

(Line 18), and then the composite risk is computed by
QC(st, a) = RiskUE

α2
({wiQ

A
i (st, a)}Ki=1) (Line 20). Here,

λ ∈ [0,∞) is a regularising parameter that determines to
what extent estimators far away from the marginal estimator
should be penalised. If λ → 0, we obtain standard model
averaging. If λ→∞, it reduces to greedy selection. We ex-
perimentally show that performing FTRL with a reasonable
λ value, namely 1, leads to better performance.

Action Selection. The algorithm always selects the action
with the high composite risk QC . Its behaviour depends on
the choice of risk measures or distortion utility functions
UA
α1

and UE
α2

. SENTINEL-K reduces to a risk-neutral al-
gorithm if we choose both UA

α1
, UE

α2
as identity functions,

and to additive risk-sensitive algorithm if we choose UE
α2

as identity. Designing it to accommodate composite risk
provides us the flexibility to be risk-sensitive, risk-neutral,
and treating epistemic and aleatory risk with different met-
rics.

6 EXPERIMENTAL EVALUATION

We test the risk-sensitive performance of SENTINEL-K
with composite CVaR risk in two environments with con-
tinuous state spaces. We also display the flexibility of our
composite risk formulation by evaluating heterogeneous
risks with SENTINEL-K.3 Settings for each of these ex-
periments and results are elaborated in corresponding sub-
sections. In all the experiments, we use 4 CDQNs in the
ensemble and call it SENTINEL-4. We justify this choice
of K = 4 in Supplementary material. For each experiment,
we report the mean and standard error of the mean over 20
runs for 105 steps.

Risk-sensitive Performance. In order to demonstrate per-
formance in a larger domain, we opt to evaluate SENTINEL-
4 in the highway [Leurent, 2018] environment. Highway is
an environment developed to test RL for autonomous driv-
ing. We use a version of the highway-v1 domain with five
lanes, and ten vehicles in addition to the ego vehicle. In this
environment, the episode is terminated if any of the vehicles
crash or if the time elapsed is greater than 40 time steps.
The reward function is a combination of multiple factors,

3Ablation studies for risk-neutral SENTINEL are in Appendix.
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Table 1: Performance of risk-neutral (VDQN, CDQN, SENTINEL-K), aleatory risk-sensitive VDQN-CVaR, UA-DQN and
risk-sensitive (SENTINEL-4 with additive and composite CVaRs) for highway-v1 with 10 vehicles. Results are reported
over 20 runs. SENTINEL-4 with composite CVaR performs better.

Agent Value ±σ Aleatory metric ±σ # crashes ±σ
VDQNRN Tang and Agrawal [2018] 23.30± 0.36 14.29± 0.80 1252.33± 170.35

CDQNRN Bellemare et al. [2017] 25.96± 0.51 19.50± 1.44 839.53± 150.20
SENTINEL-4RN 26.56± 0.32 20.88± 1.25 617.11± 100.15

VDQN-CVaRA Tang and Agrawal [2018] 24.39± 0.50 16.64± 1.25 871.33± 171.23
UA-DQNE+A Clements et al. [2019] 24.46± 0.29 16.9± 0.44 1060.65± 13.94

SENTINEL-4E+A 26.82± 0.42 21.54± 1.40 645.55± 127.59
SENTINEL-4E◦A 27.43± 0.13 24.16± 0.54 341.18± 43.86

Algorithm 1 SENTINEL-K with Composite Risk

1: Input: Initial state s0, action set A, distortion meas-
ures UA

α1
, UE

α2
, hyperparameter λ, target networks

[θ−1 , ..., θ
−
K ], value networks [θ1, ..., θK ], update sched-

ule Γ1,Γ2.
2: for t = 1, 2, . . . do
3: //* Update K-value and target networks for estimat-

ing return distributions *//
4: for t′ ∈ Γ1 ∪ Γ2 do
5: Generate {D1, ..., DK} ← DataMask(Dt′)
6: for i = 1, . . . ,K do
7: Sample mini batch τ ∼ Di

8: Estimate (3) FC(Z(st, a)|UA
α1
, UE

α2
, β) using τ

and K-target networks {θ−i }Ki=1.
9: Get a∗ = argmaxa F

C(Z(st, a)|UA
α1
, UE

α2
, β)

10: Update value network θi using τ, a∗

11: Update target network θ−i using τ, a∗ if t′ ∈ Γ1

12: end for
13: end for
14: //* Estimate the composite risk of each action using

the estimated return distributions *//
15: for a ∈ A do
16: Compute weights w = w1, ..., wK from Eq. 4.
17: for i in K do
18: Compute aleatory risks QA

i (st, a) from∫
Z Z d(UA

α1
◦ P)(Z|θi)

19: end for
20: Compute composite risk over weighted

aleatory estimates QC(st, a) =
RiskUE

α2
({wiQ

A
i (st, a)}Ki=1)

21: end for
22: //* Action selection *//
23: Take action at = argmaxa Q

C(st, a)
24: Observe st and update the dataset Dt ← Dt−1 ∪

{st, at−1, st−1, rt−1}
25: end for

including staying in the right lane, the ego vehicle speed,
and the speed of the other vehicles.

We test the risk-neutral CDQN and VDQN algorithms, an

aleatory risk-sensitive VDQN and the total variance decom-
position algorithm UA-DQN along with SENTINEL-4 with
both additive and composite CVaRs. The typical perform-
ance metric for this scenario is the expected discounted
return Eπ

µ[R]. In order to test the risk-sensitive perform-
ance, we use two metrics. In order to measure aleatory risk
UA
α1
[R |π, µ], we use CVaR as UA

α1
with threshold α = 0.25.

