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Hierarchical LSTM-based Classification of
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Abstract—A lack of knowledge of the heating systems used by
electricity consumers impedes distribution system operators in
developing a sound grid upgrade plan and estimating potential
demand flexibility from these consumers. The large-scale rollout
of smart meters for electricity consumers provides an excellent
opportunity to identify end users’ heating types. This paper
proposed a hierarchically structured deep-learning framework
for identifying heating types of individual electricity consumers.
The main contributions of the paper are: (a) We propose an
effective framework based on long short-term memory (LSTM)
that offers an effective automatic feature learning from sequential
electricity consumption data and weather conditions. (b) We
apply the proposed deep-learning architecture for household
heating type classification which is among the first few successful
reports on this application. We evaluate the performance using
hourly measurement data collected over four years from one
and two-family dwellings with either district heating, exhaust air
heat pumps or direct electric heating as the heating type. Good
performance was shown from the test results using the proposed
framework, with an average test accuracy of 94.2%. Comparisons
with four existing machine learning algorithms using hand-
crafted features and a single-layer LSTM-based deep-learning
algorithm have shown marked improvement of the proposed
method.

Index Terms—classification algorithms, deep learning, energy
consumption, energy measurement, feature extraction, heating
systems, long short term memory, recurrent neural networks,
smart meter

I. INTRODUCTION

THE energy requirement for interior space heating and
domestic hot water production for residential buildings

constitutes an essential share of European energy demand
[1]. By utilizing a building’s thermal inertia, electric heating
has considerable potential to supply demand flexibility to
the electrical grid [1], [2]. For grid-planning decisions, the
distribution system operators (DSOs) need a better knowledge
of their customers’ heating types. This is needed to make
a more accurate peak load estimation for grid dimensioning
purposes, especially in newly planned load areas. Furthermore,
DSOs would be continuously informed on the hosting capacity
of their grid if they could keep track of the change in the
heating system of their consumers. Moreover, knowing the
consumers’ heating types offers the possibility to estimate the
demand flexibility potential available in their grids. Thus, the
improved knowledge of their customers’ heating types can
help the DSOs to reduce the safety margin needed during both
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the operation and planning phase of the grid in a controlled
way and allows integration of more electric vehicles and solar
PVs into their grid while fulfilling power quality requirements.
However, there is no obligation for electricity consumers to
notify their grid operator of energy efficiency measures or
the types of heating systems. The large-scale rollout of smart
meters for electricity consumers, plus publicly available data,
provides a great opportunity for DSOs to determine end users’
heating types automatically, without needing to contact them.

Many approaches have been used to identify different char-
acteristics of electrical consumers, including statistical tech-
niques [3], [4], conventional unsupervised machine learning
(ML) [5]–[7] and supervised ML approaches using hand-
crafted features [8]–[11]. References [3] and [4] both devel-
oped Bayesian frameworks to predict the match between load
profiles and their associated heating types. Reference [3] used
time-series data measured directly from the heat pumps (not
usually available). Furthermore, [4] was only able to identify a
single heating type. Reference [5] used support vector regres-
sion (SVR) to extract energy signatures from electricity con-
sumption and outdoor air temperature measurements, followed
by k-means clustering to find the signatures of heating-type
clusters. Reference [6] used fuzzy clustering to group load pro-
files extracted from daily load profiles. Both [5] and [6] used
handcrafted features defined by human experts requiring prior
knowledge of consumer behaviors. Furthermore, cluster-based
approaches need post-analysis and interpretation to identify the
types of heating systems associated with the clusters. Using
supervised learning, [8] employed support vector machines
(SVM) to classify household heating types using features from
smart meter measurements. Reference [9] used random forest
(RF) and SVM with different sets of features extracted from
smart-meter for household classification. The work in [10] and
[11] further extended a set of pre-determined features in [9]
to classify heating types. However, these conventional ML
approaches extract features defined by human experts (i.e.,
handcrafted features). This may be a challenging task as it
needs highly skilled human experts. Incomplete knowledge
from human experts may lead to important information being
overlooked, and thus less adequate heating type classification.

