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Abstract
We investigate a class of nonlocal conservation laws in several space dimensions, where the
continuum average of weighted nonlocal interactions are considered over a finite horizon.
We establish well-posedness for a broad class of flux functions and initial data via semigroup
theory in Banach spaces and, in particular, via the celebrated Crandall–Liggett Theorem. We
also show that the unique mild solution satisfies a Kružkov-type nonlocal entropy inequality.
Similarly to the local case, we demonstrate an efficient way of proving various desirable
qualitative properties of the unique solution.

Keywords Nonlocal differential equation · Conservation law · Nonlinear semigroup

Mathematics Subject Classification 35F25 · 35Q49 · 45K05

1 Introduction

We study the semigroup theory of nonlocal conservation laws of the form

∂u

∂t
+

∫
Rn

k∑
i=1

φi (u, τβi (h)u) − φi (τ−βi (h)u, u)

||βi (h)||Rn
ωi

(
βi (h)

)
dh = 0, in R

n × R+;

u(x, 0) = u0(x), x ∈ R
n,

(1)

where τ±hu(x, t) = u(x ± h, t) denote a spatial shift of the conserved quantity u(x, t) and
the flux functions φi : R × R �→ R are assumed to be increasing with respect to their first
arguments and decreasing with respect to their second arguments, and to have the property
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φi (0, 0) = 0. The number 1 ≤ k ≤ n denotes the number of subinteractions and the functions
βi : Rn �→ R

n are assumed to be of the form

βi (h) =
∑
j∈Bi

h j e j , h = (h1, h2, . . . , hn),

where the nonempty, pairwise disjoint sets Bi ⊂ {1, 2, . . . , n} are such that
⋃k

i=1 Bi =
{1, 2, . . . , n} and e j denotes the j th unit vector in R

n . The kernel functions ωi ∈ L1(Rn) ∩
L∞(Rn) are assumed to be nonnegative with

∣∣∣∣ωi
(
βi (.)

)∣∣∣∣L1(Rn)
= 1. We further assume

that the support of the kernel functions are finite and are either

1. symmetric around the origin, in which case we further assume that the kernels are even,
or

2. contained in Rn+ such that the closure contains the origin.

For example, in the context of nonlocal particle flows, the above cases allowsus to differentiate
between multidirectional and unidirectional flows.

Our main examples for the choice of k, βi and ωi are as follows.

1. If k = 1 and β1(h) = h, then the conservation law (1) takes the form

∂u

∂t
+

∫
Rn

φ1(u, τhu) − φ1(τ−hu, u)

||h||Rn
ω(h)dh = 0. (2)

This case describes a natural multidirectional generalization of the one-dimensional uni-
directional nonlocal pair-interaction model investigated in [20]. In fact, if n = 1 and
supp(ω) ⊂ R+, the law (2) coincides with the latter.

2. If k = n and βi (h) = hi ei and ωi (h) = ∏n
j=1 ω̃ j (h j ), where the kernel functions ω̃ j

have analogous properties to that of ωi in R with supp(ω̃ j ) = (−δ j , δ j ) for δ j > 0, then
the conservation law (1) takes the form

∂u

∂t
+

n∑
i=1

∫ δi

−δi

φi (u, τhi ei u) − φi (τ−hi ei u, u)

|hi | ω̃i (hi )dhi = 0.

Should the underlying model allow such considerations, this case corresponds to interac-
tions that canbeunfolded into subinteractions along the individual axes.Aclear advantage
of this example is the ease of numerical approximation of the integral as described in
[20, Section 3.1]. If n = 1 and supp(ω̃1) = (0, δ1) instead, then again, we obtain the
one-dimensional unidirectional nonlocal pair-interactionmodel of [20], as in the previous
special case.

We say that the nonlocal flux functions φi are consistent with the local fluxesψi if φi (a, a) =
ψi (a) holds for all a ∈ R. For consistent flux functions, if in addition, the weighting kernels
are smooth with their support approaching zero, both special cases formally lead to the
standard local conservation law

∂u

∂t
+

n∑
i=1

∂ψi (u)

∂xi
= 0. (3)

For the formal derivation of (1) we utilize the nonlocal vector calculus established in [19,
25]. Let ν, ν̃,α : Rn × R

n �→ R
k be vector two-point functions defined by the coordinate
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functions

νi (u)(x, y, t) = φi

(
u(x, t), u

(
x + βi (y − x), t

))
,

ν̃i (u)(x, y, t) = φi

(
u
(
x + βi (y − x), t

)
, u(x, t)

)
,

αi (x, y) = ωi
(
βi (y − x)

)
||βi (y − x)||Rn

.

Then, the nonlocal point divergence is defined as

D(
ν(u), ν̃(u)

)
(x, t) =

∫
Rn

(
ν(u)(x, y, t) − ν̃(u)(x, y, t)

) · α(x, y)dy

and repeated changes of variables in the integral gives

D(
ν(u), ν̃(u)

)
(x, t) =

∫
Rn

k∑
i=1

φi (u, τβi (h)u) − φi (τβi (h)u, u)

||βi (h)||Rn
ωi

(
βi (h)

)
dh

=
∫
Rn

k∑
i=1

φi (u, τβi (h)u) − φi (τ−βi (h)u, u)

||βi (h)||Rn
ωi

(
βi (h)

)
dh.

(4)

The theory of abstract balance laws thoroughly discussed in [19, Sect. 7] shows that in the
absence of external sources a class of nonlocal balance laws are given by

∂u

∂t
(x, t) + D(

ν(u), ν̃(u)
)
(x, t) = 0,

which, combined with (4), gives exactly the law (1).
Local conservation and balance laws have been widely used in aerodynamics and Eulerian

gas dynamics [32], pedestrian flows [39], ribosome flows [37] and many other fields [41]
for the past decades. In recent years nonlocality has been introduced in multiple forms. A
particular method is considering a nonlocal velocity, often expressed as a spatial convolution.
The resulting family of models found many applications, for example for modelling supply
chains [27, 28, 40] and traffic flows [8, 24]. However, in some cases these models lack
monotonicity of solutions and violate themaximumprinciple, two naturally imposed property
of physical models. Certain convolution based models do satisfy these constraints, see for
example [2, 29]. Another approach to spatial nonlocality is considering pointwise interactions
weighted by an appropriate integral kernel [18], which has many applications in the field of
peridynamics [3, 26, 34].However, the nonlocalmodel of [18] failed to preservemonotonicity,
hence the authors formalized the nonlocal pair-interaction model in [20], where they show
that it satisfies the desired properties. A final advantage of this model is that it reduces to its
local counterpart (3) as the nonlocal horizon vanishes [21], while some other nonlocal models
do not have this property [9]. Because of these improvements the nonlocal pair-interaction
model, similarly to its earlier version, has seen many applications in the field of peridynamics
[1, 43], while similar integral terms can be seen in nonlocal formulations of other problems
as well, for example of that of the Allen–Cahn equation [42].

It is well known that the solution of (1) (including the local case (3) as well) may develop
spatial discontinuities (shock waves) over time, even if the initial data is smooth. Hence
the Cauchy problem must be considered in a weak or generalized sense. However, there
might be infinitely many weak solutions of (1) for given initial data. This fact lead to the
development of additional constraints, such as the entropy condition, selecting the unique,
physically relevant weak solution, which in this case is the so-called entropy solution.
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Thewell-posedness of the local conservation law (3) is a thoroughly investigated problem,
heavily influenced by the profound work of Kružkov [31]. Kružkov showed uniqueness via
a priori estimates and existence using the vanishing viscosity method for bounded and mea-
surable initial data and sufficiently smooth flux functions, thus achieving well-posedness.
Existence of entropy solutions can often be proved by the convergence of an appropriate
numerical scheme [15, 38] (the technique was first used to prove the existence of weak solu-
tions [10, 17]). Another classical framework is nonlinear semigroup theory and, in particular,
the celebrated Crandall–Liggett Theorem [13], which was first used to prove well-posedness
byCrandall [11].Many combinations of these approacheswere developed, a notable example
being the approximation of semigroups of contractions [35].

The well-posedness of the one-dimensional nonlocal Cauchy problem with β1(h) = h
was investigated in [20], where Kružkov’s method was applied to prove uniqueness and
existence was proved by the convergence of an appropriate finite volume scheme. While this
approach could be extended for multidimensional non-homogeneous Cauchy problems in
some special cases (see our second example above), the method is difficult to apply in the
generality of (1) if k < n. Instead, we will also work with the semigroup framework, which
provides an elegant way of handling further problems like inhomogeneous conservation laws
[5] or error control of finite volumemethods [36]. Another particular advantage of semigroup
theory is the ability to handleL1(Rn) initial data, while with themethods of [20] one can only
show existence and uniqueness forL1(Rn)∩L∞(Rn) initial data. The semigroup framework
considers generalized solutions of abstract Cauchy problems, often called mild solutions. In
general, a mild solution can coincide with a weak solution or an entropy solution or, in some
cases, with neither; after proving well-posedness an additional investigation is necessary to
determine this.

