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ABSTRACT
To support manufacturing firms in realising the value of Artificial Intelligence (AI), we embarked on a
six-year process of research and practice to enhance the popular and widely used CRISP-DM method-
ology. We extend CRISP-DM into a continuous, active, and iterative life-cycle of AI solutions by adding
the phase of ‘Operation and Maintenance’ as well as embedding a task-based framework for linking
tasks to skills. Our key findings relate to the difficult trade-offs and hidden costs of operating and
maintaining AI solutions and managing AI drift, as well as ensuring the presence of domain, data sci-
ence, and data engineering competence throughout the CRISP-DM phases. Further, we show how
data engineering is an essential but often neglected part of the AI workflow, provide novel insights
into the trajectory of involvement of the three competences, and illustrate how the enhanced CRISP-
DM methodology can be used as a management tool in AI projects.
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1. Introduction

Artificial Intelligence (AI) is promised to revolutionise manu-
facturing. For example, using AI for automated inventory
replenishment can yield a close to 40% reduction in penalty
costs and up to 60% reduction in misplaced items (Wang,
Skeete, and Owusu 2022). Similarly, AI solutions in assembly
operations can result in a drastic reduction of energy con-
sumption and excess storage stocks (Manimuthu et al. 2022),
and deep learning models can be used to extract hidden
insights of machine breakdowns from unstructured text in
maintenance logs (Usuga-Cadavid et al. 2022). But, if AI is so
powerful, why do so many manufacturing firms struggle so
hard in closing the gap between the promises of AI and real
productivity gains? One core part of the explanation is that
implementing new technology requires complementary
intangible investments (Brynjolfsson, Rock, and Syverson
2021). That is, before a manufacturing firm can realise the
benefits of AI, it must put and keep in place the essential
complements that allow the technology to be effectively
leveraged. Such complements are everywhere in modern
organisations and can range from new business processes,
managerial practices, organisational designs, and even cul-
tural change (Brynjolfsson and Milgrom 2013). Decades of
research have validated the importance of complementarities
for realising the value of IT (Bresnahan, Brynjolfsson, and Hitt
2002), and recent empirical evidence shows that AI product-
ivity gains are almost entirely limited to manufacturing firms

that have the right complements in place (Brynjolfsson, Jin,
and McElheran 2021).

To combat this lack of realised benefits from AI implemen-
tation, recent literature has put the spotlight on challenges to
long-term success such as governance (e.g. structure or roles,
practices, and processes) (Schneider et al. 2023), strategy (e.g.
access to technology and human capital investment)
(Amankwah-Amoah and Lu 2022), management (e.g. defining
objectives, setting constraints, choosing training data, provid-
ing feedback) and concrete tools that support practitioners in
AI scaling (e.g. choosing performance metrics and engaging
with stakeholders) (Madaio et al. 2022).

Manufacturing firms that aim to reap the benefits of AI1

thus face a tough challenge: developing technical AI systems
is fast and cheap, but scaling them and realising their long-
term value is difficult and expensive (Sculley et al. 2015), in
large part due to considerable managerial and organisational
challenges (Fosso Wamba et al. 2022). In this article, our cen-
tral thesis is that value creation from AI in manufacturing
can accelerate by means of two interrelated complementar-
ities: (1) operation and maintenance of AI solutions over
time, and (2) human skills. First, operating real-world AI solu-
tions entails hidden and difficult trade-offs that must be con-
sidered in the long run, many of which result in massive
maintenance costs (Sculley et al. 2015). Second, one of the
most established, clear-cut, and essential complements to AI
is human skills, because even the most sophisticated AI tech-
nology has limitations that make humans indispensable for
many essential tasks (Brynjolfsson, Rock, and Syverson 2021).
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While we focus exclusively on these two, it should be recog-
nised that there may exist a myriad of plausibly important
complementarities, but which are beyond the scope of this
study.

To support manufacturing firms in managing these com-
plementarities, we believe that one fruitful strategy is to
embed hands-on guidelines in existing and widely used
engineering methodologies. In particular, there exists a wide
range of systematic methodologies that prescribe a sequence
of interrelated phases for developing AI solutions to specific
practical problems such as CRISP-DM, SEMMA, and KDD
(Tripathi et al. 2021). CRISP-DM (Wirth and Hipp 2000) has
been extensively used in both industry and academia for
successfully developing AI solutions (Schr€oer, Kruse, and
G�omez 2021; Huber et al. 2019) owing to its practical orien-
tation (i.e. explicit focus on business problems, easy to imple-
ment, and complete scope), agility (i.e. capable of increasing
the velocity of decision-making through quick iterations),
and flexibility (i.e. capable of supporting any AI approach
whether data-centric, model-centric, or user-centric)
(Azevedo and Santos 2008; Dåderman and Rosander 2018).
Scholars often explicitly use CRISP-DM to guide their AI solu-
tion development (Kharlamov et al. 2020; Jacobsen and Tan
2022) but many also implicitly follow the same or similar
phases of CRISP-DM without mentioning the use of a specific
methodology.

Yet, while the overall benefits of using CRISP-DM in a
manufacturing context are unquestionable, the methodology
was initially developed to serve as a generic and systematic
approach for conducting data mining projects. Many authors
have therefore advocated for continuous development of the
methodology to better accommodate technological advance-
ments and more complex problem-solving (Schr€oer, Kruse,
and G�omez 2021). For example, since the original version
ends at the deployment stage, scholars have called for
research that develops better guidance for practitioners in
managing the hidden difficulties and costs associated with
operating and maintaining AI solutions over time (Wang,
Skeete, and Owusu 2022). Further, owing to the original ver-
sion’s lack of explicit links to the essential human skills that
must be present to execute all tasks (Wirth and Hipp 2000),
scholars have also called for research that portrays a more
holistic perspective on the shared competences that must be
involved throughout the entire life-cycle of AI solutions
(Huber et al. 2019).

Above all, there is a dire need for more in-depth industry
insights about AI usage in real organisations together with
clear guidance to managers and practitioners on how to use
AI to improve productivity (Fosso Wamba et al. 2022). Of par-
ticular value is uncovering the success factors of leading
companies and extracting their experiences in developing
and implementing real-life AI solutions (Helo and Hao 2022).

Therefore, this article aims to support manufacturing firms
in realising the value of AI by enhancing the CRISP-DM
methodology. Through a multi-year and multi-method
approach that spans six years of immersion in research and
practice, we achieve our research aim in two major ways.
First, we extend CRISP-DM into a complete life-cycle of AI

solutions by adding the phase of ‘Operation and
Maintenance’ of AI solutions in manufacturing environments
over time. Second, we embed a task-based framework into
CRISP-DM that provides a comprehensive yet intuitive way of
linking tasks to skills and ultimately integrating competences
held by sets of experts. The implications of the enhanced
CRISP-DM are illustrated based on an application of AI-based
throughput bottleneck detection in a real-world manufactur-
ing system. We conclude by offering four core recommenda-
tions for using CRISP-DM in manufacturing practice.

2. Theoretical background and related work

2.1. CRISP-DM and extensions in manufacturing

In this section, we summarise the CRISP-DM methodology in
its original format as well as describe related key extensions
of CRISP-DM for manufacturing contexts. For an overview of
similar and competing methodologies such as KDD and
SEMMA, see Azevedo and Santos (2008) or Dåderman and
Rosander (2018). CRISP-DM (Cross Industry Standard Process
for Data Mining) was developed as a generic and systematic
approach for conducting data mining projects. The original
version is extensively described in existing literature (Wirth
and Hipp 2000). The goal of introducing CRISP-DM was to
serve as a common reference point to discuss data mining,
increase the understanding of crucial data mining issues, and
fortify data mining as an established engineering practice
(Wirth and Hipp 2000). Today, CRISP-DM is widely known as
the ‘de-facto standard’ for applying a process model in data
mining projects (Schr€oer, Kruse, and G�omez 2021). The
model represents a systematic process for data mining proj-
ects in a hierarchy of four levels: (1) phases, (2) generic tasks,
(3) specialised tasks, and (4) process instances. The first level
consists of six phases: business understanding (understanding
and converting project objectives and requirements into a
problem definition), data understanding (collection and famil-
iarisation with the data), data preparation (constructing the
final data set), modelling (selection, application, and tuning
of the model), evaluation (assess model performance), and
deployment (organise, present, and implement the model).
The second level consists of generic tasks within each phase,
which are intended to be complete and stable and thus
apply to all possible data mining situations (e.g. generic task
‘determine business objectives’ in phase ‘business under-
standing’). The third level consists of specialised tasks that
describe how actions in the generic tasks should be carried
out in specific contexts (e.g. specialised task ‘build clustering
model’ for generic task ‘build model’). The fourth and final
level consists of process instances that represent the docu-
mentation of actions, decisions, and results during the pro-
ject. All phases are intended to be iterative and intertwined,
and the model was originally envisioned to be applied in a
cyclic rather than a waterfall fashion (Wirth and Hipp 2000).

