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ABSTRACT: The atomic scale dynamics of halide perovskites have a direct impact not only on their thermal stability but also on
their optoelectronic properties. Progress in machine-learned potentials has only recently enabled modeling the finite temperature
behavior of these materials using fully atomistic methods with near first-principles accuracy. Here, we systematically analyze the
impact of heating and cooling rate, simulation size, model uncertainty, and the role of the underlying exchange-correlation functional
on the phase behavior of CsPbX3 with X = Cl, Br, and I, including both the perovskite and the δ-phases. We show that rates below
approximately 60 K/ns and system sizes of at least a few tens of thousands of atoms should be used to achieve convergence with
regard to these parameters. By controlling these factors and constructing models that are specific for different exchange-correlation
functionals, we then assess the behavior of seven widely used semilocal functionals (LDA, vdW-DF-cx, SCAN, SCAN+rVV10,
PBEsol, PBE, and PBE+D3). The models based on LDA, vdW-DF-cx, and SCAN+rVV10 agree well with experimental data for the
tetragonal-to-cubic-perovskite transition temperature in CsPbI3 and also achieve reasonable agreement for the perovskite-to-delta
phase transition temperature. They systematically underestimate, however, the orthorhombic-to-tetragonal transition temperature.
All other models, including those for CsPbBr3 and CsPbCl3, predict transition temperatures below the experimentally observed
values for all transitions considered here. Among the considered functionals, vdW-DF-cx and SCAN+rVV10 yield the closest
agreement with experiment, followed by LDA, SCAN, PBEsol, PBE, and PBE+D3. Our work provides guidelines for the systematic
analysis of dynamics and phase transitions in inorganic halide perovskites and similar systems. It also serves as a benchmark for the
further development of machine-learned potentials as well as exchange-correlation functionals.

■ INTRODUCTION

Halide perovskites are among the most intensively studied
materials of the past decade due to their attractive properties
for applications in, for example, solar energy harvesting and
lighting.1−4 Similar to their oxide counterparts, many of these
materials exhibit several different phases that are connected
through soft modes and continuous or weak first-order phase
transitions.5,6 This complex dynamic behavior turns out to be
intimately connected to their remarkable optoelectronic
properties.

In this context, electronic structure calculations play a crucial
role, as they can provide detailed insight into the atomic scale
dynamics and microscopic coupling mechanisms. Static
calculations can, however, only provide limited information
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due the strong anharmonicity associated with the soft
modes.7−10 This has motivated a number of dynamic studies
based on ab initio molecular dynamics (MD) simulations11−18

and, more recently, machine-learned potentials (MLPs).19−28

From such simulations one can then obtain, for example,
transition temperatures19 or structural information at finite
temperatures.11,18,29

The accuracy of such simulations is, however, limited by
several factors, most notably (1) sampling time, (2) system
size, (3) the quality of the exchange-correlation (XC)
functional, and, in the case of MLPs, (4) the model
uncertainty. Sampling time and system size are, in particular,
a problem for ab initio MD simulations, which are typically
limited to time scales of a few tens of picoseconds and system
sizes on the order of 1000 atoms. Previous MLP based studies
were able to extend these ranges to total run times of a few
nanoseconds using about a thousand atoms.19,20,26

Here, we carry out a systematic analysis of the four factors
described above. We consider CsPbX3 with X = Cl, Br, and I
and the local-density approximation (LDA), van der Waals
density functional with consistent exchange (vdW-DF-cx),30,31

strongly constrained and appropriately normed (SCAN),32

SCAN+rVV10,33 PBEsol,34 PBE,35 and PBE+D335,36 XC
functionals. The selection of these functionals is motivated
by the fact that they were constructed using physical
constraints in order to minimize empiricism. As a result, they
have commonalities but also exhibit some differences in their
design logic, making it interesting to contrast their perform-
ance. The potential energy surface PES is mapped using third-
generation neuroevolution potential (NEPs) models and
sampled using the GPUMD package. The latter provides an
efficient neuroevolution potential (NEP) implementation that
enables us to routinely sample systems comprising on the
order of 60000 atoms for 100 or more nanoseconds.
We show that well converged results can be achieved using