The main results of the paper are contained in Theorems 3.8 and 3.9 and Corollary 3.11.
In Theorem 3.8, we give appropriate circumstances under which there exists an operator
satisfying the assumptions of the Crandall-Liggett Theorem. In Theorem 3.9, we show
that the unique mild solution of (1) satisfies a nonlocal Kružkov-type entropy inequality
and has many other qualitative properties that are desirable from a physical point of view.
In Corollary 3.11 we extend the well-posedness to conservation laws under Carathéodory
forcing.

The outline of the paper is as follows. In Sect. 2, we introduce notations and the abstract
framework. In Sect. 3, we give the necessary definitions and state our main results. Section4
contains the proof of the main results. The main steps of the proofs are based on [11],
however, there are significant nontrivial differences in the details. The difficulty in carrying
out this construction is the absence of flux derivatives rendering the method of integration
by parts and thus many simplifying steps inapplicable. Most of these complications can be
solved by a formally similar technique obtained via changes of variables in the integrals;
the technique is often called integration by parts for difference quotients, see, for example
[22, page 295]. However, a significant step that cannot be resolved in such manner is the
verification of the range condition. Crandall uses a perturbation results to establish this,
namely [30, Theorem 3.2], but this approach does not seem to be applicable in the nonlocal
setting. Instead, we use a fix-point based approach similar to that of [33, Chapter 4] and [14,
Proposition IV.3]. Throughout the paper the arguments of the functions βi andωi are omitted
unless necessary and C is used as a generic constant that may take on different values at
different occurrences.
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2 Preliminaries

We give a brief introduction of the abstract setting based on [4, 11, 12].

2.1 Mild solutions of the abstract Cauchy problem

Let X be a real Banach space and A be a possiblymultivalued operator in X and J = [0, T ] ⊂
R and f ∈ L1(J , X). Consider the quasi-autonomous Cauchy problem

u′ + Au 
 f (t), t ∈ J ;
u(0) = u0

(5)

for u0 ∈ D(A). We call u ∈ C(J , X) a mild solution of (5) if for every ε > 0
there exists a partition 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tN of [0, tN ] and sequences
{z1, z2, . . . , zN }, { f1, f2, . . . , fN } in X such that

ti − ti−1 < ε, i = 1, . . . , N

T − ε < tN ≤ T ,

N∑
i=1

∫ ti

ti−1

|| f (s) − fi || ds < ε,

zi − zi−1

ti − ti−1
+ Azi 
 fi , i = 1, . . . , N

and ||z(t) − u(t)|| ≤ ε on [0, tN ], where z : [0, tN ] �→ X is defined by

z(t) = zi for ti−1 ≤ t < ti , i = 1, 2, . . . , N .

The piecewise constant function z is called an ε-approximate solution of (5).
Let F : J × D(A) �→ 2X\∅. A mild solution of the Cauchy problem

u′ ∈ −Au + F(t, u), t ∈ J ;
u(0) = u0

is a function that is a mild solution of the quasi-autonomous problem

u′ + Au 
 f (t), t ∈ J ;
u(0) = u0

with some f ∈ L1(J , X) such that f (t) ∈ F
(
t, u(t)

)
a.e.

2.2 Crandall–Liggett Theorem

Here we discuss a special case of the Crandall–Liggett Theorem as it appears in [11, p. 110].
Let X be a Banach space and A be a possibly multivalued operator in X . The operator A is
called accretive if, for any λ > 0 and x, y ∈ D(A), the inequality

||(x + λu) − (y + λv)|| ≥ ||x − y||
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holds, where u ∈ Ax and v ∈ Ay. The operator A is called m-accretive if it is accretive and
the operator I + λA is surjective for λ > 0; that is, we have

R(I + λA) =
⋃

x∈D(A)

⋃
v∈Ax

{x + λv} = X . (6)

Theorem 2.1 [Crandall-Liggett Theorem] Let X be a Banach space and A be a possibly
multivalued m-accretive operator in X. Then for ε > 0 and u0 ∈ X the problem

1

ε

(
uε(t) − uε(t − ε)

) + Auε(t) 
 0, t ≥ 0;
uε(0) = u0, t < 0

(7)

has a unique solution uε(t) on [0,∞). If u0 ∈ D(A), then limε→0 uε(t) converges
uniformly to the unique mild solution of (5) in bounded sets and

(
S(t)

)
t≥0 defined by

S(t)u0 = limε→0 uε(t) is a semigroup of contractions on D(A); that is, we have

(i) S(t) : D(A) �→ D(A) for t ≥ 0,
(ii) S(t)S(τ ) = S(t + τ) for t, τ ≥ 0,
(iii) ||S(t)v − S(t)w|| ≤ ||v − w|| for t ≥ 0 and v,w ∈ D(A),
(iv) S(0) = I ,
(v) S(t)v is continuous in the pair (t, v).

3 Statement of new results

The abstract framework of operator semigroups and, in particular, the fundamental Crandall–
Liggett Theorem utilizes the notion ofmild solutions. Later wewill show that the uniquemild
solution of the conservation law (1) also satisfies a Kružkov-type entropy inequality. For the
exact formulation of this inequality let us define the function η : Rn �→ R to be an entropy
of (1) with entropy fluxes qi : Rn ×R

n �→ R given that it is continuously differentiable and
the equality

η′(u)

∫
Rn

φi (u, τβi u) − φi (τ−βi u, u)

||βi ||Rn
ωidh =

∫
Rn

qi (u, τβi u) − qi (τ−βi u, u)

||βi ||Rn
ωidh (8)

holds for all i = 1, 2, . . . , k. Then if u(t, x) is a C1 solution of (1) then it also satisfies

∂η(u)

∂t
+

∫
Rn

k∑
i=1

qi (u, τβi u) − qi (τ−βi u, u)

||βi ||Rn
ωidh = 0.

In the case of an η ∈ C2 convex entropy standard vanishing viscosity arguments (using
integration by parts for difference quotients) show that the inequality

∫ T

0

∫
Rn

η(u)
∂ f

∂t
dxdt +

∫ T

0

∫
Rn

∫
Rn

k∑
i=1

τβi f − f

||βi ||Rn
qi (u, τβi u)ωidhdxdt ≥ 0

holds for any T > 0, nonnegative f ∈ C∞
0

(
R
n × (0, T )

)
. Our goal is to utilize classical

Kružkov-entropies of the form η(u) := η(u, c) = |u − c|, however, in this case, an explicit
formula for qi does not seem to reveal itself. Instead, during the vanishing viscosity derivation
we rely on (8) to arrive at the following definition:
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Definition 3.1 A function u ∈ L1(Rn × (0, T )) ∩ L∞(Rn × (0, T )) is an entropy solution
of (1) if the inequality

0 ≤
∫ T

0

∫
Rn

(∣∣u − c
∣∣∂ f

∂t
+

∫
Rn

k∑
i=1

τβi f sign0(τβi u − c) − f sign0(u − c)

||βi ||Rn

(
φi (u, τβi u) − φi (c, c)

)
ωidh

)
dxdt

holds for any T > 0, nonnegative f ∈ C∞
0

(
R
n × (0, T )

)
and c ∈ R.

Remark 3.2 Let the functions q̃i be given by,1

q̃i (a, b, c) = φi (a ∨ c, b ∨ c) − φi (a ∧ c, b ∧ c)

= φi
(
max{a, c},max{b, c}) − φi

(
min{a, c},min{b, c})

= sign0(a − c) + sign0(b − c)

2

(
φi (a, b) − φi (c, c)

)

+ sign0(a − c) − sign0(b − c)

2

(
φi (a, c) − φi (c, b)

)
,

where

sign0(x) =

⎧⎪⎨
⎪⎩
1 x > 0,

0 x = 0,

−1 x < 0.

For the sake of notational simplicity, let us omit the sum in this remark. The properties of φi

after adding and subtracting φi (c, c) imply that

sign0(u − c)
∫
Rn

φi (u, τβi u) − φi (τ−βi u, u)

||βi ||Rn
ωidh

≥
∫
Rn

q̃i (u, τβi u, c) − q̃i (τ−βi u, u, c)

||βi ||Rn
ωidh,

and thus it seems reasonable to define entropy solutions using q̃i as entropy fluxes corre-
sponding to the entropy |u − c|. But, in fact, using the product rule for difference quotients
shows that∫ T

0

∫
Rn

∫
Rn

τβi f sign0(τβi u − c) − f sign0(u − c)

||βi ||Rn

(
φi (u, τβi u) − φi (c, c)

)
ωidhdxdt

=
∫ T

0

∫
Rn

∫
Rn

τβi f − f

||βi ||Rn
sign0(τβi u − c)

(
φi (u, τβi u) − φi (c, c)

)
ωidhdxdt

+
∫ T

0

∫
Rn

∫
Rn

f
sign0(τβi u − c) − sign0(u − c)

||βi ||Rn

(
φi (u, τβi u) − φi (c, c)

)
ωidhdxdt .

