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A B S T R A C T

The article presents an approach for calculating pass-by sound pressure radiated from railway
wheels in the time domain using moving Green’s functions. The Green’s functions are obtained
by using Finite Element (FE) and Boundary Element (BE) methods in the frequency domain,
subsequent inverse Fourier transform, followed by convolution with a time series of rolling
contact forces to obtain the pass-by time signals. However, traditional BE methods are com-
putationally expensive due to the low structural damping of the wheel, necessitating a high
frequency resolution.

To overcome this issue, a modal approach is introduced in which the pass-by sound
radiated by each wheel mode is calculated separately. This approach incorporates the dynamic
response of the wheel in the time-domain processing and thus reduces the cost of the BE
solution. A modal source signal is introduced to describe the excitation of each mode at
each time step. The sound field radiated by unit modal amplitudes is calculated in BE and
subsequently approximated by spherical harmonic (SH) equivalent sources, which allows for
efficiently calculating acoustic transfer functions for varying relative positions of the wheel
and a stationary receiver. Convolution of the source signal with the moving acoustic transfer
function produces the pass-by pressure signal.

The article investigates the directivity of the radiation from each mode and finds that most
modes, including those with dominant radial deflection, radiate in mostly axial direction at high
frequencies. Modes that dominate the pass-by pressure level are identified, both in frequency
bands and with respect to the relative positioning of the wheel to the receiver. Finally, it is
found that an SH expansion order of approximately 30 is required to satisfy the employed error
measures, although lower orders may suffice for an auralisation of the signal.

. Introduction

Noise emitted from roughness-excited vibrations in the wheels and the track dominates railway noise in a wide range of vehicle
elocities. In the higher frequency range starting from about 2 kHz, this rolling noise is typically dominated by the wheel [1]. The
pper frequency limit of rolling noise is about 6–8 kHz, higher at larger train speed due to the contact filter [1]. Thus, finding
ppropriate models to predict the noise radiated from the railway wheels has been an essential part of understanding railway noise.
arious modelling approaches have been developed to address this challenge, from analytical models [2] over Rayleigh integral

ormulations [3] to increasingly elaborate Boundary Element (BE) models [4–9].
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Existing models for the radiation from railway wheels generally aim at predicting the sound power, radiation efficiency, and
ossibly a general approximation of the directivity of the radiated sound. As possible reasons for this, Thompson et al. [7] state that
he actual directivity of the wheels is of little relevance in practice since the main interest is averaged sound levels during the pass-by
f a train, and the directivity is strongly affected by the local acoustic geometry around the wheel (e.g., the bogie). Further, even
hen neglecting the local acoustic geometry, modelling the radiation of the complex velocity distribution on the wheel requires a

ignificant computational effort when the radiation up to high frequencies is of interest.
Nevertheless, a lacking description of the directivity can introduce errors in validation measurements carried out in a limited

umber of discrete positions. Those results will be strongly influenced by the radiation directivity. In addition, the directivity of
moving wheel influences the sound received by a stationary observer. The prediction of the sound pressure in a point on the

rack side in time domain during a pass-by also gives the possibility to investigate other effects. For example, transients in sound
ressure signals due to wheel flats or rail joints are likely not detected in averaged sound levels but can affect the perception of
olling noise by people [10]. To judge the annoyance of such signals, listening tests could facilitate the derivation of psychoacoustic
arameters such as impulsiveness or dynamic loudness. Such listening tests in turn require a physically accurate auralisation of the
ound received by a stationary observer.

Using a numerical approach as the BEM for creating these time signals requires substantial computational effort for the following
easons:

• As the frequency range of interest reaches up to high frequencies, a high spatial resolution is needed to ensure that at least
six elements per wavelength are present.

• The low structural damping of the wheel demands a high frequency resolution to be able to capture the response and radiation
around the resonance frequencies of the wheel correctly.

• Calculating pass-by signals that are suitable for psycho-acoustic evaluation requires long time signals with a sufficiently high
sampling frequency.

To accomplish this task, the straightforward use of BEM is easily ruled out due to the involved computational effort. Therefore,
n the following, the combination of two approaches is presented which allows for calculating pass-by signals through the Fourier
eries Boundary Element Method (FBEM) [8,11] with reduced computational effort.

Before describing these approaches in detail, the necessary inputs to both approaches are discussed in Section 2, where the
imulation model for calculating wheel/rail contact forces during rolling is introduced and the dynamic behaviour of the wheel is
escribed.

The first approach concerns the calculation of the sound radiation from each mode shape of the wheel. Since the derived impulse
esponses are comparatively short, a rather coarse frequency resolution is sufficient (see Section 3). The second approach is based
n the method of equivalent sources. The idea is to represent the sound field caused by each mode shape on the wheel by a set of
quivalent sources. In this way, it is possible to calculate the radiated sound pressure in any arbitrary position in a later step without
he need to repeat computationally costly FBEM calculations. Here, spherical harmonics (SH) are used as equivalent sources. This
s described in Section 4.

In Section 5, a time domain approach is presented to calculate pass-by signals at arbitrary microphone positions. For this, the
ource signal is created including the contact forces between rail and wheel, the movement of the wheel along the track, and the
requency response of the modes. The contribution of each mode to the pass-by signal is then obtained by convolution of the impulse
esponse functions of the radiation functions based on SHs with the source signal. A summation of all modal contributions gives the
inal results.

Finally, Section 6 summarises the approach and discusses the results.