The CVaR metric is a statistic of the left-tail of the return
distribution and higher values would mean better perform-
ance in the 25% worst-cases of performance. Finally, as a
proxy for the epistemic risk, we use the number of crashes
(lower is better).

Experimental results are illustrated in Table 1 and Figure 3.
From Table 1, we observe that our algorithm with composite
risk achieves a higher value, higher estimate of aleatory
risk, and less number of crashes. Thus, SENTINEL-4 with
composite CVaR outperforms the competing algorithms in
terms of all three metrics. The simultaneous improvement
in both the value function and #crashes is due to the fact that
highway is designed to have a reward function that penalises
unsafe driving. Additionally, we observe that the variance
of performance metrics over 20 runs is the least for our
algorithm with composite CVaR measure. This shows the
stability of our algorithm which is another demonstration
of good risk-sensitive performance. Figure 3 resonates with
these observations in terms of the total number of crashes.

Heterogeneous Risk Measures. In order to demonstrate
the flexibility of the composite risk framework estimated
with SENTINEL, we investigate performance using hetero-
geneous coherent risk measures, that composes different
coherent risk measures for aleatory and epistemic risk. The
chosen risk measures are aleatory and epistemic CVaR, aleat-
ory and epistemic Wang risk, aleatory CVaR with epistemic
standard deviation, and aleatory standard deviation with
epistemic CVaR. Note that any combination of coherent
risk measures is possible. We evaluate SENTINEL-4 in the
CartPole-v0 environment [Brockman et al., 2016]. This en-
vironment is a popular test-bed for continuous state-space
RL tasks. In the environment, a reward of 1 is attained for
every time step the pole is kept upright. If the pole falls to
either of the sides or if the number of time steps reaches
200, the episode is terminated. This means that the undis-
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Figure 3: The total number of crashes in
highway environment with 10 vehicles
over 20 runs and horizon 106. Fewer
#crashes indicate better risk-sensitive
performance.

Figure 4: Performance and convergence
of SENTINEL-4 using different risk
measures. We show the number of falls
in the CartPole environment over 20
runs with different initialisation.

Figure 5: Performance and convergence
of SENTINEL-4 (risk-neutral) for dif-
ferent values of λ. We show the number
of falls in CartPole environment over
20 runs with different initialisation.

counted return attained per episode is in [0, 200]. Thus, we
choose Vmin = 0, Vmax = 1−γ200

1−γ as the histogram support
of CDQN. The results are shown in Figure 4, which demon-
strates than SENTINEL-4 performs flexibly and comparably
for these composite risks.

FTRL vs. Average vs. Greedy. We choose
[0.01, 0.1, 1.0, ln 100] as the different values of the
regularising hyperparameter λ and test the performance
of SENTINEL-4 for CartPole-v0. As λ → 0, we perform
standard model averaging which is sensitive to outliers. As
λ → ∞, model selection gets greedily biased towards the
best average estimator while not providing other estimators
a chance to improve. A sound value of λ would be one
that excludes outlier estimators while still involves most of
the other estimators. Figure 5 shows performance in terms
of cumulative # Falls (lower is better) for the λ values
with CV aR0.25 ◦ CV aR0.25. We observe that FTRL with
reasonable λ = 1.0 shows better performance, i.e. less
number of falls, than the ones with large λ = 4.6 and
small λ’s 0.01 and 0.1. We also observe that for λ = 1 the
variance of #Falls is significantly less than that of other
values and thus, stability of performance.

Summary of Results. Fig. 3 shows the risk-sensitive per-
formance of VDQN, CDQN, aleatory CVaR, total variance
decomposition UA-DQN and SENTINEL-4 additive and
composite CVaR risks on a large continuous state environ-
ment. SENTINEL-4 with composite risk outperforms com-
peting algorithms in terms of the achieved value function
and estimated aleatory risk. It causes the least number of
crashes than competing algorithms. Fig. 4 demonstrates the
ability to chose any coherent risk measure for SENTINEL-
K, including different risk measures for both epistemic and
aleatory risk. Fig. 5 shows that selecting λ is important
in bootstrapped RL, and tuning it yields better perform-
ance over model averaging (λ → 0) and greedy selection
(λ → ∞). We defer the results on the choice of K in en-

semble, convergence in return distribution, and improved
efficiency in estimating multi-modal return distributions, to
Appendix.

7 DISCUSSION

In this paper, we study the problem of risk-sensitive RL. We
propose two main contributions. The first is the composite
risk formulation that quantifies the holistic effect of aleatory
and epistemic risk involved in learning. With a reductive
experiment, we show that composite risk estimates the total
risk involved in a problem more accurately than existing ad-
ditive formulations. The second one is SENTINEL-K which
ensembles K distributional RL estimators, namely CDQNs,
to provide an accurate estimate of the return distribution.
We adopt FTRL from bandit literature as a means of model
selection. FTRL weighs each estimator adaptively and leads
to better experimental performance than greedy selection
and model averaging. Experiments show that SENTINEL-
K achieves superior risk-sensitive performance while used
with composite CVaR estimate, and can operate on compos-
ition of different risks unlike existing works.

Motivated by the experimental success, we aim to invest-
igate theoretical properties of FTRL-driven bootstrapped
distributional RL with and without composite risk estimates.
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