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Mean Field Type Control With Species
Dependent Dynamics via Structured
Tensor Optimization
Axel Ringh™, Member, IEEE, |sabel Haasler™, Member, IEEE, Yongxin Chen

and Johan Karlsson

Abstract—In this letter we consider mean field type
control problems with multiple species that have differ-
ent dynamics. We formulate the discretized problem using
a new type of entropy-regularized multimarginal optimal
transport problems where the cost is a decomposable
structured tensor. A novel algorithm for solving such prob-
lems is derived, using this structure and leveraging recent
results in entropy-regularized optimal transport. The algo-
rithm is then demonstrated on a humerical example in robot
coordination problem for search and rescue, where three
different types of robots are used to cover a given area at
minimal cost.

Index Terms—Computational methods, fluid flow
systems, large-scale systems, optimization, stochastic
optimal control.

|. INTRODUCTION

N RECENT years, mean field type control problems have
emerged as a powerful tool for analysis and control of
large-scale dynamical systems consisting of subsystem that are
also dynamical systems. It provides a framework for modeling
the behaviour of a large population of interacting agents,
where i) each individual’s decision is negligible to others
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at the individual level, but where the actions are significant
when aggregated, and ii) the number of agents is too large
to model each one individually. In such cases, one instead
often seek a model that explains the aggregate behaviour of
the population [17], [29], [30], [32]. Mean field type con-
trol problems are density optimal control problems where
the density abides to a controlled Fokker-Planck equation
with distributed control [7], [10], [13], [32]. For example,
potential mean field games are a particular type of such
models [6], [32].

In basic formulations of mean field type control problems,
all agents are equivalent in the sense that they all have the same
dynamics and they all have the same objective function which
they try to minimize. However, an important generalization is
the multispecies setting, where the population consists of sev-
eral different types of agents [1], [8], [15], [30], [31], [32].
This type of problem occurs in, e.g., coordination of multiple
types of robots, where the robots have different properties
(such as movement speed, movement capabilities, cost, etc.),
but they still have a common goal of achieving a given task
as efficiently as possible.

Recently, optimal transport has been successfully used
to address a number of problems in control, see,
e.g., [9], [42], [45]. In the seminal paper [4], certain optimal
transport problems were formulated as density control prob-
lems over the continuity equation, and this idea can be
generalized to allow for optimal transport problems that have
general underlying dynamics [12], [28]. Moreover, the recently
developed Sinkhorn method, for numerically solving large-
scale optimal transport problems [16], [37], is closely related
to the density control formulation in [4]. In fact, the added
entropy regularization leading to the Sinkhorn method corre-
sponds to adding a stochastic term to the underlying particle
dynamics, which leads to a controlled Fokker—Planck equa-
tion in the density control problem [11], [14]. This has
been used to develop methods for solving potential mean
field games [6], [38], [39], by formulating the potential
mean field game as a mean field type control problem
and then formulate the latter as a multimarginal optimal
transport problem. Due to the Markov property, such multi-
marginal optimal transport problems have a graph-structured
cost, and this type of graph structures has also been used
to develop efficient computational methods to solve prob-
lems in control [23], [25], estimation [24], and information
fusion [18].

For more information, see https://creativecommons.org/licenses/by/4.0/
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In this letter, we consider mean field type control problems
with multiple species that have different dynamics. First, we
reformulate the problem as a multimarginal optimal transport
problem. However, in this case the resulting problem turns
out to have a cost function that is no longer graph-structured;
instead, the cost function is a decomposable structured ten-
sor, i.e., a multi-indexed matrix, which can be represented by
a hypergraph. Next, for this type of structured multimarginal
optimal transport problem, we develop an efficient solution
algorithm. Finally, we illustrate the developed method on an
example in coordination of multiple types of robots in a
search-and-rescue type mission.

The outline of this letter is as follows: in Section II we
briefly review the areas of multimarginal optimal transport, and
mean field control problems. In Section III we formulate the
multispecies mean field control problem as a structured multi-
marginal optimal transport problems, discretize it, and present
an efficient numerical method for computing the optimal solu-
tion of the discretized problem. In Section IV we present a
detailed numerical example of robot coordination, and finally
in Section V we present conclusions and future directions.

