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A B S T R A C T

Mechanical response of short fibre composites is varying locally with respect to the microstructural constitution
of the material, which in turn is a consequence of flow conditions during manufacturing. This local constitution
is described by local fibre volume content, local fibre orientation distribution and local fibre length distribution.
For short fibre reinforced plastics, both distributions are affected by flow conditions during an injection
moulding process. Current material models for predicting the homogenised material response account for the
local volume fraction and local fibre orientation distribution. Fibre length distribution, however, is usually
approximated with a single average fibre length. To investigate the effects of fibre length distribution on the
elasto-plastic response of short fibre composites, a micromechanical Orientation Averaging model has been
extended. Two methods are presented in this work. In the first method, an additional averaging scheme over
the fibre length distribution is included. In the second method, a novel representative fibre length is presented
based on a stiffness-weighted average. The predictionsobtained from these methods are then compared and
evaluated against experimental results of uniaxial tensile tests taken from literature. Good agreements are
found using both methods. However, for the investigated behaviour, using a representative fibre length is still
beneficial due to the superior computational performance.
1. Introduction

The use of short fibre reinforced composites (SFRCs) with thermo-
plastic polymer matrix in structural components increased in recent
years. In addition to good mechanical properties, the material is an
interesting choice for its highly efficient and economical production
by injection moulding [1,2]. Besides the high requirements on the
mechanical properties of SFRC structural components, the demand
for lightweight solutions in modern transportation systems is increas-
ing constantly. This results in a need for more reliable and accurate
prediction on the response of these materials.

The local mechanical response of SFRCs is dependent on the local
microscopic constitution of the composite. The local constitution is
defined by fibre volume fraction, fibre orientation distribution and
distribution of fibre length. These parameters are highly influenced by
the locally varying flow conditions during the injection moulding pro-
cess [3]. During processing, when polymer granulates are plasticised,
fibre length degrades due to high stresses and also interaction of fibres
with each other as well as with the screw walls [4]. During the injection
phase, a radial flow forms in the area of the injection point. This

∗ Corresponding author.
E-mail addresses: martin.fagerstrom@chalmers.se (M. Fagerström), mohsen.mirkhalaf@physics.gu.se (S.M. Mirkhalaf).

causes fibres to orient themselves transversely to the flow direction.
Due to the adhesion condition of the melt to the mould wall, shear
flows occur in the surrounding area. This leads to a reorientation of the
fibres parallel to the flow direction. From the described mechanisms,
a fibre orientation distribution profile develops across the thickness of
the component cross-section, where the fibres close to the mould cavity
walls are oriented parallel to the flow direction and perpendicular in
the centre [5]. Complex flow conditions in part geometries result in
different layer structures. Fibre length distributions (FLDs) in SFRCs
result from the high shear stresses in the material during the manu-
facturing process. Contact of the fibres with the screw or cavity walls
and/or fibre-fibre interactions during the injection moulding process
result in fibre breakage. Thus, the average fibre length can reduce to
up to a tenth of the initial fibre length [4,6]. Consequently, the local
constitution of injection moulded SFRC is strongly dependent on the
processing properties such as temperature of the melt and mould cavity
walls as well as the injection speed and the machine properties such as
screw design.
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To take into account the local constitution of the composite mate-
rial, micromechanical models have been developed. Such models for
SFRCs are often based on mean field homogenisation methods such
as the Mori–Tanaka-method [7]. A good overview on different mean
field homogenisation methods is given in Pierrard [8]. Fibre orientation
distribution (FOD) is then taken into account using an Orientation
Averaging (OA) procedure, developed by Advani and Tucker [9]. The
influence of the fibre orientation state is studied extensively. Different
methods for describing the FOD in a parametric way have been inves-
tigated. Breuer et al. [10] compared different closure approximations
for obtaining 4th and 6th order orientation distribution tensors from
a 2nd order tensor and proposed a novel distribution function for the
FOD based on the principle of maximum entropy. Al-Qudsi et al. [11]
proposed an orthotropic closure approximation, which reaches higher
prediction accuracy for elastic properties of SFRCs.

Mechanical response of SFRCs shows a strong dependence on the
fibre length. Especially, the unidirectional composite stiffness in the
fibre parallel direction is largely influenced by the fibre length. This is
already demonstrated in common empirical models for the prediction
of the unidirectional composite stiffness like the Halpin–Tsai-model. In
the range of low fibre lengths, this relation is strongly nonlinear in
the range of aspect ratios up to 𝑙∕𝑑 ≤ 100 [12]. By definition, SFRCs
ontain fibre aspect rations of up to 100 [5]. Hence, the distribution
f aspect ratios of the fibres is mainly within this range. Consequently,
he influence of fibre length distributions must be considered in the
odelling of short fibre composites.

In the linear elastic case, FLDs and their effect on the response of
FRCs have been studied extensively. In most cases, the distribution
f fibre lengths is found to follow a Weibull distribution [13–15].
owever, Lee et al. [16] mention the logarithmic Generalised Extreme
alue distributions as other possible probability density function. Fu
nd Lauke [17] used a laminate analogy approach to investigate the
ffect of theoretical probability distribution functions for fibre orienta-
ion and fibre length on the resulting mechanical composite properties.
esides the dependency of the stiffness of the shape of the orientation
istribution and the mean orientation, they found a significant effect of
he fibre length distribution on the resulting composite stiffness. They
howed that not only the mean fibre length, but also the modal values
f the FLD affect the resulting composite stiffness significantly. Hine
t al. [18,19] investigated different single averaged fibre length from
n FLD to approximate the full distribution. In their investigations, the
umber-averaged fibre length is found to give an adequate estimation
or a single representative fibre length. In fact, using the number-
veraged fibre length as representation of an FLD is a commonly used
ethod for predicting the response of SFRCs [20,21].

To the authors’ knowledge, the effect of FLDs on the non-linear re-
ponse of SFRCs has not been studied in the literature so far. Micromec-
anics-based models proposed by Sasayama et al. [22] and Notta-
uvier et al. [23] take into account the effect of fibre length on the
lasto-plastic and damage response of the materials. However, the
ffect of the distributions of fibre lengths is not considered in the
alculations. In fact a number averaged fibre length is used in both
ases.