Clearly

sign0(τβi v − c)
[
φi (v, τβi v) − φi (c, c)

]
≤ φi (v ∨ c, τβi v ∨ c) − φi (v ∧ c, τβi v ∧ c) = q̃i (v, τβi v, c)

1 As already noted by [23, Definition 2.2] the second line is not identical to the corresponding equation in
[20, p. 2470], which is assumed to be a misprint. Here we gave a more straightforward formula.
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and similarly

− sign0(v − c)
[
φi (v, τβi v) − φi (c, c)

] ≤ −q̃i (v, τβi v, c)

holds, thus

[
sign0(τβi v − c) − sign0(v − c)

][
φi (v, τβi v) − φi (c, c)

] ≤ 0 (9)

and finally

∫ T

0

∫
Rn

∫
Rn

τβi f sign0(τβi u − c) − f sign0(u − c)

||βi ||Rn

(
φi (u, τβi u) − φi (c, c)

)
ωidhdxdt

≤
∫ T

0

∫
Rn

∫
Rn

τβi f − f

||βi ||Rn
q̃i (u, τβi u, c)ωidhdxdt;

that is, in some sense, the inequality in Definition 3.1 is more precise in selecting the
physically relevant weak solution than the right-hand side of the above inequality. This
precision turns out to be crucial in later steps; the operator defined in Definition 3.6 does not
seem to be accretive with the functions q̃i which is an essential property to derive uniqueness
of solutions via the Crandall–Liggett theorem.

Throughout the paper difference quotients will be denoted by

Dy f = τy f − f

||y||Rn
,

where y ∈ R
n and the partial derivative of the φi functions with respect to their first and

second argument will be denoted by φ′
i,1 and φ′

i,2, respectively. For open subsets � of Rn let

Wk,p(�) denote the Sobolev space of functions whose distributional derivatives of order at
most k are in Lp(�). The spaceWk,p

0 (�) ⊂ Wk,p(�) denotes the set of functions vanishing

at the boundary of � and Wk,p
loc (�) denotes the set of locally integrable functions whose

restriction to any pre-compact Q � � lies in Wk,p(Q). We will use the standard notation
Hk(�) := Wk,2(�).

We rewrite the nonlocal conservation law (1) using the operator

Bu =
∫
Rn

k∑
i=1

φi (u, τβi u) − φi (τ−βi u, u)

||βi ||Rn
ωidh

as

∂u

∂t
+ Bu = 0. (10)

The following lemma shows that for continuously differentiable fluxes the operator B
maps W1,p(Rn) to Lp(Rn).

Lemma 3.3 Let φi ∈ C1(R × R) have bounded partial derivatives. Then v ∈ W1,p(Rn)

implies Bv ∈ Lp(Rn) for all 1 ≤ p < ∞. In particular, there is a constant C = C(p) > 0
such that ||Bv||Lp(Rn) ≤ C ||∇v||Lp(Rn) for all v ∈ W1,p(Rn).
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Proof Let |φ′
i,1| ≤ Ki,1 and |φ′

i,2| ≤ Ki,2 and 1
p + 1

q = 1. Setting Ki = max{Ki,1, Ki,2} we
find that

||Bv||pLp(Rn)
=

∫
Rn

∣∣∣∣
∫
Rn

k∑
i=1

φi (v, τβi v) − φi (τ−βi v, v)

||βi ||Rn
ωidh

∣∣∣∣
p

dx

≤
∫
Rn

( ∫
Rn

k∑
i=1

Ki
|v − τ−βi v| + |τβi v − v|

||βi ||Rn
ωidh

)p

dx

≤ k p−1
k∑

i=1

K p
i

∫
Rn

( ∫
Rn

(∣∣Dβi τ−βi v
∣∣ + ∣∣Dβi v

∣∣)ωidh

)p

dx

≤ k p−1
k∑

i=1

K p
i ||ωi ||pLq (Rn)

∫
Rn

∫
supp(ωi )

(∣∣Dβi τ−βi v
∣∣ + ∣∣Dβi v

∣∣)p
dhdx

≤ 2p−1k p−1
k∑

i=1

K p
i ||ωi ||pLq (Rn)

∫
supp(ωi )

||∇v||pLp(Rn)
dh = C ||∇v||pLp(Rn)

,

(11)

where we used the Lipschitz continuity of φ in the first inequality, Hölder’s inequality in
the third inequality and finally Fubini’s theorem and [6, Proposition 9.3(iii)] in the fourth
inequality.

The continuity of B is established by our next lemma.

Lemma 3.4 Let the assumptions of Lemma 3.3 hold. Then B is continuous from H1(Rn) to
L2(Rn).

Proof Let u, v ∈ H1(Rn). Similar estimates as in the proof of Lemma 3.3 lead to

||Bu − Bv||2L2(Rn)

=
∫
Rn

( ∫
Rn

k∑
i=1

Dβi
[
φi (τ−βi u, u) − φi (τ−βi v, v)

]
ωidh

)2

dx

≤ C
k∑

i=1

∫
Rn

∣∣∣∣Dβi
[
φi (τ−βi u, u) − φi (τ−βi v, v)

]∣∣∣∣2L2(Rn)
dh

≤ C
k∑

i=1

∫
Rn

∣∣∣∣∇[
φi (τ−βi u, u) − φi (τ−βi v, v)

]∣∣∣∣2L2(Rn)
dh

= C
k∑

i=1

∫
Rn

∣∣∣∣φ′
i,1(τ−βi u, u)∇τ−βi u + φ′

i,2(τ−βi u, u)∇u

−φ′
i,1(τ−βi v, v)∇τ−βi v − φ′

i,2(τ−βi v, v)∇v
∣∣∣∣2
L2(Rn)

dh.
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By introducing mixed terms we find that

||Bu − Bv||2L2(Rn)

≤ C
k∑

i=1

∫
Rn

( ∣∣∣∣[φ′
i,1(τ−βi u, u) − φ′

i,1(τ−βi v, v)
]∇τ−βi u

∣∣∣∣
L2(Rn)

+ ∣∣∣∣[φ′
i,2(τ−βi u, u) − φ′

i,2(τ−βi v, v)
]∇u

∣∣∣∣
L2(Rn)

+ ∣∣∣∣φ′
i,1(τ−βi v, v)

∣∣∣∣2
L∞(Rn)

∣∣∣∣∇τ−βi (u − v)
∣∣∣∣2L2(Rn)

+ ∣∣∣∣φ′
i,2(τ−βi v, v)

∣∣∣∣2
L∞(Rn)

||∇(u − v)||2L2(Rn)

)
dh.

(12)

Let v converge to u in H1(Rn) through a sequence {un} ⊂ H1(Rn) and let {unk } be a
subsequence of {un}. Since unk also converges to u as nk → ∞, there exists a subsequence
{unkl } of {unk } such that unkl → u a.e. as nkl → ∞. Let |φ′

i,1| ≤ Ki,1 and |φ′
i,2| ≤ Ki,2 and

observe that∣∣∣[φ′
i,1(τ−βi u, u) − φ′

i,1(τ−βi unkl , unkl )
]∇τ−βi u

∣∣∣ ≤ 2Ki,1
∣∣∇τ−βi u

∣∣,∣∣∣[φ′
i,2(τ−βi u, u) − φ′

i,2(τ−βi unkl , unkl )
]∇τ−βi u

∣∣∣ ≤ 2Ki,2
∣∣∇u

∣∣.
Using the dominated convergence theorem and the continuity of φi we find that the first two
terms in (12) converge to zero as nkl → ∞. Similarly, since φ′

i,1 and φ′
i,2 are bounded and

unkl → u in H1(Rn), the second two terms also converge to zero as nkl → ∞. Since {unk }
was arbitrary we conclude that each subsequence of the sequence ||Bu − Bun ||2L2(R)

has a
convergent subsequence with limit zero; that is, the sequence itself converges to zero and the
proof is complete.

Remark 3.5 In [23] the authors consider the case (in one dimension) when
∫
Rn

ωi (βi )||βi ||Rn < ∞.

In this case the above calculations can be modified to show that B : L1(Rn) �→ L1(Rn) is
Lipschitz continuous. Hence, standard contraction mapping principle shows existence and
uniqueness without entropy conditions. However, in this special case the kernels ωi assign
small weight to close interactions and more weight as the interaction distance increases. As
such, the model’s applicability to physically relevant problems is reduced.