Il. BACKGROUND
A. Multimarginal Optimal Transport

The optimal transport problem is a classic problem in math-
ematics that involves finding the most efficient way of moving
mass to transform one distribution into another [44]. The
multimarginal optimal transport problem is an extension of
this concept that deals with multiple distributions [5], [22],
[36], [40]. Here, we focus on the discrete case, where the
marginal distributions are represented by a finite set of non-
negative vectors! iy, ..., u7 € Rﬁ. The transport plan and

-
cost are both represented by 7-mode tensors, M € RY" and

CeRV T, respectively, and the marginal distributions of the
transport plan are given by projections P;(M) € RY, where?

N N N N
(PiM)); =D o Y >y My i

i1=1 l:/',1=1l:1'+1=1 iT=1

The discrete multimarginal optimal transport problem can
then be formulated as

minimize (C, M) (1a)
MeRrY”
subject to  Pj(M) = u;, j €T, (1b)

where (C, M) := Z[I ’’’’’ iy Ci,...ir M, i is the standard inner
product, and where we impose constraints on the marginals
corresponding to the index set I' C {1, ..., 7}. Although the
optimal transport problem (1) is a linear program, it can be
challenging to solve it numerically due to the large number
of variables. A popular method for approximately solving (1)
is to perturb the problem by adding a small € > O times the
entropy term

D) = Y (M iy log(M;, i) — M, iy +1)
AN

o simplify the notation, we assume that all the marginals have the same
number of elements, i.e., j € RV, This can easily be relaxed.

2For notational convenience, we will in the remainder of the text write
this type of sum as Zilv-'ﬂl:/—]vl:/-f—] ,,,, i M;, ...iy-- Moreover, the notation
(')ij means the ijth element of the vector inside the parenthesis; we will use
analogous notation for tensors in general.

to the cost function and use Sinkhorn iterations to solve the
resulting problem [16], [37]. The optimal transport plan for
the perturbed problem is of the form M = K © U, where
K =exp(—C/e), and U;, i = Hjer(“j)ij a rank-one tensor,
see [5], [18]. Sinkhorn’s method iteratively updates u; as

uj < u; O u; @ Pi(KoU), forjeTl, 2)

where © and @ means pointwise multiplication and pointwise
division, respectively, and the algorithm converges (linearly)
to an optimal solution of the perturbed problem [35], [43]. In
the multimarginal case, computing P;(K® U) suffers from the
curse of dimensionality. However, in some cases, structures in
the underlying cost C can be used to circumvent these issues,
for instance when the cost decouples into pairwise interactions
according to a graph-structure [2], [5], [18], [19], [23], [24],
[25], [26], [27], [38], [39], [41].

B. Multispecies Mean Field Control Problems

Consider a set of infinitesimal agents moving in a state space
X C R”". Assume that they belong to L different classes, and

that each infinitesimal agent of species £ € {l1,..., L} obeys
the dynamics
dxg (1) = fo(xe)dt + By (xg) (vedt + /edwy), 3)

subject to the initial condition x¢(0) = xp ¢, where the latter
is a realization from a distribution pg_¢(x). Moreover, wy, for
¢ e {l1,...,L}, are n-dimensional Wiener processes that are
independent of each other. We also assume that f; : X —
R"™ and By : X — R™ are continuously differentiable with
bounded derivatives. Then, under suitable conditions on the
(Markovian) feedback v, there exists a unique solution almost
surely to (3), cf. [20, Th. V.4.1], [7, pp. 7-8]. Moreover, the
density of the particles of species £, py, is the solution of a
controlled Fokker-Planck equation. Therefore, the multispecies
mean field control problem is defined as the density optimal
control problem