Hence, in this study, the effect of FLDs on the non-linear elasto-
lastic behaviour of SFRCs is investigated. Therefore, the two-step OA
ethod for the elasto-plastic response of SFRCs developed by Mirkhalaf

t al. [24] is extended to include the effects of FLDs. Two different
ethods for implementing the FLD into the model are investigated. One

s using an additional averaging scheme over the FLD, and the other
ses a single representative fibre length.

The remaining of this paper is structured as follows. The general
ethodology of the two-step OA method for the elasto-plastic response

f SFRCs is outlined in Section 2. Based on this method, the extension to
onsider FLDs within the OA procedure using an additional averaging
cheme is discussed in Section 3. In sub- Section 3.2, the reduction
2

o a single representative fibre length and the novel representative
Fig. 1. Schematic overview of the two-step OA method [24].

Fig. 2. Geometry of a single fibre Unit Cell.

fibre length based on the stiffness–weighted average are presented. In
Section 4, model predictions from both methods are obtained using
experimental results taken from literature. The model predictions are
additionally compared to each other and to the experimental results.
Finally, conclusions from these investigations are given in Section 5.

2. The two-step orientation averaging model

In this section, the two-step Orientation Averaging (OA) method,
developed by Mirkhalaf et al. [24], is explained. The model incor-
porates two homogenisation steps and uses Finite Element Analysis
(FEA) and Orientation Averaging [9]. This model is an extention to
an FE-based two-step OA model for elastic properties of SFRCs [25].
Castricum et al. [26,27] have employed the model together with Finite
Element Method (FEM) and developed a coupled multi-scale (macro–
micro) model. Fig. 1 shows a schematic workflow of the model and
its homogenisation steps. Starting from a local configuration of the
inhomogeneous composite, first, a single isolated fibre embedded in
matrix is investigated. In a volumetric homogenisation procedure, the
homogenised material response of the unit cell (UC) including a single
fibre is obtained. Subsequently, on the global level (composite level),
Fibre Orientation Distribution (FOD) is introduced in the OA step.

2.1. Numerical homogenisation of a single fibre unit cell

Homogenisation of a single fibre UC is conducted to obtain ho-
mogenised mechanical properties of the unidirectional (UD) composite.
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For this, analytical methods can be used. Many of those are cat-
egorised under the class of mean-field homogenisation methods. In
these methods, a fibre is modelled as an ellipsoidal inclusion sur-
rounded by the matrix material. Examples for these methods are the
Mori–Tanaka–model [7] and the double inclusion model by Hori and
Nemat-Nasser [28,29]. Mean-field homogenisation methods show good
capabilities in predicting the linear elastic response of SFRC [8]. How-
ever, when it comes to nonlinear effects such as matrix yielding or even
material damage, many analytical models yield inaccurate predictions
of the homogenised material response. Therefore, Mirkhalaf et al. [24,
25] use numerical simulations (Finite Element Analysis) of a single
fibre UC for the first step of the OA method. This method is also used
in this work. The Finite Element (FE) model consists of a cylindrical
fibre placed in the centre of a UC, a cuboid of matrix with a quadratic
cross-section perpendicular to fibre direction. The dimensions of the
UC are defined by the fibre dimensions, 𝑑𝐹 , 𝑙𝐹 and the fibre volume
fraction 𝜑. Additionally, the UC response is strongly dependent on the
UC length relative to the fibre length. Investigations on these effects
have shown that using an equidistant spacing between the fibre and UC
boundaries in all directions results in a good estimation of homogenised
unidirectional material properties. Using this spacing is also proposed
by Modniks, Andersons [21]. With the distance between fibre and UC-
boundaries represented by 𝑐, the fibre volume fraction can be defined
as follows:

𝜑 = 𝜋
4

𝑙𝐹 𝑑2𝐹
(

𝑙𝐹 + 2𝑐
) (

𝑑𝐹 + 2𝑐
)2
. (1)

A visualisation of a UC geometry is given in Fig. 2. The fibre material is
usually modelled as a linear elastic material. However, different mate-
rial models may be used for the matrix material and for the fibre–matrix
interface. Periodic Boundary Conditions (PBC) are applied on the UC
walls. In order to obtain a complete view of the idealised transversal
isotropic material behaviour, four independent load cases need to be
applied [24]. Two uniaxial stresses (parallel and perpendicular to the
fibre direction) and two shear loading cases are used in this work. Using
the obtained FE results, a transverse isotropic elasto-plastic surrogate
model is calibrated [24]. With the help of this surrogate model, not
only the investigated basic stress states, but also complex and multiaxial
stress states can be represented without the need for additional FE
simulations. The calibrated surrogate constitutive model is then used
in an incremental framework. In each load increment, the model gives
the response of the homogenised UC to any arbitrary loading state.
The model, following Runesson et al. [30], is formulated under the
assumption of small strains. It consists of a reduced transverse isotropic
linear elastic model combined with a simplified transverse isotropic
version of the Hill’s yield criterion. The elastic stiffness tensor C𝑒𝑈 is
defined by

C𝑒𝑈 = C𝑒,𝑖𝑠𝑜𝑈 + (𝐶 − 1) (2𝐺 + 𝐿) 𝐀⊗ 𝐀, (2)

where C𝑒,𝑖𝑠𝑜𝑈 represents an isotropic stiffness tensor with independent
parameters defined by the Young’s modulus 𝐸 and Poisson’s ratio 𝜈.
Furthermore, 𝐀 is a second order structural tensor, representing the
fibre orientation 𝐩 in the UC with 𝐀 = 𝐩⊗ 𝐩. In this study, the fibre is
oriented in the 1-direction of the UC. Hence, the tensor is defined as
𝐀 = 𝑑𝑖𝑎𝑔(1, 0, 0). Finally, the model parameter 𝐶 in Eq. (2) introduces
the transversal isotropy. In case of 𝐶 = 1, the standard isotropic stiffness
tensor is obtained [30].