. Rolling contact forces and wheel dynamics

In this article, the WERAN (WhEel/RAil Noise) model [12,13] is used to calculate wheel/rail contact forces during rolling. It
ombines precalculated impulse response functions for track and wheel with a model for transient rolling contact [12,14]. The
olling contact model is an implementation of Kalker’s variational method [14], which is a 3D non-Hertzian model based on the
ssumption that wheel and rail can be locally approximated by elastic half-spaces. Track and wheel responses are first precalculated
s frequency response functions, which are then transformed to impulse response functions via inverse Fourier transform. The track
requency response functions are, in this case, calculated with DIFF [15]. The wheel frequency response function is calculated via
odal superposition as described below. The rigid body modes of the wheelset are included when solving the contact problem. The

rack and wheel responses are then transformed to the time domain via inverse Fourier transform. In this way, the complete dynamics
f the wheel and track in the required frequency range are considered in combination with a fully three-dimensional transient and
on-linear contact model. This is especially relevant when aiming for auralising transient effects in the rolling contact. WERAN is
esigned to also include lateral contact forces as a result of friction in the contact [16]. In the following, only vertical forces are
aken into account for demonstration of the method. Cheng et al. [9] describe that neglecting the vertical/lateral interaction in the
ontact patch leads to an overestimation of the contribution of axial modes to the total radiated sound power.

As input data, WERAN requires

• The roughness of the wheel and rail in several parallel lines around the wheel and along the rail,
2

• the material data and geometries of the wheel and track
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Fig. 1. Driving point mobility for radial excitation at the presumed contact position. The eigenfrequencies of the radial modes and axial modes with 0 and 1
nodal circles are indicated by vertical lines.

• the exact contact geometry and preload as input to the vertical contact model based on Kalker’s variational theory [14].

In WERAN, at each discrete time step 𝑡𝑛, the wheel and track impulse response functions are convolved with the contact forces
o provide the displacements of both bodies in the contact point as input to the contact model. In the contact model, the vertical
ontact problem is solved resulting in the vertical contact force 𝐹c(𝑡𝑛) in the current time step. This force then serves as input to the
ext convolution step to update the wheel and track displacements. The details of this procedure are described in [17].

The obtained contact forces are then used in a postprocessing step to calculate the vibrations on the complete surface of the
heel and the track, which are in turn input to models for the sound radiation. Here, the focus is however limited to the radiation

rom the wheel. In addition, the rotation of the wheel is neglected in the prediction of the contact forces and the calculation of the
adiated sound field for simplicity. The rotation could however be included with different approaches (see, e.g., [9,18]). The rotation
ntroduces two peaks in the contact point mobility near each eigenfrequency of the wheel. Cheng et al. [9] find that neglecting the
otation leads to an underestimation of the radiated noise by up to 3 dB since in the case of rotation there are twice as many peaks
nd the apparent damping in the contact is lower.

The velocity 𝐯(𝐠, 𝜔) at any point 𝐠 = [𝑔𝜃 , 𝑔𝑦, 𝑔𝑟] on the wheel is based on the superposition of the modes obtained from the WFEM
n the form

𝐯(𝐠, 𝜔) =
∑

𝑙
𝐴𝑙(𝜔)Φ𝑙(𝐠) (1)

here Φ𝑙 is the mode shape and Φ𝑙(𝐠) is a three element vector that contains the deflection of mode 𝑙 at position 𝐠 in circumferential,
xial, and radial direction. The variable 𝐴𝑙(𝜔) is the corresponding modal amplitude and 𝜔 represents the angular frequency. The
odal amplitude is calculated as

𝐴𝑙(𝜔) = j𝜔𝑏𝑙(𝜔)𝐅𝑒(𝜔)Φ𝑙(𝐠𝑐 ) , (2)

ith 𝐠𝑐 , the excitation point of the wheel and j, the imaginary unit. The excitation force vector 𝐅𝑒(𝜔) = [𝐹𝜃(𝜔), 𝐹𝑦(𝜔), 𝐹𝑟(𝜔)]T is
considered a point force acting in position 𝐠𝑐 . The term

𝑏𝑙(𝜔) =
1

𝛬𝑙(𝜔2
𝑙 − 𝜔2 + j2𝜔𝜔𝑙𝜁𝑙)

(3)

describes the frequency-dependent scaling of the modal amplitude due to the dynamic properties of the structure, where 𝜔𝑙 are the
eigenfrequencies and 𝜔 is the angular frequency. The variable 𝜁𝑙 represents the damping ratio for mode 𝑙. The modal mass 𝛬𝑙 is
calculated as the integral over the whole volume of the body in the form

𝛬𝑙 = ∫𝑉
𝜌𝑤Φ

2
𝑙 d𝑉 , (4)

where 𝜌𝑤 is the density of the steel. The modes are categorised depending on their main direction of motion as radial, axial, or
circumferential modes [7]. Depending on the position and direction of excitation, different groups of modes dominate the vibrations.
Fig. 1 shows the driving point mobility of the wheel for a radial excitation in the assumed contact position during rolling. The contact
position is indicated in Fig. 2.

The wheel geometry is of type BA093 which is, for example, used in the noise measurement vehicle (SMW) of DB Systemtech-
nik [8]. A reprofiled wheel with a rolling radius of 0.469 m is used. The damping ratios 𝜁 are chosen depending on the number of
nodal diameters 𝑘 according to [1], such that 𝜁 is 10−3, 10−2, and 10−4 for 𝑘 = 0, 𝑘 = 1, and 𝑘 >1, respectively. The mode (1, 0, 𝑟)
s in practice affected by coupling with the axle and is therefore damped with a damping ratio of 0.95 [1]. When comparing the
igenfrequencies of the wheel in Fig. 1 with the dispersion relation in Fig. 3, it is visible that the main response is due to the radial
odes, which are indicated by dots in Fig. 1. However, due to the asymmetric wheel geometry and excitation also axial modes

re excited but their amplitudes are lower. Despite the low amplitudes in the case of radial excitation, axial modes are known to
e important contributors to the radiated sound of rolling noise [1], which is also shown in the subsequent sections. The coupling
3
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Fig. 2. Lower part of the wheel cross-section. The arrow indicates the location of the contact used in the following.