1 L
1 2
| [ X 3welRor it
0 X

minimize
P,Pe,Ve
1
+ fo Fup(t, )di +Go(1, ) (4a)
L 1
+> ( /0 F{ (pe(t, ))dt + G (pe (1, ~>>)
=1
. dp¢
subject to - + V- ((fe + Beve) pe) (4b)
€ 2L 82((o)ikpe) 0. (=1...L
2 ih=1 axiaxk
L
pe(©,) = poe, P =Y pelt,),  (4o)

=1

cf. [7, Ch. 2 and 4]. Here V- denotes the divergence operator,
oy = B¢B!, and F;, G, 7! and G* are functionals on Ly N Le.
These functionals are the costs that the species are trying to
minimize by their behavior: ]-'f and G* are species-dependent
costs, where the former is the running cost and the latter is
the terminal cost. F; and G are cooperative costs that link the
species together by acting on the total density of all species.
We assume that all these functionals are proper, convex, and
lower-semicontinuous. Moreover, we assume that 7, and }'f
are piece-wise continuous in time.
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[11. DISCRETIZATION AND SOLUTION VIA TENSOR
OPTIMIZATION

Recently, an approach for solving some types of potential
mean field games was proposed in [38], [39]. The approach
is based on formulating the problem on path space, i.e., on
C([0, 11, X) := the set of continuous functions from [0, 1] to
X, and then discretizing the problem in time and space, which
results in a tensor optimization problem. Here we generalize
this approach in order to derive a numerical solution algorithm
for multispecies mean field control problems of the form (4).

A. Discretization of the Problem

Let Pt denote the distribution of species £ on path space,
induced by the controlled process (3). Then Ptv C = pe(t, ),
where P} is the marginal of P"¢ corresponding to time ?,
and pg is the solution to (4b) with initial condition p,(0, -) =
po,¢. Moreover, let Pg denote the corresponding uncontrolled
process (v¢ = 0) with initial density pg¢. By the Girsanov
theorem (see, e.g., [21, pp. 156-157]), we get that

1 1
= f / vel|? pedtdx = eKL(P' | PY) (5)
2 Jx Jo

where KL(-||-) is the Kullback-Leibler divergence, see,
e.g., [6], [11], [13], [33], [34]. Utilizing (5), problem (4) can
be reformulated as an optimization problem over path space
measures that corresponds to a generalized entropy-regularized
multimarginal optimal transport problem, see [38], [39]. In
particular, discretizing the space into points xp, ..., xy, and
considering time steps jAf, for j = 1,...,7T, where At =
1/T, the term (5) takes the form (C;, My) + e D(My), where
the tensor M, € RV ! describes the flow of agents in class Z,
and the cost tensor C; € RV T describes the associated cost
of moving agents. More precisely, (Cy);,...ir = ijal C@,-j,-j e
where Cyjx is the optimal cost for moving a unit mass of
species £ from point x; to x; in one time step, i.e.,

minimize fOAt %||v||2dt
vel, ([0,At])

Ceik = 1 subject to & = fo(x) + B (x)v (6)
x(0) = x;,  x(At) = xy.
Thus, the discretization of (4) takes the form
L T-1
minimize ((Ce. Me) + €D(Mp)) + At Y Fi(u)

Mo”2 Jj=1
j=1,.T
t=1,...,.L

L T-1
+G(T) + ) (Ar Y F g +6 (u%‘?)) (7a)

=1 j=1

subjectto Pj(Mp) = pu{”. j=1.....T. £=1,....L.  (7b)
Po(My) = poe, £=1,...,L, (7¢)
L
Yow’ = j=0T (7d)
=1

where (1o ¢ are discrete approximations of pg ¢.

B. Solution Method Based on Tensor Optimization

Note that (7) consists of L coupled tensor optimization prob-
lems as in [38], which are coupled through the constraint (7d)
and the cost imposed on u;, for j = 1,...,7, in (7a).

T-1 T 1

g1

(a) Full problem structure. (b) One triangle in (a).

Fig. 1. lllustration of the structure for the multispecies density optimal
control problem. Red dots correspond to marginal constraints (8b), blue
lines to bi-marginal constraints (8d) and (8c), and yellow triangles to cost
interactions. Note that marginal ;.o does not have a constraint, thus for
the corresponding triangle in (a), the bottom left node is not colored red.

