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To support the pervasive digital evolution, optical network infrastructures must be able to quickly and effectively
adapt to changes arising from traffic dynamicity or external factors such as faults and attacks. Network automa-
tion is crucial for enabling dynamic, scalable, resource-efficient, and trustworthy network operations. Novel
telemetry solutions enable optical network management systems to obtain fine-grained monitoring data from
devices and channels as the first step toward the near-real-time diagnosis of anomalies such as security threats and
soft failures. However, the collection of large amounts of data creates a scalability challenge related to processing
the data within the desired monitoring cycle regardless of the number of optical services being analyzed. This
paper proposes a module that leverages the cloud native software deployment approach to achieve near-real-time
machine learning (ML)-assisted diagnosis of optical channels. The results obtained over an emulated physical-
layer security scenario demonstrate that the architecture successfully scales the necessary components according
to the computational load and consistently achieves the desired monitoring cycle duration over a varying number
of monitored optical channels.
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1. INTRODUCTION

Optical networks are the backbone of today’s information
society. They support critical services and offer the necessary
capacity to transfer massive amounts of traffic at low latency
and relatively low energy consumption. Every new generation
of networks, notably the 5G and Beyond 5G (B5G) paradigms,
exacerbates network complexity and emphasizes the need for
dynamic operation. These paradigms also increase traffic
demands and tighten concerns about the efficiency of network
resource usage. The encompassing digital evolution that they
endorse requires trustworthy, intelligent networking solutions
and technologies that increase the security, privacy, resilience,
and performance of networked systems. Consequently, the
optical network infrastructure must be able to quickly and
effectively adapt to the changes stemming from either intrinsic
traffic characteristics and requirements or external factors such
as hardware and software component faults, environmental
effects, or harmful man-made actions.

Automation of network operation is crucial for coping with
increasing network complexity and efficiently addressing the

myriad of the aforementioned interrelated challenges [1].
Network automation, typically comprising a loop with three
main phases [2], as shown in Fig. 1, is fueled by advances in
several key areas. One example is network telemetry [3,4],
which enables the timely and efficient collection of optical
performance monitoring (OPM) data from network devices.
Another example is the proliferation of machine learning
(ML) techniques that provide operators with a data-driven
approach for automating their operations [1,5]. Another
major enabler of network automation is the development of
cloud-native software-defined networking (SDN) controllers
to replace legacy, monolithic SDN software architectures. A
cloud-native architecture consists of stateless micro-services,
each implementing a specific set of functionalities and inter-
acting with others to fulfill network management tasks. This
enables efficient scaling of an SDN controller with the mas-
sive amount of flow management operations expected for 5G
and B5G networks [6], which cannot be consistently han-
dled by current SDN controller solutions, such as ONOS or
OpenDayLight [7].
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Fig. 1. Network automation loop and its scalability properties.

Figure 1 also indicates the scalability properties of network
automation phases. The Collect phase consolidates the sta-
tus/performance data from optical devices into a monitoring
database. These operations are usually performed by a module
within the SDN controller, which, via network telemetry,
collects data from a multitude of devices in the network. The
Diagnose phase analyzes the monitoring data to assess the per-
formance of optical services and to identify possible anomalies
(e.g., security breaches, attacks, bottlenecks, soft/hard failures).
These operations are performed by a module that, depending
on the specific control/management architecture, is part of or
interfaces with the SDN controller to retrieve monitoring data
and to deliver the results from data-processing operations. The
monitoring data needs to be collected and processed periodi-
cally for each running service. As a result, the complexity of the
Collect and the Diagnose phases is proportional to the number
of active optical services. The Act phase relies on a module
within the SDN controller to decide on performing changes in
the network based on the feedback provided by the Diagnose
module, called only upon detection of events that require
action. The Act phase may also perform changes in the network
triggered by external factors, e.g., the need for establishing a
new optical service. Consequently, the Collect and Diagnose
modules require dedicated efforts to ensure their operations
scale efficiently with the number of optical services.

A large body of literature addresses the scalability and
flexibility challenges related to optical network monitoring,
investigating, for example, the choice of functionalities that
should be implemented [8], their location [3], and scaling
with the number of optical services [9–11]. However, the
analogous challenges pertinent to the data diagnoses operations
remain largely unaddressed. The works in this area concentrate
primarily on methods to detect and classify anomalies, e.g.,
cognitive fault detection and management [12,13], network
equipment failure prediction [14], and dynamic planning and
optimization of software-defined networks [5,15]. Among the
available tools, ML-based tools have been shown to achieve
promising results over the past few years. For instance, ML-
based anomaly detection has been shown to excel at early
detection of soft failures [12,16] as well as physical-layer secu-
rity threats [17,18]. These advances must be accompanied by

qualifications of the design and necessary functionalities of a
diagnosis module. It is also crucial to devise solutions that allow
the data processing and anomaly detection functionalities to
be interfaced with the remaining SDN controller operations
in a scalable manner. Finally, this new design should also allow
for new (ML-based) diagnosis functionalities and methods to
be added/upgraded without requiring the redeployment of the
entire module.