We will consider X = L1(Rn) and proceed by verifying the hypotheses of the Crandall-
Liggett Theorem for an appropriate operator A in L1(Rn) that is, in some sense, the
generalization of the B of (10). The operator A will be the closure of the operator A0 defined
as follows.

Definition 3.6 Let A0 be the operator in L1(Rn) defined by: v ∈ D(A0) and w ∈ A0v if

(i) v,w ∈ L1(Rn),
(ii) φi (v, τβi (h)v) ∈ L1(Rn) for h ∈ supp(ωi ) and i = 1, 2, . . . , k,
(iii) the inequality∫

Rn
sign0(v − c)w f dx

+
∫
Rn

∫
Rn

k∑
i=1

Dβi × [
f sign0(v − c)

](
φi (v, τβi v) − φi (c, c)

)
ωidhdx ≥ 0 (13)

holds for any nonnegative f ∈ C∞
0 (Rn) and c ∈ R.
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As we will see later, the inequality in Definition 3.6(iii) ensures that if u ∈ D(A0) is a
solution of the abstract Cauchy problem, then it satisfies the entropy inequality in Defini-
tion 3.1. Lemmata 4.1 and 4.2 show that under appropriate circumstances A0 is single-valued
and coincides with B, further substantiating our definition.

While the accretivity of A0, and thus the accretivity of its closure A, can be established in a
straightforward manner using a tool described in [11, Proposition 2.1] (see Proposition 4.6),
the verification of the range condition (6) is more intricate. In fact, it requires the treatment
of the stationary equation

u + Bu = g. (14)

We define the generalized solutions of (14) in terms of A.

Definition 3.7 Let g ∈ L1(Rn). Then u ∈ L1(Rn) is a generalized solution of (14) if u ∈
D(A) and g ∈ (I + A)u.

Our first main result is the following theorem.

Theorem 3.8 Let φi ∈ W1,∞
loc (R × R) and g ∈ L1(Rn). Then A satisfies the assumptions

of the Crandall-Liggett Theorem on L1(Rn) and the unique generalized solution of (14) is
given by u = (I + A)−1g.

Theorem 3.8 and the Crandall-Liggett Theorem show that a semigroup of contractions is
determined by the operator A, whose various properties are listed in the next theorem.

Theorem 3.9 Let the assumptions of Theorem3.8 hold and S be the semigroup of contractions
on D(A) obtained from A via the Crandall–Liggett Theorem on L1(Rn). Let u, v ∈ D(A) ∩
L∞(Rn) and t ≥ 0. Then

(i) (integrability) S(t)v ∈ Lp(Rn) for p ≥ 1, furthermore the estimate ||S(t)v||Lp(Rn) ≤
||v||

1
p

L1(Rn)
||v||1−

1
p

L∞(Rn)
holds,

(ii) (maximum principle) − ∣∣∣∣v−∣∣∣∣L∞(Rn)
≤ S(t)v ≤ ∣∣∣∣v+∣∣∣∣L∞(Rn)

, where v− =
max{0,−v} and v+ = max{0, v}.

(iii) (monotonicity)
∣∣∣∣(S(t)u − S(t)v)+

∣∣∣∣L1(Rn)
≤ ∣∣∣∣(u − v)+

∣∣∣∣L1(Rn)
,

(iv) (equicontinuity) if y ∈ R
n, then∫

Rn

∣∣S(t)v(x + y) − S(t)v(x)
∣∣dx ≤

∫
Rn

∣∣v(x + y) − v(x)
∣∣dx,

(v) (conservation of mass)
∫
Rn S(t)v(x)dx = ∫

Rn v(x)dx,
(vi) S(t)v satisfies the nonlocal entropy inequality in Definition 3.1.

Remark 3.10 Note that the properties (iii)–(v) still hold if we only assume u, v ∈ D(A).

Corollary 3.11 Let g : [0, T ] × D(A) �→ L1(Rn) be strongly measurable with respect to t
and locally Lipschitz with respect to u such that

||g(t, u)||L1(Rn) ≤ c(t)
(
1 + ||u||L1(Rn)

)

holds for some c ∈ L1([0, T ]). Then the Cauchy problem
∂u

∂t
+

∫
Rn

k∑
i=1

φi (u, τβi u) − φi (τ−βi u, u)

||βi ||Rn
ωi dh = g(t, u), in R

n × (0, T ];

u(x, 0) = u0(x), x ∈ R
n
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has a unique mild solution for each u0 ∈ D(A) that depends continuously on u0; that is, the
map u0(.) → u(., t) is continuous in the Banach space X = L1(Rn).

Proof The statement follows directly from [5, Theorem 5.2].

4 Proofs of themain results

The following lemma shows that A0 is single-valued for bounded functions.

Lemma 4.1 Let A0 be given by Definition 3.6 and v ∈ D(A0)∩L∞(Rn). Then A0 is single-
valued and the equality

∫
Rn

A0v f dx = −
∫
Rn

∫
Rn

k∑
i=1

Dβi f φi (v, τβi v)ωidhdx

holds for any nonnegative f ∈ C∞
0 (Rn).

Proof Let w ∈ A0v. Then by (13) for any nonnegative f ∈ C∞
0 (Rn) and c ∈ R we have

∫
Rn

w f dx +
∫
Rn

∫
Rn

k∑
i=1

Dβi
[
f sign0(v − c)

](
φi (v, τβi v) − φi (c, c)

)
ωidhdx ≥ 0,

thus for c = ||v||L∞(Rn) + 1, we have that

∫
Rn

w f dx ≤ −
∫
Rn

∫
Rn

k∑
i=1

Dβi f φi (v, τβi v)ωidhdx .

Similarly, letting c = −(||v||L∞(Rn) + 1) yields

∫
Rn

w f dx ≥ −
∫
Rn

∫
Rn

k∑
i=1

Dβi f φi (v, τβi v)ωidhdx,

showing that for any w ∈ A0v, the following equality holds

∫
Rn

w f dx = −
∫
Rn

∫
Rn

k∑
i=1

Dβi f φi (v, τβi v)ωidhdx .

To show that A0v is single-valued, suppose that w1, w2 ∈ A0v. Then the equality∫
Rn w1 f dx = ∫

Rn w2 f dx holds for all nonnegative f ∈ C∞
0 (Rn), thus w1 = w2 a.e.

The following lemma shows that A0 extends B on C10(Rn).

Lemma 4.2 Let φi ∈ C1(R × R) have bounded partial derivatives and A0 be given by
Definition 3.6. Then C10(Rn) ⊂ D(A0) and for any v ∈ C10(Rn), the equality A0v = Bv

holds.

Proof The fact v ∈ C10(Rn) implies that φi (v, τβi (h)v) ∈ L1(Rn) holds for all h ∈ supp(ωi )

and i = 1, 2, . . . , k. Let f ∈ C∞
0 (Rn) be nonnegative and c ∈ R. Multiply Bv by sign0(v −
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c) f and integrate over Rn to find that∫
Rn

sign0(v − c) f Bvdx

= −
∫
Rn

∫
Rn

k∑
i=1

Dβi [ f sign0(v − c)](φi (v, τβi v) − φi (c, c)
)
ωidhdx;

(15)

that is, we have v ∈ D(A0) and Bv ∈ A0v. This, combined with Lemma 4.1 implies that
A0v = Bv a.e.

Wewill use an efficient tool of Crandall to prove accretivity, characterized by the following
definition and the two subsequent lemmata.

Definition 4.3 [11, Definition 2.1] For u : Rn �→ R measurable, let

sign (u) := {
v : Rn �→ R

∣∣|v| ≤ 1 a.e. and vu = |u| a.e.}.
Note that sign0(u) ∈ sign(u), thus sign(u) is always nonempty.

Lemma 4.4 [11, Lemma 2.1] Let u, v ∈ L1(Rn) and α ∈ sign(u). If
∫
Rn αvdx ≥ 0, then

||u + λv||L1(Rn) ≥ ||u||L1(Rn) holds for λ > 0.

Lemma 4.5 [11, Lemma 2.2] Let {βk} be a sequence in L1(Rn) with lim βk = β in L1(Rn).
If αk ∈ sign(βk), then there exists a subsequence {αkl } and function α ∈ sign(β) such that
{αkl } converges to α in the weak-star topology on L∞(Rn).

Proposition 4.6 Let A0 be given by Definition 3.6. Then A0 is accretive in L1(Rn).

Proof Let v ∈ D(A0) and w ∈ A0v and choose u ∈ L1(Rn) such that Definition 3.6 (ii)
holds. Set c = u(y) and f (x) = g(x, y) in (13), where g ∈ C∞

0 (Rn × R
n) is nonnegative.