systems containing several ten thousand atoms and heating/
cooling rates on the order of 60 K/ns or lower. Using
bootstrapping and ensembles of models, we are able to readily
generate accurate NEP models with an uncertainty that is
comparable or lower than the training errors.
By controlling rate and size effects as well as model errors,

we are able to isolate the impact of the underlying XC
functionals and thus to quantitatively assess the quality of
different XC functionals for the description of phase transitions
and finite temperature properties of halide perovskites. We find
the vdW-DF-cx functional to perform the best among the XC
functionals considered here when comparing transition
temperatures and lattice constants to the experimental data.
In the following section, we analyze in order rate and size

effects (see the “Rate and Size Effects” section), mode
uncertainty (see the “Model Uncertainty” section), the impact
of the XC functional (see the “Impact of XC Functional and
Extension to Other Halides” section), and finally the transition
temperature between the δ and perovskite phases (see the
“Transition to δ-Phase” section). We then summarize and
discuss the outcome of this analysis (see the “Discussion”
section).

■ METHODS
Machine-Learned Potentials. Neuroevolution Poten-

tials. Here, we use the third generation of the NEP scheme
(NEP3)37 to build MLPs for CsPbX3 with X = Cl, Br, and I.
The NEP format employs a simple multilayer perceptron

neural network architecture with a single hidden layer.38 In
NEP3 the radial part of the atomic environment descriptor is
constructed from linear combinations of Chebyshev basis
functions, while the three-body angular part is similarly built
from Legendre polynomials. Four- and five-body terms of the
atomic cluster expansion form39 can be included as well, but
here we limit ourselves to two and three-body terms.
For the present purpose it is crucial that the NEP scheme is

not only accurate but has been implemented on graphical
processing units (GPUs) in the GPUMD package.37 For the
models described in the following, this allows us to achieve a
speed of 2 × 107 atom step/s on an NVidia A100 card, i.e., we
can simulate a system of 60000 atoms for about 150 ns per day
using a time step of 5 fs.

Computational Parameters. In this study we used the same
hyperparameters for all models, which were chosen based on
experience and pretrials.37 The cutoffs for two- and three-body
interactions are 8 and 4 Å, respectively. There are 8 radial and
6 angular descriptor components and 8 basis functions for
building both the radial and angular descriptor functions, and
the angular components are expanded up to fourth order. The
hidden layer contains 40 neurons.
The weights for energies, forces, and virials in the loss

function were set to 1, 1, and 0.1 in GPUMD units,
respectively, while the weights for the 1 and 2 regularization
terms were dynamically adjusted during the optimization. The
neuroevolution strategy40 employed for optimizing the
parameters used a population size of 50 and was run for
200000 generations.

Model Construction. To construct NEP models, we
employed a boot-strapping strategy. First we identified
potentially relevant phases. This included the cubic perovskite
structure (Pm3̅m, Glazer notation a0a0a0), two tetragonal
structures (I4/mcm → a0a0c−, P4/mbm → a0a0c+), represent-
ing out-of-phase and in-phase tilts relative to the c-axis,
respectively, one orthorhombic structure (Pnma → a−a−c+) as
well as the so-called delta-phase (Pnma), which is exper-
imentally known to be the most stable structure at least for
CsPbI3 and CsPbBr3.
We then calculated energy-volume curves for these five

prototype structures using density functional theory (DFT)
calculations (see the “Reference Calculations” section)
allowing both the ionic coordinates and the cell shape to
relax under the constraint of constant volume until the
maximum force on any atom fell below 30 meV/Å.
Subsequently we generated supercells for each prototype

with random atomic displacements using the Monte Carlo
rattle procedure from the HIPHIVE package41 with a standard
deviation of 0.04 Å. The supercell size was chosen to be
between 120 and 160 atoms, and the volume was varied
between 85% and 110% of the respective equilibrium volume
with five structures per volume and prototype.
Using these data we generated a first iteration of NEP

models using the GPUMD package for the optimization37 and
the CALORINE package for data preparation and analysis.42