The Hill’s yield function 𝛷𝑈 for a simplified transverse isotropic case
reads

𝛷𝑈 = 1
(1 − 𝑅)𝜎2𝑦

[

𝑅
[

𝜎𝑈,22 − 𝜎𝑈,33
]2 +

[

𝜎𝑈,11 − 𝜎𝑈,22
]2 +

[

𝜎𝑈,11 − 𝜎𝑈,33
]2
]

+
2(2𝑅 + 1)
(𝑅 + 1)𝜎2𝑦

[

𝜎2𝑈,12 + 𝜎
2
𝑈,23 + 𝜎

2
𝑈,13

]

− 𝛼(𝜀𝑝𝑈 ),

(3)
3

here 𝜎𝑖𝑗 represents the components of the Cauchy stress tensor, 𝜎𝑦
efines the yield stress for uniaxial stress in the isotropic plane, and
arameter 𝑅 is defined by the relation of the uniaxial yield stress in
ibre direction to the perpendicular yield stress 𝜎𝑦. This causes the
ransversal isotropy in the yield criterion. For 𝑅 = 1, the von Mises
ield criterion is obtained. Finally, 𝛼 defines the hardening behaviour
f the material model defined in this study by an isotropic hardening
ule given by a third order polynomial:

(𝜀𝑝𝑈 ) = 1 +𝐻1𝜀
𝑝
𝑈 +𝐻2(𝜀

𝑝
𝑈 )

2 +𝐻3(𝜀
𝑝
𝑈 )

3, (4)

where 𝜀𝑝𝑈 represents an effective accumulated plastic strain, and 𝐻1,
𝐻2 and 𝐻3 are the hardening parameters. In summary, the surro-
gate model is defined by (I) a simplified transverse isotropic linear
elastic law, and (II) a transverse isotropic Hill’s criterion, and (III)
an isotropic hardening following a polynomial rule. The linear elastic
material behaviour is defined by the isotropic engineering constants 𝐸
and 𝜈 and an anisotropy coefficient 𝐶. The yield criterion is defined
by the two parameters 𝜎𝑦 and 𝑅, and the hardening rule consists of
three parameters 𝐻1, 𝐻2 and 𝐻3 to be calibrated. Consequently, eight
independent model parameters must be calibrated from the numerical
simulations of the single fibre UC.

2.2. Incorporating fibre orientation distribution

In the second step of the original model, FOD is applied by an
averaging scheme. For this, the local UC-stress state 𝝈𝐿𝑈 is transformed
to the global composite coordinate system. For this, a coordinate trans-
formation is conducted using a rotational tensor 𝐑:

𝐞𝐿𝑖 = 𝐑 ⋅ 𝐞𝑖, (5)

where 𝐞𝑖 and 𝐞𝐿𝑖 represent the global and local orthonormal base
vectors, respectively. In this work, 𝐞𝐿1 is the fibre direction at the local
coordinate system. The UC stress at the global configuration is given
by

𝝈𝑈 =
[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ 𝝈𝐿𝑈 . (6)

where 𝝈𝐿𝑈 is the UC stress at the local configuration, and the operator
⊗ denotes the non-standard open product with (𝐀 ⊗ 𝐁)𝑖𝑗𝑘𝑙 = 𝐀𝑖𝑘𝐁𝑗𝑙.
The homogenised composite stresses 𝝈𝐶 is obtained by a weighted
integration over the unit sphere:

𝝈𝐶 = ∮

[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ 𝝈𝐿𝑈 (𝐩) 𝜓(𝐩) d𝐩. (7)

The weighting is defined by the FOD-function 𝜓(𝐩) (with ∮𝛺 𝜓(𝐩) d𝐩 =
1). The rotation tensor 𝐑 is solely dependent on the fibre orientation
vector 𝐩.

Remark 1. In some cases, the FOD is represented in the form of a
second order tensor 𝐚, defined by [9]:

𝐚 = ∮ 𝐩⊗ 𝐩 𝜓(𝐩) d𝐩. (8)

The inverse transformation to a FOD-function 𝜓 is not unambigu-
ous. An infinite number of distribution functions can be found which
represent the same FOD-tensor. Hence, certain assumptions must be
taken to further specify the shape of the function. In this work the
maximum entropy approach is chosen, based on the work of Breuer
et al. [10]. The method is based on the assumption that the FOD
generally takes the form of maximum disorder within the given FOD-
tensor. That assumption results in an FOD-function based on a normal
distribution on a unit sphere, the Bingham distribution [10,31].

Due to the non-linearity of the problem, the rate form of Eq. (7) is
used:

�̇�𝐶 =
[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ �̇�𝐿 (𝐩) 𝜓(𝐩) d𝐩, (9)
∮ 𝑈
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which results in an incremental formulation:

𝛥𝝈𝐶 = ∮

[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ 𝛥𝝈𝐿𝑈 (𝐩) 𝜓(𝐩) d𝐩. (10)

In order to define the local (UC) strain state (in relation to the
composite strain state), three different interaction assumptions are
used. These global–local interactions include Voigt (V), Reuss (R) and
self-consistent (SC) assumptions. The Voigt interaction assumption is
based on postulation of uniform strain and results in upper bound
predictions:

𝛥𝜺𝐿𝑈 =
[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

∶ 𝛥𝜺𝐶 . (11)

rom the local strain state, the local stress state is computed using the
alibrated surrogate model. Subsequently, the homogenised composite
tress is obtained using Eq. (10). Additionally, the tangential stiffness
ensor (for the Voigt interaction) is obtained by

𝑉
𝐶 = ∮

[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ C𝐿𝑈 ∶
[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

𝜓(𝐩) d𝐩. (12)

The Reuss interaction assumption presumes a uniform stress state and
results in a lower bound prediction:

𝛥𝝈𝐿𝑈 =
[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

∶ 𝛥𝝈𝐶 . (13)

In a strain induced loading procedure, first, the composite stress incre-
ment must be obtained using the tangential composite stiffness from
the previous strain increment:

𝛥𝝈𝐶 = C𝑅𝐶 ∶ 𝛥𝜺𝐶 , (14)

with

C𝑅𝐶 =
{

∮

[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶
[

C𝐿𝑈
]−1 ∶

[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

𝜓(𝐩) d𝐩
}−1

.