We introduce the notations � = (
R
n
)2 and

Dβi
1 g(x, y) = g(x + βi , y) − g(x, y)

||βi ||Rn
,

Dβi
2 g(x, y) = g(x, y + βi ) − g(x, y)

||βi ||Rn
.

For the sake of readability we omit most arguments in this proof. Integrating over y yields∫
�

sign0(v − u)wgdxdy

+
∫

�

∫
Rn

k∑
i=1

Dβi
1

[
g sign0(v − u)

](
φi (v, τβi v) − φi (u, u)

)
ωidhdxdy ≥ 0.

(16)

Suppose that u ∈ D(A0) as well and let z ∈ A0u. Set c = v(x) and f (y) = g(x, y) in (13)
and integrate over x to find that∫

�

sign0(u − v)zgdydx

+
∫

�

∫
Rn

k∑
i=1

Dβi
2

[
g sign0(u − v)

](
φi (u, τβi u) − φi (v, v)

)
ωidhdydx ≥ 0.

(17)
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and adding the inequalities (16) and (17) yields∫
�

sign0(v − u)(w − z)gdxdy

+
∫

�

∫
Rn

k∑
i=1

(
Dβi
1

[
g sign0(v − u)

](
φi (v, τβi v) − φi (u, u)

)

+ Dβi
2

[
g sign0(u − v)

](
φi (u, τβi u) − φi (v, v)

))
ωidhdxdy ≥ 0.

(18)

Let δ ∈ C∞
0 (R) be nonnegative and even such that ||δ||L1(Rn) = 1 and

λ(x) =
n∏

i=1

δ(xi ),

λε(x) = 1

εn
λ

(
x

ε

)

for ε > 0. Let f ∈ C∞
0 (Rn) nonnegative and set

g(x, y) = f

(
x + y

2

)
λε

(
x − y

2

)
.

Setting 2ξ = x + y, 2η = x − y in (18) yields
∫
Rn

( ∫
Rn

sign0(v − u)(w − z) f dξ

)
λε(η)dη +

∫
�

J ε
f (ξ, η)dξdη ≥ 0. (19)

where

J ε
f (ξ, η) =

∫
Rn

k∑
i=1

ωi

||βi ||Rn

×
[(

τ βi
2
f τ βi

2
λε sign0(τβi v − u) − f λε sign0(v − u)

)(
φi (v, τβi v) − φi (u, u)

)

+
(
τ βi

2
f τ− βi

2
λε sign0(τβi u − v) − f λε sign0(u − v)

)(
φi (u, τβi u) − φi (v, v)

)]
dh.

Denote the integral in parenthesis in the first term of (19) with I f (η). We want to let ε → 0.
Since I f is bounded and ||λε ||L1(Rn) = 1 we have that

lim inf
ε→0

∫
Rn

I f (η)λε(η)dη ≤ lim sup
||η||Rn→0

I f (η).

A similar argument after a change of variables shows that

lim inf
ε→0

∫
�

J ε
f (ξ, η)dξdη

≤ lim sup
||η||Rn→0

∫
Rn

∫
Rn

k∑
i=1

ωi

||βi ||Rn

(
τβi f q

(1)
i (v, τβi v, τβi u) − f q(2)

i (v, τβi v, u)

+ τβi f q
(1)
i (u, τβi u, τβi v) − f q(2)

i (u, τβi u, v)

)
dhdξ,
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where

q(1)
i (a, b, c) = sign0(a − c)

(
φi (a, b) − φi (c, c)

)
,

q(2)
i (a, b, c) = sign0(b − c)

(
φi (a, b) − φi (c, c)

)
.

Introducing mixed terms yields

lim inf
ε→0

∫
�

J ε
f (ξ, η)dξdη

≤ lim sup
||η||Rn→0

∫
Rn

∫
Rn

k∑
i=1

(
f
((
q(1)
i − q(2)

i

)
(v, τβi v, u) + (

q(1)
i − q(2)

i

)
(u, τβi u, v)

)

+ (τβi f − f )q(1)
i (v, τβi v, τβi u) + (τβi f − f )q(1)

i (u, τβi u, τβi v)

)
ωi

||βi ||Rn
dhdξ.

But then (9) shows that the first two terms are nonpositive, thus we conclude that

lim inf
ε→0

∫
�

J ε
f (ξ, η)dξdη ≤ lim sup

||η||Rn→0

∫
Rn

∫
Rn

k∑
i=1

ωi

||βi ||Rn

×
(
(τβi f − f )q(1)

i (v, τβi v, τβi u) + (τβi f − f )q(1)
i (u, τβi u, τβi v)

)
dhdξ

=: lim sup
||η||Rn→0

J̃ f (η).

Choose a sequence {ηk} ⊂ R
n such that ||ηk ||Rn → 0 and limk→∞ I f (ηk) =

lim sup||η||Rn Ĩ f (η) and limk→∞ J̃ f (ηk)) = lim sup||η||Rn→0 J̃ f (η) (note that it might be

necessary to choose two different sequences for I f and J̃ f ). Using Lemma 4.5 we assume
(passing to subsequences if necessary) that the sequence

αk(ξ) = sign0
(
v(ξ + ηk) − u(ξ − ηk)

)

converges weakly-star in L∞(Rn) to α ∈ sign
(
v(ξ) − u(ξ)

)
. We similarly assume that the

sign0 sequences appearing in J̃ f (ηk) converge weakly-star in L∞(Rn) and we denote the
limit as

lim
k→∞ J̃ f (ηk) =

∫
Rn

∫
Rn

k∑
i=1

Dβi f
(
γi (v, τβi v, τβi u) + γi (u, τβi u, τβi v)

)
ωidhdξ.

Then

lim
k→∞

(
I f (ηk) + J̃ f (ηk)

) =
∫
Rn

α(w − z) f dξ

+
∫
Rn

∫
Rn

k∑
i=1

Dβi f
(
γi (v, τβi v, τβi u) + γi (u, τβi u, τβi v)

)
ωidhdξ ≥ 0.

(20)

Let κ ∈ C∞
0 (R) be nonnegative such that κ(s) = 1 for |s| ≤ 1. Set fl(ξ) = κ

( ||ξ ||Rn
l

)
and

let l → ∞. Since the difference quotient

Dβi fl(x) =
∫ 1

0
∇ fl(x + βi s) · βi

||βi ||Rn
ds (21)
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is bounded and is zero for x ∈ R
n such that ||x ± βi ||Rn ≤ l, the second integral in (20)

converges to zero; that is, we conclude that∫
Rn

α(w − z)dξ ≥ 0.

Lemma 4.4 shows that the inequality

||v − u + λ(w − z)||L1(Rn) ≥ ||v − u||L1(Rn)

holds for λ > 0. Since u, v ∈ D(A0) were arbitrary we conclude that A0 is indeed accretive.

Remark 4.7 One can observe that in the above proof we did not use the fact that the kernels
ωi have finite support.

The stationary Eq. (14) will be investigated through the regularized equation

u + λBu − ε�u = g, (22)

where λ, ε > 0. In [11, Proposition 2.2] the author shows existence of solutions using a
special version of the perturbation result [30, Theorem 3.2] without further preparations. A
key step of the proof is the fact that for u ∈ L2(Rn), the B̃ local version of the operator B (see
(3)) has the property 〈B̃u, u〉 = 0. However, this is no longer true in the nonlocal case, and
thus we instead use a fix-point approach based on [33, Chapter 4] and [14, Proposition IV.3].
In order to do so, we first establish some a priori estimates on the solutions.

Lemma 4.8 Let φi ∈ C1(R × R) have bounded partial derivatives and let u ∈ H1(Rn) ∩
H2

loc(R
n) satisfy (22) for g ∈ L1(Rn)∩L∞(Rn). Then we have u ∈ L1(Rn)∩L∞(Rn) and

||u||L1(Rn) ≤ ||g||L1(Rn) ,

||u||L∞(Rn) ≤ ||g||L∞(Rn) .