This paper addresses the challenge of designing a scalable
and flexible software module to diagnose optical services.
To the best of our knowledge, the works in [9,10] were the
first to tackle the design of such a module. In this work, we
further extend our prior work by refining the module previ-
ously proposed, detailing the specification of each component,
specifying its interface and requirements toward the SDN con-
troller, and by assessing the performance of an implementation
of the module using a real-world SDN controller. The mod-
ule comprises four components: manager, worker, inference,
and cache. In addition to detailing their main features, the
paper also explains how these four components communicate
with each other and with the SDN controller used to man-
age the optical network. To evaluate its performance in a real
setting, the proposed diagnosis module is integrated into the
microservice-based SDN controller ETSI TeraFlowSDN [6]
and deployed over an emulated optical data plane replaying
data related to attacks at the physical layer [17]. The scalability
of the proposed module is demonstrated by monitoring a few
to several hundred optical services. The resource efficiency is
assessed by observing how the number of resources reserved
by the solution adjusts to the number of optical services in the
network. The flexibility of the proposed module is demon-
strated by adopting unsupervised learning (UL) and supervised
learning (SL) models for anomaly detection and classification,
respectively.

The remainder of the paper is organized as follows. Section 2
introduces the proposed module, detailing the communication
among the components and between the module and the SDN
controller. Section 3 introduces an implementation of the
module integrated into the ETSI TeraFlowSDN controller. It
also presents the validation experiments performed over the
implementation. Section 4 concludes the paper.

2. ML-BASED DIAGNOSIS FOR OPTICAL
NETWORKS

This section first describes the envisioned module and the com-
munication among the proposed components. Then, a detailed
specification of each component is provided. Finally, the inter-
face between the module and a standard SDN controller is
defined. Without loss of generality, we adopt the terminol-
ogy of the core components defined for the TeraFlowSDN
controller [6].

Figure 2 illustrates the envisioned ML-based diagnosis
module together with its interfaces to the SDN controller.
In the considered scenario, the SDN controller receives ser-
vice requests from external entities through its northbound
interface (NBI). The SDN controller components interact
internally to fulfill the received service requests. An important
step of service provisioning is to (re)configure devices through
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Fig. 2. Proposed diagnosis module and its integration with exist-
ing SDN controllers.

the southbound interface (SBI). Another responsibility usually
assigned to the SBI is telemetry, i.e., collecting the monitoring
data from optical devices and storing them in an internal mon-
itoring database. The diagnosis module is composed of four
components: manager, worker, inference, and cache. Manager,
worker, and inference are proposed in this work and detailed in
the following subsections, while the cache can be implemented
as any off-the-shelf database (preferably an in-memory).

Figure 3 illustrates how communication takes place among
the components in the proposed module. The figure highlights

three stages of communication: initialization, optical service
setup, and periodical diagnosis loop. During initialization, the
manager obtains a list of optical services currently running in
the network from the SDN controller. This list is maintained
throughout the operation of the diagnosis module as a way
to alleviate the load on the communication with the SDN
controller.

During the optical service setup, the module works as fol-
lows. The SDN controller is expected to provide an interface
following the publish-subscribe model, which allows the mod-
ule to receive notifications upon any changes experienced by
the services, e.g., service creation or termination. In Fig. 3,
when a new service is requested, the SDN controller takes the
actions required to set it up. Once the service is created, the
manager receives a notification and adds the newly created
service to its local list of services. The manager then requests
the creation of new key performance indicator (KPI)(s) from
the monitoring component of the SDN controller. The newly
created KPI(s) will be used to store a time series of the results
computed by the ML-based diagnosis module. A similar noti-
fication is received by the manager when a service is removed,
followed by removing the service from its internal list.

The manager is responsible for periodically triggering
the diagnosis loop. It iterates over the internal list of opti-
cal services, sending a request to the worker for each service.
We leverage a combination of concurrency and parallelism
to ensure this component is able to send a large number of
requests. Sending an independent request per service allows the
worker component to be replicated depending on the number

SDN Controller Core Optical Performance Analysis

Customer NBI Service Monitoring Context SBI Mitigator Manager Worker Cache Inference

Initialization

ListServices()

ServiceList

Optical service setup

CreateService(Descriptor)

Internal communication
for service setup

ServiceId

ServiceEvent

CreateKpi(KpiDescriptor) Include KPI associated
with the analysis

Periodical loop

loop [for each optical service]

Diagnose(ServiceId)Manager has an updated
list of optical services

if [unsupervised learning]

Get(ServiceId)

Samples

QueryKpiData(KpiQuery)

KpiList

Infer(InferenceRequest)

InferenceResponse

if [mitigation needed]

Mitigate(ServiceId, Deviation)

IncludeKpi(DetectionResultKpi)

Fig. 3. Workflow of the proposed architecture.
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of services to be analyzed and balancing the load among the
replicas.