Since the original version of CRISP-DM is intended to be
generic, it has been widely adopted across disciplines such
as engineering, quality, marketing, and healthcare (Studer
et al. 2021). At the same time, the generic nature has driven
the development of contextual versions referred to as ‘CRISP-
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DM extensions’. Such extensions aim to overcome limitations
of the original version, tailor it to specific situations, and/or
better accommodate recent technological advancements.
Specifically, Tripathi et al. (2021) outline two types of exten-
sions: (1) general extensions and (2) industry-specific exten-
sions. The first type focuses on extensions according to
general theoretical concepts. For example, Kristoffersen et al.
(2019) extend CRISP-DM according to the circular economy
concept by introducing an additional phase of data valid-
ation and by incorporating analytic profiles. The second type
focuses on extensions according to certain industry sectors
and/or application areas. For example, Huber et al. (2019)
extend CRISP-DM to the manufacturing industry by adding
three new phases: technical understanding, technical realisa-
tion, and technical implementation.

Concerning the operations and maintenance of AI solu-
tions, Schr€oer, Kruse, and G�omez (2021) reviewed 24 studies
that applied CRISP-DM and observed that the deployment
phase was neglected in the vast majority of studies; not a
single study fully implemented the solution in an operational
environment. They conclude that more research is needed
with respect to integrating models and data in operational
environments where model performance needs to be con-
tinuously monitored and controlled.

Tackling this particular problem, Tripathi et al. (2021)
place a special focus on the long-term use of Machine
Learning (ML) models in manufacturing and emphasise a
wide variety of robustness issues that need to be considered
in the deployment phase and beyond. For example, they
argue the need for ensuring the models’ utility and robust-
ness over time. Due to dynamic changes in the operational
environment, the performance of ML models may deteriorate
over time, requiring manufacturing companies to monitor
changes in terms of e.g. subject, frequency, transition, recur-
rence, and magnitude. Further, they highlight the need of
users (e.g. machine operators) to evaluate the accuracy, inter-
pretability, multiplicity, and transparency of models to ensure
that operating personnel continuously understand and trust
the results.

Similarly, Studer et al. (2021) explain that CRISP-DM does
not cover the application scenario of AI solutions that are
used over long periods where the model must be able to
adapt to changing environments. Ignoring dynamic changes
to the operating environment such as non-stationarity of
data, degradation of hardware, and system updates, may
cause the AI solution to degrade over time. To cope
with this challenge, the authors extend CRISP-DM with a
‘Monitoring and Maintenance’ phase. This phase includes
tasks to monitor input signals, notify when changes have
occurred, and re-train the model with new data.

From a human skills perspective, Wirth and Hipp (2000)
explain in the original CRISP-DM version that data mining is
a creative process that requires several different skills and
knowledge, and that success or failure is highly dependent
on the teams that carry out the process in practice. This
notion has been emphasised in manufacturing-specific exten-
sions. Hiruta et al. (2019) highlight the interplay between
data scientists and domain engineers when developing

analytics solutions for condition-based maintenance. They
argue that both roles are needed but that efficient collabor-
ation is difficult due to differences in backgrounds and chal-
lenges in sharing tacit knowledge. Based on CRISP-DM, they
develop a three-step procedure (design, evaluation, execu-
tion) and an accompanying engineering tool that supports
data scientists and domain engineers in jointly developing
data analytics solutions.

Similarly, Huber et al. (2019) explain that to implement
useful data analytics solutions in manufacturing, cross-discip-
linary cooperation of data scientists and domain experts is
required. In particular, they highlight the specific difficulties
in obtaining and processing data in manufacturing environ-
ments that necessitate a deep understanding of production
processes as well as machine controls and sensors. To facili-
tate the cooperation between data scientists and domain
experts, they extend CRISP-DM with three new phases: tech-
nical understanding, technical realisation, and technical
implementation. These phases include domain-specific tasks
such as selection of physical parameters, development of
data acquisition from machine sensors and interfaces, and
actual implementation in operational hardware and software.

Tripathi et al. (2021) complement this perspective and
highlight that three key roles need to actively collaborate in
CRISP-DM: business experts, data experts, and users. The
business experts focus on explaining the business context
and goals; the data experts focus on building, evaluating,
and scaling the model; the users focus on the model
response during daily operations.

2.2. A Task-based framework for AI-skills
complementarities

In this section, we describe the theoretical fundamentals of
AI-skills complementarities based on economic theory fol-
lowed by introducing a task-based framework for matching
tasks with skills. The link between technological change,
labour, and productivity can be understood through task-
based economic principles. These principles describe how
technology and labour complement each other to realise
productivity gains at the level of tasks, and they explain and
predict why only some firms are able to reap the benefits
from AI (Acemoglu and Restrepo 2018). We explicitly chose
an economics lens due to the far-reading implications of AI-
skills complementarities and the power of task-based eco-
nomic principles for describing, explaining, and predicting
differences in productivity gains (Acemoglu and Restrepo
2018). Also, a generic task-based framework based on such
principles can serve as a comprehensive yet intuitive way of
supporting practitioners in linking tasks to skills and subse-
quently to competences, experts, and jobs that allow manu-
facturing firms to make full use of AI. Such a framework is
presented in Figure 1. Still, it should be recognised that also
other theoretical lenses and bodies of literature confirm and
similarly demonstrate this need for task-skill matching in AI
adoption and use, e.g. dynamic capabilities or technology
adoption of information systems.

PRODUCTION PLANNING & CONTROL 3



Technological change transforms inputs that are expen-
sive and scarce to become inexpensive and abundant
(Benzell and Brynjolfsson 2019). For AI, recent technological
advancements have reduced the cost of collecting, storing,
and analysing data through more powerful and affordable
computing power and scalable ML algorithms (Byrne,
Corrado, and Sichel 2018). Thus, foundational AI technology
is nowadays widely available to manufacturing firms. This
cost reduction leads to AI being used to introduce new tasks
and more complex versions of existing tasks (Acemoglu and
Restrepo 2018).

Yet, contemporary AI technology has limitations that
make humans indispensable, and complementary skills
are therefore required for the operation of new tasks.
Consequently, workers need to acquire new skills to work
on such tasks. But since it takes time to acquire new skills,
individuals that know how to leverage AI in manufacturing
are not readily available in the labour market (Brynjolfsson,

Rock, and Syverson 2021). In essence, as the technology-
associated costs of AI fall, the value of complementary skills
increases but becomes more scarce. Such an imbalance cre-
ates a mismatch between tasks and skills, which acts as a
constraint that prevents firms from making full use of AI
(Benzell and Brynjolfsson 2019). The dramatic implication is
that investments in complementary skills are necessary (crit-
ical, essential) to fully realise the value of AI tech. In other
words, if the complementary skills are absent, they will act
as the weakest link for growth (Brynjolfsson, Rock, and
Syverson 2021).

The framework in Figure 1 is grounded in the literature
on labour economics more broadly but specifically makes
use of the concepts, definitions, and structure in the unified
conceptual framework of tasks, skills, and competences in
Rodrigues, Fern�andez-Mac�ıas, and Sostero (2021). Figure 1
can be seen as a simplified and contextualised version so as
to make it more intuitive and applicable to manufacturing

Figure 1. A conceptual task-based framework for matching tasks and skills, Inspired by Rodrigues, Fern�andez-Mac�ıas, and Sostero (2021).
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firms. The framework rests on the basic equivalence between
tasks and skills and has a quasi-symmetrical structure where
tasks and skills cluster into bundles that create jobs and
competences. Thus, the framework links concepts at both
the demand and supply sides of the labour market.

At the task-level of the framework, we position a set of
concepts that substantiates the fundamental relationship
between tasks and skills. On the demand side, we find the
concepts of tasks and task bundles. A task is defined as a dis-
crete unit of work activity. A task consists of content
together with methods and tools to perform the task (i.e.
how and what people do in their work) and thus reflects the
smallest unit of labour input. A set of tasks of similar nature
create a task bundle, defined as a group of tasks that are
clustered together. On the supply side, we have the equiva-
lent concepts of skills and skill bundles. A skill is defined as
the ability to perform a task well, and a skill bundle is
defined as a group of skills that are clustered together
(Rodrigues, Fern�andez-Mac�ıas, and Sostero 2021).

At the organisational-level of the framework, we position
concepts that substantiate how manufacturing firms organise
to facilitate a match between tasks and skills. A job is defined
as a task bundle that is associated with a specific position in
an organisation. Tasks are strategically bundled into jobs to
maximise the efficiency of workers, which may be influenced
by factors such as the firm’s business strategy or organisa-
tional design. The supply-side equivalent to jobs is compe-
tence, defined as the ability to do well in a particular task
bundle. Here, it is critical to note that while the concept of
competence is also related to the concept of a skill bundle,
they are distinct. Competence includes more than just a bun-
dle of skills, because ‘doing well’ also requires knowledge,
experience, abilities, and other characteristics of humans. An
expert is defined as an individual capable of efficiently using
the competence required for performing a task bundle. Thus,
the concept of an expert links competence to individual
employees and adds an efficiency term. That is, an expert
can more efficiently leverage the use of competences by also
holding a deeper understanding of the technologies, proc-
esses, and contexts of a particular domain (e.g. an industry
sector or firm-specific business processes) (Rodrigues,
Fern�andez-Mac�ıas, and Sostero 2021).