Proof We treat the case of L1(Rn) first. Define

�l(s) =

⎧⎪⎨
⎪⎩

−s if s ≤ − 1
l ,

l
2 s

2 + 1
2l if |s| ≤ 1

l ,

s if s ≥ 1
l

(23)

and let f ∈ C∞
0 (Rn) be such that 0 ≤ f ≤ 1. Multiplying (22) by �′

l(u) f and integrating
over Rn gives∫

Rn

(
u�′

l(u) f + λBu�′
l(u) f − ε�u�′

l(u) f
)
dx =

∫
Rn

g�′
l(u) f dx ≤ ||g||L1(Rn) . (24)

Since the sequence {u�′
l(u) f } is a nonnegative and pointwise non-decreasing sequence

with u�′
l(u) f → |u| f as l → ∞, the monotone convergence theorem and the fact that

0 ≤ �′
l f ≤ 1 implies

lim
l→∞

∫
Rn

u�′
l(u) f dx =

∫
Rn

u f dx . (25)

Since �′
l is monotone, and f is nonnegative we have that∫

Rn
�u�′

l(u) f dx = −
∫
Rn

�′′
l (u)|∇u|2 f dx −

∫
Rn

�′
l(u)∇u∇ f dx

= −
∫
Rn

�′′
l (u)|∇u|2 f dx +

∫
Rn

�l(u)� f dx ≤
∫
Rn

�l(u)� f dx .
(26)
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By letting l → ∞ we conclude that

− lim sup
l→∞

∫
Rn

�u�′
l(u) f dx ≥ −

∫
Rn

u� f dx .

Finally, the sequence {Bu�′
l(u) f } converges pointwise to Bu sign0(u) f as l → ∞ and is

dominated by |Bu| f . The fact that |Bu| f is integrable follows from Sobolev’s embedding of
H2 into W1,1 on the support of f and Lemma 3.3. Thus, using the dominated convergence
theorem yields

lim
l→∞

∫
Rn

Bu�′
l(u) f dx =

∫
Rn

Bu sign0(u) f dx .

Use the integration by parts formula for difference quotients to find that

lim
l→∞

∫
Rn

Bu�′
l(u) f dx = −

∫
Rn

∫
Rn

k∑
i=1

Dβi sign0(u)τβi f φi (u, τβi u)ωidhdx

−
∫
Rn

∫
Rn

�′
l(u)Dβi f φi (u, τβi u)ωidhdx,

and apply inequality (9) with c = 0 to conclude that

lim
l→∞

∫
Rn

Bu�′
l(u) f dx ≥ −

∫
Rn

∫
Rn

k∑
i=1

sign0(u)Dβi f φi (u, τβi u)ωidhdx . (27)

Substituting (25), (26) and (27) into (24) yields

∫
Rn

(u f − εu� f )dx −
∫
Rn

∫
Rn

k∑
i=1

sign0(u)Dβi f φi (u, τβi u)ωidhdx ≤ ||g||L1(Rn) .

Let κ ∈ C∞
0 (R) nonnegative such that κ(s) = 1 for |s| ≤ 1. Set fl(ξ) = κ

( ||ξ ||Rn
l

)
. Since

the difference quotient Dβi fl is bounded and is zero for x ∈ R
n such that ||x ± βi ||Rn ≤ l

(see (21)), letting l → ∞ yields

||u||L1(Rn) ≤ ||g||L1(Rn) .

For the case of L∞(Rn), let M ∈ R be such that M ≥ g+ a.e. Subtract M from (22),
multiply by �′+

l (u − M) and integrate over Rn to find that

∫
Rn

(u − M + λBu − ε�u)�′+
l (u − M)dx =

∫
Rn

(g − M)�′+
l (u − M)dx ≤ 0. (28)

A similar argument as in (26) gives

lim
l→∞

∫
Rn

�u�′+
l (u − M)dx ≤ 0, (29)

as before. Again, integration by parts for difference quotients and the inequality (9) with
c = M (the reader may want to check that sign0 and sign

±
0 are interchangeable in (9)) imply
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that

lim
l→∞

∫
Rn

Bu�′+
l (u − M)dx

= −
∫
Rn

∫
Rn

k∑
i=1

Dβi sign+
0 (u − M)

[
φi (u, τβi u) − φi (M, M)

]
ωidhdx ≥ 0.

(30)

Substituting (29) and (30) into (28) yields∫
Rn

(u − M)�′+
l (u − M)dx ≤ 0,

which implies that u ≤ M a.e.
To establish an analogous lower bound, let M be such that M ≤ g− a.e. Add M to (22),

multiply by �′−
l (u + M) and integrate over Rn to conclude that∫

Rn
(u + M + λBu − ε�u)�′−

l (u + M)dx =
∫
Rn

(g + M)�′
l(u + M)−dx ≤ 0.

Similar estimates as before show that∫
Rn

(u + M)�′−
l (u + M)dx ≤ 0,

which implies that −M ≤ u a.e. Setting M = ||g||L∞(Rn) concludes the proof.

Remark 4.9 The proof also shows that the maximum principle holds for Eq. (22); that is, any
solution u ∈ H1(Rn) ∩ H2

loc(R
n) of (22) satisfies the inequalities − ∣∣∣∣g−∣∣∣∣L∞(Rn)

≤ u ≤∣∣∣∣g+∣∣∣∣L∞(Rn)
a.e.

Hölder’s inequality immediately yields the following result.

Corollary 4.10 Let the assumptions of Lemma 4.8 hold and let g ∈ L1(Rn) ∩L∞(Rn). Then

u ∈ Lp(Rn) for p ≥ 1 with ||u||Lp(Rn) ≤ ||g||
1
p

L1(Rn)
||g||1−

1
p

L∞(Rn)
.

The next result shows the uniqueness of solutions of (22) for g ∈ L1(Rn).

Lemma 4.11 Let the assumptions of Lemma 4.8 hold and let u, v ∈ H1(Rn) ∩ H2
loc(R

n)

satisfy

u + λBu − ε�u = g1,

v + λBv − ε�v = g2.

If g1, g2 ∈ L1(Rn), then∣∣∣∣(u − v)+
∣∣∣∣L1(Rn)

≤ ∣∣∣∣(g1 − g2)
+∣∣∣∣L1(Rn)

.

Proof The proof follows the proof of Lemma 4.8. Let w = u − v. Then w satisfies

w + λ(Bu − Bv) − ε�w = g1 − g2. (31)

Let f ∈ C∞
0 (Rn) be such that 0 ≤ f ≤ 1. Define �l by setting � ′

l = �′+
l and �l(0) = 0.

Multiply (31) by � ′
l (w) f and integrate over Rn to find that∫
Rn

(
w + λ(Bu − Bv) − ε�w

)
� ′
l (w) f dx

=
∫
Rn

(g1 − g2)�
′
l (w) f dx ≤ ∣∣∣∣(g1 − g2)

+∣∣∣∣L1(Rn)

(32)
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holds, since 0 ≤ � ′
l f ≤ 1. The facts that �l(w) ∈ H1

loc(R
n) and that both � ′′

l , f ≥ 0 imply
that ∫

Rn
�w� ′

l (w) f dx ≤
∫
Rn

�l(w)� f dx,

and thus

− lim sup
l→∞

∫
Rn

�w� ′
l (w) f dx ≥ −

∫
Rn

w+� f dx . (33)

as before. Integration by parts for difference quotients yields∫
Rn

(Bu − Bv)� ′
l (w) f dx

= −
∫
Rn

∫
Rn

k∑
i=1

Dβi � ′
l (w)τβi f

[
φi (u, τβi u) − φi (v, τβi v)

]
ωidhdx

−
∫
Rn

∫
Rn

k∑
i=1

� ′
l (w)Dβi f

[
φi (u, τβi u) − φi (v, τβi v)

]
ωidhdx .

Letting l → ∞ in the first integral and using a similar argument as in (9) we find that

− lim
l→∞

∫
Rn

∫
Rn

k∑
i=1

Dβi � ′
l (w)τβi f

[
φi (u, τβi u) − φi (v, τβi v)

]
ωidhdx ≥ 0,

and thus, by the dominated convergence theorem,

lim
l→∞

∫
Rn

(Bu − Bv)� ′
l (w) f dx

≥ −
∫
Rn

∫
Rn

k∑
i=1

sign+
0 (w)Dβi f

[
φi (u, τβi u) − φi (v, τβi v)

]
ωidhdx .

(34)

Using (33) and (34) in (32) and letting l → ∞ gives

∫
Rn

w+ f dx − λ

∫
Rn

∫
Rn

k∑
i=1

sign+
0 (w)Dβi f

[
φi (u, τβi u) − φi (v, τβi v)

]
ωidhdx

− ε

∫
Rn

w+� f dx ≤ ∣∣∣∣(g1 − g2)
+∣∣∣∣L1(Rn)

.

By the same argument as before, let κ ∈ C∞
0 (R) nonnegative such that κ(s) = 1 for |s| ≤ 1.

Set fl(ξ) = κ
( ||ξ ||Rn

l

)
. Since the difference quotient Dβi fl is bounded and is zero for x ∈ R

n

such that ||x ± βi ||Rn ≤ l (see (21)), letting l → ∞ yields∫
Rn

w+dx = ∣∣∣∣(u − v)+
∣∣∣∣L1(Rn)

≤ ∣∣∣∣(g1 − g2)
+∣∣∣∣L1(Rn)

.