Fig. 3. Dispersion relation of the wheel mode shapes.

between the axial and radial modes is illustrated in Fig. 4, where the radial mode (d) and similarly the axial modes (b), (c), (e), and
(f) show a radial displacement on the running surface of the wheel. An interesting question is how significant the impact of each
mode in Fig. 3 on pass-by signals is at a given microphone position since beyond the cross-coupling of the axial and radial motion,
the excitation and radiation efficiency of each mode are contributing factors. The radiation efficiency of the modes also depends on
the modal pattern, i.e., the number of nodal diameters and nodal circles. For instance, it is shown in [7,8] that for typical wheel
dimensions, even for five nodal diameters, the radiation efficiency is close to one for frequencies above 1000 Hz. This question is
researched in more detail in Section 5.

3. Calculation of the radiated sound from mode shapes

One major obstacle in calculating the radiated sound pressure by means of numerical approaches such as BEM is the required
frequency resolution. Due to the highly undamped resonances, the corresponding vibration spectra show sharp maxima which can
only be captured by a sufficiently high frequency resolution. Investigating the impulse response of a free wheel shows that a 60 dB
decay can reach, or even exceed, 20 s. Capturing 20 s numerically requires a frequency resolution of 1/20 Hz or 0.05 Hz. Calculating
spectra up to, e.g., 7 kHz, would thus require solving the BE problem for 140,000 frequency lines. When assuming calculation times
of about one minute per frequency line, which might be rather an underestimation for models of this size, the calculation time
would be in the order of 100 days. There are a number of attempts to reduce the calculation time, e.g., by adapting the frequency
4

resolution depending on the proximity to a mode. Here, however, a different strategy is developed which avoids the need to calculate
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Fig. 4. Vibrational mode shapes: (a): (1, 0, a) at 160 Hz, (b): (3, 0, a) at 834 Hz, (c): (3, 1, a) at 2120 Hz, (d): (3, 0, r) at 2503 Hz, (e): (3, 2, a) at 3467 Hz,
(f): (4, 1, a) at 2545 Hz. The colour indicates axial deflection. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

such long impulse responses in BEM altogether by calculating the modal contributions to the pass-by sound pressure separately and
including the long dynamic response of the wheel in a source term.

The velocity field on the wheel in Eq. (1) is calculated as the sum of each mode shape Φ𝑙 scaled with the corresponding modal
amplitude 𝐴𝑙 given in Eq. (2). Analogously, the sound field around the wheel is calculated as the sum of the sound radiated from
each mode shape Φ𝑙 scaled with 𝐴𝑙,

𝑝(𝐱r , 𝜔) =
∑

𝑙
𝐴𝑙(𝜔)𝐻𝑙(𝐱r , 𝜔) . (5)

The modal acoustic transfer functions 𝐻𝑙 are obtained with a BE model where 𝐴0Φ𝑙 is used as input velocity, where 𝐴0 = 1 m∕s.
The complex pressure at a receiver position 𝐱r is then calculated for each mode 𝑙. Each modal pattern produces a different frequency-
dependent pattern in 𝐻𝑙, due to the different relation between the wavelength in the surrounding fluid and the modal pattern on the
wheel. It is observable that this frequency-dependent variation is rather smooth. This means that a sparse frequency resolution can
be sufficient in the BE calculation, and a subsequent interpolation can achieve the required resolution for the pass-by calculation.
Since this interpolation is carried out only after the introduction of equivalent sources in the next step, the ‘smoothness’ is relevant
first there. An example of a several transfer functions 𝐻𝑙 is presented in Section 5 below.

4. Equivalent source method

As long as the geometry and position of the wheel and the receiving positions are not changed, the use of the acoustic transfer
functions is very efficient. The main disadvantage of the approach is that the transfer functions are only established for a specific
set of receiver positions. For a different set of receiver positions, new transfer functions need to be calculated. In the axisymmetric
FBEM, the calculation at new receiver positions is very efficient, as long as these new positions have the same radius. However,
aiming for the prediction of the sound pressure during a pass-by requires calculating the response along a straight line, involving a
continuously changing radius.

To handle arbitrary receiving positions even after having solved the FBEM, a different approach is suggested based on the method
of equivalent sources. The equivalent sources method was developed for different practical applications, focusing mainly on the
radiation from structures [19–23]. The method is based on the idea of approximating a sound field inside a given volume of interest
𝑉 (see Fig. 5) by sources 𝑞𝑛 placed outside this volume, which must fulfil the given boundary conditions on the surface 𝑆. The
equivalent sources can be of any source type, i.e., monopole, dipole, multipole sources, or spherical harmonics, as long as they
fulfil the given boundary conditions on the surface 𝑆. In an equivalent sources approach, the boundary conditions will not be
fulfilled exactly over the entire surface 𝑆 of the radiator but in a least squares sense only. Various approaches have been suggested
concerning the choice of the equivalent sources and the approach to determine their amplitudes. For the latter, there are two main
approaches in the literature, the collocation method in which the boundary conditions are fulfilled exactly in a discrete number of
surface points, or methods minimising the least squares error, in an energy sense, over the surface [22,23].

A set of correctly determined equivalent sources not only describes the pressure field on the surface but also the radiated far-field
pressure at any point in the exterior volume 𝑉 . It is only valid in the far field as the equivalent sources minimise the least squares
difference between the velocity of the radiator and the velocity produced by the equivalent sources on the surface. As a consequence,
5
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Fig. 5. Receiver points 𝑝𝑛 inside the volume V (shaded), and equivalent sources 𝑞𝑛 outside of the volume.

Fig. 6. Position of the wheel and the receiver points on the reference surface 𝑆 in the FBEM calculation.

the near-field is erroneously reproduced. Observations of the original pressure field in a sufficient number of points in the far field,
however, allow for a correct determination of the amplitudes of the equivalent sources.