The worker runs the analysis for a particular service. To this
end, it leverages the inference to apply various (ML-based) algo-
rithms for processing the data of a service. Which algorithm to
use and, consequently, which data to retrieve can be set flexibly
on the fly, depending on the task. First, it queries the moni-
toring component of the SDN controller to retrieve the latest
OPM sample(s) related to the service at hand. Depending on
the specific model used by the inference component, a larger
window of preceding OPM samples might be needed (e.g., to
perform data clustering when unsupervised learning is applied
for attack detection). In this case, the worker leverages the cache
to store this data, alleviating the load on the SDN controller by
only querying new data that are not yet in the cache. Once the
necessary sample(s) for performing the inference are gathered,
the worker invokes the inference component, which is respon-
sible for executing the ML model suitable for the task. For
instance, if the purpose of the diagnosis is to detect degradation
caused by a previously unseen physical-layer attack, UL or
semisupervised learning (SSL) models performing anomaly
detection may be used. If the purpose is to identify a previ-
ously detected and known anomaly, SL models performing
classification may be used.

Upon receiving the results from inference, the worker tests
if the diagnosis detected a deviation in the service perform-
ance and notifies the SDN controller in the positive case.
The meaning of the deviation varies with the use case but, in
general, represents any assessment that differs from normal
operating conditions. For instance, if the use case is physical
layer security, an attack-related deviation may indicate the
presence and potentially the type and location of an attack
[19]. Another potential use case is the detection of soft failures,
where a failure-related deviation indicates the presence of
degradation in the quality of transmission of the channel and
potentially the device or configuration causing the deviation
[12]. Regardless of the result, the worker notifies the SDN
controller of the inference results. By doing so, the module
consolidates the result of the diagnosis in the same database
where the monitoring data comes from, thus enabling the
correlation and creation of integrated dashboards. At this
point, the worker has performed all of its task and replies to
the manager, communicating that the work for the particular
service is done.

The module and its workflow are designed to allow the
components to take advantage of the replication and load-
balancing features available in current container orchestration
platforms such as Kubernetes. Replication in these platforms
can be triggered by defining thresholds for CPU or RAM usage
as well as other application-specific metrics. In general, our
results indicate CPU usage thresholds are enough to govern
replication and achieve satisfactory results with the proposed
architecture.

The communication interfaces among the components
can be realized with any web-service-like protocol. Examples
commonly used are the gRPC or representational state transfer
(REST) interfaces. In our case, we decided to use the gRPC
interface [20]. The gRPC protocol is an implementation of
a remote procedure call (RPC) that allows a strongly typed,

programming-language-agnostic definition of messages and
procedures that can be used to generate language-specific code.
In the following, we specify the details of the components and
the interface with the SDN controller.

A. Manager

The manager is the component responsible for coordinat-
ing the entire diagnosis periodical loop and does so through
three tasks: (i) keeping a list of active optical services in the
network, (ii) maintaining a timer that triggers the periodical
diagnosis loop, and (iii) delegating the individual processing of
each service when executing the loop. As illustrated in Fig. 3,
during initialization, the manager retrieves the list of active
optical services in the network. This allows the component
to be initialized at any time during network operation. It also
grants the manager the ability to survive potential service
restarts due to hardware or software issues. The manager is the
only component in the module suitable for operating without
replication, i.e., it runs in a single container and does not scale
with the load. All other components in the architecture do
scale, i.e., increase the number of replicas depending on the
load. However, note that tasks (ii) and (iii) need to be executed
in parallel, so each task is executed by its process within the
container. Moreover, in order to send hundreds or thousands
of requests per period in task (iii), the manager leverages a
combination of concurrency and parallelism. In the following,
we present the pseudocode for tasks (i) and (iii).

Algorithm 1 shows how the manager maintains an updated
list of active optical services in the network. Note that it
receives two parameters. The services parameter contains a
shared mutable reference to the list of services used by both
Algorithms 1 and 2. The sdn parameter represents a client
to the SDN controller application programming interface
(API). First, the algorithm subscribes to events by using the
SDN controller API (line 2). For every received event (line 3),
the manager first obtains (i.e., creates or retrieves existing)
KPI identifier(s) that will be used to store the diagnosis result
(line 4). Then, the manager verifies whether the event is a
service creation or deletion. If it is a service creation (lines 5–6),
the manager appends a tuple with the newly created service
identifier and its associated KPI identifier(s) to the list of active
services. If the event is a service deletion (lines 7–8), the man-
ager removes the respective tuple from the list. Note that there
is no need to delete the KPIs since this information can be
useful for posterior analysis.