(15)

The self-consistent interaction relies on a more complex assumption and
is an intermediate approach between the Voigt and Reuss assumptions.
Here, each UC is considered as an inclusion in an equivalent homoge-
neous medium with composite properties. For this interaction, the UC
strain increment is given by

𝛥𝜺𝑈 =
[

I + E ∶ (
[

C𝑆𝐶𝐶
]−1 ∶ C𝑈 − I)

]−1
∶ 𝛥𝜺𝐶 , (16)

where I represents the fourth order identity tensor, E is the fourth
order Eshelby tensor for anisotropic media which is dependent on the
composite stiffness tensor [32], and C𝑈 is the UC tangent stiffness
tensor in global coordinates given by

C𝑈 =
[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ C𝐿𝑈 ∶
[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

, (17)

In Eq. (16), C𝑆𝐶𝐶 represents the homogenised tangent composite stiff-
ness tensor using the self-consistent interaction assumption:

C𝑆𝐶𝐶 = ∮ C𝑈 ∶
[

I + E ∶ (
[

C𝑆𝐶𝐶
]−1 ∶ C𝑈 − I)

]−1
𝜓(𝐩) d𝐩. (18)

Note that a self-dependency occurs for Eq. (18). This equation is solved
using a fixed point iteration algorithm. The local UC strain is obtained
by

𝛥𝜺𝐿𝑈 =
[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

∶ 𝛥𝜺𝑈 . (19)

It should be mentioned that the presented Unit Cell model is an ide-
lisation of the actual microsructure in an SFRC. Using this UC model,
he effects of stress concentrations, caused by surrounding fibres, on
he macroscopic mechanical response are not accounted for. These
ffects are particularly relevant for damage initiation and failure. Also,
tress concentrations from local fibre–fibre interactions would affect the
atrix yielding, and in turn, the macroscopic yielding behaviour of the
4

omposite. Using multi-fibre realistic representative volume elements
RVEs), fibre–fibre interactions will be taken into account more pre-
isely. However, this approach has a considerably higher computational
ost. Mirkhalaf et al. [24] conducted a comparative study between the
wo-step OA approach and RVE computational homogenisation, and the
A method showed a remarkably better computational performance. It

hould also be emphasised that interactions between UCs are implicitly
ncorporated into the self-consistent interaction through the calculation
f the Eshelby tensor.

For a more elaborated discussion about the original two-step ho-
ogenisation method, an interested reader is referred to [24]. The
resented original model and all further extensions have been imple-
ented using Python, and the presented results are all obtained from

hese implementations.

. Incorporating fibre length distributions in the two-step OA
ethod

Using an average fibre length instead of considering the fibre length
istribution is proven to deliver good predictions in the linear elastic
egime [18,20]. However, when elasto-plastic effects are included, the
nfluence of fibre length distributions could potentially be considerable
n the composite response. In the following, different methods for
ncorporating FLDs are discussed.

.1. A second integration over FLD

To extend the OA model for considering FLDs, a second averaging
ntegration is added to the homogenised stress increment calculation
n Eq. (10):

𝝈𝐶 = ∫

∞

0 ∮

[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ 𝛥𝝈𝐿𝑈 (𝑙𝐹 ) 𝜓(𝐩, 𝑙𝐹 ) d𝐩 𝑤(𝑙𝐹 ) d𝑙𝐹 , (20)

where 𝑙𝐹 represents the fibre length and 𝑤(𝑙𝐹 ) is the volume weighted
fibre length distribution given in dependence of the unweighted fibre
length distribution 𝑓 (𝑙𝐹 ) as

𝑤(𝑙𝐹 ) =
𝑓 (𝑙𝐹 ) 𝑙𝐹

∫ ∞
0 𝑓 (𝑙𝐹 ) 𝑙𝐹 d𝑙𝐹

, (21)

with ∫ ∞
0 𝑤(𝑙𝐹 ) d𝑙𝐹 = 1. In practice on a measured and discrete FLD, the

ntegration over the fibre lengths is performed between the minimum
nd maximum measured fibre lengths. The composite stiffness is then
iven by

𝑉
𝐶 = ∫

∞

0 ∮

[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶ C𝐿
𝑈 (𝑙𝐹 ) ∶

[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

𝜓(𝐩, 𝑙𝐹 ) d𝐩 𝑤(𝑙𝐹 ) d𝑙𝐹 .

(22)

Note that, based on Fubini’s theorem, the integrations over fibre length
and orientation distribution are interchangable.

This extension with an additional averaging scheme has two major
consequences for the realisation of the OA procedure in the material
model. In the first step of the OA method, the whole range of fibre
lengths must be considered. Since numerical simulations are used for
obtaining the homogenised unidirectional response of a UC, only dis-
crete fibre lengths can be considered for the fibre length dependent
material behaviour. Hence, the FLD must be projected on discrete
fibre lengths from which the homogenised response can be obtained
in independent numerical simulations. This approach results in an
increased computational effort when calculating the fibre length de-
pendent material response. Another consequence concerns the second
step of the OA procedure. The additional averaging scheme results in
higher calculation times due to the number of iterations that need to
be conducted. The increased computational cost correlates with the
number of discrete fibre lengths considered. This effect is especially
relevant for the SC interaction, since its calculation of the composite

stiffness contains a fixed-point iteration.
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3.2. Reduction to a single representative fibre length

As mentioned in Section 3.1, incorporating another integration over
FLD in the two-step OA method results in a computationally expensive
model. Hence, another approach which is basically reduction of the fi-
bre length distribution to a single representative fibre length, is derived
from the previous method and examined. In Eq. (22), the FOD-function
𝜓 is marked as dependent on the fibre length. This dependency can
be detected using micro-CT-scans of SFRC specimens [33]. However,
in most literature, a dependency of the FOD on the fibre length is ne-
glected. Following this approach, the equations for composite stiffness
using the Voigt interaction assumption can be rearranged to isolate the
integral over the fibre length to the UC-stiffness

C𝑉
𝐶 = ∮

[

𝐑𝑇 (𝐩) ⊗ 𝐑𝑇 (𝐩)
]

∶
{

∫

∞

0
C𝐿
𝑈 (𝑙𝐹 ) 𝑤(𝑙𝐹 ) d𝑙𝐹

}

∶
[

𝐑(𝐩) ⊗ 𝐑(𝐩)
]

𝜓(𝐩) d𝐩.

(23)

Note that this simplification is only fully applicable for the linear
elastic case, since in the elasto-plastic regime, the material response is
dependent on the loading history, and thus, UC tangent stiffness in each
load increment depends on the previous increment. The inner integral
of this equation (integral in the curly brackets) can be interpreted
as fibre length averaged composite stiffness. Note that for the linear
elastic case, the integral is fully independent of the fibre orientation
𝐩. Following the general assumption in e.g. [12] that, at constant
fibre volume fraction, the unidirectional UC-Young’s modulus is only
dependent on the fibre length in fibre direction (𝐸11(𝑙𝐹 )), only the fibre
parallel component must be calculated in the fibre length averaging.
The assumption also implies that a single representative fibre length 𝑙𝑟𝑒𝑝𝐹
can be found from this relation, for which the UC-stiffness is equivalent
to the fibre length averaged composite stiffness

𝐸𝑈𝐶11 = ∫

∞

0
𝐸𝑈𝐶11 (𝑙𝐹 ) 𝑤(𝑙𝐹 ) d𝑙𝐹 ≡ 𝐸11(𝑙

𝑟𝑒𝑝
𝐹 ). (24)

It is emphasised that replacing the FLD with a single representa-
tive fibre length is not a new concept in modelling SFRC. Often a
number-averaged or volume-averaged fibre length is considered [18,
20]. Especially the number-averaged fibre length is found to produce
good estimations of a homogenised material response. However, these
are empirical relations and are not necessarily applicable on fibre
length distributions varying from the classical Weibull distribution
form. This may exemplarily be the case in [34], where a bimodal fibre
length distribution is found.