For 𝐼 unknown source amplitudes 𝑞𝑖(𝜔) and pressure signals 𝑝𝑚(𝜔) in 𝑀 observation points, 𝑀 has to be equal to or larger than
𝐼 to avoid an under-determined solution. The propagation between each source and observation point is described by the transfer
function 𝐻𝑚,𝑖(𝜔). The unknown source strengths 𝐪(𝜔) are obtained by calculating the inverse of the matrix 𝐇(𝜔) and multiplying by
the pressure 𝐩(𝜔) in the observation points

𝐪(𝜔) = [𝐇(𝜔)]−1𝐩(𝜔) . (6)

Such inverse problems are well known to be ill-posed. Usually, the robustness of such solutions has to be improved by applying
some form of regularisation [24].

In the following, the field that is created by the wheel modes is evaluated on a spherical reference surface 𝑆 in an equiangular
grid. The calculations are performed with an FBEM formulation [8]. The equiangular grid allows a convenient export from the
cylindrical coordinate system used in FBEM. The wheel is centred at the origin of a 5 m radius sphere as shown in Fig. 6.

The spherical reference surface allows for the sound field to be described in a spherical harmonics (SH) decomposition. Since
spherical harmonics (SH) are orthogonal bases, an exact representation of the field is possible given an infinite number of SHs.
Order-limited SH representations converge towards the correct solution with increasing order. Alternatively, monopole sources could
be used. Such sources lack this orthogonality, but have the advantage that they are comparatively easier to integrate into other BE
setups, for example when representing the wheel in a Wavenumber-domain BE formulation [25]. This approach is not followed
here.

4.1. Spherical harmonics expansion

The sound pressure field that is radiated by the wheel can be described by a set of SH expansion coefficients. The SHs 𝑌 𝑚
𝑛 (𝜑, 𝜗) of

order 𝑛 and degree 𝑚 are a complete set of orthogonal functions on the sphere and any square-integrable function on the sphere can
be expanded in terms of SHs [24, Ch. 6.3.3]. Here, we use a spherical reference surface and thus the SHs can be used as equivalent
6
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sources. The SHs represent the angular part of the solution to the wave equation in spherical coordinates, i.e., they depend on the
azimuth angle 𝜑 and the zenith angle 𝜗. The SH expansion is a multipole expansion, i.e., the zeroth-order SH 𝑌 0

0 (𝜑, 𝜗) is a monopole
and the first-order SHs 𝑌 {−1,0,1}

1 (𝜑, 𝜗) are dipoles that are aligned with the Cartesian axes. Let us assume that the pressure field
𝑝(𝜑, 𝜗, 𝜔) is known on a spherical observation surface around the wheel, in our case 𝑆, and can thus be expanded as a weighted
sum of SHs using the complex coefficients 𝑎𝑚𝑛 (𝜔),

𝑝(𝜑, 𝜗, 𝜔) =
∞
∑

𝑛=0

𝑛
∑

𝑚=−𝑛
𝑎𝑚𝑛 (𝜔)𝑌

𝑚
𝑛 (𝜑, 𝜗) . (7)

Due to the orthogonality of the SHs, the expansion coefficients 𝑎𝑚𝑛 (𝜔) can be obtained by integration over the spherical surface 𝑆

𝑎𝑚𝑛 (𝜔) = ∬𝑆
𝑌 𝑚
𝑛 (𝜑, 𝜗)∗ 𝑝(𝜑, 𝜗, 𝜔) d𝑆 , (8)

where (⋅)∗ denotes complex conjugation.
In practice, the sound pressure is obtained numerically and is only available at a discrete set of observation positions on 𝑆. Let

𝐩(𝜔) be a length-𝑀 vector that contains such sound pressures for 𝑀 observation positions {𝜑obs, 𝜗obs} on 𝑆 and

𝐘𝑁 =
⎡

⎢

⎢

⎣

𝑌 0
0 (𝜑1, 𝜗1) … , 𝑌 𝑁

𝑁 (𝜑1, 𝜗1)
⋮ ⋱ ⋮

𝑌 0
0 (𝜑𝑀 , 𝜗𝑀 ) … , 𝑌 𝑁

𝑁 (𝜑𝑀 , 𝜗𝑀 )

⎤

⎥

⎥

⎦

(9)

an 𝑀 × (𝑁 + 1)2 matrix that contains the SHs up to a maximum order 𝑁 for the 𝑀 observation positions. Then, Eq. (7) can be
re-expressed with a limited maximum expansion order 𝑁

𝐩(𝜔) = 𝐘𝑁𝐚𝑁 (𝜔) , (10)

and the least-squares optimal expansion coefficients are obtained as the length-(𝑁 + 1)2 vector

𝐚𝑁 (𝜔) = (𝐘H
𝑁𝐘𝑁 )−1𝐘H

𝑁 𝐩(𝜔) , (11)

where (⋅)H denotes the Hermitian transpose. The limitation to a finite expansion order 𝑁 creates an error that will be further
investigated in the next section. The involved inverse is only well-conditioned if the observation points are regularly distributed on
the surface of 𝑆 and if the orthogonality of the SHs is maintained by choosing a suitable maximum SH order 𝑁 .