While Figure 1 depicts the framework as static, it is in fact
dynamic. Specifically, it allows for understanding AI-skills com-
plementarities by linking it to the implications of technological
change on the demand and supply of labour. On the demand
side, AI technology can be used to introduce new tasks or
more complex versions of existing tasks, which may significantly
alter the nature and content of the tasks and task bundles that
constitute jobs. On the supply side, this generates a corre-
sponding alteration of skills and skills bundles. This, in turn,
may render the competences of existing employees inadequate
for doing well in new task bundles, possibly to the point that
an individual is no longer an expert for the job. The mismatch
between tasks and skills is thus reflected in an imbalance
between demand and supply of labour, which results in a
bottleneck that prevents firms from realising the benefits of AI
tech (Benzell and Brynjolfsson 2019). To re-establish a match

between tasks and skills, firms must pursue supply-demand
matching strategies by investing in complementary skills
(Rodrigues, Fern�andez-Mac�ıas, and Sostero 2021), e.g. support-
ing existing workers in acquiring new skills through education
and training, or hiring new workers that are suitable for the job
(Acemoglu and Restrepo 2018). Such complementarities must
be re-instated before a manufacturing firm can fully benefit
from AI (Brynjolfsson, Jin, and McElheran 2021).

3. Research designs and methods

This study is an analysis of AI in manufacturing over multiple
years, grounded on the premise of CRISP-DM as an estab-
lished engineering methodology yet an incompletely docu-
mented phenomenon in practice. Theoretically, this study
adopted an orientation towards theory elaboration, which is
the process of using pre-existing concepts and models (in
this article: CRISP-DM) to collect and organise empirical data
for developing new insights and refining existing theory (in
this article: AI in manufacturing) (Fisher and Aguinis 2017).
Empirically, this study consisted of the execution of three
phases (‘research’, ‘transition’, and ‘practice’) spanning a total
of six years (2016–2022). The research process emphasised
the significance of capturing insights over time to refine and
elaborate the understanding of how manufacturing firms can
use CRISP-DM to realise value from AI. An overview of the
full research process is illustrated in Figure 2. In the forth-
coming sections, we provide further details about the meth-
ods used throughout the three phases.

3.1. Research phase (2016–2020)

The research phase spanned a total of four years and con-
sisted of collaborative research studies together with three
automotive manufacturing firms in Sweden (i.e. co-creating
AI solutions using CRISP-DM). The joint goal of all studies
was to develop AI algorithms for throughput bottleneck ana-
lysis in production systems. The choice of using AI was moti-
vated by the nature of the bottleneck problem, which is
characterised by high frequency (i.e. bottlenecks can shift at
the time scale of seconds), high impact (i.e. bottlenecks dir-
ectly impact the throughput of the production line), high
complexity (i.e. bottlenecks are determined by interactions
between multiple system entities), and high speed in deci-
sion-making (i.e. lack of time for manual analysis and require-
ments on close to real-time decision-support).

The object of study was discrete-part production systems,
consisting of a mix of engine machining lines with fully auto-
mated CNC machines and fully automated car body welding
lines. The layouts included parallel machines with intermedi-
ate buffers, serial lines with intermediate buffers, and serial
lines with no intermediate buffers. Digital event log data
were collected at the machine level. Event log data consists
of events (activity information performed by the machine or
on the machine) and timestamps (temporal information of
the events). A total of six different solutions for bottleneck
analysis were developed during the research phase (Solution
A-F) (Subramaniyan et al. 2016; Subramaniyan et al. 2019;
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Subramaniyan et al. 2020b, 2020a; Subramaniyan, Skoogh,
Salomonsson, Bangalore, and Bokrantz 2018; Subramaniyan,
Skoogh, Salomonsson, Bangalore, Gopalakrishnan, et al.
2018). Aligned with the ‘toolbox’ interpretation of AI (see
footnote 1), the solutions used a variety of AI techniques for
perceiving, processing, learning, and acting from data, rang-
ing from statistics to complex learning. All six solutions were
co-created with industry practitioners and explicitly followed
the original six-phase version of CRISP-DM. An overview of
the research phase is provided in Table 1.

3.2. Transition phase (2021)

The transition phase consisted of approximately six months
and started with summarising and documenting the accumu-
lated experiences and learnings from the research phase.
During this phase, the research team executed a set of
reflection sessions that consisted of reviewing each of the six

AI solutions (A-F in Table 1) in three steps: (1) discussing the
underlying success factors for the outcomes of the research
study, (2) identifying challenges for transferring the specific
academic results to industry practice, and (3) abstracting the
specific study to generic challenges for making AI solutions
successfully operational in manufacturing. A total of four ses-
sions with a duration of 60–120minutes each were sufficient
for analysing the six solutions and formulating two objec-
tives to serve as the focus for the practice phase: (1) opera-
tions and maintenance of AI solutions over time and (2)
human skills in AI solution development. These objectives
focused on using CRISP-DM as a pre-existing model to guide
the theoretical elaboration of AI in manufacturing.

3.3. Practice phase (2021–2022)

The practice phase was executed as longitudinal field studies
that took inspiration from the clinical research approach

Figure 2. Research process in three phases.

Table 1. Overview of the research phase.

Research studies Solution A Solution B Solution C Solution D Solution E Solution F

Bottleneck focus Detect historical
long-term
bottlenecks

Detect historical
long-term
bottlenecks

Detect historical
short-term
bottlenecks

Diagnosis of
historical long-term
bottlenecks

Prediction of future
bottlenecks

Prediction of root
causes for future
bottlenecks

Firm no. 1, 2, 3 1, 3 1 2 3 3
Model Descriptive and

inferential statistics
Dynamic time
wrapping,
agglomerative
hierarchical
clustering

Matrix operations Descriptive statistics,
k-means clustering,
visual analytics

Time-series
methods, inferential
statistics

Time-series, rule-
based prescriptive
analytics

Output Set of historical
bottleneck machines

Set of historical
bottleneck machines

Current bottleneck
machines at any
time instant

Clusters of different
unplanned stops
based on their
features

Set of future
bottleneck machines

Set of root causes
and set of
prescribed actions
for future
bottlenecks
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(Karlsson 2010; Schein 1987). This type of inquiry was chosen
because of its relevance and ability for deep and rich insights
into how a generic phenomenon (i.e. AI) manifests in a cer-
tain context (i.e. manufacturing) by studying problems, peo-
ple, and organisations in real settings (Edmondson and
McManus 2007). Further, since academic AI solutions rarely
progress to or beyond the deployment stage (Schr€oer, Kruse,
and G�omez 2021), longitudinal and clinical field studies were
deemed especially relevant. This approach also allowed for
building continuity in the study by maintaining the structure
of the core research team throughout the research, transi-
tion, and practice phase.

The longitudinal studies were based on sustained partici-
pation across three AI projects within a single automotive
firm. The firm was relevant because it applies to the theoret-
ical domain of the study (i.e. automotive manufacturing) and
it was also directly connected to the firms in the research
phase. The automotive sector is also particularly rich in data
related to the issue of AI in manufacturing, owing to its
advanced manufacturing practices and competitive business
environment. To deal with the limitations of drawing infer-
ences from a single firm, our clinical analysis emphasises the
generalisation of the issues being studied rather than the
generalisation of the specific observations to the population
(Karlsson 2010).

In the three projects, one member of the research team
adopted a fully professional role with the responsibility of
consulting and solving the client firm’s needs, thus serving
the role of a relative insider with an inside-out perspective
(i.e. observing the problem and developing the solution).
The remaining research team served the role of relative out-
siders with an outside-in perspective (i.e. observing the solu-
tion and providing explanations). The continuous dialogue
and exchange of information among the research team
allowed for concurrently providing information to the client
organisation and receiving information for the research
aimed at developing academic knowledge (Karlsson 2010).

In contrast to the research studies (Table 1), it was the cli-
ent organisation that was the problem owner for the field
studies, and the firm representatives chose the projects with
the greatest value potential. This enables a high degree and
involvement in organisational processes (Åhlstr€om and
Karlsson 1996) and provided unique opportunities for
observing more intricate aspects of the CRISP-DM process. By
making observations from within the organisation, the clin-
ical approach overcomes the issues with access that is
denied by other approaches (e.g. case studies or surveys)
(Sk€old and Karlsson 2013). Note that clinical research has
subtle but important differences from action research such
as the problem owner (company representative vs.

researchers) and the data analysis procedures (data feedback
and sharing vs. acting and reflecting) (Karlsson 2010).

Specifically, by collaborating and interacting with multiple
experts who jointly developed AI solutions using CRISP-DM
for extended periods of time, the researcher was able to
become close to the organisation and investigate critical
issues while they are taking place (Sk€old and Karlsson 2007),
thereby discovering new insights. The total time period for
the three projects was approximately one year, encompass-
ing problem framing, planning, and organisational interac-
tions as well as 12weeks of formal execution and
implementation for each project, respectively. Similar to the
research phase, the projects used a variety of AI techniques
for perceiving, processing, learning, and acting from data
(see footnote 1), ranging from statistics to complex learning.
The projects are summarised in Table 2.

While a major advantage of the clinical approach is the
ability to focus on the client’s needs, the drawback is the
restriction on client-researcher confidential data. To extract
knowledge from the field studies, the research team met at
regular intervals in data feedback sessions (Sk€old and
Karlsson 2013). The goal of the sessions was to analyse and
organise critical incidents in the three projects into topics
and categories and make comparisons with existing litera-
ture. The individual sessions followed a four-step protocol:
(1) the relative insider reported the latest critical incidents
and the relative outsiders probed for depth and details in
the descriptions, (2) joint discussions about theoretical inter-
pretations, (3) the relative outsiders reported the latest com-
parisons with literature, and (4) scheduling of the next
feedback session. Between each session, the relative insider
worked on the projects and the relative outsiders made con-
tinuous comparisons with existing theory (see section 3.4). A
total of 18 data feedback sessions were conducted during
the practice phase, lasting between 60–90minutes each,
with the data being recorded as a research diary.