Algorithm 1. Subscription to Events and Maintenance
of the Updated List of Services

1: function GetEvents(services, sdn)
2: stream← sdn.GetServiceEvents()
3: for event ∈ stream do
4: kpi_id← sdn.SetKpi(event.service)
5: if event.type= CREATE then
6: services← service_list∪ (event.service, kpi_id)
7: else if event.type= REMOVE then
8: services← services (event.service, kpi_id)
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Algorithm 2. Periodical Loop

1: async fn DiagnoseServices(services, period , worker)
2: num_threads=MIN_TH
3: while true do
4: tasks=∅
5: start= now()
6: for service, kpi_id ∈ services do
7: task←worker.Diagnose(service, kpii d)
8: tasks← tasks∪ task
9: pool← ThreadPool(num_threads)
10: run with pool and await all tasks
11: elapsed_time← now()− start
12: report(elapsed_time)
13: num_threads← result from Eq. (2)
14: if elapsed_time> period then
15: continue
16: sleep(elapsed_time− period)
17: end async fn

Algorithm 2 details the periodical diagnostic loop operations
performed by the manager. It receives three parameters. The
first is a read-only reference to the services list maintained in
Algorithm 1. The period represents the time between two
consecutive loops (e.g., 30 s). The worker is a client of the API
provided by the worker component. The function also assumes
the existence of two constants, MIN_TH and MAX_TH ,
representing the minimum and maximum number of threads
that the function can use to send requests to the worker. The
function starts by assigning the value of the minimum number
of threads to a local variable (line 2). Then, the function runs
indefinitely (line 3). For each loop, the manager initializes an
empty list of tasks (line 4) and registers the time at which the
current loop is starting (line 5). Then, for each service and
KPI tuple in the services list, the manager delegates the actual
diagnosis to the worker (line 7). It is important to note that this
function is asynchronous (line 1). This means that the variable
task (line 7) does not contain the response from the worker
but rather a reference to the submitted task. In asynchronous
programming, several tasks can be submitted for execution
concurrently, and the result of a task will be provided only
when the task is awaited . Moreover, it is possible to combine
the concurrency of asynchronous programming with paral-
lelism (e.g., multithreading). In our context, a single manager
instance can trigger the tasks needed to diagnose all optical
services without concerns for their completion while doing
so. The task for the current service is appended to the list of
tasks (line 8). After all tasks have been submitted, the function
creates a thread pool (line 9) with num_threads threads. The
tasks are then evenly distributed among the threads (line 10).
Once the diagnosis of all services is completed, the manager
computes the elapsed time (line 11) and reports the value to an
application monitoring entity (line 12).

In order to handle a varying number of services, the manager
dynamically changes the number of threads being used. At
every loop execution, the manager recomputes how many
threads are necessary to handle the current number of moni-
tored services. This is done in line 13 with the help of the
following two equations:

desired_threads=

⌈
num_threads×

elapsed_time

period

⌉
, (1)

num_threads

=min(MAX_TH,max(MIN_TH, desired_threads)). (2)

Equation (1) computes the desired number of threads based
on the current number of threads, the measured loop time
(elapsed_time), and the period . Then, Eq. (2) computes the
final number of threads considering the minimum and maxi-
mum allowed. This formulation is adapted from the horizontal
pod autoscaling mechanism used by Kubernetes [21]. If the
loop execution time exceeds a predefined value, the next loop
starts immediately (lines 14–15). Otherwise, the manager
sleeps for the remaining time (line 16).

B. Worker

The worker is responsible for diagnosing each service. It lever-
ages the inference component to perform ML-based diagnosis
and triggers relevant actions when a deviation is detected.
Therefore, the worker needs to provide the necessary infor-
mation for the inference. The information needed depends
on the model adopted by the inference. For instance, if the
inference uses a UL model, it will perform anomaly detection
and needs a window of OPM samples to distinguish normal
operating conditions from anomalies by, e.g., clustering. If the
inference uses an SL or SSL model, it can perform classification
or anomaly detection, respectively, and can do so with a single
OPM sample [19]. It can also happen that multiple models are
required, so the inference component will have several imple-
mentations running in parallel. For instance, both SL and UL
can be used in combination to improve performance [16,18]
or achieve explainability [22]. Finally, the inference component
supports the case where an SL model is used for regression
or prediction. For instance, this is suitable when performing
threshold-based anomaly detection or predictive maintenance
[23]. This is a key flexibility feature of this component.

Given that the inference component may have different
interfaces, we present two versions of the worker implementa-
tion: one for SL/SSL and one for UL inference. In both cases,
we assume that they have access to the following variables
(omitted from the algorithms for clarity):

• sdn: a client to the SDN controller API;
• inference: a client to the inference API;
• preprocessing : a reference to the preprocessing algorithm

commonly applied in data before using it in ML models; and
• cache: a client to the cache API.