One model was generated using the full data set (“full model”)
and five additional models (“model ensemble”) were generated
by using five different 90−10 splits of the available data. Using
the full model, we generated new structures for each prototype
by running short MD simulations at pressures between −1 and
10 GPa using a temperature ramp from 20 to 620 K over 3 ns.
From each trajectory, we selected 12 configurations. For each
of these configurations, we then computed the standard
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deviation of the energy and forces using the model ensemble.
The standard deviation over the ensemble predictions
provided a measure for the uncertainty of the current model
generation for the respective conditions (temperature,
pressure, structure). We then computed energy and forces
for the new structures using DFT calculations, added these to
the training set, and repeated the procedure. Typically after
four generations we found that the uncertainty in the energy
and forces were comparable, which are smaller than the
respective training error, indicating convergence of the model
construction.
We note that in principle, one could have adapted an active

learning strategy based on the model ensemble and only
included configurations with high uncertainty as additional
reference structures. Here, we decided to include rather more
data in the training set, but we expect that the number of
structures can be reduced considerably without a notable
decrease in model performance.
The final models yield RMSE scores for training and

validation sets of about 1, 50, and 12 meV/atom or better for
energies, forces, and virials, respectively (Tables 1 and S1).

Importantly the models closely reproduce the energy differ-
ences and energy-volume curves of all the structures of interest
in the present study (Figures S1 and S2; Tables S2−S7). The
final models were subsequently used in large scale MD
simulations to predict, for example, transition temperatures
and lattice parameters (see the “MD Simulations” section).
MD Simulations. All MD simulations were carried out

using the GPUMD code. Temperature and pressure were
controlled using stochastic velocity43 and cell rescaling44 and
the time step was 5 ps, where all simulations were run at zero
pressure.
For studying the convergence with size (see the “Size

effects” section), we considered system sizes between 1280 and
61440 atoms, equivalent to 4 × 4 × 4 to 16 × 16 × 12
primitive orthorhombic perovskite (20-atom) unit cells. To
analyze the impact of heating and cooling rates (see the “Rate
Effects” section) the temperature was linearly varied between
20 and 520 to 620 K (depending on material) over 1−100 ns.

The production runs used to quantify model uncertainty
(see the “Model Construction” section) and the impact of the
XC functional (see the “Impact of XC Functional and
Extension to Other Halides” section) were carried out using
supercells comprising 16 × 16 × 12 primitive orthorhombic
unit cells (61440 atoms). The total simulation time was set to
100 ns, and the temperature was varied over a range of 400 to
600 K corresponding to a heating/cooling rate of 4−6 K/ns.
Free Energy Calculations. For CsPbI3 and possibly

CsPbBr3 the perovskite phases are metastable only at lower
temperatures. Provided sufficient kinetic activation, below a
certain temperature, the perovskite structure transforms into
the so-called δ-phase via a first order transition. To determine
the transition temperature from the NEP models we calculated
the free energies of the δ and cubic perovskite phases through
thermodynamic integration using the classical method by
Frenkel and Ladd,45−47 as implemented in ASE.48 In these
calculations, we used an Einstein solid as a reference system,
for which the free energy can be computed analytically, and
used supercells containing about 1500 atoms for each phase.
For each temperature the integration was carried out over 50
ps, and the results were averaged over ten independent runs.
Reference Calculations. DFT calculations were per-

formed using the projector augmented-wave method49 as
implemented in the Vienna ab initio simulation package.50,51

The exchange-correlation contribution was represented using
the LDA, the vdW-DF-cx method,30,31 the SCAN functional,32

the SCAN+rVV10 functional,33 the PBEsol functional,34 the
PBE functional,35 and the PBE functional with dispersion
corrections (PBE+D3).35,36 The Brillouin zone was sampled
with a Γ-centered grid with a k-point density of 0.18 /Å and
Gaussian smearing with a width of 0.1 eV. For the calculation
of the forces, a finer support grid was employed to improve
their numerical accuracy.