Recently, some deep-learning (DL) approaches were studied
for automatic feature learning [12]–[17]. Long short-term
memory (LSTM) is a DL approach suitable for automatic
feature-learning from data sequences [18], [19]. It has been
used in a variety of areas, such as natural language-processing
[17], as well as in electricity system applications (power grid
impedance estimation [12], residential load forecasting [13],
and consumer type classification [14]–[16]). Although [14]
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used a combination of handcrafted features, LSTM and con-
ventional supervised ML to classify such household appliances
as heat pumps, dishwashers and TVs, it was only applied to
specific household appliances using synthetic high-resolution
profiles. Such an approach cannot be used directly to identify
heating types at a large scale as measurements from individual
appliances are not distinguishable from smart meter data
collected at a household level. References [15] used a CNN-
LSTM DL network for electricity theft detection. Similarly,
[16] used a CNN-LSTM DL network for dryer identification.
The convolutional neural network (CNN) layer was first used
on segmented data for feature extraction before the LSTM
was applied. For handling long data segments, we propose
adding an additional LSTM layer instead of a CNN layer as
LSTM is suitable for feature learning from data sequences.
In the area of natural language processing, [17] resorted to a
hierarchical LSTM-based approach. Two LSTM layers were
used to classify a text document where the first layer captured
the short-term dependency in a sentence, followed by the
second layer that captured the long-term dependency of the
document. However, the feasibility of such a hierarchical
LSTM-based approach was not tested on classifying household
heating types using smart meter measurements.

Motivated by the above, we propose a novel, hierarchical,
LSTM-based DL framework specifically for the application
of heating type classification. This aim is to identify con-
sumer heating types by automatically learning the features
of household consumption data gathered by smart meters,
and the corresponding weather data. In particular, an LSTM-
based framework is proposed for feature-learning and classi-
fying multiple heating types. The automatic feature learning
is convenient as the classification does not rely on human
expert knowledge which may be incomplete or unavailable.
To the best of our knowledge, this is the first reported DL-
based algorithm that offers high performance for successfully
classifying consumer heating types based on smart meter
measurements and weather data. The main contributions of
the paper are:

• proposing a novel hierarchical LSTM-based DL archi-
tecture for classifying consumer heating system types.
It uses measurement data gathered by smart meters and
corresponding weather data.

• developing a hierarchical LSTM-based classifier end-to-
end by first extracting features automatically followed by
identification of households’ heating types.

Experiments and performance evaluations have been con-
ducted on hourly smart meter measurements and weather data
sequences over four years. Our case study results demonstrate
that the proposed framework has successfully identified elec-
tricity consumers’ heating types. In addition, a comparison
has been made with four existing ML algorithms and a
single-layer LSTM-based DL algorithm, where the proposed
framework classifier we developed has shown improved clas-
sification performance.

The remainder of this paper is organized as follows. The
proposed framework is described in Section II. A brief review
of the vanilla LSTM is followed by an overview of the

Fig. 1. Block diagram of the proposed deep-learning framework.

proposed framework. Next, there is a detailed description of
several important modules, including the hierarchical LSTM
network for automatic learning heating-type features, and an
end-to-end network for classifying consumer heating types.
Section III describes the experiment setup and shows the
test results and performance evaluation, accompanied by a
comparison and some discussion. Section IV further discusses
limitations and power system planning applications. The paper
concludes with Section V.

II. PROPOSED FRAMEWORK

A. Overview of the Proposed Framework

Essentially, the proposed framework uses a supervised DL
network to classify the heating types of individual households.
The proposed approach uses a hierarchical LSTM network
architecture to automatically learn the discriminating features
of consumers’ heating types, based on smart meter data and
corresponding weather data. Fig. 1 shows the block diagram of
the proposed framework, consisting of the following modules:
Module 1 - Data segmentation by sliding window; Module 2 -
Hierarchical LSTM layers for feature learning; and Module 3
- Classification of heating types. The details of the framework
are described in the following subsections.

B. Long Short-Term Memory - a Brief Review

For the sake of mathematical and notational convenience,
this section gives a brief overview of long short-term memory
(LSTM). See [18] and [19] for further details. LSTM is
a recurrent neural network with memory units capable of
learning long-term dynamics. The core of the network is
the cell state c and hidden state h which encodes the input
sequence x. The cell state serves as the long-term memory
of the network and the hidden state as the working memory.
There are many variants of LSTM, but here we only review
the basic vanilla LSTM shown in Fig. 2, where the hidden
states and cell states are regulated by three gates: a forget
gate f , an update gate i, and an output gate o. The hidden
states and cell states at time t are updated by:
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f t = σ
(
W f,hh

t−1 +W f,xx
t + bf

)
(1a)

it = σ
(
W i,hh

t−1 +W i,xx
t + bi

)
(1b)

c̃t = tanh
(
W c,hh

t−1 +W c,xx
t + bc

)
(1c)

ct = f t ⊙ ct−1 + it ⊙ c̃t (1d)

ot = σ
(
W o,hh

t−1 +W o,xx
t + bo

)
(1e)

ht = ot ⊙ tanh
(
ct
)

(1f)

where xt denotes the input at time t, W the weight matrices,
b the bias, σ the logistic sigmoid function, and ⊙ the element-
wise product of vectors. The length of the state vectors
is determined by the number of hidden units n, whereas
the size of the weights and biases are determined by the
number of hidden units and the length of the input vector
N (defined before training the model). The length of the state
vectors are ht ∈ Rn×1 and ct ∈ Rn×1, the weight matrices
corresponding to the hidden state W h ∈ Rn×n, the weight
matrices corresponding to the input W x ∈ Rn×N and the
biases b ∈ Rn×1. The complexity of the LSTM network is
thereby dependent on the number of hidden units and the input
size, If the number of hidden units and/or the input size is
larger, more parameters will need to be trained.