3.3. Stiffness weighted representative fibre length

As mentioned before, none of the commonly used representative
fibre lengths directly takes into account the nonlinear effects of the
fibre length on the mechanical properties. Hence, in this work, another
representative fibre length is derived directly from Eq. (24). Replacing
the volume weighted FLD with Eq. (21) results in

𝐸11(𝑙
𝑟𝑒𝑝
𝐹 ) =

∫ ∞
0 𝐸𝑈𝐶11 (𝑙𝐹 ) 𝑙𝐹 𝑓 (𝑙𝐹 ) d𝑙𝐹

∫ ∞
0 𝑙𝐹 𝑓 (𝑙𝐹 ) d𝑙𝐹

. (25)

This is a averaging method which obtains an average homogenised
stiffness value. However, an averaged representative fibre length is
required here. Replacing the fibre length 𝑙𝐹 in the denominator of
the integral by the fibre parallel composite Young’s modulus 𝐸𝑈𝐶11 (𝑙𝐹 )
changes the result into a length value

𝑙𝑠𝑡𝑖𝑓𝑓𝐹 =
∫ ∞
0 𝑙𝐹 𝐸𝑈𝐶11 (𝑙𝐹 ) 𝑓 (𝑙𝐹 ) d𝑙𝐹
∫ ∞
0 𝐸𝑈𝐶11 (𝑙𝐹 ) 𝑓 (𝑙𝐹 ) d𝑙𝐹

, (26)

hich can be interpreted as a stiffness-averaged fibre length 𝑙𝑠𝑡𝑖𝑓𝑓𝐹 .
oteworthy is that this fibre length directly takes into account the
C-Young’s modulus.
5

Obtaining the stiffness-averaged fibre length from numerical sim-
lations is not practical, since performing UC simulations for each
ibre length class would result in high computational costs. However,
he linear elastic properties can be calculated analytically in a good
pproximation using analytical models. Mean field homogenisation
ethods could be used here. In this work, however, an empirical model,

he Halpin–Tsai-model [12] is used for estimating the fibre parallel UC-
tiffness. The model gives a very good approximation of the fibre length
ependent UC-stiffness using a simple relation, with

𝑈𝐶
11 =

1 + 2(𝑙𝐹 ∕𝑑𝐹 ) 𝜂 𝜙
1 − 𝜂 𝜙

𝐸𝑀 , (27)

𝜂 =
𝐸𝐹 ∕𝐸𝑀 − 1

𝐸𝐹 ∕𝐸𝑀 + 2 (𝑙𝐹 ∕𝑑𝐹 )
. (28)

This provides an easy and efficient way to calculate the stiffness-
veraged fibre length. Using a representative fibre length may lead to
significant reduction of computational time compared to the fibre

ength averaging extension, as described earlier. However, this comes
ith a loss of information on the local fibre length dependent material
ehaviour. In the linear elastic domain, this effect might still be fully
epresented when using the stiffness-averaged fibre length. However,
oncerning elasto-plastic effects or even material damage at a later
oint, the applicability still needs to be investigated numerically.

In total, two differing methods for considering fibre length distri-
utions are presented. First, an additional averaging scheme is used
o incorporate the fibre length distributions in the second step of the
A method. This approach will be referred to as method 1. Secondly,

n method 2, the fibre length distribution is already considered in the
irst step of OA. Here, a representative fibre length is calculated using
ifferent weighting methods. An overview of the two different methods
s given in Fig. 3.

. Simulations and comparisons to experiments

In this section, simulations are conducted using the developed
ethods for representing fibre length distributions in SFRCs. Also,

omparisons between the model predictions and experimental results,
aken from literature, are performed. For the representative fibre length
pproach, three different methods discussed in the previous section
number-, volume-, and stiffness-averaged) are investigated.

.1. Material properties and surrogate model calibrations

A glass fibre reinforced Polyamide 6 is investigated for which exper-
mental results are taken from Holmstroem et al. [35,36]. Quasi-static
ests were performed on two SFRCs with different mass contents of E-
lass fibre (15 and 30%wt.) and also pure polymeric samples from the
atrix material. The two different SFRCs will be referred to as PA-GF15

nd PA-GF30 considering the respective mass content. On the matrix
aterial tests, we have calibrated an isotropic elasto-plastic material
odel using J2-plasticity with isotropic linear hardening defined by a

hardening modulus 𝐾. The linear elastic matrix-properties have been
obtained directly from [35]. Model parameters for the plasticity model
have been calibrated based on the data provided in [36] using a
gradient descent optimisation. The Experimental results together with
the predictions using the calibrated model is shown in Fig. 4. For
the fibre properties, standard values, taken from [37], are used. The
calibrated material parameters for the matrix and fibre properties are
given in Table 1. Also, additional properties of the composites (fibre
content, fibre geometry, and fibre orientation distribution) for the two
different SFRCs are given in Table 2. The fibre orientation state is
given in the form of the second order fibre orientation distribution
tensor 𝐚 in diagonal form with the 11-entry representing the orientation
in flow direction during the production process and 33 representing
the through thickness direction. Due to the manufacturing process,
a layered structure of fibre orientations is present in the specimen
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Fig. 3. Schematic overview on the two methods for incorporating FLD in the OA method.
Fig. 4. Stress–strain curves of the PA6 matrix material provided by [35] and the
calibrated material model.

Table 1
Mechanical properties of the constituents of the studied composite materials.

Property Young’s modulus Poisson’s ratio Yield stress Hardening modulus

Unit [MPa] [–] [MPa] [MPa]

Matrix 2800 0.4 64.1 50.8
Fibre 70,000 0.2 – –

which is neglected in this case. The authors [35,36] obtained the fibre
orientation state via micro-CT scans and deliver information on the
development of the fibre orientation through the plate thickness. How-
ever, in this work, an averaged orientation state through the thickness
is considered. The FLDs of the two materials are given in Fig. 5.