■ RESULTS
Rate and Size Effects. The different perovskite phases are

structurally closely related and connected through phase
transitions with mixed continuous-first-order character.52−55

For the CsPbX3 (with X = Cl, Br, or I) materials considered in
this study, the perovskite lattice transforms with increasing
temperature from an orthorhombic phase (Pnma) via a
tetragonal phase (P4/mbm) to a cubic phase (Pm3̅m). Since
these transitions do not involve a switch in the sign of the
Glazer angles between the orthorhombic (a−a−c+) and
tetragonal phases (a0a0c+), unlike, e.g., MAPbI3,

19 it is possible
to observe these transitions in MD simulations. Due to the
remaining first-order character and the extreme heating/
cooling rates that can be realized in MD simulations, one
can, however, nonetheless anticipate some degree of hysteresis.
A further aggravating factor is the finite system size. For

small supercells, the fluctuations are naturally larger, which
renders it more challenging to achieve converged results. In
this section, we discriminate the effects of heating/cooling rate
and system size by considering in detail MD simulations for
CsPbI3 using the full model based on the vdW-DF-cx
functional (see the “Model Construction” section).

Rate Effects. To separate rate from size effects, we first
consider the former in the large size limit, using a supercell
comprising 61440 atoms, equivalent to 16 × 16 × 12 primitive
orthorhombic (20-atom) unit cells.
On heating all simulations yield the correct (experimentally

observed) sequence of phases irrespective of heating rate. On

Table 1. RMSE Scores for the Final NEP Models Obtained
by Training against the Full Data Seta

energy (meV/
atom)

force
(meV/Å)

virial (meV/
atom)

CsPbBr3
vdW-DF-cx 0.6 46.0 8.5
SCAN 0.7 49.3 12.2

CsPbCl3
vdW-DF-cx 0.7 48.1 9.7
SCAN 0.7 49.5 12.7

CsPbI3
LDA 0.9 47.6 10.8
vdW-DF-cx 1.2 49.1 11.6
SCAN 1.6 52.5 13.9
SCAN
+rVV10

1.5 52.3 13.3

PBEsol 1.2 51.3 12.0
PBE 0.7 43.7 9.6
PBE+D3 0.8 44.4 9.4

aAdditional performance measures, including RMSE and Pearson
correlation coefficients for model ensembles, can be found in Table
S1.
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cooling, this sequence is reversed again regardless of rate. At
the cubic-to-tetragonal transition, for a small number of
simulations, one can, however, observe the simultaneous
formation of multiple tetragonal domains with incompatible
orientations, which can lead to the formation of domain
boundaries. Since the moving of these boundaries involves a
nucleation-and-growth mechanism, they remain in the
simulated structure upon cooling.
The temperatures for the transitions between the perovskite

phases can be readily obtained from the lattice parameters
(Figure 1a,b), revealing a strong dependence on the heating/

cooling rate. For rates below approximately 60 K/ns, the
hysteresis between heating and cooling runs is 15 K or less and
no longer varies systematically with the rate (Figure 1c). By
contrast, for the largest rate of 600 K/ns considered here,
which is only slightly larger than values used in some earlier
MLP studies,19,26 one observes a hysteresis of about 100 K for
both the lower and higher temperature transitions. In addition,
the transition itself is smeared out in temperature, which is
particularly apparent for the orthorhombic-to-tetragonal
transition (Figure 1a).

We also observed similar trends for the other materials and
models studied in this work. We therefore conclude that rates
below 60 K/ns are recommended in order to achieve
convergence of the transition temperatures for this class of
materials.

Size Effects. Next we examine the impact of the supercell
size on the temperature dependence of the lattice parameters
and the transition temperatures. First, simulations were carried
out at a heating/cooling rate of 6 K/ns using structures
comprising 1280 atoms (4 × 4 × 4) primitive orthorhombic
unit cells), 7680 atoms (8 × 8 × 6), 23040 atoms (12 × 12 ×
8), or 61440 atoms (16 × 16 × 12).
For the smallest supercell (1280 atoms), one notices a

marked deviation from the (reference) lattice parameter
parameter data from the largest supercell (61440 atoms)
around the cubic-tetragonal phase transition (Figure 2a,b).

This deviation is, however, absent for the next larger structure,
which comprises 7680 atoms, and at this size, the transition
temperatures are already converged to within 10 K of the
results for the largest supercell (Figure 2c).
A key characteristic of a phase transition that is at least partly

continuous is a peak or kink in the heat capacity. The heat
capacity can be readily extracted from fluctuations of the

Figure 1. Convergence with heating/cooling rate. Lattice parameters
for CsPbI3 as a function of temperature from MD simulations with
varying (a) heating and (b) cooling rates for supercells comprising
61440 atoms. The transition temperatures extracted from these data
are indicated by diamonds. The gray lines show the raw data, whereas
the colored lines show the data after application of a Hamming
window of 0.6 K (see Figure S4). (c) Transition temperatures as a
function of heating/cooling rate. Dashed lines are guides to the eye.
All results were obtained using the full model (see the “Model
Construction” section) based on the vdW-DF-cx exchange-correlation
functional.