Algorithm 3 shows the implementation of the worker when
using an SL/SSL model. In this case, only the latest OPM
sample(s) are needed, i.e., the ones that have not been analyzed
so far represented by n_samples (we assume n_samples= 1
in Algorithm 3). First, the latest sample(s) are obtained from
the SDN controller (line 2). The sample(s) are then prepro-
cessed using the algorithm of choice (line 3). The preprocessed
samples are then used to invoke the inference component that
returns a list of classes, i.e., one for each sample (line 4). The
results of ML inference are reported to the SDN controller
(line 5). If any class in the result represents a deviation, i.e.,
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Algorithm 3. Worker when Using Supervised Learning

1: function Analyze(service, kpi_id)
2: latest← sdn.QueryKpiData(service, n_samples)
3: sample← preprocessing.Process(latest)
4: result← inference.Classify(sample)
5: sdn.IncludeKpi(kpi_id, result)
6: if any value in result 6=NORMAL then
7: sdn.Mitigate(service, result)

Algorithm 4. Worker when Using Unsupervised
Learning

1: function MonitorService(service, kpi_id)
2: latest← sdn.QueryKpiData(service, n_samples)
3: samples← preprocessing.Process(latest)
4: cache.get(service).pop(n_samples)
5: cache.get(service).push(samples)
6: window← cache.get(service)
7: result← inference.Detect(window)
8: sdn.IncludeKpi(kpi_id, result)
9: if any value in result is 6=NORMAL then
10: sdn.Mitigate(service, result)

is different from the class that represents the normal working
conditions, the worker notifies the SDN controller about the
potential need for mitigation (lines 6–7). When the model is
performing regression or prediction, line 6 will check whether
or not the result value(s) is(are) within the thresholds of what is
considered normal operating conditions.

Algorithm 4 presents the algorithm using a UL model. We
focus only on the differences from Algorithm 3. The first dif-
ference is that, in this case, due to the need for a relatively large
number of samples for each inference, the worker leverages
the cache to alleviate the load on the monitoring component.
We assume that the cache for each service is prepared the first
time the service is analyzed, and we omit this part. The worker
first removes the oldest n_samples from the cache (line 4) and
includes the newest n_samples into the cache of the service
under analysis (line 5). The complete window of samples is
then retrieved from the cache (line 6). The remainder of the
algorithm is the same as in Algorithm 3. Note that the used
number of samples will define the accuracy of the detection
and the computational requirements of the operation [10,18].

C. Inference

Unlike the previous components, the inference component can
take many different shapes depending on the model used to
perform anomaly detection, classification, regression, or pre-
diction. In this scenario, the most well-known implementation
is TensorFlow Serving [24], which provides a standard inter-
face to serve artificial neural network (ANN) models through
the network. However, ANNs belong to the category of SL
models. For UL, DBSCAN Serving [25] is an alternative that
uses the density-based spatial clustering of applications with
noise (DBSCAN) algorithm, a popular UL algorithm used for
anomaly detection.

Algorithm 5 presents the interface of the inference com-
ponent when using DBSCAN as the ML algorithm. The

Algorithm 5. Interface of the Inference Component
when Using DBSCAN

1: enum DistanceMetric

2: EUCLIDEAN= 0
3: COSINE= 1
4: . . .
5: end enum
6: message Sample

7: repeated float features
8: end message
9: message DetectionRequest

10: float eps
11: int32 min_samples
12: DistanceMetric metric
13: repeated Sample samples
14: end message
15: message DetectionResponse

16: repeated int32 cluster_indices
17: end message

representation is inspired by the gRPC protocol buffer defi-
nition, and the messages are inspired by TensorFlow Serving.
DBSCAN contains three parameters: (i) the distance function
used to calculate the distance among samples, (ii) the maxi-
mum distance between two samples considered neighbors
(eps), and (iii) the minimum number of neighboring samples
necessary to form a cluster (min_samples). The DistanceMetric
enumeration (lines 1–5) declares which distance functions are
available in the implementation. The Sample message (lines 6–
8) represents each sample to be considered, consisting of an
array of features. The DetectionRequest message (lines 9–14)
encompasses the algorithm parameters eps, min_samples, and
metric as well as an array of samples to be analyzed. Finally,
the DetectionResponse message (lines 15–17) contains an array
of integers with the same number of elements as samples,
representing the cluster to which each sample was categorized.

D. Interface with the SDN Controller

In the proposed module, we assume that the SDN controller
is responsible for operating the network and offers functional-
ities to external modules (also known as apps in the context of
SDN). In this section, we focus on the functionalities that the
SDN controller needs to expose in the form of APIs to ensure
integration of the proposed module. Note that all the func-
tionalities required by our module are of wide use for any app
integrating with the SDN controller and are usually included
in the set of APIs made available by SDN controllers.