Next, we reformulate (7) into a single tensor optimization
problem (cf. [26], [39]) by “stacking together” the tensors
M; for £ = 1,...,L to form a (7 + 2)-mode tensor
M e REXN™' where the index —1 refers to the species.
That is, its elements are given by My, i = (Mg ir»
and My, i is the amount of mass of species £ that moves
along the path x;, ..., x;. Therefore, the additional marginal
u—1=P_1M) € Ri describes the total mass of the densities
for the different species. Moreover, the bi-marginal projection
P_1;(M) € REXN | defined by

(P-1,;(M))gi; =

satisfies P_y ;M) = [, ..., ui”]7, and P;(M) is the total
distribution 1; at time jAf.

Finally note that Z%:] D(M;) = DM), and hence
problem (7) can be written as the tensor optimization

problem

T-1
minimize - (C, M) + eD(M) + At > Fiw) + G(ur)
M, p, R\ -
j:{ ..... T =1
T-1 ‘
+ ) FRT) + GHRTT) (8a)
j=1
subject to  P;(M) = p;, j=1,...,T, (8b)
P ;M) =R j=1,...,T, (8¢)
P_jo(M) = RO, (8d)

where RCLD = [uoq, ..., morl” € RIJFXN and where
FEHREN) = S AFf), j = 1.....T. and simi-
larly for GL. Here, the cost tensor C is given by Cy;. iy =
ijgl Cg,:,.,-j +1» Which means that the problem has a structure
as the hypergraph illustrated in Figure 1.

In contrast to previous works, the cost tensor C is not com-
posed of pairwise cost interactions, and problem (8) does not
fall into the framework for graph-structured optimal transport
and tensor optimization problems [25], [27], [39]. However,
similar to the setting in Section II-A, the solution to (8) is of
the form M = K © U, where

T-1

Keig...iy = l_[ Kii, 9)
=0
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P_1oKOU)=¥YOU_190 (12)
P_i 7(KOU) = Y7 O U_ diag(ut). (13)
The components in these expressions are defined as
- Sk(U- =1
- o §; = { Sk(U-1,0) . J
b, — G Sk (Wj—1 © U—yj—1diag(uj-1)), j=2,...,T
Vi e — Yin with
Fig. 2. lllustration of how the structure of problem (8) can be used for (SK(A)>ili3 = Z KiyirizAiis» (14)
computations. The components in each triangle in Figure 1 give rise to 173
computational components as indicated in this Figure. The operators Sk d
and Sk, defined in (14) and (15), respectively, map these components an
forward and backwards over the base of the triangles. " Sk (U_y 7diag(ur)) j=T-1
P Sk (W1 © U—y jrrdiag(ujv1)), j=0,..., T =2,
with
. SK@A) )iiiy = Y KiyigisAigis- (15)
04 13
i Proof- Note that Ky ir = [I o' Keii,,. Togeth
° 08880 0888 roof: Note that Keip.ir = [lico Kty Together
. o ) 00000 with (10), this means that
? °888°
T-1
99890 (P_1;KOU)y= Y. (( [ e (U1,0)zi0)
0000000 . y _
Q0000 ‘lo,...,l_/T1 =0
©0900 [TTRIN & o

(a) Terrain and starting positions. (b) Movement patterns.

Fig. 3. Set-up for the numerical example. In (a), blue area is water,
red area is rough terrain, and green area is normal terrain. The three
different types of robots start in the three areas marked in the lower
left corner: robot type 1 in the dark blue area, robot type 2 in the dark
red area, and robot type 3 in the black area. In (b), the color of the
(free) movement stencils are the same as the starting positions of the
corresponding robot type.