3.4. Feedback loops and interpretation

Owing to the orientation towards theory elaboration
together with the multi-year and multi-method research
approach, the findings were synthesised by continuously
aggregating the insights and comparing them against exist-
ing knowledge (Miles and Huberman 1994). Specifically, the
logic and structure of the feedback sessions follow the
premises of clinical research where analysis and interpret-
ation are intertwined within the field studies and the feed-
back process. Thus, scientific results are not developed in a
linear fashion from raw data to final interpretation but
rather iteratively and non-linearly in parallel processes to

Table 2. Overview of the practice phase.

Field studies AI project 1 AI project 2 AI project 3

Problem domain Outbound logistics Outbound logistics Predictive maintenance
Focus Detection of delivery lead time

discrepancies
Prediction of carrier route behaviour

and delivery lead times
Diagnosis of machine failure root

causes
Output Set of deviations between contracted

and actual lead times
Set of predicted carrier lead times

with automatic tagging of risky
deliveries

Sets of failure modes from
upstream/downstream production
flow or the equipment itself
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the researcher helping the client (Karlsson 2010). That is,
the feedback loops from the practice phase (Figure 2)
focused on researchers’ theoretical elaborations with the
existing models, literature, and insights from the research
and transition phases as lenses for interpretation (Karlsson
2010).

The goal of this elaboration was to achieve deeper and
richer insight into the practical challenges of using CRISP-
DM for realising the value of AI in manufacturing and pre-
scribing solutions for overcoming them. Consequently, the
findings from the field studies were theoretically validated
in relation to existing knowledge (Sk€old and Karlsson
2007), and contributions to theory were analysed by com-
paring emerging insights to the literature (Fisher and
Aguinis 2017). Thus, all results presented in the Findings
section (section 4), including the AI lifecycle in Figure 3,
the tasks and skills in Table 3, as well as the competences,
trajectories, and integration in Figures 4–6, and figures,
were derived from the data collection, feedback loops, and
theoretical interpretations in the research, transition, and
practice phase. The output of our research approach is a
more elaborate and accurate understanding of AI in manu-
facturing as well as a refined and extended CRISP-DM
methodology that can be used in practice, research, and
pedagogy. Thus, the outcomes of the study contribute
both to the advancement of scientific knowledge as well
as solve the practical concerns of the automotive firms
involved.

4. Findings: Enhancing CRISP-DM

The next sections outline our accumulated findings from
six years of research and practice on CRISP-DM. We pre-
sent the results in the form of enhancements to CRISP-DM
in line with our two central complementarities: operation
and maintenance over time, and human skills. First, we
position CRISP-DM as an AI solution life-cycle and describe
how manufacturing firms should use it as a day-to-day
engineering methodology. We then add and explain the
phase of ‘Operation and Maintenance’ and explain the
unique tasks that are needed to operate and maintain AI
solutions in manufacturing environments over time.
Second, we embed the task-based AI-skills framework into
CRISP-DM and describe how it can be used to link tasks to
skills and ultimately integrate competences held by sets of
experts that allow manufacturing firms to make full use of
AI solutions. The tasks and skills are formulated using the
Bloom taxonomy (Anderson and Krathwohl 2001). This
description is presented in two parts, focusing on the task-
level and the organisational-level of the framework,
respectively.

4.1. AI solution life-cycle

Figure 3 displays our elaboration of CRISP-DM as encom-
passing a complete life-cycle of AI solutions – ranging
from the initial idea of a practical problem to a fully-
functioning solution in everyday operations. Our

interpretation depicts CRISP-DM as consisting of seven
phases that are logically and practically intertwined:
Business understanding, Data understanding, Data prepar-
ation, Modelling, Evaluation, Deployment, and Operation
and Maintenance. Since the basic structure and content
of the six phases remain intact from the original version,
we focus on three key messages in our enhanced version
of CRISP-DM: (1) using CRISP-DM as a continuous, active,
and iterative way of working, (2) the need for an initial
conceptual design, and (3) adding ‘Operation and
Maintenance’ as the seventh phase.

Our first key message is that CRISP-DM is not a waterfall
methodology that starts with business understanding, and
progresses sequentially to data understanding, etcetera.
Rather the phases can be executed in a myriad of different
sequences or iterative configurations depending on the
particular context. This is shown in Figure 3 in the form of
a cyclical illustration. Although the execution of specific
tasks within each phase may be temporally separated, all
phases should be considered constantly and simultan-
eously. Thus, we see our version of CRISP-DM as a continu-
ous, active, and iterative way of working. Interpreting
CRISP-DM in this manner has important implications for
how the phases are executed. For example, in one-off AI
projects, the business understanding phase typically solely
focuses on framing the technical problem to be solved. In
a real-world manufacturing organisation, this phase needs
to focus on understanding the business problem from
multiple lenses such as the nature of the decision-making
task (e.g. frequency, time, accuracy), value potentials (e.g.
impact in terms of economic, environmental, or social ben-
efits), and human-machine interactions (e.g. ethics, trust,
and engagement). In fact, it is critical to even explicitly
question whether AI is the right approach to solve the
problem in the first place. Furthermore, working continu-
ously with data understanding and preparation implies not
only finding specific data sets for a certain model but also
systematically developing the infrastructure to enable data
to be used for a diversity of AI solutions. Whereas the
evaluation phase typically solely focuses on model per-
formance (e.g. precision or recall), manufacturing firms
also need to evaluate AI solutions in terms of computa-
tional resources (e.g. deep neural nets require much more
computational power compared to support vector
machines). Similarly, the deployment phase needs to
ensure that models effectively scale with the data and that
the technical infrastructure facilitates AI solutions to not
only continuously learn from new data but also to respond
to feedback and adapt.

Our second key message is the need to consider the
entire AI solution life-cycle and all of the seven phases even
in the early phases of design. Like all design endeavours, the
degrees of freedom are highest at the start but decrease
with time, whereas the cost of making changes has the
opposite trajectory. The final characteristics and performance
of an operational AI solution are path-dependent on the
design choices that are made at an early stage. Thus, the
best opportunity to manage trade-offs in the solution design
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is as early as possible. We therefore recommend manufactur-
ing firms to start by creating an initial conceptual design of
the entire AI solution. That is, start by logically reflecting on
all of the seven phases in Figure 3 and ideally make a simple
yet holistic drawing of the complete AI solution. This draw-
ing should list and sketch all major design choices through-
out the seven phases, even if it is only possible to do so
roughly and imperfectly. Then, and only then, we recom-
mend proceeding by formally executing the core tasks of the
methodology (Table 3). A specific reason why we recom-
mend this initial conceptual design is the fact that the hid-
den costs of operation and maintenance may completely
alter the structural design of the AI solutions. For example,
minor design choices in feature selection and modelling
might come with a massive increase in operational system
complexity. Even tiny changes such as adding one or two
small data dependencies may render the final AI solution
unfeasible, impractical, or overly costly. Thus, if these hidden
costs are neglected during the early design and develop-
ment of AI solutions, value creation will be severely
constrained.

Our third key message is the addition of Operation
and Maintenance as the seventh phase in CRISP-DM.
After an AI solution has been successfully deployed, it is
not automatically time to move on to the next challenge.
In contrast, the AI life-cycle continues long after deploy-
ment. To ensure stable performance over time, AI
solutions need to be carefully operated and maintained.

That is, the AI solution needs to be tuned, updated, and
sometimes even re-designed to meet performance targets
in the long run. Failing to perform this phase is likely to
result in that AI performance deteriorates over time,
which may lead to inaccurate insights and false conclu-
sions that negatively impact the production process. The
underlying reason is that AI models are probabilistic and
work under a set of given assumptions. These assump-
tions stem from the data distributions or the production
processes that are encountered during the training of
the model (in the Modelling phase). In other words,
when AI solutions are put into continuous operations in
manufacturing environments, the future data will not
look like the past data used to build the AI model. This
leads to the inevitable risk of AI drift.

AI drift consists of two forms: data drift and concept drift.
Data drift occurs when training data used in the modelling
phase no longer adequately represent the states of reality,
which can occur for two broad reasons: (1) stochastic changes
in production system behaviour (e.g. machine degradation or
dynamic changes in machine interactions) that alter the statio-
narity and distribution of the data, or (2) data corruption (e.g.
erroneous sensor output or errors incurred through data
pipeline transfer) that introduces faulty data points. Concept
drift occurs when the underlying dynamics of the production
process are changed, e.g. introducing new products, installing
new machines, or altering the production flow. Over time, AI
drift may lead to that AI performance deteriorates, sometimes

Figure 3. AI solution life-cycle.
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even to the point that the AI solution no longer holds
adequate predictive power for interpreting unfamiliar data.