Figure 2. Convergence with supercell size. Lattice parameters for
CsPbI3 as a function of temperature from MD simulations during (a)
heating and (b) cooling at a rate of R = 6 K/ns for different supercells.
The transition temperatures extracted from these data are indicated
by diamonds. A Hamming window of 0.6 K was applied. (c)
Transition temperatures as a function of supercell size. Dashed lines
are guides to the eye. All results were obtained using the full model
(see the “Model Construction” section) based on the vdW-DF-cx
exchange-correlation functional.
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energy in MD simulations. For the present purpose, this is,
however, impractical as the transition is very sharp in
temperature and the temperature range of interest is wide.
Here, we therefore compute the heat capacity instead by
numerically differentiating the potential energy from heating/
cooling runs, i.e., Cp = dH/dT ≈ ΔH/ΔT. This requires
averaging of the data in order to obtain numerically well
behaved results. To this end, we first apply a Hamming
window of 0.6 K to the energy-vs-temperature data. The
resulting data is numerically differentiated, after which the data
is smoothened again using a Hamming window of 6 K. The
Hamming window sizes are chosen to be sufficiently large to
remove noise and small enough to avoid removing features
(Figure S5).
For the largest system size (61440 atoms), the phase

transitions are clearly visible as peaks in the temperature
dependence of the heat capacity (Figure 3). These features
become, however, less distinct with decreasing system size as
fluctuations increase.

The analysis presented in this section suggests that
supercells with at least about 10000 atoms can be expected
to yield accurate lattice parameters and transition temperatures
within about 10 K of the converged results. Extracting the
temperature dependence of the heat capacity still requires
larger systems still. Even for the largest systems considered
here (61440 atoms), the noise level is rather high, but the data
still allow one to accurately extract phase transition temper-
atures from the heat capacity data.
Model Uncertainty. Having established heating/cooling

rates and system sizes that yielded converged results for lattice
parameters and transition temperatures, we can now address
model uncertainty. To this end, we resort to ensemble models.
The latter comprise five separate models constructed using five
distinct 90−10 splits of the training data (see the “Model
Construction” section). All simulations in this section were
carried out using supercells with 61440 atoms and a heating/
cooling rate of 6 K/ns. Once again, we use CsPbI3 and models
trained using reference data generated by the vdW-DF-cx
functional as a representative example.

The uncertainty of the model predictions can be estimated
by considering the standard deviation over the model
ensemble (Figure 4a,b). At 100 K this approach yields an

uncertainty of up to 0.02 Å depending on direction. This value
diminishes, however, quickly with temperature to a level of
0.003 Å in the tetragonal and even less than 0.002 Å in the
cubic phases (Figure S6).
Away from the phase transitions, the heat capacity curves

from the different models agree well with each other (Figure
4). The actual transition temperatures, corresponding to the
position of the peaks in the heat capacity curves, obtained from
the full model (and the model ensemble) are 348 K (329(11)
K) and 549 K (521(15) K) on heating and 334 K (317(19) K)
and 549 K (511(20) K) on cooling. The agreement between
the results obtained using the full model and the model
ensemble support the good convergence of the models with
respect to training data. The remaining hysteresis can be
attributed to the mixed first-/continuous-order character,
which is evident from the very small but nonzero latent heat
associated with these transitions.52−55

We can thus estimate the error in the transition temper-
atures due to model uncertainty to be on the order of 30 K. In
combination with the model performance measures (see the
“Model Construction” section) and the very good agreement
with the DFT reference data, this provides strong evidence that
the NEP models constructed are accurate representations of
the DFT potential energy landscape in the regions of
configuration space included here. They can thus be used to
analyze the performance of different XC functionals with
respect to the finite temperature behavior of CsPbI3 and the
other materials considered here (see the “Impact of XC
Functional and Extension to other Halides” section).
Impact of XC Functional and Extension to Other

Halides. We can now apply the framework established above
to predict transition temperatures for CsPbI3 using different

Figure 3. Convergence of heat capacity with supercell size isobaric
heat capacity of CsPbI3 as a function of temperature for different
supercell sizes obtained through numerical differentiation as detailed
in the text. The phase transitions are visible as peaks in the heat
capacity. All results were obtained using the full model (see the
“Model Construction” section) based on the vdW-DF-cx exchange-
correlation functional.