with Ky;.i

i1 = exp(—Cji;,, /€), and where

T T
Uiy = (U=-1,0)¢iy H(U—l,j)mj H(”j)ij . (10)
j=1 j=1

This can be readily derived using Lagrangian relaxation and
is omitted for brevity (cf. [25], [27], [39]). Moreover, the
components of the tensor U can be found by generalized
Sinkhorn iterations [39]. In particular, the problem can be
solved by Algorithm 1, in which * denotes the Fenchel con-
jugate of a function and o denotes the subdifferential (for
definitions, see, e.g., [3]). Under relatively mild conditions
on the cost functions, the algorithm is in fact globally con-
vergent (see [39, Sec. III] for details). Akin to the classical
Sinkhorn iterations (2), the computational bottleneck is to
compute the relevant marginal and bi-marginal projections of
the tensor M = K © U. An efficient way to compute these is
described in the following Theorem, and the structure of these
computations are illustrated in Figure 2.

Theorem 1: The bi-marginal projections of the tensor M =
Ko U, with K and U as in (9) and (10), respectively, on the
marginals —1 and j, are given by

P_1;(KOU) =¥;0 V0 U_,diagu), an

forj=1,...,7 —1, and

T T R
(H(U—l,r)u,> <1—[(ut)i,>) = (U=1,)ei; )i (¥ ei; (V)i
=1 =1

where \ifj and W;, for j=1,..., 7, are given by

-1
(Wjei; = Keigiy (U-1,0) iy HKKi,i,H(Ufl,t)éi,(ut)i, ,
005005 j—1 t=1
T
ey = Y | TT Keiis U-1.00, ()

i1 i \t=j+1

This proves (11), and similar derivations (omitted due to space
constraints) yield the expressions (12) and (13). [ |

Remark 1: The expressions in Theorem 1 can be seen as a
message-passing scheme similar to [19], [27]. More precisely,
the operators Sk and Sk are then interpreted as messages that
propagate information forward and backwards, respectively,
through the time instances t =0, ..., 7. Moreover, it is easy
to adapt this to accommodate time-varying dynamics. In this

T-1 T-1
case, Ceiy...iy = Zj:O Cé':/ijﬂ and Kyiy...ir = 1_[/:0 Kzi’}#l’
and Sk and Sk in (14) and (15) are changed to Sg;—1 and Sk;,
respectively (cf. Figure 2).

IV. NUMERICAL EXAMPLE IN COORDINATION OF
MULTIPLE TYPES OF ROBOTS

In this section, we illustrate the method by considering a
numerical example of a robot coordination task. The scenario
is a search-and-rescue-type mission, with L = 3 different types
of robots and three different types of terrains. The goal for the
robots is to, at the last time point, cover the entire area, and
to do so as cheap as possible. The exact costs are defined
below. The set-up is shown in Figure 3(a), where blue area
is water, red area is rough terrain, and green area is normal
terrain. Moreover, the three different types of robots start in
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t=11 t=17 t=23

L
[}
(=]
L
[}
N
L
[}
u

Robot type 3 Robot type 2 Robot type 1 Total density

t=29

t=35 t=141 t=47 t=53 t=58 t=60

Fig. 4. Time evolution of optimal total density and optimal densities of the different robots types.

Algorithm 1 Method for Solving (8)
1: Given: Initial guess uy,...,u7, U_10,..
2: Denote G~ by ’f%—, and G by Fr.
3: while Not converged do
for j=1,...,7 do
Let W_1; be so that P_; ;(KOU) = U_1; © W_y.
Update U_;; by solving 0 € —-U_1; © W_y; +
I(FH")(— €log(U_1)).
6:  Let w; be so that P;(K © U) = u; © w;. Update u; by
solving 0 € —u; © w; + 8(F]T")( — elog(uy)).
end for
end while
9: return uq,..

SU_LT.

AN

X

L] MT, U—l,Os ) U—l,T

the three areas marked in the lower left corner of the figure:
robot type 1, which start in the dark blue starting area, can
move on water and in normal terrain; robot type 2, which
start in the dark red starting area, can move in rough terrain
and normal terrain; and robot type 3, which start in the black
starting area, can only move in normal terrain.