AI drift can be addressed by regularly monitoring AI per-
formance, e.g. deterioration of predictive accuracy. Various
diagnosis methods can be used to diagnose drift such as

sequential analysis method (e.g. systematic analysis of the
data flow through pipelines), time distribution-based meth-
ods (e.g. randomly testing the distribution of the data at dif-
ferent time steps using statistical methods), and automated
checks to detect the corruption of the data at source (e.g.

Table 3. CRISP-DM task-level framework.

Phase Generic tasks Generic skills

Business understanding Deciding the objective function of the solution Assessing factory-level objectives and detecting value
potentials in manufacturing

Selecting the target manufacturing problem Analysing value potentials and articulating connections to
objectives

Measuring the baseline performance of the manufacturing
process

Arguing for suitable performance indicators and calculating
baselines

Deciding the level of desired process improvement for
success

Linking management goals to factory-level goals

Determining whether AI is the right approach for the
problem

Explaining and presenting decision-making structures for
manufacturing problems

Formalising the AI solution in terms of its intended features
and use

Assessing current organisational practices for manufacturing
problems; formulating and reviewing requirement
specifications for AI solutions

Data understanding Deciding the data processing approach based on the target
manufacturing problem (e.g. batch or stream)

Assessing data processing types for manufacturing problems

Procuring the data by establishing data pipelines from
different sources

Determining suitable data types and data sources for
manufacturing problems

Storing the data in a relevant place (e.g. database or data
lake)

Executing data migration and storage procedures

Establishing data pipeline from data storage to AI
workbench

Designing and creating data pipelines

Data preparation Selecting the features of the data based on the target
manufacturing problem

Comparing methods to solve manufacturing problems and
converting their characteristics into model features

Preparing and labelling the data according to the target
manufacturing problem

Interpreting meta-data and categorising labels

Evaluating data quality and formalising improvement actions Identifying, adapting, and reviewing data quality measures
for manufacturing problems

Deciding the sampling strategy of the data for AI training
and testing

Evaluating strategies for model training and testing

Formalising conceptual designs of different AI solutions to
be trained and tested

Designing viable conceptual AI solutions for manufacturing
problems

Establishing performance metrics for the AI solution based
on the target manufacturing problem

Comparing and evaluating the appropriateness of AI
evaluation metrics for manufacturing problems

Modelling Training different AI solutions on the training data sample Assessing viable AI solutions and adapting model
parameters to manufacturing problems

Testing different AI solutions on the testing data sample Reviewing knowledge from training data and implementing
models to unseen testing data

Evaluation Conducting internal evaluation of the different AI solutions
based on the AI performance metrics

Interpreting AI performance and distinguishing adaptations
to model parameters

Conducting external evaluation of the different AI solutions
relative to the baseline performance of the
manufacturing process

Designing and implementing experimental procedures for
manufacturing problems; calculating and interpreting AI
evaluation metrics relative to current organisational
practices

Evaluating trade-offs based on internal and external
evaluation and choosing the final AI solution

Linking knowledge from AI solution evaluation to the
objective function; interpreting AI evaluation results and
comparing the performance of viable AI solutions

Deployment Establishing data pipelines from AI workbench to
dashboards for visualisation of AI insights

Designing, creating, and optimising data pipelines

Validating the AI solution in its intended environment using
offline testing

Assessing the usability of AI solutions from multiple
stakeholders

Tuning the AI solution parameters (if necessary) Assessing user feedback and determining actions for AI
solution optimisation

Embedding AI solution in live operating environment at
scale

Designing, building, and implementing scalable User
Experience designs for AI solutions

Optimising the AI solution for insights consumption from
end-users

Assessing user feedback on AI solutions from multiple
stakeholders

Operation and
Maintenance

Continuously consuming AI insights and taking relevant
actions to improve the target manufacturing problem

Interpreting AI insights and directing actions to
manufacturing problems

Continuously collecting user feedback and taking relevant
actions on the AI solution (e.g. human-in-the-loop)

Evaluating actions taken towards manufacturing problems
and directing AI solution improvements

Establishing metrics to monitor AI performance in the
operating environment

Proposing continuous AI metrics for manufacturing
problems

Deciding on the frequency of monitoring of data and
concept drift

Creating and implementing management practices for data
and concept drift

Continuously taking actions for mitigating data and concept
drift and ensuring AI solution performance over time

Distinguishing data and concept drift and articulating
changes to AI solution design
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automatically detect if the sensor data is missing or out of
range). If drift is detected, multiple options can be pursued
to restore the performance of the model. For example, in
instances of minor drift, one-shot retraining on new data
(e.g. using the latest time window of the data) or incremen-
tal retraining on new data (e.g. collecting the data from the
recent time window after drift has been detected and
appending it to the training data set) may be sufficient to
ensure that the model parameters adequately reflect the
new data distributions. However, instances of major drift are
often complicated by a lack of sufficient data that reflects
the updated production system behaviour, requiring the AI
solution to be partly re-designed (e.g. creating ensemble
models for increased robustness) or even fully re-designed
(i.e. essentially bringing the AI solution life cycle back to
square one).

Thus, carefully operating and maintaining AI solutions
over time is necessary to prevent AI drift and consistently
ensure a desirable level of AI performance. This phase
thereby encompasses the use of a variety of maintenance
policies to ensure the functioning of the AI solution and its
supporting infrastructure (Khazraei and Deuse 2011). For
example, policies corresponding to time-based and/or condi-
tion-based maintenance could be used to maintain the pipe-
lines that supply AI solutions with data (e.g. machine to
cloud interfaces), and design-out maintenance could be used
to eliminate recurrent AI drift by re-designing the commis-
sioned, in-service AI solution.

4.2. Task-level framework

In this section, we embed the task-based AI-skills framework
(Figure 1) into our enhanced CRISP-DM version (Figure 3) to
create a holistic and practical model that supports manufac-
turing firms in making full use of AI. We present the task-
level framework in a schematic and tabular format to
substantiate the relationship between tasks and skills
(Table 3). On the left side of the table, we illustrate the
demand-side in the form of the CRISP-DM phases. Each of
the seven CRISP-DM phases represents a task bundle. On the
right side of the table, we illustrate the supply-side in the
form of the corresponding skill bundle for each phase,
respectively. This framework thereby provides a comprehen-
sive yet intuitive way of linking tasks to skills.

In Table 3, we list a set of generic tasks and skills that we
consider indispensable for developing AI solutions in manu-
facturing. That is, while the tasks and skills are described in a
generic manner, they are indeed specific to AI solution
development for manufacturing scenarios. Note that Table 3
is not intended to be an exhaustive list but rather aims to
cover the most important and stable tasks and skills that
apply to most manufacturing contexts. Thus, individual man-
ufacturing firms may complement their use of the model by
also listing specialised tasks and skills together with docu-
mentation of process instances that apply specifically to their
firm’s context. The tasks and skills in Table 3 were derived
from the data collection, feedback loops, and theoretical

interpretations in the research, transition, and practice phase
(see sections 3.1 to 3.4).

4.3. Organisational-level framework

In this section, we describe the organisational-level of the
framework by highlighting how the tasks and skills in
Table 2 emerge into competences, experts, and jobs. The
findings in this section (including Figures 4–6) were derived
from using the task-based framework in Figure 1 as a theor-
etical lens for interpreting the research, transition, and prac-
tice phase in the feedback loops (see sections 3.1 to 3.4).
From the tasks and skills across the seven CRISP-DM phases
in Table 3, three distinct competences emerge: domain, data
science, and data engineering.

Domain competence is specific to the tasks of the prob-
lem domain and accumulated through prior learning from
working within that domain. For example, it may consist of
knowledge of production flows, previous experience with
industry best practices, and an in-depth understanding of
manufacturing process technologies. This competence is crit-
ical for identifying and formulating manufacturing problems,
finding relevant data, providing input to AI solution develop-
ment from a user perspective, and taking actions based on
algorithmic insights during operations.

Data science competence is specific to the tasks of
extracting knowledge from data and accumulated through
prior learning from using AI technologies. For example, it
may consist of deep knowledge of ML algorithms and data
wrangling techniques, programming in AI software, and an
understanding of evaluation strategies and metrics for AI
performance. This competence is critical for designing, devel-
oping, and validating AI solutions that serve the needs of
users.

Data engineering competence is specific to the tasks of
building infrastructure that facilitates the collection, curation,
consumption, and control of data. For example, it may con-
sist of knowledge of IT architectures, an understanding of
database systems, and experience in establishing efficient
data pipelines. This competence is critical for developing the
technical infrastructure that enables access to valuable data
sources as well as facilitates final AI solutions to be effect-
ively used in operational settings.

On the left side of Figure 4, the three types of compe-
tences are illustrated as distinct entities that encapsulate
sets of matching task and skill bundles. On the right side
of Figure 3, the overlapping area between the three com-
petences represents the shared entity that encompasses
the core competences that are needed for developing AI
solutions in manufacturing. We considered these three
competences as non-substitutable for developing AI solu-
tions in manufacturing. That is, each competence is neces-
sary but not sufficient for AI success. This implies that the
absence of any of the competences acts as a bottleneck
that guarantees failure, but that the presence of all these
competences does not guarantee success because also
other competences play a role. Thus, individual
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manufacturing firms may also include other competences
that are beneficial to developing AI solutions in their
context.