Figure 4. Assessing model uncertainty through ensemble of models.
(a,b) Lattice parameters and (c,d) heat capacity as a function of
temperature during (a,c) heating and (b,d) cooling from full (blue
lines), ensemble models (orange lines), and the average over the later
(green lines). All results are for CsPbI3 using models based on the
vdW-DF-cx exchange-correlation functional.
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XC functionals for generating reference data and compare the
results to experimental data. To this end, we use the same
computational settings in terms of system size and heating/
cooling rate as in the analysis of the model uncertainty.
The results show that the vdW-DF-cx, SCAN+rVV10, and

LDA functionals yield temperatures for the tetragonal-to-cubic
transition in good agreement with experimental data (Figure
5).9 They, however, notably underestimate the orthogonal-to-

tetragonal transition temperature. It should be noted that the
apparently good agreement obtained using the LDA is likely
the result of a fortuitous cancellation of errors, a behavior that
has also been observed for, e.g., van-der-Waals bonded
materials.
The remaining functionals (SCAN, PBEsol, PBE, and PBE

+D3) markedly underestimate both transition temperatures by
as much as 200 K. We note that the agreement improves from
PBE via PBEsol and SCAN to vdW-DF-cx, which mirrors the
trends observed previously for transition metals.58 Conversely
for the lattice parameters, with the exception of the LDA
functional, one observes a systematic overestimation relative to
the experiment (Figure 6) with a similar trend. The closest
agreement is obtained using the vdW-DF-cx functional, for
which the lattice parameters of the cubic phase are over-
estimated by only 0.02−0.04 Å in the high-temperature limit.
Finally, we extend our investigation to CsPbBr3 and CsPbCl3

including SCAN and vdW-DF-cx functionals. As for CsPbI3
the transition temperatures (Figure 5b,c) and lattice
parameters (Figure 6b,c) are systematically underestimated
and overestimated, respectively. The thermal expansion is,
however, captured well by all functionals.
We conclude by noting that all of the XC functionals

considered here yield the correct sequence of phases, yet there
is a tendency to underestimate the transition temperatures
(Figure 5) and overestimate the lattice parameters (Figure 6).

Transition to δ-Phase. It is experimentally well estab-
lished that the perovskite phases of CsPbI3 are only metastable
at low temperatures as the actual ground state structure of the
material is the so-called δ-phase.59 We therefore also computed
the transition temperature between the cubic perovskite and
the δ-phase by free energy integration (see Figure S7 for the
free energy curves).
The transition temperature obtained for CsPbI3 by the vdW-

DF-cx model of 633 K with an estimated uncertainty of 20 to
40 K is in good agreement with experimental values of around
600 K (Table 2). The SCAN+rVV10 and LDA models yield
transition temperatures of 582 and 573 K, respectively, also in
good agreement with experiment. The SCAN, PBE, PBE+D3,
and PBEsol models yield lower values that are considerably

Figure 5. Transition temperatures from MD simulations in
comparison with experiment. Data were obtained using heating
(upward triangles) and cooling runs (downward triangles) with rates
of 6 K/ns for supercells comprising 61440 atoms. Colored and gray
symbols indicate results obtained using full models and model
ensembles, respectively. In the latter case, the uncertainty calculated
as the standard deviation over the ensemble is indicated by vertical
bars. Experimental transition temperatures taken from refs 9, 56, and
57 are shown by horizontal dashed lines.