In order to obtain the elasto-plastic response of each relevant fi-
bre length class (needed for method 1), 12 independent single fibre
UCs are investigated numerically using four independent stress states.
Subsequently, the surrogate model calibrations are performed based on
the simulations for each fibre length. The material parameters in the
surrogate model are calibrated using an optimisation process. The large
number of parameters in this model reduces the chance of finding a
global minimum in the optimisation procedure. To increase the pos-
sibility of obtaining physically realistic parameters after optimisation,
the calibration process is conducted in three separate steps:

1. First, the linear elastic model, Eq. (2), is calibrated using the
linear elastic regime of the four independent UC simulations up
to a strain load of 0.3%.
6

2. In the second step, the yield point 𝜎𝑦 is obtained from the normal
stress simulation in fibre perpendicular direction following the
0.2%-offset rule [38].

3. In the last step, the post-yielding domain of the UC behaviour is
used for the calibration of the anisotropic yielding parameter 𝑅
and the hardening parameters 𝐻1, 𝐻2 and 𝐻3).

For the calibration steps 1 and 3, an objective function, given in
Eq. (29), is defined in form of the sum of mean squared errors (MSE)
for stresses and strains for the four independent load case by:

𝜖𝑓𝑖𝑡 =
4
∑

𝑛=1

⎛

⎜

⎜

⎝

∫ 𝑇𝑛0
‖

‖

𝝈𝑠𝑖𝑚𝑛 (𝑡) − 𝝈𝑚𝑜𝑑𝑒𝑙𝑛 (𝑡)‖
‖

2 d𝑡

∫ 𝑇𝑛0
‖

‖

𝝈𝑠𝑖𝑚𝑛 (𝑡)‖
‖

2 d𝑡
+

∫ 𝑇𝑛0
‖

‖

𝜺𝑠𝑖𝑚𝑛 (𝑡) − 𝜺𝑚𝑜𝑑𝑒𝑙𝑛 (𝑡)‖
‖

2 d𝑡

∫ 𝑇𝑛0
‖

‖

𝜺𝑠𝑖𝑚𝑛 (𝑡)‖
‖

2 d𝑡

⎞

⎟

⎟

⎠

,

(29)

with n representing the 4 load cases and 𝑇𝑛 representing each time
increment of the simulated load cases. In Eq. (29), ‖𝐗‖ represents the
tensor norm defined as ‖𝐗‖ ∶=

√

𝐗 ∶ 𝐗 =
√

𝑋𝑖𝑗𝑋𝑖𝑗 . This objective
function is minimised in the calibration steps using a downhill simplex
method (implemented in Python with the Numpy library) in order
to obtain optimal material parameters for the surrogate model. The
corresponding surrogate model parameters for the two SFRCs with
different fibre volume contents are given in Appendix A. In Fig. 6, an
exemplary surrogate model fit on the FE simulations of a UC is given
for the PA-GF15 composite with a fibre length of 1150 μm. A good
correlation is found in all load cases in the linear elastic domain as
well as in the elasto-plastic domain. In this particular calibration, for
the linear elastic domain, 𝜖𝑒𝑙𝑓 𝑖𝑡 = 3.891 × 10−3 is obtained and for the
elasto-plastic domain 𝜖𝑝𝑙𝑓 𝑖𝑡 = 1.049 × 10−2 is found.

For method 2, corresponding representative fibre lengths, obtained
from the FLDs [36], are given in Table 3. It can be noted that the
stiffness-averaged fibre length produces an intermediate value between
the number- and the volume-averaged with the stiffness-averaged being
much closer to the number-averaged fibre length. For corresponding
surrogate model parameters and MSE values, the reader is referred to
Appendix A.

4.2. Linear elastic results

First, linear elastic predictions are obtained, and the two modelling
approaches are compared to each other and experimental results. In
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Fig. 5. Fibre length distributions of the PA-GF15 (left) and PA-GF30 (right) taken from [36].
Table 2
Material parameters dependent on the fibre mass content.
Source: Taken from [35].
Name Mass content Volume content Fibre diameter Orientation degrees

𝜓 [%] 𝜙 [%] 𝑑𝐹 [ μm] 𝑎11 [–] 𝑎22 [–] 𝑎33 [–]

PA-GF15 15 6.4 13.5 0.507 0.473 0.020
PA-GF30 30 15.2 12.6 0.604 0.354 0.042
Fig. 6. Surrogate model fits for the FE simulations of four independent uniaxial stress cases in 11, 22, 23 and 13-directions on the PA-GF15 composite with a fibre length of
1150 μm.
7
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Table 3
Representative fibre lengths for the given FLDs.
Source: Taken from [36].

Composite Number-averaged Volume-averaged Stiffness-averaged

PA-GF15 430 μm 532 μm 443 μm
PA-GF30 366 μm 425 μm 372 μm

Fig. 7. Linear elastic OA predictions using the fibre length averaging method
(method 1) and different interaction assumptions in comparison to experimental results
from [35].

Fig. 7, Young’s moduli from OA-predictions using the fibre length aver-
aging approach (method 1, see Section 3) are compared to experimental
results. Here, the composite moduli are captured well by the model.
The anisotropy of the composite is also well-predicted. However, for
the 11-direction, the Young’s modulus is slightly underestimated by
all interaction assumptions. The Young’s modulus in 22-direction is
well within the range of the predictions and the closest fit is given
by the self-consistent interaction. The deviations may be resulting
from averaging the orientation distribution over the thickness of the
specimen cross section.

Considering the model predictions using method 2, very similar
stiffness values are expected. Consequently, a relative assessment is
conducted here. The relative composite stiffnesses represented in Fig. 8
are normalised with the OA-prediction from the more detailed method
1. The results of the higher filled PA-GF30 are presented, and similar
results are obtained for the PA-GF15. The two different methods result
in very similar predictions for all three representative fibre lengths.
The maximal deviation from the reference using method 1 is lower
than 1%. Comparing the three representative fibre lengths with each
other, it is clear, that the volume-averaged fibre length overestimates
the composite stiffness in every case. Number- and stiffness-averaged
fibre length produce very similar composite stiffness predictions which
are very close to the fibre length averaging method. This leads to
the conclusion that, considering the linear elastic case (at least, for
the studied composites), the use of a representative fibre length is
beneficial compared to the fibre length averaging method.