4.2. Determination of the required maximum SH order

Following the approach presented in Section 3, the complex pressure on 𝑆 is calculated by FBEM for each individual mode,
assuming a unit modal amplitude. This produces the acoustic transfer functions 𝐻𝑙, which, in turn, facilitates the calculation of
the SH expansion coefficients 𝑎𝑚𝑛 (𝜔) for each mode. The equiangular 3600-point grid shown in Fig. 6 is used for the calculation
of the expansion coefficients. The maximum SH expansion order 𝑁max is related to a number of uniformly spaced grid points on
the sphere by 𝑁max =

√

𝑀 − 1, which ensures that Eq. (10) is not under-determined. Because the employed equiangular grid is not
niformly spaced, the robustness of the inversion is investigated by evaluating the condition number of 𝐘H

𝑁𝐘𝑁 for increasing orders.
he matrix is well conditioned up to SH order 𝑁 = 29, so results presented below with 𝑁 > 29 might be numerically inaccurate.
he SH order 25 is used for the pass-by prediction. A uniformly distributed grid with 3600 points would facilitate a maximum SH
xpansion order of up to 𝑁 =

√

3600 − 1 = 59. The SH expansion was implemented using an open-source Matlab library [26].
The expansion coefficients can be used to analyse the directivity of the described wheel. Fig. 7 shows the directivity of the wheel

(including all its modes) for a harmonic unit point force excitation with 2250 Hz as obtained by the SH expansion with different
maximum expansion orders 𝑁 . Since this frequency is not an eigenfrequency of the wheel, several mode shapes are excited, which
makes the radiation pattern comparatively complex. The directional complexity of the radiation pattern is reduced, and the radiation
lobes are broadened when the SH expansion order is reduced. At the same time, the amplitudes are strongly underestimated. This
is, however, not visible from Fig. 7, as each individual directivity is normalised by its largest component. For example, the pattern
for 𝑁 = 3 would be much smaller than the pattern for 𝑁 = 6 when scaling according to the correct magnitude. For high SH orders,
the shape converges as expected. The example is illustrative and the question arises what the required order of the SH is in practical
applications, both with respect to the total radiated sound power and to the directivity in the frequency range of interest.

To investigate the sound power, the total pressure is calculated for a harmonic unit force excitation according to Eq. (5). The
field on 𝑆 is then approximated by spherical harmonics as described in the previous section. Fig. 8 shows the radiated sound power
in third-octave bands as a function of the order of the SH. It suggests that the radiated sound power can be approximated with
𝑁 = 10 at low frequencies and 𝑁 ≈ 30 at medium and high frequencies.

The error in the directivity is here described with a quantity analogous to the modal assurance criterion. Since the compared
unctions are not mode shapes, the quantity is here called directivity accuracy estimator (DAE) which is calculated as

DAE(𝜔) =
|

|

|

𝐩HSH(𝜔) 𝐩(𝜔)
|

|

|

2

(

H
) ( H ) , (12)
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Fig. 7. Orientation and directivity of the wheel at 2250 Hz, obtained with different maximum SH expansion orders 𝑁 .

Fig. 8. Predicted sound power in third-octave bands on the 5 m sphere as a function of the SH order.

Fig. 9. Directivity accuracy estimator, in 1/3-octave bands, on the 5 m sphere as a function of SH-order.

where 𝐩SH(𝜔) and 𝐩(𝜔) are the nodal pressures predicted by SH expansion and FBEM, respectively. The DAE is, similar to the
coherence, a measure of the degree of linearity [27]. The formulation here produces a value between 0 and 1, where 1 indicates
that the estimate of the pressure vector 𝐩SH(𝜔) is consistent with the original vector 𝐩(𝜔).

Fig. 9 shows the DAE for increasing SH orders as an average over each one-third octave band. While for the accurate reproduction
of sound power a maximum SH order of approx. 30 is sufficient, in the case of the directivity, this is only true below 4 kHz. However,
depending on the application, an SH expansion with a much lower maximum SH order may be sufficient. For instance, in a perceptual
8
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Fig. 10. Directivity of the axial mode (3, 1, 𝑎) for (a) 63 Hz, (b) 250 Hz, (c) 1000 Hz, and (d) 4000 Hz. The eigenfrequency of the mode is at 2120 Hz. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

experiment using directional speech and noise sources, a maximum SH order of 𝑁 = 5 was found to be sufficient for auralisation
purposes [28]. Using a lower SH order would require adjusting the total sound pressure level accordingly.

4.3. Analysis of the directivity of wheel modes

In the following, the method is used to investigate the directivity of different vibrational modes on the wheel. A few mode
shapes were introduced in Fig. 4. The directivities of modes (3, 1, 𝑎) and (3, 0, 𝑟) (corresponding to (a) and (c) in Fig. 4) are shown
in Figs. 10 and 11, respectively. The figures show the directivity pattern of each mode at four different frequencies and from four
different perspectives. The size of the shape indicates the magnitude, while the colour indicates the phase. For each frequency, the
magnitude is normalised to one. The wheel indicates the orientation of the sound field.

It is visible that the complexity of the directivity pattern increases with increasing frequency. This is expected from the discussion
related to Fig. 9. The radiation of the axial mode (3, 1, a) is, at 63 Hz, directed to the one side of the wheel in six main lobes. Due
to the asymmetry of the wheel geometry and the resulting vibration pattern, the radiation pattern can also be asymmetric with
stronger radiation to one side of the wheel. At high frequencies, the wheel geometry become more influential, leading to additional
side lobes. The radiation characteristic of the (3, 0, r) mode in Fig. 11 shows a mostly radial directivity at low frequencies, which
transforms into a mostly axial directivity at high frequencies.

5. Simulation of pass-by signals

This section combines the methods presented in the previous sections to simulate the time-domain sound pressure signals
at a stationary microphone position (0, 𝑦0, 𝑧0) during the pass-by of a wheel along the track. Fig. 12 shows the corresponding
configuration. The receiver is positioned 7.5 m from the track centre, 1.2 m above the rail (𝑦 = 6.75 m, 𝑧 = 0.73 m).
9
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Fig. 11. Directivity of the radial mode (3, 0, 𝑟) for (a) 63 Hz, (b) 250 Hz, (c) 1000 Hz, and (d) 4000 Hz. The eigenfrequency of the mode is at 2503 Hz. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Axis definition and position of the wheel and stationary microphone. The solid line indicates the trajectory of the wheel.