The state space is the rectangle [—1, 1] x[—1, 1], which we
uniformly discretize it into 100 x 100 grid points; the latter
are denoted x; = x;,;, for i1,ip = 1,...,100, and the dis-
tance (in each direction) between discrete points is denoted
Ax. Moreover, time is discretized into 7 + 1 = 61 time steps.
The dynamics for each robot type is taken to be f;(x) = 0 and
Be(x) = (1//ag)l, where 1/,/ay is a robot-type-dependent
weight modeling the energy efficiency of the robot type. By
the reparametrization v, = (1/,/a¢)ve, ¢ can equivalently be
understood as a cost of movement for robot type £. However,
the distance each type of robots can travel with one time step is
also limited: robot type 1 and 2 can travel to points inside a cir-
cle of radius v/6Ax, and robot type 3 can travel to points inside
a circle of radius 3Ax. In free terrain, this results in the cor-
responding discrete movement stencils shown in Figure 3(b),
but we also disallow robots to “jump over” areas where they
cannot enter. This means that the cost tensor has elements (6)
given by Cyix = agllXiy ir — Xk ko ||2 if, for robot type ¢, state
Xk, ky 18 in range from state x;, ;,, and Cy¢jx = oo else. This
means that the corresponding K in (9) is a sparse tensor, since

Kyjx = 0 if Cpp = 00. We set oy = 400, ap = 400, and
a3 = 100.
More precisely, we consider the discrete problem

59 3
minimize  (C, M) +0.2D(M) + Z(F(uj) + 3 e 1))
Mer3 10 =1

Ws uj@ ERE}OZ

S~—

=1

- Ho@ G
subject to P_j ;(M) = [H]( ), M; ) M} T,

3
4 4 4
Yot = w? <® ul” = o,
=1
for € =1,2,3,andj=0,1,...,60,

Heo uniform outside starting areas, see below.

The total mass of each robot type is set to 10, and the starting
distributions o ¢ are set to even distribution in each robots
starting area. As final distribution pep, we enforce a uniform
distribution of total mass 10 in all areas outside the starting
areas; inside the starting areas, no constraint is enforced at
the last time point. Moreover, the running cost F is a cost
for congestion in states outside of the starting areas: F(u) =
Z(il,i2)¢starting area ((Wiy.i) where f o Ry — Ry U {oo},
f) =x/(1 —x) +1Ijp,1)(x) where I4(x) is the indicator func-
tion on a set A, i.e., [4(x) = 0 if x € A and oo else. The
running cost ¢, is a fixed cost for each time step a robot is
deployed, i.e., it is O in the starting area of robot type ¢ and
equal to a constant ¢, in all other points in state space. In par-
ticular, & = 0.2, & = 0.2, and & = 0.1. The constraint «®
is zero in regions where the robot type cannot move (which
includes other robot types starting areas), it is 10 in the start-
ing regions of robot type ¢, and it is 1 elsewhere. The latter
has no impact on the optimal solution, since the running cost
F limits the total density to 1 in any given point.

The problem is solved using Algorithm 1, where the projec-
tions needed in the algorithm are computed using Theorem 1.
Note that the optimization problem in the example has more
than 10240 variables, which is too large for off-the-shelf con-
vex optimization solvers to handle. The optimal solution is
shown in Figure 4. It is nontrivial to allocate the robots due
to interaction costs and capacity constraints, nevertheless, the
behaviours in the solution is consistent with the intuition.
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Robot type 1 and type 2 focus on the regions where only
they can reach, while robot type 3 covers most of the area
that all robots can reach due to the smaller cost and larger
speed. It can also be seen that deployment of the robots is
delayed as much as possible due to the cost of being outside
the starting region.

V. CONCLUSION AND FUTURE DIRECTIONS

In this letter we developed an efficient method for multi-
species mean field type control problems, where each species
have different dynamics. We also illustrated its use by solv-

ing

a robot coordination task for a search-and-rescue-type

scenario. One limitation of our method is that it becomes ill-
conditioned when the intensity of noise € becomes too small.
One future direction is to address this issue by incorporating
ideas from proximal point methods.
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