We assume that the SDN controller provides the APIs
that allow for the ML-based diagnosis components to query
monitoring data and perform control actions. In this way,
the module can be considered an SDN application taking
advantage of the SDN controller’s APIs to expand the pro-
vided functionalities. The SDN controller is responsible for
all service control and management procedures, including ser-
vice monitoring (i.e., obtaining OPM data from the network
devices), and mitigation of detected deviations (e.g., anoma-
lies, degradation, or attacks). We divide the responsibilities
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into three categories: (i) publish/subscribe updates, (ii) mon-
itoring database maintenance, and (iii) anomaly/degradation
mitigation. These functionalities are explained as follows.

1. Publish/Subscribe Service Updates

Our module assumes that the SDN controller provides an API
that allows external entities to subscribe to internal events such
as service creation and deletion. This functionality enables the
manager to maintain an internal list of current services in oper-
ation. The manager can work even if the SDN controller does
not provide this functionality. In that case, at the beginning
of every diagnosis loop, the manager queries the entire list of
active services from the SDN controller. Therefore, the mini-
mum API required by our component must allow an entity (or
a module in this case) to retrieve the list of active services.

2. Monitoring

Our module assumes that the SDN controller provides an API
that allows external entities to (i) query monitoring data col-
lected from optical devices and (ii) include new data associated
with the services under analysis. In network monitoring and
telemetry, monitoring data are usually represented as a time
series. Conversely, ML models require data samples composed
of features. For instance, for a single optical service, a sample
represents the OPM data collected from the device at some
point in time. The sample is composed of several features. In
the context of optical networks, features can include metrics
such as optical power received (OPR), optical signal-to-noise
ratio (OSNR), and pre-FEC bit error rate (BER-FEC).

When querying the monitoring data, our module requires
the API to allow for filtering the information for a specific
service and defining specific KPIs to be retrieved. To avoid
overloading the SDN controller, it is also desirable to define
a period for the samples, e.g., the last n monitoring samples.
Once the information is received, the worker interprets the
received data and converts them into the appropriate format
expected by the inference component.

When including new data, two interfaces are needed. The
first one allows the manager component to create new KPI(s)
upon service creation, associated with the result of the per-
formed ML-based diagnosis. The second one allows the worker
to assign values to the KPI(s) at the end of each diagnosis cycle.

3. Mitigation

The final API expected from the SDN controller is related to
mitigating the potential anomalies, attacks, or degradation.
Upon performing ML-based diagnosis, the used ML model(s)
may detect potential degradation and/or disruptions that may
require the SDN controller to perform a mitigation action.
In this case, the ML-based diagnosis module may notify the
SDN controller directly, as shown in Fig. 3. It is also possible
for the SDN controller to take an indirect approach. In that
case, the SDN controller requests to be notified whenever
some KPI reaches a particular value or threshold. An example is
soft failure detection or classification using SL where the class
representing normal operating conditions takes a value equal to
zero, while the value greater than zero represents a soft failure.

The SDN controller may subscribe to events where the KPI
representing this class takes on a value greater than zero.

In general, a mitigation strategy may begin by localizing the
fault, i.e., identifying the network element that was breached
or has failed and identifying the characteristics of the detected
anomaly to determine the most appropriate remedy. The exact
set of actions may be different depending on the attack and fail-
ure types. In the case of failures caused by component fatigue
or fault, adapting the modulation format or the frequency of
the affected connection can be sufficient [26], while other types
of failures may require the use of backup routes to bypass the
failed components.

In the case of physical-layer attacks, the breached or harmful
network element (e.g., a link or a connection) can be localized,
e.g., with the help of the approach based on attack syndromes
from [19]. The network security operator may then decide
on the short- and long-term remediation steps [18]. The
first response may be to recover the affected connections by,
e.g., rerouting them away from the breached element using
preplanned routes that provide protection from attacks [27].
As the nature of optical-layer attacks implies fraudulent modi-
fication of the network infrastructure, it is unlikely that the
attack can be permanently fixed with elementary network
functions like traffic protection or rerouting. This creates the
need for longer-term remediation actions that may include
organizing a human repair intervention on the network infra-
structure, e.g., switching off amplifiers to isolate a breached
link, followed by physically removing the compromised devices
in the field.

3. PROOF-OF-CONCEPT VALIDATION

This section presents a proof-of-concept implementation
of the diagnosis module proposed in this work. We use
TeraFlowSDN [6] as the SDN controller responsible for the
optical network operations. To avoid external factors affecting
our analysis, we adopted the following two measures. First,
as detailed in the next subsection, we used an emulated data
plane composed of software-based optical transceivers that
replay data from a collected dataset. Second, we modified
the provisioning procedure of TeraFlowSDN to bypass all
the steps related to service establishment except for the ones
related to monitoring. This means that, upon a service request,
we assume to already know the path for the services; we also
assume there are always enough resources available to provi-
sion that path. Since we need hundreds of optical services to
stress-test the scalability of the diagnosis module, the latter
assumption is necessary to establish these many services in a
short time.