4.3. Elasto-plastic results

In order to evaluate the two presented methods in the elasto-plastic
domain, OA-predictions are obtained for the aforementioned composite
materials. First, the PA-GF15 composite is investigated in detail. Fig. 9
presents the OA-predictions using method 1 and considering the three
interaction assumptions, together with experimental results. The initial
stiffness of the composite is underestimated using the Reuss interaction,
which is expected as the Reuss assumption provides a lower bound
on the homogenised stiffness. However, it can be observed that the
complete stress–strain relation is well captured using both the Voigt
8

and the SC interactions. It is only noticed that for high strain values,
the trends of experimental results and OA-predictions differ from each
other. This discrepancy at larger strains could be attributed to damage
occurring in the composite during testing, which is not incorporated in
the OA model. Another reason could be the simplifications on which
the model is based. The UC simulations do not consider fibre–fibre
interactions. Hence, a statistical distribution of matrix yielding cannot
be guaranteed.

The effect of different trajectories of the stress-response for larger
strains becomes more apparent when considering the higher volume
content material, PA-GF30 (see Fig. 10). Here also, the initial stress
strain propagation in the experiments is captured very well by the
OA-model, especially by the Voigt and the SC interaction assumptions,
which match each other very closely. However, due to the negligence
of damage occurring for higher strains, the models in the current paper
overestimate the homogenised stress response at around 3% strain for
the Voigt and SC interaction assumption and 4% strain considering the
Reuss interaction assumption.

This shows some of the limitations of the proposed model. First,
since no damage mechanism is introduced, the model is only capable
of predicting the stress response of the composite in the elastic domain
and the initial range of inelastic regime. Second, due to the simplifica-
tion regarding fibre–fibre interactions, the prediction accuracy of the
proposed method may be reduced for very high fibre content values.
This is because higher fibre contents increase the probability for effects
from fibre–fibre interactions. However, it should be mentioned that
higher fibre contents than 30%, as investigated in this study, are not
commonly used in SFRCs due to the processability of the material.
For the investigated fibre contents, the models give a reasonably good
estimation of the actual material response.

Another effect not represented in the model predictions is the
layered structure of the FOD in thickness direction of the specimen
cross section. Using an averaged fibre orientation distribution disre-
gards this layer structure and all associated interaction mechanisms.
The micromechanical model considers a local configuration of the
material morphology at a specific location. For a better representation
of the layered orientation structure, a coupled multi-scale approach, as
proposed in [27], should be applied.

For comparing the predicted behaviour using the simplified ap-
proach with method 2, these are compared with the more sophisticated
method 1 on the PA-GF15 material using the Voigt assumption. The
results are presented in Fig. 11. The four predictions match each
other closely. Especially the number and the stiffness-averaged fibre
length (using method 2) give a very good estimation of the predicted
behaviour in the more detailed model (method 1). Using the volume-
averaged fibre length, the stress response is slightly overestimated,
especially in the elasto-plastic domain. However, the prediction differ-
ences are generally very small and do not lead to a significantly lower
prediction accuracy of the material response. In Table 4 the average
deviation of using the representative fibre length (method 2) compared
to method 1 are given for all three interaction assumptions on the
PA-GF15 material. It is seen, that for all interaction assumptions the
average deviation is very small. In fact, the maximum deviation from
the predictions obtained with method 2 does not exceed 3% for any
of the three representative fibre lengths. This is also the case for the
PA-GF30 material. The average deviation of the models using method
2 from the fibre length averaging model are presented in Table 5.
Consequently, it can be stated that using the representative fibre length
does not result in a significant loss of prediction accuracy in comparison
to the fibre length averaging method. Considering the much higher
computational costs of the more sophisticated method 1, it is clear
that also for elasto-plastic OA model, using a single representative fibre
length is beneficial. The required computational time scales linearly
with the number of fibre length classes considered. In this case, a factor

10 was obtained compared to method 2.
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Fig. 8. Relative composite stiffness predictions using method 2 for the three interaction assumptions for the PA-GF30 composite.
Fig. 9. Elasto-plastic OA predictions for PA-GF15 using method 1 compared to
experimental results taken from [35].

Fig. 10. Elasto-plastic OA predictions for PA-GF30 using method 1 compared to
experimental results [36].
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Fig. 11. Comparison of OA prediction using method 2 and method 1 for the PA-GF15
using the Voigt interaction assumption.

Table 4
Average prediction errors of OA-predictions using method 2 compared to predictions
obtained from method 1 for the PA-GF15 material.

Interaction assumption 𝑙𝐹 OA-Voigt OA-Reuss OA-SC

Average absolute deviation
[

μm
]

[%] [%] [%]

Number-averaged fibre length 430 0.59 1.04 0.51
Stiffness-averaged fibre length 443 0.62 1.01 0.60
Volume-averaged fibre length 532 1.98 2.21 1.94

Table 5
Average prediction errors of OA-predictions using method 2 compared to predictions
obtained from method 1 for the PA-GF30 material.

Interaction assumption 𝑙𝐹 OA-Voigt OA-Reuss OA-SC

Average absolute error
[

μm
]

[%] [%] [%]

Number-averaged fibre length 366 0.61 0.46 0.62
Stiffness-averaged fibre length 372 0.61 0.45 0.66
Volume-averaged fibre length 425 2.65 1.21 2.59
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e

5. Conclusions

Two methods for considering fibre length distributions in an Orien-
tation Averaging method for predicting linear elastic and elasto-plastic
response of SFRC were investigated. For the first method, an additional
averaging scheme (over different fibre lengths) was introduced, which
considers the mechanical response of different fibre lengths taking into
account their relative frequency of occurrence. The second method
initially reduces the fibre length distribution into a single representative
fibre length using different weighting methods. A stiffness-averaged fi-
bre length was introduced, which considers the fibre-length-dependent
unidirectional stiffness as a weighting factor.

Both presented methods showed good prediction capabilities of the
homogenised composite response. However, there are limitations to
the capabilities of the two-step Orientation Averaging model given by
the fact that the model simplifies the effect of fibre–fibre interactions
and considers no damage mechanism. Therefore, the model predictions
start to deviate from experimentally observed data at high strains.
Comparing the two methods, the predicted stress–strain relations do
not show any significant differences. Hence, for the considered material
behaviour, the method using a single representative fibre length is
preferred due its computational benefits. Considering the investigated
representative fibre lengths, the closest predictions to the method
using the additional averaging scheme could be found using number-
and stiffness-averaged fibre lengths. The stiffness-averaged fibre length
gives a physically based approach and is found to be the preferred
method.
10
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Appendix A. Surrogate model parameters

A.1. PA-GF15

See Tables A.1 and A.2.