All three competences must be involved throughout the
CRISP-DM process. However, the degree of involvement
among the competences varies across the different phases,

resulting in that the competences interact differently with
each other over time. In Figure 5, we schematically illustrate
the trajectories of involvement for the domain-, data science-
, and data engineering competence. The involvement of
domain competence follows a u-shaped curve; starting at a
high level, reducing in the middle, and returning to high levels.

Figure 5. Trajectories of involvement from the domain, data science, and data engineering competence throughout the seven CRISP-DM phases.

Figure 6. Cross-functional integration of experts.

Figure 4. Domain, data science, and data engineering competence.
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This reflects how domain competence is central for identifying
and framing the problem as well as interpreting and taking
action on AI insights during operations. The involvement of
data science competence follows a logistic growth curve; start-
ing at a low level, increasing rapidly, and maintaining high
throughout the process. This reflects how data science compe-
tence is central to the core design and development of the AI
solution and making sure it consistently works as intended dur-
ing operations. The involvement of data engineering follows a
bimodal curve that peaks twice during the process. This reflects
how data engineering comes into place when creating the data
pipelines for the AI solution and facilitating its deployment and
implementation in operational settings.

The three competences are embodied by experts, which
are individuals that hold jobs tied to a manufacturing firm’s
organisation. In most cases, each unique competence is held
by different individuals, but in special cases, all competences
can also be held by a single individual. The key for manufac-
turing firms is therefore to ensure the presence of domain
experts, data science experts, and data engineering experts.
These individuals are typically tied to specific positions
within distinct organisational functions (left side of Figure 6).
For example, domain experts can typically be production or
maintenance engineers working in the operations function,
data science experts can be ML engineers working in the data
analytics function, and data engineering experts can be infor-
mation systems engineers working in the IT function.
Consequently, manufacturing firms are advised to establish
cross-functional integration of these experts. With integration,
we mean that distinct and interdependent experts constitute
a unified whole by coordinating, communicating, and collabo-
rating throughout the CRISP-DM process. While we show this
as an internal-functional relationship on the right side of
Figure 5, it could also be external-functional or a mix of both.
Cross-functional integration can be achieved through a variety
of integrative mechanisms, such as formalisation and cross-
unit structures. In Figure 6, we exemplify the use of multi-dis-
ciplinary teams as the integrative mechanism.

The integration of experts into cross-functional teams also
allows for addressing conflicting or contradictory objectives and
interpretations. For example, data scientists might strive to
maximise model precision whereas domain experts might sat-
isfy with false positives in favour of model simplicity, and data
engineers might prefer flexibility in data structure or type to
facilitate data flows through pipelines whereas data scientists
often seek to reduce risks by working with pre-defined data for-
mats. Close communication, collaboration, and coordination
between experts allow for resolving conflicts through mutual
agreement, and introducing additional liaison roles into the
team can further strengthen expert integration.

5. Illustration: CRISP-DM for data-driven bottleneck
detection

To showcase the implications of our enhanced CRISP-DM meth-
odology, we now provide an illustration of our empirical find-
ings. The intention is to provide a broadly accessible illustration
that helps manufacturing firms in realising the value of AI in

their own organisations. The illustration consists of a post-hoc
application of the enhanced CRISP-DM methodology to one of
the studies in the research phase (Figure 2 and Table 1): the
generic hierarchical clustering approach for detecting bottle-
necks in manufacturing (Subramaniyan et al. 2020b).

This approach was chosen not to highlight specific prior
work in the research phase, but for the following main rea-
sons. Due to the nature of the client-researcher confidential-
ity of the field studies (see section 3.3), using a published
article as the focal case for illustration allows us to provide a
more detailed and elaborate description that supports manu-
facturing practitioners. Further, in-depth information about
the tasks, skills, and other nuances required to develop the
complete AI solution remains hidden in the original article.
But as members of the research team that conducted the
study and published the original article, we are able to syn-
thesise the original research with the empirical findings from
the field studies to elaborate on these hidden aspects of the
CRISP-DM process. Note that we do not intend to provide a
fully exhaustive demonstration of every detail, rather the
goal is to illustrate how the enhanced CRISP-DM method-
ology can be used in manufacturing practice.

We present the illustration in four steps. In section 5.1, we
describe the empirical setting of the study and outline the initial
conceptual design of the AI solution. In section 5.2, we describe
in tabular format the tasks and skills needed to execute all
seven phases of the CRISP-DM methodology. In section 5.3, we
show how the team of domain, data science, and data engin-
eering experts was formed and organised throughout the pro-
ject. In section 5.4, we explain how the competences are related
to the technical details of the AI solution architecture.

5.1. Empirical setting and initial conceptual design

The empirical setting was an automotive manufacturing firm
in Sweden and a production system consisting of 13
Computer Numerical Controlled (CNC) machines in a serial
line flow (see section 3.1). Event log data was collected from
a Manufacturing Execution System (MES). The manufacturing
firm was interested in detecting bottleneck machines in the
production line. Consequently, the study aimed to develop
an AI solution for detecting historical long-term bottleneck
machines in the production system. While there are various
methods for identifying bottlenecks, many of them have lim-
ited applicability in practice due to difficulties in managing
data from time-varying dynamic systems and underlying stat-
istical assumptions (e.g. statistical distribution, autocorrel-
ation, cross-correlation, and stationarity). The lead researcher
realised that unsupervised ML techniques such as hierarchical
clustering of time series could overcome these limitations.
Hence, the project started with the creation of an initial con-
ceptual design of a six-step AI solution by reflecting on the
complete AI life-cycle (see Figure 7). Based on this initial
design, the team was ready to proceed by executing the for-
mal phases of the CRISP-DM methodology. For additional
details regarding data collection, selection of bottleneck
detection method, data pre-processing, algorithm
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architecture, and cluster interpretation, see pages 146–154 in
Subramaniyan et al. (2020b).

5.2. Tasks and skills for historical bottleneck detection

In Table 4, we outline the tasks and skills needed throughout
the seven CRISP-DM phases for developing an AI solution
capable of detecting historical throughput bottlenecks using
event log data. For the illustrative demonstration, the task
and skills in Table 4 were derived from the original article
and the authors’ own post-hoc reflections, and they were
assessed using the empirical findings of the present study
(section 4) as a theoretical lens.

5.3. Competences and expert team for bottleneck
detection

The project team consisted of nine core individuals that
jointly possessed the shared domain, data science, and data
engineering competence: six researchers from two univer-
sities specialising in industrial engineering, computer science,
and data management, and three engineers from the manu-
facturing firm specialising in production and maintenance
engineering as well as information systems. The integrative
mechanism used was the formation of a dedicated team for
the duration of the project. The structure and members of
the team are illustrated in Figure 8.

5.4. Relationships between AI solution architecture and
competences

The expert team (Figure 8) encompassed the shared domain,
data science, and data engineering competence that enabled
a match between the task bundles and skill bundles

throughout the CRISP-DM process (Table 4). To further illus-
trate the crucial role of all three competences, we now
exemplify relationships between the technical AI solution
architecture and the competences. The AI solution architec-
ture for bottleneck detection proposed in Subramaniyan
et al. (2020b) consists of first collecting the event log data
files of the different machines followed by generating the
active period time series profile for each machine. The algo-
rithm then uses Dynamic Time Wrapping (DTW) to compare
the similarity between the time series. DTW was chosen due
to its superior abilities in dealing with multi-dimensional and
multi-variate time series with high efficiency and robustness.
DTW also solves the computational challenge stemming
from the dynamic nature of comparing each element of a
time series with the corresponding element of another time
series. Still, DTW needs sufficient computational power to
compute the pair-wise similarity score between different
time series. Thereafter, the algorithm applies a complete-link-
age agglomerative hierarchical clustering technique to gener-
ate clusters of machines with similar dynamic profiles that
enable the detection of bottlenecks.

All three competences were necessary for realising the
technical structure of the bottleneck detection solution. For
example, domain competence was crucial for assessing the
practical relevance of the solution in light of factory physics,
especially to ensure that the algorithm correctly captures the
shifting nature of bottlenecks where the bottleneck moves
between the machines in the system along with time. This
understanding of shiftiness in the real-world system was
essential to the choice of DTW as the most suitable similarity
measure. However, since DTW is computationally challeng-
ing, data engineering competence was crucial in designing
the recommended number of computing notes (e.g. in
Microsoft Azure) and balancing this against computing costs.

Figure 7. Initial conceptual design of the AI solution for bottleneck detection.
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Table 4. Tasks and skills for developing the AI solution for bottleneck detection.