The calculations are performed separately for each mode and their contributions are summed up at the microphone position in
the final step. The computational advantage of this approach is further discussed in Section 6. The involved parts are

• a formulation for the motion of the source,
• the propagation function ℎ𝑙(𝑥S, 𝑡) for each mode 𝑙 based on the SH formulation,
• the source signal 𝑞S,𝑙(𝑡) based on the contact forces during rolling, and
• the summation of the modal contributions to the total sound pressure in the time domain.
10
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They will be discussed in more detail in the following subsections.

5.1. Description of the motion of the source

A moving source is introduced by changing the source position (𝑥S, 0, 0) over time 𝑡 in the form 𝑥S = 𝑣𝑡, where 𝑣 is the translational
speed of the wheel (here, 𝑣 = 100 km∕h). At each source position, an acoustic impulse is produced that arrives at the receiver position
in the subsequent time. This impulse depends on the relative location of the source and receiver, which is captured in the propagation
function ℎ𝑙 introduced in Section 5.2. Due to the moving source, the pressure 𝑝𝑙 arriving at the receiver at time 𝑡 corresponds to the
sum of different time instances 𝑡− 𝜏, where 𝜏 ≤ 𝑡, in all impulses. This is captured in the convolution of the source signal 𝑞S(𝑡) with
he propagation function ℎ𝑙,

𝑝𝑙(0, 𝑦0, 𝑧0, 𝑡) = ∫

𝑡

−∞
𝑞S,𝑙(𝜏)ℎ𝑙(𝑣𝜏, 𝑡 − 𝜏)d𝜏 , (13)

here the upper limit of the convolution integral is set due to causality requirements, as future source positions should not influence
he current sound pressure at the receiver. In a numerical implementation, the integral is replaced by a sum and discrete steps in
ime and space are considered.

.2. Propagation function ℎ𝑙

The propagation function ℎ𝑙(𝑥S, 𝑡) describes the acoustic transfer from the mode shape to the observer position and is computed
s follows. The sound pressure radiated by the mode shape Φ𝑙 is approximated by spherical harmonics expansion coefficients as
escribed in Section 4. The expansion coefficients of the pressure field on the reference surface with radius 𝑟0, which encloses the

wheel, allow calculating the pressure field on any larger sphere with radius 𝑟 > 𝑟0 using spherical Hankel functions h𝑛(𝐾𝑟) [24,
Eq. 6.94],

𝐻𝑙(𝑟S, 𝜑S, 𝜗S, 𝜔) =
∞
∑

𝑛=0

h𝑛(𝐾𝑟S)
h𝑛(𝐾𝑟0)

𝑛
∑

𝑚=−𝑛
𝑎𝑚𝑛 (𝜔) 𝑌

𝑚
𝑛 (𝜑S, 𝜗S) , (14)

with the wavenumber in air 𝐾 and

𝑟𝑆 =
√

(𝑥2S + 𝑦20 + 𝑧20) ,

𝜑S = 𝜋 − arctan
(

𝑦0
𝑥S

)

, and

𝜗S = 𝜋
2
− arctan

⎛

⎜

⎜

⎜

⎝

𝑧0
√

𝑥2S + 𝑦20

⎞

⎟

⎟

⎟

⎠

.

(15)

The modal acoustic propagation function ℎ𝑙(𝑥S, 𝑡) is then obtained by an inverse Fourier transform of 𝐻𝑙(𝑟S, 𝜑S, 𝜗S, 𝜔), and ℎ𝑙(𝑥S, 𝑡 <
0) ∶= 0. Fig. 13 shows an example of the propagation function for mode (3, 1, 𝑎) at three different source positions along the track
in the frequency ((a) and (b)) and the time domain (c). The spectrum of the transfer functions is rather smooth and can be captured
with a frequency resolution of 10 Hz to 20 Hz. The phase of 𝐻𝑙 (denoted as ∠𝐻𝑙) is presented in Fig. 13(b) by its derivative with
respect to the frequency axis, since the variation is not visible otherwise.

5.3. Source signal

The source signal is calculated using the modal amplitudes 𝐴𝑙(𝜔) of the wheel as defined in Eq. (2). Each modal amplitude is
divided into two terms 𝐴𝑙(𝜔) = 𝐹A,𝑙(𝜔)𝑏𝑙(𝜔), where 𝐹A,𝑙(𝜔) represents the excitation

𝐹A,𝑙(𝜔) = j𝜔𝐅e(𝜔)Φ𝐥(𝐠𝐜) , (16)

and 𝑏𝑙(𝜔) is given in Eq. (3). The excitation force 𝐅e consists in this case only of the normal contact force 𝐹c, acting radially
on the wheel (𝐅e = [0, 0, 𝐹c]𝑇 ). A time series of rolling contact forces has been evaluated in WERAN and is used as an example
below. The results produced using this time series are specific to the used input data, including the lateral contact position, the
roughness, component geometries, etc., and should not be generalised. A detailed description of the contact force calculation is
given in Appendix.

Both 𝑏𝑙(𝜔) and 𝐹𝐴,𝑙(𝜔) have simple time-domain counterparts. The inverse Fourier transform of 𝐹𝐴,𝑙(𝜔) corresponds to taking the
derivative of 𝐅e(𝑡) with respect to time and scaling with Φ𝑙(𝐠𝑐 ),

𝐹A,𝑙(𝑡) = −1 [𝐹A,𝑙(𝜔)
]

= d
d𝑡
𝐅e(𝑡)Φ𝑙(𝐠𝐜) , (17)

where −1 denotes the inverse Fourier transform. An analytical expression of 𝑏𝑙(𝜔) in the time domain can be derived as 𝑏𝑙(𝜔)
describes the frequency response of a simple oscillator whose inverse Fourier transform is

𝑏𝑙(𝑡) =
𝑒−2𝜔𝑙𝜁𝑙 𝑡

′ sin(𝜔′
𝑙𝑡)H(𝑡) , (18)
11
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Fig. 13. Acoustic transfer function for mode (3, 1, a). (a): magnitude, (b): change of phase with respect to frequency, (c): modal acoustic propagation function
ℎ𝑙(𝑡).