A.2. PA-GF30

See Tables A.3 and A.4.

Table A.1
Model parameters and objective function values for the calibration of the surrogate model on simulations of discrete fibre lengths of PA GF15.
𝑙𝐹 𝜖𝑒𝑙𝑓 𝑖𝑡 𝜖𝑝𝑙𝑓 𝑖𝑡 𝐸 𝜈 𝑘 𝜎𝑦 𝑅 𝜅1 𝜅2 𝜅3

[μm] [–] [–] [MPa] [–] [–] [N/mm2] [–] [–] [–] [–]

50 3.264 × 10−2 3.845 × 10−2 2993 0.3046 1.300 61.33 1.463 20.38 0.000 0.0000
150 3.748 × 10−2 2.735 × 10−2 3041 0.3225 1.504 64.24 2.333 38.66 68.24 0.0066
250 2.420 × 10−2 1.834 × 10−2 3052 0.3347 1.609 65.13 3.818 30.70 943.0 22.12
350 1.657 × 10−2 9.410 × 10−3 3059 0.3441 1.648 65.52 5.402 25.70 1008 125.4
450 1.186 × 10−2 6.227 × 10−3 3066 0.3515 1.661 65.77 6.618 23.73 1074 135.9
550 8.787 × 10−3 5.382 × 10−3 3072 0.3576 1.664 65.91 7.525 23.48 1116 182.1
650 6.659 × 10−3 5.123 × 10−3 3077 0.3626 1.662 65.98 8.220 23.11 1205 194.2
750 5.078 × 10−3 5.052 × 10−3 3082 0.3669 1.657 66.05 8.834 22.62 1245 212.8
850 3.922 × 10−3 5.012 × 10−3 3086 0.3705 1.652 66.10 9.374 22.71 1227 316.1
950 3.055 × 10−3 5.026 × 10−3 3089 0.3737 1.647 66.15 9.747 22.41 1316 328.5
1050 2.367 × 10−3 5.087 × 10−3 3091 0.3764 1.641 66.21 10.20 21.65 1316 328.5
1150 1.901 × 10−3 5.132 × 10−3 3094 0.3788 1.636 66.21 10.58 22.40 1254 392.5

Table A.2
Model parameters and objective function values for the calibration of the surrogate model on simulations of representative fibre lengths of PA GF15.
𝑙𝐹 𝜖𝑒𝑙𝑓 𝑖𝑡 𝜖𝑝𝑙𝑓 𝑖𝑡 𝐸 𝜈 𝑘 𝜎𝑦 𝑅 𝜅1 𝜅2 𝜅3

[μm] [–] [–] [MPa] [–] [–] [N/mm2] [–] [–] [–] [–]

430 4.139 × 10−4 1.490 × 10−2 3119 0.3971 1.487 65.74 6.396 38.72 0.000 110.8
443 4.247 × 10−4 1.439 × 10−2 3119 0.3973 1.489 65.76 6.510 38.87 0.000 110.9
532 4.656 × 10−4 1.198 × 10−2 3121 0.3983 1.501 65.86 7.241 36.14 250.0 112.5

Table A.3
Model parameters and objective function values for the calibration of the surrogate model on simulations of discrete fibre lengths of PA GF30.
𝑙𝐹 𝜖𝑒𝑙𝑓 𝑖𝑡 𝜖𝑝𝑙𝑓 𝑖𝑡 𝐸 𝜈 𝑘 𝜎𝑦 𝑅 𝜅1 𝜅2 𝜅3

[μm] [–] [–] [MPa] [–] [–] [N/mm2] [–] [–] [–] [–]

50 9.161 × 10−3 6.879 × 10−3 3620 0.3543 1.536 62.15 2.690 38.40 0.000 0.000
150 4.807 × 10−3 6.603 × 10−3 3602 0.3701 1.940 63.97 7.794 44.78 88.60 86.83
250 3.306 × 10−3 6.891 × 10−3 3601 0.3768 2.063 64.40 12.01 38.03 1033 208.8
350 2.541 × 10−3 7.606 × 10−3 3604 0.3822 2.107 64.56 15.85 34.71 1285 138.7
450 2.198 × 10−3 8.152 × 10−3 3608 0.3866 2.122 64.66 19.22 33.81 1267 1948
550 2.238 × 10−3 8.867 × 10−3 3615 0.3932 2.101 64.72 22.22 33.62 1248 1117
650 2.423 × 10−3 9.199 × 10−3 3617 0.3958 2.102 64.76 24.91 33.65 1188 1412
750 2.682 × 10−3 9.514 × 10−3 3619 0.3982 2.098 64.80 27.20 33.77 1156 1614
850 2.975 × 10−3 9.887 × 10−3 3621 0.4001 2.093 64.73 29.28 35.43 1031 1971
950 3.278 × 10−3 1.008 × 10−2 3622 0.4018 2.088 64.77 31.25 35.82 964.4 1657
1050 3.598 × 10−3 1.033 × 10−2 3624 0.4034 2.081 64.76 32.99 36.11 919.9 2000
1150 3.891 × 10−3 1.049 × 10−2 3625 0.4047 2.077 64.80 34.65 36.22 874.8 1647

Table A.4
Model parameters and objective function values for the calibration of the surrogate model on simulations of representative fibre lengths of PA GF30.
𝑙𝐹 𝜖𝑒𝑙𝑓 𝑖𝑡 𝜖𝑝𝑙𝑓 𝑖𝑡 𝐸 𝜈 𝑘 𝜎𝑦 𝑅 𝜅1 𝜅2 𝜅3

[μm] [–] [–] [MPa] [–] [–] [N/mm2] [–] [–] [–] [–]

366 2.257 × 10−2 7.954 × 10−2 3543 0.3377 2.428 64.58 16.06 38.22 1417 457.5
372 2.255 × 10−2 8.009 × 10−2 3542 0.3376 2.434 64.61 16.26 37.83 1470 28.32
425 2.253 × 10−2 8.278 × 10−2 3542 0.3379 2.463 64.64 17.71 37.35 1652 153.2
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