The components of the module were implemented using
Python 3.9. All the communication among components uses
gRPC. We adopted Redis [28], a fast in-memory database, as
the cache solution for our module. We used the development
version of ETSI TeraFlowSDN [29].

We deployed a Kubernetes node using the MicroK8s dis-
tribution. The node works as both controller and worker,
i.e., the workload runs in the same machine as the Kubernetes
controller node. Kubernetes is responsible for managing the
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containers of the module. The machine hosting the experi-
ments is equipped with an AMD Ryzen Threadripper 3960X
24-Core Processor with 128 GB of RAM with 3600 MHz. The
components were instrumented using Prometheus [30]. The
manager was deployed with 12 CPUs allocated to it. One of
these CPUs was allocated to the maintenance of the updated
list of services (Algorithm 1), while the remaining CPUs are
available to the periodical loop (Algorithm 2). The minimum
and maximum numbers of threads in Eq. (2) were set to 2 and
10, respectively. The cache was deployed with 500 mCPUs allo-
cated to it and allowed to use up to 1 CPU. Both worker and
inference were deployed with 300 mCPUs and allowed to use
up to 1 CPU. We enabled horizontal pod autoscaling (HPA)
for the worker and inference. We set the minimum number of
replicas (min_replicas) to 2 and the maximum (max_replicas)
to 10, with the target CPU usage (target_usage) set to 80%.
Periodically, the HPA computes the (new) desired number of
replicas (des_replicas) based on the current number of replicas
(cur_replicas), and the current (cur_usage) and target CPU
usage using the following formulas:

r =
⌈

cur_replicas×
cur_usage

target_usage

⌉
, (3)

num_replicas=min(max_replicas,max(min_replicas, r )).
(4)

The Linkerd service mesh was used to balance the load among
all the replicas [31]. When new replicas are added, Linkerd
includes them in the pool of replicas and starts directing traffic
to them. Upon the removal of replicas, Linkerd also updates
its list and stops considering the removed replica in the load
balancing.

To run the experiments, we developed a custom script that
controls the number of optical services in the network by
quickly establishing or deleting services. The experiment works
as follows. The number of optical services in the network is set
to {120, 240, 480, 960, 1440, 1920}. Each number of services
is maintained for 30 min. We adopt a 10 min interval between
different numbers of optical services to bring the system back
to its idle state, as illustrated in Fig. 4. We also adopt a period
of 30 s, i.e., in ideal conditions, the loop will be executed twice
per minute. In the last part of the experiment, we set the period
to 1 min and evaluate how the system behaves with 1920 active
services.

Fig. 4. Number of services over time. The last two experiments
represent the case with the period (p) equal to 30 s and 60 s.

A. Use Case: Optical Physical-Layer Security
Diagnosis

We selected the optical physical-layer security diagnosis to vali-
date our implementation of the proposed module. We leverage
the dataset reported in [17]. The dataset was collected on a real-
world testbed, with two monitored optical channels under test.
The monitoring system collected one sample per minute. Each
sample contains 12 KPIs, including the OPR, OSNR, and
BER-FEC, among others. For some features, the minimum
and maximum values observed within a minute are reported
in addition to the nominal value in a total of 32 features. The
dataset contains seven different conditions: normal operating
conditions, light in-band jamming (INBLGT), strong in-band
jamming (INBSTR), light out-of-band jamming (OOBLGT),
strong out-of-band jamming (OOBSTR), light polarization
modulation (POLLGT), and strong polarization modulation
(POLSTR). In this work, we do not benchmark the mitigation
strategy. To include diversity in the dataset used and prevent
any bias towards any part of the dataset, we randomly sample
from any attack characterizations at each loop instance.

To scale our experiment to hundreds of optical channels,
we extracted the average value and the standard deviation for
each feature in each condition (normal and attacks). Then,
depending on the condition desired for an optical channel, we
sample a normal distribution parameterized by each feature’s
average and standard deviation.

In the following experiments, we used the DBSCAN algo-
rithm and adopted window-based attack detection (WAD)
from [19] as a means to improve the UL technique per-
formance. Namely, the relatively high false positive rate of
DBSCAN can result in an excessive likelihood of false alarms,
while the relatively high false negative rate may result in the
omission of alarms when needed. WAD compensates for these
issues by applying additional scrutiny to the outputs of the
ML model rather than using them in their raw form. This is
achieved by defining an observation window of size δ (i.e., the
number of most recent ML outputs) and setting a threshold τ
on the number of samples deemed as attacks necessary to raise
an alarm. WAD has been shown to compensate for the false
positive and false negative rates, alleviate the impact of ML
output oscillations, and reduce the likelihood of false alarms
already for moderate window size (e.g., δ = 10) and relatively
low thresholds (e.g., τ = 3), at the expense of slightly longer
attack detection time [19]. For the inference, we use 330 sam-
ples with 32 features [10]. In this case, DBSCAN serving acts
as the inference component.