Fig. 14. (a) Impulse response 𝑏𝑙 , (b) spectrum of the source signal 𝑞S,𝑙 , both for the mode (3,1,a).

with 𝜔′
𝑙 =

√

𝜔2
𝑙 − 𝜔2

𝑙 𝜁
2
𝑙 and the Heaviside step function H(𝑡). Fig. 14(a) shows the logarithmic decay of 𝑏𝑙(𝑡) for mode (3, 1, a). The

source signal 𝑞S,𝑙 is finally obtained by convolution of the two parts

𝑞S,𝑙(𝑡) = ∫

𝑡

−∞
𝐹A,𝑙(𝜏) 𝑏𝑙(𝑡 − 𝜏) d𝜏 , (19)

where the upper limit of the integral is again set due to causality requirements. The spectrum of the source signal is shown in
Fig. 14(b).

In the numerical implementation, the convolution integral in Eq. (19) is solved via a sum in 𝑁𝑠 discrete time steps of length 𝛥𝑡,

𝑞S,𝑙(𝑁S𝛥𝑡) =
𝑁S
∑

𝑛=0
𝐹A,𝑙(𝑛𝛥𝑡) 𝑏𝑙(𝑁S𝛥𝑡 − 𝑛𝛥𝑡)𝛥𝑡 . (20)

This implementation is rather straightforward and requires for each time step one multiplication of the vector 𝑏𝑙 with the actual
force 𝐹A,𝑙(𝑡), an addition of the scaled vector to a register, and a shift of the register for each time step (for example, using the
function circshift in Matlab).
12
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Fig. 15. Contribution of individual modes to the equivalent pressure level averaged over 0.1 s. Axial modes with varying numbers of nodal diameters 𝑘, for
zero (a) and one (b) nodal circles, and radial modes (c).

5.4. Modal contributions and sum

As the approach is formulated in the time domain, the source signal 𝑞𝑆,𝑙(𝑡) is convolved with the propagation function ℎ𝑙(𝑥S, 𝑡)
o obtain the pressure at the microphone due to radiation from the wheel mode. Having created the source signals 𝑞S,𝑙(𝑡) and the
ropagation functions ℎ𝑙(𝑥𝑆 , 𝑡), the time signal at a receiving position can be calculated according to Eq. (13),

𝑝(0, 𝑦0, 𝑧0, 𝑁S𝛥𝑡) =
∑

𝑙

𝑁S
∑

𝑛=0
𝑞S,𝑙(𝑛𝛥𝑡) ℎ𝑙(𝑛𝛥𝑡𝑣,𝑁S𝛥𝑡 − 𝑛𝛥𝑡)𝛥𝑡 , (21)

where the inner sum is the sum over all previous wheel positions (𝑁S𝛥𝑡𝑣 = 𝑥S) and the outer sum is adding the contribution of all
wheel modes. Fig. 15 shows the pass-by levels over wheel position for the total level and the level of the individual modes selected.
It indicates that some modes are not relevant for the pass-by signals and could be neglected. Some of the modes are only dominant
before and after the pass-by of the wheel, but not when the wheel is located directly in front of the microphone because of their
directivity. It also shows that both the axial and the radial modes can be the main contributor to the sound pressure at a receiving
position [1].

A different and maybe more complete way to capture the influence of different wheel modes is to look at the total equivalent
sound pressure (compare [29, Sec. 3.14]). Here, the signals are averaged over 1 s, corresponding to about 28 m travelling distance
of the wheel, which passes by the microphone in the middle of the interval. Similarly to Fig. 3, Fig. 16 shows the dispersion diagram,
where the colours of the symbols for the different modes indicate their equivalent sound pressure levels. Only a limited number of
modes dominate the total sound pressure level. The modes dominating the sound radiation are axial modes with one and two nodal
circles, radial modes and even a circumferential mode. Above 5 to 6 kHz, the modes show a similar influence on the total sound
ressure level.

This becomes especially visible when making a sensitivity analysis, which allows for quantifying the effect of removing one mode.
tarting from the sound pressure level at the microphone with all modes included, a new level is calculated with the contribution
f a single mode removed. Note that only the acoustic contribution is removed, not the influence of the mode on the rolling contact
orces (as if introducing a very effective noise shield for a single mode). Fig. 17 shows the change in the equivalent sound pressure
evel in third-octave bands when the mode that is labelled on the vertical axis is removed. The frequency range can be divided into
hree areas. At frequencies below 1 kHz, the sound pressure level depends mainly on the modes (0, 0, 𝑎), (2, 0, 𝑎) and (1, 0, 𝑟), each

dominating more than one band. In the range between 1 kHz and 2.5 kHz, there are 3 modes ((2, 1, 𝑎), (3, 1, 𝑎) and (4, 1, 𝑎)) that
dominate the third-octave band which contains their eigenfrequency. Above 2.5 kHz, the impact of the modes on the pass-by level
is more evenly distributed between several modes of higher order, both radial and axial, which have their eigenfrequencies in that
13
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Fig. 16. Contribution of each mode to the 1 s equivalent sound pressure level 𝐿p,eq,1s.

Fig. 17. Effect of removing the contribution of a single mode on the 𝐿p,eq,1s, in individual 1/3-octave bands in dB (refers to both the numbers and the colour
scale). The figure contains only a selection of modes. The modes which have an impact of less than 0.5 dB are not shown.

The wheel modes are orthogonal in their domain, but they are not orthogonal with respect to sound radiation during the pass-by.
This means that modes can interact in an energetic sense in terms of the radiated sound power. In this way, a strong variation in the
sound pressure level when one mode is removed (see Fig. 17), does not necessarily imply that this mode is the strongest contributor
to the pass-by pressure level.