Figure 6. Lattice parameters as a function of temperature from
simulation in comparison with experiment. Data were obtained using
full NEP models trained using different XC functionals in comparison.
Experimental data from refs 9, 56, and 57

Table 2. Temperatures for the Transition between the δ-
Phase and the Cubic Perovskite Phasea

CsPbI3 CsPbBr3
experiment ∼600
vdW-DF-cx 633 313
SCAN 433 158
SCAN+rVV10 582
LDA 573
PBE 308
PBEsol 373
PBE+D3 405

aExperimental data from refs 60−62.
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smaller than the experimental data. These estimated transition
temperatures correlate quite well with the energy differences
between the δ-phase and perovskite phases (Table S4).
In the case of CsPbBr3, the δ-phase is the most stable

structure at 0 K, according to both the DFT and NEP
calculations. The energy difference (Table S3) is, however,
much smaller than that for CsPbI3 (Table S4), leading to lower
transition temperatures that are predicted to be 310 and 151 K
according to the vdW-DF-cx and SCAN models, respectively.
We are unaware of experimental measurements of the
transition temperature in CsPbBr3, which given the present
predictions might actually be close to or below room
temperature and thus are difficult to observe.
For CsPbCl3 the DFT calculations yield energy differences

between perovskite and δ-phases close to zero (Table S2),
suggesting that the δ-phase is actually not the most stable
phase under any conditions or only at extremely low
temperatures.

■ DISCUSSION
We have systematically analyzed four key sources of error in
atomic scale simulations of phase transitions of inorganic
halide perovskites, related respectively to (1) sampling time,
(2) system size, (3) model uncertainty, and (4) the underlying
XC functional. Based on these results, it is recommended to
use heating/cooling rates of at most approximately 60 K/ns
but preferably even lower and system sizes comprising at least
a couple ten thousands of atoms, corresponding to a few
thousand primitive unit cells. We expect that these guidelines
are not limited to inorganic halide perovskites but should also
be heeded when modeling the dynamics of other perovskites
and related systems.
The model uncertainty was assessed using ensembles of

models from which uncertainty estimates for, e.g., transition
temperatures and lattice parameters, can be estimated. The
results show that by careful model construction, the model
uncertainty can be reduced to a level that allows one to
quantitatively discriminate the performance of different XC
functionals.
Using this approach, we found that while the vdW-DF-cx,

SCAN+rVV10, and LDA functionals yield temperatures for the
tetragonal-to-cubic transition in good agreement with exper-
imental data, the other XC functionals (namely, SCAN,
PBEsol, PBE, and PBE+D3) underestimate it significantly. At
the same time, all functionals considered here underestimate
the orthogonal-to-tetragonal transition. Moreover all func-
tionals except for LDA overestimate the lattice parameters at
finite temperature, with vdW-DF-cx and SCAN+rVV10
achieving rather close agreement with experiment.
The opposite trends observed when going from SCAN to

SCAN+rVV10 and from PBE to PBE+D3 suggest that the
inclusion of van-der-Waals interactions does not per se improve
a functional, but rather one should consider the resulting
combined functional on its own.
Considering both transition temperatures and lattice

parameters, the best overall agreement is obtained for the
vdW-DF-cx and SCAN+rVV10 functionals, which, in partic-
ular, outperform the SCAN functional. In pioneering work on
the use of MLPs for probing the dynamics of halide perovskite,
the latter functional had been suggested as achieving a good
match with experiment.19,26,63,64 Our analysis suggests that the
good agreement was likely fortuitous and probably the result of

using high rates and small system sizes (see Figure S8 for a
more detailed comparison).
This raises the question how, for example, hybrid functionals

or the random phase approximation would perform with
regard to the finite temperature properties and dynamics of
these materials.13,27,65 In the present work, we included a
relatively large set of structures and supercells that would pose
a considerable computational challenge for either one of these
methods. As noted above (see the “Model Construction”
section), one can, however, expect that the number of training
structures can be considerably reduced without a notable loss
in model accuracy by using active learning. This strategy could
be combined with principal component analysis to identify
regions with very dense sampling37 or entropy maximization66

to reduce the training set size even further, eventually allowing
one to build NEP or other MLP models that can represent
such more accurate electronic structure methods.
Finally, we note that the accuracy of the models presented

here in combination with the very high computational
efficiency provided by the implementation on GPUs, now
enables one to sample the dynamics of these and related
materials with unprecedented time resolution and accuracy.
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