Corollary 4.12 Let the assumptions of Lemma 4.8 hold and let u, v ∈ H1(Rn) ∩ H2
loc(R

n)

satisfy

u + Bu − ε�u = g1

v + Bv − ε�v = g2.
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If g1, g2 ∈ L1(Rn), then

||u − v||L1(Rn) ≤ ||g1 − g2||L1(Rn) .

Proof Notice that the equality

||a − b||L1(Rn) = ∣∣∣∣(a − b)+
∣∣∣∣L1(Rn)

+ ∣∣∣∣(b − a)+
∣∣∣∣L1(Rn)

holds for any a, b ∈ L1(Rn). Lemma 4.11 shows that
∣∣∣∣(u − v)+

∣∣∣∣L1(Rn)
≤ ∣∣∣∣(g1 − g2)

+∣∣∣∣L1(Rn)
,∣∣∣∣(v − u)+

∣∣∣∣L1(Rn)
≤ ∣∣∣∣(g2 − g1)

+∣∣∣∣L1(Rn)
.

Hence, the inequality ||u − v||L1(Rn) ≤ ||g1 − g2||L1(Rn) holds as claimed.

The next result shows the existence of a unique generalized solution of (22) for g ∈
L1(Rn) ∩ L∞(Rn) and plays an essential role in our developments. In order to do so we
consider the problem on the ball Br ⊂ R

n for r > 0 with zero Dirichlet boundary condition.
Let ur ∈ H1

0(Br ) ∩ H2(Br ) =: H2
0(Br ) satisfy

ur (x) + λBur (x) − ε�ur (x) = g(x), x ∈ Br ;
ur (x) = 0, x ∈ ∂Br ,

(35)

where � denotes the Dirichlet–Laplacian �D on L2(Br ) with D(�D) = H2
0(Br ). For the

operator B to remain meaningful we use the E : H1
0(Br ) �→ H1(Rn) extension opera-

tor [22, Chapter 5.4] on ur supplemented with the fact that supp(Eur ) = supp(ur ) and
||Eur ||H1(Rn) = ||ur ||H1

0(Br )
[7]. Thenwe use the restriction operator R : L2(Rn) �→ L2(Br )

on BEur to obtain the operator RBE : H1
0(Br ) �→ L2(Br ). As in (35), we will denote �D

by � and RBE by B for brevity.

Remark 4.13 One can verify from the proof of Lemmata 3.3, 3.4, 4.8 and 4.11 and Corollar-
ies 4.10 and 4.12 that they all hold for the Dirichlet problem too. Minor steps of the proofs
have to be modified, for example, in the proof of Lemma 4.8, instead of multiplying by�′

l(u)

and integrating over Rn we multiply by �′
l(Eu

r ) and integrate over Br . Then we can repeat
the same estimates as before. Similar arguments should be used in the rest of the proofs as
well.

Proposition 4.14 Let the assumptions of Lemma 4.8 hold. Then for each g ∈ L1(Rn) ∩
L∞(Rn) there is a unique solution u ∈ H1(Rn) ∩ H2

loc(R
n) of (22).

Proof We consider the Dirichlet problem (35) first. Define the operator T : H1
0(Br ) �→

H2
0(Br ) by T = −(I − ε�)−1λBu + (I − ε�)−1g and let

S := {u ∈ H1
0(Br ) : u = ηTu, η ∈ [0, 1]}.

Note that H2
0(Br ) can be compactly embedded into H1

0(Br ), which implies that T is con-
tinuous (see also Lemma 3.4) and compact and maps the Banach space H1

0(Br ) into itself.
Observe that u ∈ S implies in fact u ∈ H2

0(Br ), and thus u = ηTu is equivalent to

u + ηλBu − ε�u = ηg (36)
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on Br a.e. Multiply by u and integrate over Br to find that

||u||2L2(Br )
+ ε ||∇u||2L2(Br )

= η

∫
Br

gudx − ηλ

∫
Br

Buudx

≤ η ||g||L2(Br ) ||u||L2(Br ) + ηλ ||Bu||L2(Br ) ||u||L2(Br )

≤ η

2
||g||2L2(Br )

+ η

2
||u||2L2(Br )

+ ηλδ2 ||Bu||2L2(Br )
+ ηλ

δ2
||u||2L2(Br )

≤ 1

2
||g||2L2(Br )

+ 1

2
||u||2L2(Br )

+ λδ2 ||Bu||2L2(Br )
+ λ

δ2
||u||2L2(Br )

for any δ > 0. Using (11) and Corollary 4.10 (note that the right-hand side is ηg in (36) and
g in (22)) we find that

||u||2L2(Br )
≤ η ||g||L1(Br ) ||g||L∞(Br ) ≤ ||g||L1(Br ) ||g||L∞(Br ) (37)

and that

(ε − Cλδ2) ||∇u||2L2(Br )
≤ 1

2
||g||2L2(Br )

+
(
1

2
+ λ

δ2

)
||u||2L2(Br )

≤
(
1 + λ

δ2

)
||g||L1(Br ) ||g||L∞(Br ) .

(38)

The inequalities (37) and (38) show that by choosing δ small enough S is bounded inH1
0(Br ).

Then Schaefer’s fixed point theorem shows that T has a fixed point [16, Corollary 8.1] and,
in fact, Lemma 4.11 ensures that the fixed point is unique on Br .

Choose a sequence {rm} ⊂ R such that rm → ∞ in an increasing fashion as m → ∞
and let urm ∈ H2

0(Brm ) be the corresponding sequence of solutions. Then clearly {Eurm } ⊂
H2(Rn) and by Lemma 4.8 we also have ||Eurm ||L∞(Brm ) ≤ ||g||L∞(Brm ) ≤ ||g||L∞(Rn).
For any r < r ′ we have by Corollary 4.12 that∣∣∣

∣∣∣Eur − Eur
′ ∣∣∣
∣∣∣L1(Rn)

≤ ||g||L1
(
Br ′ \Br

) ,

and thus the sequence is Cauchy and converges in L1(Rn) to some u ∈ L1(Rn) ∩ L∞(Rn).
Furthermore, elliptic regularity [22, Sect. 6.3.1] combined with inequalities (37) and (38)
imply that {Eurm } is uniformly bounded with∣∣∣∣Eurm ∣∣∣∣H2(Rn)

= ∣∣∣∣urm ∣∣∣∣H2
0(Brm )

≤ C
( ||g||L2(Brm ) + ∣∣∣∣Burm ∣∣∣∣L2(Brm )

)

≤ C
( ||g||L2(Brm ) + ∣∣∣∣urm ∣∣∣∣H1

0(Brm )

) ≤ C
(

||g||L2(Rn) + ||g||
1
2
L1(Rn)

||g||
1
2
L∞(Rn)

)
.
(39)

Let us consider Br0 for some r0 > 0 and let {Eurmk } be any subsequence, which is
then bounded in H2(Br0) and thus by the compact embedding of H2(Br0) into H1(Br0) it
has a subsequence {Eurmkl } that converges in H1(Br0) to u. Since any subsequence has a
convergent sequence with the same limit the original sequence converges inH1(Br0) to u. By
(39) ||u||H1(Br0 ) ≤ C independently of r0 showing that u is in fact in H1(Rn) and is a weak

solution. Thus, by elliptic regularity u ∈ H2
loc(Br0) as well and since r0 > 0 was arbitrary

we conclude that u ∈ H1(Rn)∩H2
loc(R

n) is a strong solution solution and by Corollary 4.12
it is unique.

In our next result we take the limit ε → 0. This will not only allow us to consider flux
functions in W1,∞

loc (R × R) but will show that the various properties established for the
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solutions of (22) hold for the generalized solutions of (14), which in turn will imply that they
hold for the semigroup as well.

Proposition 4.15 Let φi ∈ W1,∞
loc (R×R) and A0 be given by Definition 3.6. Then L1(Rn)∩

L∞(Rn) ⊆ R(I + λA0) for λ > 0. Accordingly, let Tλ : L1(Rn) ∩ L∞(Rn) �→ L1(Rn) be
the restriction of (I + λA0)

−1 to L1(Rn) ∩ L∞(Rn). If g1, g2 ∈ L1(Rn) ∩ L∞(Rn), then

(i) Tλg1 ∈ Lp(Rn) for p ≥ 1 with ||Tλg1||Lp(Rn) ≤ ||g1||
1
p

L1(Rn)
≤ ||g1||1−

1
p

L∞(Rn)
,

(ii) − ∣∣∣∣g−
1

∣∣∣∣L∞(Rn)
≤ Tλg1 ≤ ∣∣∣∣g+

1

∣∣∣∣L∞(Rn)
,

(iii)
∣∣∣∣(Tλg1 − Tλg2)+

∣∣∣∣L1(Rn)
≤ ∣∣∣∣(g1 − g2)+

∣∣∣∣L1(Rn)
,

(iv) Tλ commutes with translations,
(v)

∫
Rn Tλg1dx = ∫

Rn g1dx.