However, when presenting the pass-by as a spectrogram in Fig. 18, it becomes obvious that single modes dominate the signal
in a certain frequency range. For example, two modes that are dominant in their respective third-octave bands in Fig. 17 clearly
produce large pass-by pressure levels.

The third-octave band spectrum of the 1 s averaged, total pass-by pressure 𝐿p,eq,1s is shown in Fig. 19. The highest sound pressure
levels are found in the frequency range between 1.6 kHz and 5 kHz, with the maximum in the 2.5 kHz band which is dominated
by the mode (4, 1, 𝑎).
14
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Fig. 18. Spectrogram of the pass-by sound pressure at a stationary microphone position. Individual modes can be identified.

Fig. 19. Spectrum of 𝐿p,eq,1s in third-octave bands.

6. Discussion

This section discusses computational efficiency and limitations in the presented method. This presented approach has a distinct
computational advantage compared to a more conventional BE approach, which would calculate the sound radiation from the force-
excited vibrating wheel. While this conventional approach would not require calculating the transfer functions for each individual
mode, the required high frequency resolution still leads to about 4–15 times more calculations than in the proposed approach.1
Further, each of these calculations is computationally more costly due to the larger number of receiver points (e.g., 50 000 points
for a 1 mm discretisation of a 50 m track section compared to 60 points on the half-circle). On top of that, the proposed modular
approach allows for modifying the contact forces, excitation positions and microphone positions without the need to re-calculate
the acoustic transfer functions with FBEM. There is additional potential in omitting modes that do not significantly contribute to
the total sound pressure, which is not factored in here.

The calculation of the acoustic transfer functions was carried out for a wheel with a clamped boundary condition at the hub. It
was observed that the mode shapes of the wheel are similar to those of a wheel in a complete wheelset. The difference is considered
small compared to other errors introduced by, for example, neglecting the reflections at the bogie and the vehicle underbody. Since
the effect of the suspension is important for predicting the rolling contact forces in the lower frequency range, the prediction in
WERAN includes the rigid body modes of the wheelset and a suspension.

So far, the approach has been implemented for the radiation of the wheel into free space. However, it may be extended to include
reflections from the ground and other surrounding surfaces such as the floor of the wagon. To include this, one might rather use
a BEM than FBEM approach for the calculation of the acoustic transfer functions, as the additional geometrical features might be
more conveniently included in Cartesian rather than cylindrical coordinates.

The proposed method can be extended to include a complete wheelset in both vibration and radiation prediction. Further
extension can involve the rotation of the wheel or wheelset.

7. Conclusion

This article proposes a computationally efficient method to calculate pass-by signals from railway wheels. It was found that
the proposed modal approach for calculating the sound radiation has computational advantages for time-domain models compared
to a standard BE approach. The advantage is gained by carrying out the numerically intensive, frequency-domain BE calculations
with a sparse frequency resolution and including the dynamic response of the wheel in a modal source strength in the subsequent

1 Depending on the included number of modes and relative frequency resolution. For 50 modes, which each need to be calculated with 20 Hz resolution
instead of 0.05 Hz, the factor is 20 Hz/0.05 Hz/50 = 8.
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Fig. A.20. Top: Point receptances of the track for excitation above a sleeper and at midspan. Bottom: radial point mobility of the wheel.

ime domain noise prediction. The modal approach allows for the analysis of various modal contributions. It was found that, for
his specific example, the modes (0, 0, 𝑎), (2, 0, 𝑎), and (1, 0, 𝑟) dominate the sound pressure level below 1 kHz. The modes ((2, 1, 𝑎),
(3, 1, 𝑎), (2, 0, 𝑟) and (4, 1, 𝑎)) dominate the third-octave bands which contain their respective eigenfrequency up to 2.5 kHz. For higher
frequencies, the contribution is shared among several higher modes. These findings agree with what is stated in literature [1].
The directivity of individual modes was investigated. The complexity of the directivity pattern increases with frequency. At high
frequencies, the main radiation direction is axial, even for radial modes. Due to this complex directivity, during the pass-by, different
modes dominate the total sound pressure level, depending on the position of the wheel in relation to the receiver. Following the
numerical investigations, a maximum SH expansion order of approximately 30 or higher is found to be required to satisfy the
employed error measures. However, depending on the application, much lower SH orders might be sufficient.
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Appendix. Description of the rolling contact force calculation

A time series of contact forces is calculated with WERAN [16] assuming a track consisting of rails with profile UIC60 E2
on monobloc concrete sleepers in ballast modelled with finite elements in DIFF [15]. Fig. A.20 presents the vertical track point
receptance above a sleeper and at midspan between two sleepers. The track parameters are listed in [30]. The figure also shows
the radial point receptance on the wheel running band. The rigid body modes of the wheelset have been included in the wheel
model for the prediction of the contact forces. The rail roughness used has been measured at the highspeed line Munich–Augsburg
in Germany [31]. The wheel roughness originates from a wheel with composite brake blocks on a French freight train [32]. These
16
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Fig. A.21. Roughness in the running band of the wheel and the rail.

roughnesses, each measured in several parallel lines, are interpolated laterally to produce 21 evenly spaced parallel lines in the
contact area. More details of the roughness processing are given in [30]. The combined wheel/rail roughness provides the excitation
of the wheel/rail system during rolling. The averaged 1/3-octave band spectra of both the wheel and the rail roughness are given
in Fig. A.21 in comparison to the ISO 3095: 2013 limit for the rail roughness applied during vehicle type testing [29]. The velocity
𝑣 is set to 100 km/h. Although the simulation model WERAN can include wheel rotation, this is not considered here. The wheel
does not rotate and the position 𝐠𝑐 is fixed.
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