B. Performance Assessment

In this section, we assess the scalability and resource effi-
ciency performance of the components in the diagnosis
module. Figure 5 shows the statistics captured by the manager.
Figure 5(a) shows the loop completion time. This represents
the time taken to diagnose all active optical services. For
reference, this time is measured in line 11 of Algorithm 2.
We can observe that, while the number of services increases
by 16×, i.e., from 120 to 1920, the loop completion time
increases from around 5 s to below 30 s (for the 30 s period
configuration). Meanwhile, Fig. 5(b) shows that the number
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(a) Loop completion time measured by the manager

(b) Number of threads

Fig. 5. Performance measurements at the manager (Algorithm 2)
over time.

of threads may increase from its minimum (two threads) up
to the maximum (10 threads). This shows that our module
and implementation can handle a large number of services
while maintaining the loop completion time below the desired
period (i.e., 30 s in our case). Figure 5(a) also shows for the last
configuration (i.e., 1920 services and 60 s period) that, when
the period is relaxed, the number of threads used is decreased
substantially (from 10 to 4). Finally, we note that the loop
completion time may take more than the desired period when
a large number of services are added in a short time. However,
the module quickly scales and stabilizes the loop completion
time below the desired period.

Figure 6 shows a summary of the response time for the
components when 480 optical services are active. The response
time encompasses the time elapsed between receiving a request
and finalizing the response to the component that made the
request. The results for other numbers of optical services are
similar and are omitted. The cache shows good performance,
serving all requests within 2.5 ms. The DBSCAN algorithm
used in the implementation of the inference can process more
than 80% of the requests in under 100 ms. Given that the
worker uses the cache and inference, it is expected that its
response time is longer than that of its dependencies. In 99%
of the requests, the worker completes the processing in under
250 ms, i.e., the diagnosis of each optical service takes less than
a quarter of a second in the benchmarked implementation.

Figure 7 shows (a) the CPU utilization and (b) the number
of replicas of the worker and inference components. The aver-
age CPU utilization is kept between 20% and 60% for most
of the experiment, except for some peaks. These peaks in CPU
utilization match the increments of the number of services, as
shown in Fig. 4. The last part of the experiments, starting from

Fig. 6. Cumulative distribution function of the number of
requests with respect to the response times of the scalable components
for the load of 480 optical services.

(a) Avg. CPU utilization over all replicas

(b) Number of replicas per component

Fig. 7. Details of the inference component executing a UL
algorithm.

7500 s, shows the CPU utilization of the inference component
close to the target of 80% utilization.

The average CPU utilization is kept below 80% in almost all
cases thanks to the addition of replicas, as shown in Fig. 7(b). It
is worth noting that keeping CPU utilization below the thresh-
old allows a component to maintain stable response time, as
reported previously.

By dynamically adjusting the number of replicas to the
needs, our module efficiently controls the number of resources
reserved for the diagnosis module. Both components require
only two to three replicas for diagnosing up to 240 optical
services. When the number of services increases to 480, the
inference scales to three replicas, while the worker scales to up to
four replicas.
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For 1920 optical services with a 30 s period, the worker
reaches the maximum number of replicas, i.e., 10. However,
when the period increases to 60 s, we can see that there is a
drop in usage and number of replicas. Since the manager has
more time to process all the requests, it is able to wait longer for
the response of the components. This reduces the pressure on
the worker and inference, which in turn can have their number
of replicas reduced.

4. CONCLUSIONS

This paper introduced a new module designed for scalable
and flexible diagnosis of optical services. The module divides
the tasks involved in the diagnoses among four different com-
ponents. The functionalities of ML models are encapsulated
inside the inference component, which enables various types of
ML models to be seamlessly integrated into the diagnosis. An
implementation of the proposed module is presented, adopting
microservices and a cloud-native architecture. Results obtained
using a physical layer security use case demonstrate the scala-
bility and flexibility properties of the proposed module. The
completion time of the tasks is kept stable regardless of the
number of services being diagnosed in the network. Moreover,
we showed that the proposal is resource-efficient, i.e., it adapts
to the number of resources reserved for the current needs.

The proposed module paves the way for scalable, efficient,
and flexible use of ML-based optical network diagnosis in
networks that scale from a few to several hundreds of services.
However, some challenges are still relevant to be addressed in
this area. For instance, developing and adopting confidence-
aware ML models are crucial to the reliability of the ML model
output. This would allow the system to trust an assessment
associated with high confidence but fall back to human assess-
ment when a low-confidence assessment is made. Moreover,
more research is needed to improve the generalization capa-
bilities of current models, so that models, once developed and
trained, can be used across different networks.
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