Proof Let {φm
i } ⊂ C1(R × R) be a sequence such that each φm

i is bounded and have the
property φm

i (0, 0) = 0 and {φm
i } converges to φi uniformly on compact sets. Define

Bmu =
∫
Rn

k∑
i=1

φm
i (u, τβi u) − φm

i (τ−βi u, u)

||βi ||Rn
ωidh

and the operator Tλ,m : L1(Rn) ∩ L∞(Rn) �→ L1(Rn) ∩ L∞(Rn) by Tλ,mg = u if u ∈
H1(Rn) ∩ H2

loc(R
n) and

u + λBmu − 1

m
�u = g. (40)

Proposition 4.14, Lemmata 4.8 and 4.11, Remark 4.9, Corollaries 4.10 and 4.12 and the fact
that Tλ,m commutes with translations imply that Tλ,m is well-defined and has the properties
(i)-(iv). Let g ∈ L1(Rn) ∩ L∞(Rn) and um = Tλ,mg. By Lemma 4.11 and the translation
invariance of Tλ,m we conclude that∫

Rn

∣∣um(x + y) − um(x)
∣∣dx ≤

∫
Rn

∣∣g(x + y) − g(x)
∣∣dx

for y ∈ R
n . The above estimate and ||um ||L1(Rn) ≤ ||g||L1(Rn), by the means of the Fréchet-

Kolmogorov compactness theorem, imply that {um} is precompact in L1
loc(R

n). Thus, there
is a subsequence {um j } which converges a.e. in L1

loc(R
n) to a limit u ∈ L1(Rn). This con-

vergence will be denoted as um j � u. Let f ∈ C∞
0 (Rn) be nonnegative and �l be given by

(23). Multiply (40) by �′
l(um − c) f and integrate over Rn to find that

∫
Rn

(
um + λBmum − 1

m
�um

)
�′

l(um − c) f dx =
∫
Rn

g�′
l(um − c) f dx .

Integration by parts gives∫
Rn

(
(um − g)�′

l(um − c) f + λBmum�′
l(um − c) f

+ 1

m

(
�′′

l (um − c)|∇um |2 f − �l(um − c)� f
))

dx = 0.

Note that both �′′
l , f ≥ 0 implies that

1

m

∫
Rn

�′′
l (um − c)|∇um |2 f dx ≥ 0
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and ||um ||L∞(Rn) ≤ ||g||L∞(Rn) implies that the integral
∫
Rn

�l(um − c)� f dx

is bounded. Letting m → ∞ through the subsequence {m j } and using the convergences
um j � u and φm

i → φi uniformly on compact sets yields
∫
Rn

(
(u − g)�′

l(u − c) f + λBu�l(u − c) f
)
dx ≤ 0.

Letting l → ∞ and using (15) gives
∫
Rn

(
sign0(u − c)(u − g) f

− λ

∫
Rn

k∑
i=1

Dβi
[
f sign0(u − c)

](
φi (u, τβi u) − φi (c, c)

)
ωidh

)
dx ≤ 0.

Since ||u||L∞(Rn) ≤ ||g||L∞(Rn) and φi ∈ W1,∞
loc (R × R) we have φi (u, τβi u) ∈ L1(Rn).

Thus, we have g ∈ (I + λA0)u by Definition 3.6 and, in fact, by Lemma 4.1 the equality

u + λA0u = g (41)

holds. The accretivity of A0 shows that u is unique, hence limm→∞ Tλ,mg = Tλg holds
with convergence in L1

loc(R
n). Properties (i)-(iv) are preserved under L1

loc(R
n) convergence.

Choose f ∈ C∞
0 (Rn) nonnegative, multiply (41) with f and integrate over Rn to find that

∫
Rn

u f dx + λ

∫
Rn

A0u f dx

=
∫
Rn

u f dx − λ

∫
Rn

∫
Rn

k∑
i=1

Dβi f φi (u, τβi u)ωidhdx =
∫
Rn

g f dx

also holds by Lemma 4.1. Let κ ∈ C∞
0 (R) be nonnegative such that κ(s) = 1 for |s| ≤ 1.

Set fl(ξ) = κ
( ||ξ ||Rn

l

)
and let l → ∞. Using (21) we find that the integral

∫
Rn

∫
Rn

k∑
i=1

Dβi flφi (u, τβi u)ωidhdx

converges to zero as l → ∞ and thus property (v) holds as well.

Remark 4.16 By Definition 3.6 it is clear that D(A) ⊂ L1(Rn) and in some cases, in fact, the
equality D(A) = L1(Rn) holds, see Lemma 4.2. However, this remains to be shown under
our general assumption that φi ∈ W1,∞

loc (R × R).

Proof of Theorem 3.8 Since A0 is accretive it follows that the closure A is also accretive. Let
g ∈ L1(Rn) and {gm} ⊂ L1(Rn) ∩ L∞(Rn) be such that gm → g in L1(Rn). Since Tλ is
a contraction, the sequence {Tλgm} is Cauchy. Let λwm = (I − Tλ)gm , so wm ∈ A0Tλgm
and the sequence {wm} is also Cauchy. If Tλgm → v and wm → w, then w ∈ Av and
g = v + λw ∈ (I + λA)v. This shows that A is m-accretive and the proof is complete.
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Proof of Theorem 3.9 The solution uε(t) of (7) is given by

uε(t) = (I + εA)
−
⌊

t
ε

⌋
−1u0.

The uniform convergence limε→0 uε(t) = S(t)u0 for t in L1(Rn) shows that properties
(i)-(v) hold for S(t), since by Proposition 4.15 they hold for Tλ = (I + λA)−1.

For property (vi) let u0 ∈ L1(Rn) ∩ L∞(Rn) (note that by Lemma 4.1 the operator A0 is
single-valued in this case) and uε(x, t) satisfy

1

ε

(
uε(x, t) − uε(x, t − ε)

) + A0uε(x, t) = 0, (x, t) ∈ R
n × (0, T );

uε(x, 0) = u0(x), x ∈ R
n .

The definition of A0 implies that∫
Rn

sign0
(
uε(x, t) − c

)
A0uε(x, t) f dx

+
∫
Rn

∫
Rn

k∑
i=1

Dβi
[
f sign0(u − c)

](
φi (uε, τβi uε) − φi (c, c)

)
ωidhdx ≥ 0

holds for any nonnegative f ∈ C∞
0

(
R
n × (0, T )

)
and any c ∈ R. Notice that

A0uε(x, t) = 1

ε

(
uε(x, t − ε) − uε(x, t)

)

and that

sign0
(
uε(x, t) − c

)(
uε(x, t − ε) − uε(x, t)

) = sign0
(
uε(x, t) − c

)(
uε(x, t − ε) − c

)
+ sign0

(
uε(x, t) − c

)(
uε(x, t) − c

) ≤ ∣∣uε(x, t − ε) − c
∣∣ − ∣∣uε(x, t) − c

∣∣.
Using the above and integrating over (0, T ) yields

∫ T

0

∫
Rn

1

ε

(∣∣uε(x, t − ε) − c
∣∣ − ∣∣uε(x, t) − c

∣∣) f (x, t)dxdt

+
∫ T

0

∫
Rn

∫
Rn

k∑
i=1

Dβi
[
f sign0(u − c)

](
φi (uε, τβi uε) − φi (c, c)

)
ωidhdxdt ≥ 0.

(42)

Observe that

1

ε

∫ T

0

∫
Rn

(∣∣uε(x, t − ε) − c
∣∣ − ∣∣uε(x, t) − c

∣∣) f (x, t)dxdt

= 1

ε

( ∫ ε

0

∫
Rn

∣∣uε(x, t − ε) − c
∣∣ f (x, t)dxdt −

∫ T

T−ε

∫
Rn

∣∣uε(x, t) − c
∣∣ f (x, t)dxdt

)

+
∫ T−ε

ε

∫
Rn

∣∣uε(x, t) − c
∣∣1
ε

(
f (x, t + ε) − f (x, t)

)
dxdt .

Since f ∈ C∞
0

(
R
n × (0, T )

)
the first two integrals after the equal sign vanish for ε small

enough. The uniform convergence limε→0 uε(x, t) = S(t)u0(x) in L1(Rn) implies that the
third integral tends to

∫ T

0

∫
Rn

∣∣S(t)u0(x) − c
∣∣∂ f

∂t
dxdt;

123



Partial Differential Equations and Applications             (2023) 4:32 Page 25 of 26    32 

that is, by taking the limit ε → 0 in (42) the proof is complete.
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