Phase Tasks Skills

Business understanding The objective function is to increase the throughput of the
production line

Assessing objectives in the focal factory and detecting value
potentials in throughput improvements

The target problem is to identify historical bottlenecks in
the production line

Analysing factory dynamics and articulating connections to
bottleneck analysis

The baseline performance is the average historical
throughput of the production line (number of products
produced)

Arguing for throughput as a suitable performance indicator
for bottleneck analysis and calculating the baseline

The desired process improvement is a 10% increase in
throughput, matching the tact time of the product
demand

Linking management goals to measurable throughput
improvements

Bottleneck analysis is a high frequency problem that
influences daily operations; a high impact problem that
determines the throughput of the production line; and a
time-consuming decision-making process

Explaining and presenting the decision-making structure of
bottleneck analysis in the focal factory; arguing for the
need for an AI solution

Current practice of manual analysis using value stream
mapping leads to a lack of granular insights into system
dynamics leads to vulnerable assumptions and
ambiguous decisions

Critically assessing current bottleneck management practices
in the focal factory

The AI solution should be capable of identifying the
bottleneck in any historical time frame; the AI solution
should avoid vulnerable assumptions and provide
granular insights into system dynamics

Formulating requirement specifications for AI solution for
bottleneck analysis; reviewing requirement specifications
relative to management goals and improvement goals

Data understanding A batch approach for data processing is suitable for
historical bottleneck analysis

Assessing data processing types for historical bottleneck
analysis

Procuring two years of historical event log data from the
MES system

Determining the suitable data type and data source for
bottleneck analysis

Storing event log data in Microsoft Azure data lake Executing data migration and storage procedures from MES
system to Microsoft Azure

Establishing a data pipeline between the Azure data lake
and an AI workbench in Snowflake and Python

Designing and creating data pipelines in Azure, Python, and
Snowflake; programming in Python and Snowflake

Data preparation Feature #1 - Date and time-stamp of machine events;
Feature #2 - Machine states (encoded as Andon lights);
Feature #3 - Alarm information for the corresponding
machine states

Comparing bottleneck analysis methods and converting
their characteristics into model features

Creating labels of machine states by interpreting the Andon
lights and corresponding alarm information

Interpreting meta-data and categorising labels according to
the selected bottleneck analysis method

Labelling the procured data set with machine states Relating data points to label definitions
Within each machine, assessing missingness and errors in

the recording of date and time-stamps
Identifying and adapting data quality measures to

bottleneck analysis
Across each machine, comparing the time stamps and

assessing the flow of production
Reviewing data sets in relation to data quality measures

Choosing a 50/50 split for training and testing data (one
year of data each)

Evaluating strategies for bottleneck analysis model training
and testing

Formalising three conceptual designs of AI solutions to train
and test; AI solution #1 - Clustering (hierarchical) and
classification (rule-based); AI solution #2 - Regression
(linear) and classification (hypothesis testing); AI solution
#3 - Rule-based classification (maximum active period)

Designing viable conceptual AI solutions for bottleneck
analysis

Choosing confusion matrix for evaluating classification
models; focusing on precision and recall

Comparing relevant AI evaluation metrics and evaluating
the appropriateness for bottleneck analysis

Modelling Modelling the time and machine states information from
the procured and labelled data set

Distinguishing temporal information of test data and
machine states for bottleneck analysis

Applying the different AI solutions to the training data (e.g.
hierarchical clustering and rule-based classification)

Executing Python-based AI libraries suitable for the temporal
information and set of viable AI solutions for bottleneck
analysis

Tuning the model parameters based on training
performance (e.g. distance metric, cluster generation
technique, linkage method)

Assessing viable AI solutions and adapting model
parameters to the specific bottleneck problem

Applying the different AI solutions to the testing data Reviewing knowledge gained from training data and
implementing bottleneck analysis models to unseen
testing data

Tuning model parameters based on testing performance Interpreting AI performance on testing data and
distinguishing suitable adaptations to bottleneck analysis
model parameters

Evaluation Evaluating the precision and recall of all AI solutions;
placing particular emphasis on recall (decision-makers
can analyse false positives and decide on suitable
strategies)

Calculating and interpreting AI evaluation metrics relative to
bottleneck management practices in the focal factory

Implementing the AI solutions and observing if the
objective function is met (i.e. incremental increase of
throughput from use)

Interpreting AI model results relative to bottleneck
management practices and improvement goals in the
focal factory; designing and implementing experimental
procedures for bottleneck improvement procedures

Comparing the AI performance results from internal and
external evaluation

Linking knowledge from AI solution evaluation to the
throughput of the production line

(continued)
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This competence was also necessary for designing and estab-
lishing seamless data pipelines (e.g. from Snowflake to
Azure) that fed the AI solution with high-quality data at the
right time.

Further, a key interplay between domain and data science
competence occurred in the clustering step. Here, data science
competence was the key to designing the algorithm so that it
starts with each machine as a separate cluster followed by link-
ing the different units to form distinct clusters. The domain
competence was key to selecting the number of clusters and
visually interpreting the representative time series for each clus-
ter and detecting the cluster containing the bottleneck
machine. Furthermore, in cases where additional computational
power cannot be provided, trade-offs between the choice of
similarity measure, computational power, and accuracy of
bottleneck detection needed to be managed. Such trade-offs
required a combination of all three competences to modify the
algorithm semantics and assign them with desired accuracy
and necessary computational power.

In essence, these relationships further illustrate how
domain, data science, and data engineering competence are
individually necessary for the creation of impactful AI solu-
tions in manufacturing. Thus, when all competences are pre-
sent, it is possible to solve real-world manufacturing
problems with AI solutions.

6. Discussion

Motivated by the slow pace of diffusion and lack of substantial
success in realising AI productivity gains within manufacturing,
we report a six-year analysis of AI in manufacturing that yielded
a subsequent enhancement of the CRISP-DM methodology.
With a focus on two key complementarities – operation and
maintenance of AI solutions over time and human skills – we
support manufacturing firms to become better equipped to
reap the benefits of AI in their organisations. The enhanced
CRISP-DM methodology proposed in this article has a range of
academic and practical implications.

6.1. Academic implications

We enhance the CRISP-DM methodology in three major ways,
each having clear implications for industrial engineering as well
as operations and supply chain management. First, our elabor-
ation of CRISP-DM as a complete life-cycle of AI solutions
(Figure 3) strongly emphasises the need for a holistic view of
the design, development, and implementation of AI solutions
in manufacturing. Whereas most applications of CRISP-DM in
manufacturing are one-off projects executed sequentially
(Schr€oer, Kruse, and G�omez 2021), we highlight the full and
cyclic nature of the AI solution life-cycle. This life-cycle

Table 4. Continued.

Phase Tasks Skills

Choosing Solution #1 (clustering and classification) as the
final AI solution

Interpreting AI evaluation results and comparing the
performance of viable AI solutions

Deployment Establishing a data pipeline from the AI workbench
(Snowflake and Python) to Power BI

Designing, creating, and optimising data pipelines for
latency performance in Snowflake, Python, and Power BI;
devising suitable visualisation techniques

Conducting offline testing of the AI solution in its intended
environment

Assessing the usability of AI solutions from multiple
stakeholders

Conducting user interaction tests (e.g. evaluate latency);
collecting and evaluating user feedback (e.g. changing
dendrograms to text messages that state which machine
was the bottleneck); updating model parameters based
on user feedback (e.g. assessing latency relative to the
choice of cluster generation technique)

Assessing user feedback and determining actions for AI
solution optimisation

Implementing the AI solution in the live environment to all
intended users in their desired interfaces (e.g. laptops,
mobile phones, tablets)

Building and implementing User Experience design for the
AI solution; designing and creating scalable infrastructure
for the AI solution

Collecting and evaluating user feedback in the live
environment (e.g. evaluate speech recognition to deliver
voice message of the current bottleneck)

Assessing the usability of the AI solution from multiple
stakeholders

Operation and
Maintenance

Continuously consuming AI insights and taking relevant
actions on the identified bottleneck machine(s) (e.g.
dynamic buffers in front of bottleneck machines)

Interpreting AI insights and directing actions to mitigate or
eliminate bottlenecks

Continuously collecting user feedback and taking relevant
actions on the AI solution (e.g. improving recall by
reducing missed actual bottlenecks)

Evaluating actions taken towards the bottleneck and
devising AI solution improvements

Regularly evaluating data drift by checking elbow plots Reviewing bottleneck behaviour and attributing factory
dynamics to data drift

Regularly evaluating concept drift by assessing formal
records (e.g. introducing new products or changing the
flow)

Reviewing bottleneck behaviour and attributing factory
dynamics to concept drift

Establishing routines and alert system for evaluation of data
and concept drift every six months

Creating and implementing management practices for data
and concept drift

If data drift is observed, go back to the modelling phase
and re-evaluate the AI solution

Distinguishing data drift and articulating changes to AI
model parameters

If concept drift is observed, go back to business
understanding and re-evaluate the need to design a new
AI solution

Distinguishing concept drift and articulating changes to AI
solution design and/or target bottleneck problem
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encompasses much more than the technical development of
prediction models. It puts an equally strong emphasis on iden-
tifying and framing manufacturing problems as AI problems,
drafting conceptual designs, fostering the usability of AI solu-
tions to shop floor practitioners, and enabling efficient human-
AI interactions during daily operations.

Second, by adding ‘Operations and Maintenance’ as the
seventh phase of CRISP-DM, we put the spotlight on the dif-
ficult trade-offs and hidden costs of operating and maintain-
ing AI solutions over time. By incorporating such challenges
into an explicit part of CRISP-DM, it is possible to overcome
the caveat that most AI solutions in manufacturing get stuck
in the deployment phase (Schr€oer, Kruse, and G�omez 2021;
Studer et al. 2021). Specifically, researchers need to carefully
consider techniques and practices for managing data and
concept drift, otherwise, AI performance risks deteriorating
over time and incurring hidden maintenance costs (Sculley
et al. 2015; Tripathi et al. 2021; Dreyfus et al. 2022).

Third, by embedding a novel task-based framework within
CRISP-DM (Figure 1), we provide clarity in the meaning and
relationships between tasks, skills, competences, experts, and

jobs. By mapping tasks and skills (Table 3), we show that AI
solution development in manufacturing encompasses a lot
more than sophisticated data wrangling. While existing
research has emphasised the need for combined domain
and data science competence (Li et al. 2021; Hiruta et al.
2019; Huber et al. 2019), we firmly position and explain the
critical role of data engineering competence (Figure 4).
Further, we provide a novel visualisation of the trajectories
of all three competences throughout the CRISP-DM phases
(Figure 5). Thus, any endeavour to develop AI solutions in
manufacturing needs to ensure the presence of all three
competences and the corresponding integration of experts
to enable successful value creation from AI (Figure 6).

6.2. Practical implications

Our enhanced CRISP-DM version has two major implications
for manufacturing practice. First, we hope to put the last nail
in the coffin of viewing AI solution development in general
and CRISP-DM in particular as a waterfall process executed in

Figure 8. Competences and expert team for developing the AI solution for bottleneck analysis.
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dedicated, one-off projects. We strongly encourage manufac-
turing firms to embrace the full life-cycle of AI solutions and
use the enhanced CRISP-DM as a continuous, active, and
iterative way of working. Putting and keeping organisational
practices in place that fully encompass the AI solution life-
cycle is key to the successful realisation of AI productivity
gains in manufacturing. Moreover, extending CRISP-DM into
operations and maintenance will help managers budget for
AI investments and more accurately evaluate Return on
Investment (ROI). At present, ROI is typically evaluated
shortly after the AI solution is deployed. However, due to the
risk of AI drift, the performance of the AI solution may
quickly fluctuate or change, affecting the possibility to realise
projected productivity gains. Thus, managers need to allo-
cate additional budgets for the maintenance of AI solutions
to ensure their long-term value potential.

In effect, including Operations & Maintenance as a formal
part of CRISP-DM stimulates a more holistic and long-term
approach to developing and scaling AI solutions by incentiv-
izing manufacturing firms to revise their mindset (e.g. consid-
ering AI maintenance already from the start to support
technology scaling and avoiding unexpected and expensive
mistakes), systems (e.g. tech tools to maintain and ensure the
smooth working of the algorithms), and process (e.g. defined
ways of working for detecting and rectifying data and con-
cept drift). Thus, manufacturing firms can use CRISP-DM to
scale AI solutions by establishing repeatable procedures for
ensuring robustness (e.g. handling variations of incoming
data), maintainability and flexibility (e.g. making offline
changes and efficiently deploying them live), and budgeting
(e.g. anticipating and allocating costs to AI maintenance).

Second, embedding the task-based framework within
CRISP-DM facilitates managers to design and assemble man-
ufacturing analytics teams that encompass all necessary com-
petences as well as staffing projects and organisational
functions with key experts. The framework can also be used
as a strategic tool to assess the current state of existing com-
petences (in-house and/or externally sourced) and continu-
ously monitor the match between tasks and skills in line
with technological change. For example, manufacturing firms
can use it to identify imbalances between the demand (tasks,
jobs) and supply (skills, competences, experts) of labour that
are specific to manufacturing AI in their own context. If mis-
matches between tasks and skills are detected, managers
can pursue supply-demand matching strategies through
human capital investments (e.g. education, training, or hir-
ing). The description of tasks and skills in Tables 3 and 4
may also be useful for formulating desired job descriptions
and distributing workplace ads. Here, it is important to dis-
tinguish between the terminology for the generic competen-
ces (i.e. domain, data science, data engineering) and the
terminology for the professional roles embodying the com-
petences (e.g. AI-oriented roles with various task-skill profiles
are referred to using multiple and potentially overlapping
terms such as ‘ML Engineer’, ‘AI Engineer’, ‘DL Engineer’,
‘Software Engineers’, or ‘Data Analyst’) (Meesters, Heck, and
Serebrenik 2022).

6.3. Future research

Although our enhanced CRISP-DM methodology takes a leap
forward in realising the value of AI in manufacturing, there
are still improvement potentials and avenues for future
research. To stimulate the progression of the field, we par-
ticularly suggest the following five directions.

First, much more emphasis needs to be put on research
that specifically targets the ‘Operations and Maintenance’ phase
of the CRISP-DM methodology (Figure 3). Specifically, there is a
dire need to develop methods, tools, and techniques for man-
aging AI drift in manufacturing settings. At present, there are
no clear guidelines or standardised procedures for monitoring
and acting against data and concept drift (Table 3). For
example, should data scientists manually monitor AI perform-
ance over time, or could models be embedded with the cap-
ability of automatically detecting drift?

Second, further research is needed on the behavioural
aspects of AI in manufacturing. While current research has
made substantial progress in the technical aspects of solving
practical problems with industrial data and ML algorithms,
there is plenty of work to do to figure out best practices for
supporting end users in consuming and acting on AI
insights. One direction is to continue research on super-
imposed model functions such as explainability (Rudin 2019;
Barredo Arrieta et al. 2020), yet such technical aspects should
ideally also be linked to human behaviour. For example, one
fruitful avenue would be to study how model transparency
and reliability influence how manufacturing practitioners
develop trust in AI technology (Glikson and Woolley 2020).

Third, while our mapping of tasks and skills (Table 3) aims to
cover the most important and stable characteristics of AI solution
development in manufacturing, it is not intended to be exhaust-
ive. Researchers can therefore delve even deeper by also identi-
fying specialised tasks and facilitating efficient documentation of
process instances that widely apply in manufacturing contexts.
As the embedded task-based framework (Figure 1) bridges the
economic and educational literature on both the supply- and
demand-side of the labour market, our enhanced CRISP-DM
methodology may also be used as inspiration for developing
novel curricula, courses, and teaching and learning activities in
both higher education and professional education aimed at dif-
fusing and accelerating AI in manufacturing.

Fourth, as this research took its departure from independ-
ent and stand-alone AI solutions (e.g. one specific solution
for long-term bottleneck detection), future research should
be devoted to expanding both the CRISP-DM methodology
and its inherent tasks and skills for end-to-end AI solutions,
e.g. when multiple models are combined or when one model
provides input into to another model (i.e. interaction). While
such solutions are still exceptionally rare in manufacturing,
they are likely to be much more prevalent in the future.
CRISP-DM could be a viable methodology for communicating
one model output to another model as well as facilitating
the thinking about required data engineering procedures to
make such communication possible. Further, it can be antici-
pated that such solutions would broadly require the same
core competences executing the same tasks, but that new
and other potentially necessary competences might emerge.
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Fifth, as Generative AI (GAI), e.g. ChatGPT by Open AI, and
associated transformer models have recently seen significant
advancement and gained extreme popularity and hype, both in
society at large and in manufacturing, it is imperative that
future research investigates how CRISP-DM can be used and/or
adapted to accommodate GAI development as well as help to
excel its diffusion and impact in manufacturing.

7. Conclusions

To stimulate productivity gains from AI, we embarked on a
multi-year and multi-method process that comprised a total of
six years of research and practice. Our analysis provided novel
insights into the management of AI complementarities in man-
ufacturing and laid the foundation for enhancing the popular
and widely used CRISP-DM methodology. Specifically, we
extend CRISP-DM into a full life-cycle of AI solutions by adding
the phase of ‘Operation and Maintenance’. We also embed a
task-based framework into CRISP-DM that provide guidance for
linking tasks to skills and integrating competences held by
experts. Using the enhanced CRISP-DM methodology will sup-
port manufacturing firms in becoming better equipped to reap
the benefits of AI. We also open the avenues for new research
on the challenges inherent to operating and maintaining AI sol-
utions over time, managing AI drift, and ensuring the presence
of necessary competences to enable successful value creation
from AI.

We conclude by providing the following four core recom-
mendations. First, we advise manufacturing firms to use the
enhanced version of CRISP-DM as a continuous, active, and
iterative way of working. Embrace the full life-cycle of AI solu-
tions and recognise how all seven phases are intertwined.
Second, recognise the critical role of operating and maintaining
AI solutions over time. Realise that decisions made in early
phases of AI design may result in hidden maintenance costs
and acknowledge that deterioration of AI performance due to
AI drift needs to be carefully managed. Third, for any endeav-
our to develop AI solutions, carefully map tasks with skills and
recognise that the presence of domain, data science, and data
engineering competence is necessary for success. Make sure to
staff AI development endeavours with a suitable set of experts
that are cross-functionally integrated. Fourth, use the CRISP-DM
methodology as a guiding framework and strategic manage-
ment tool to monitor the match between tasks and skills.
When imbalances are detected, pursue supply-demand match-
ing strategies through human capital investments.

Note

1. In this article, we focus on the practical usefulness of AI in
manufacturing, i.e., that AI solutions can be adapted contextually and
effectively used by practitioners to achieve desired outcomes by being
both useful (capable of creating benefits) and usable (target outcomes
that can be influenced). Further, in light of the lack of a consensus
definition of AI, we uphold a ‘toolbox interpretation’ of AI and refer to
the concept in a broad sense; encompassing a variety of methods, tools,
and techniques for perceiving, processing, learning, and acting from data.
Thus, Machine Learning (ML) and Deep Learning (DL) are subsets of AI.
For discussions on conceptualizing AI in manufacturing, see e.g.,
Subramaniyan et al. (2021) or Helo and Hao (2022).
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