Fig. 2. A typical vanilla long short-term memory (LSTM) unit. In the figure,
⊙ is the element-wise product of vectors, and + is the addition of vectors.

C. Description of the Proposed Framework

This subsection gives a detailed description of the three
modules in the proposed framework.

1) Data segmentation by using a sliding window: The
rationale for applying data segmentation is to break a very
long sequence of measurement data across several years. It
is equivalent to using a sliding data window of length T
without overlap. First, for each consumer, one smart meter
data sequence and NP weather data sequences were collected
over the same time interval and using nearby geographical
area. Each data sequence contains L measurement samples.
The smart meter sequence is denoted as: x = [x1, x2, . . . , xL]
and the sequences for the pth weather sequences as vp =
[v1p, v

2
p, . . . , v

L
p ]. Our dataset used hourly data sampling. How-

ever, the framework is not limited to hourly data values.
The following steps describe the data preparation steps and
sequence segmentation.

i) Normalize the smart meter data sequence x by its mean
mx and standard deviation sx to highlight the electricity
consumption shape, i.e., x̃l = (xl−mx)/sx for all values
l = 1, . . . , L.

ii) Combine the normalized smart meter sequence x̃ =
(x̃1, x̃2, . . . , x̃L) and NP weather sequences (not normal-
ized) to form a sequence of vectors z:

z =


x̃
v1

v2

...
vNP

 ∈ R(1+NP )×L (2)

iii) Rearrange the sequence of vectors z into a new sequence
of vectors Z, such that the rows correspond to the smart
meter and weather values in a 24-hour period:

Z =



x̃1,1, . . . , x̃D,1

x̃1,2, . . . , x̃D,2

...
x̃1,24, . . . , x̃D,24

v1,11 , . . . , vD,1
1

...
v1,24Np

, . . . , vD,24
Np


∈ R24(1+NP )×D (3)

where x̃d,t and vd,tp corresponds to day d and hour t
in the sequence, d = 1, . . . , D and t = 1, . . . , 24. The
new sequence is now D = L/24 days long. Such a
rearrangement increases the size of the weight matrices
W . However, experiments have shown that better classi-
fication performance was obtained when using Z with a
shorter sequence length instead of z, which has a longer
sequence length.

iv) Add the mean and standard deviation into the feature
vector Z, as they also play an important role in char-
acterizing the heating types. This means using the mean
mx and standard deviation sx from the original smart
meter sequence x to construct two additional sequences
of length D, mx = [mx, . . . ,mx] ∈ R1×D and sx =
[sx, . . . , sx] ∈ R1×D. The result is a sequence of vectors
S consisting of N = 24(1 +NP ) + 2 features,

S =

 Z
mx

sx

 ∈ RN×D (4)

v) Normalize each row (feature component) of the sequence
of vectors S by using its mean and standard deviation
across all customers in the training set. Thus, each feature
component in the normalized sequence of vectors S̃ lies
within the same scale.

vi) Segment S̃ into K segments, (S̃1, S̃2, . . . , S̃K), using a
non-overlapping sliding window of length T . The number
of segments is defined by K = D/T .

This leads to a total of K segments, each one a sequence
of vectors consisting of N rows (feature components) and T
columns (segment length). Although reducing the input data
length was one of the reasons for adopting a hierarchical
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Fig. 3. Module 2 of the proposed framework: automatic feature extraction using a hierarchical, two-layer LSTM. The parameters of the LSTM units are
shared across all time steps and all segments for each respective LSTM layer.

structure, an LSTM could fail to capture the dynamic if the
segment length T were too short. A segment length of T = 30
days was chosen for this work and performed well on our
dataset.

2) Hierarchical LSTM for Feature Learning: The pro-
posed hierarchical LSTM network consists of two LSTM
layers, as shown in Fig. 3. Each LSTM layer applies many-
to-one input to output. First, each segment (j = 1 to K)
is fed into the nodes of the first LSTM layer. For the jth
input segment S̃j , the first LSTM layer with n1 hidden units
outputs a corresponding hidden-state vector hT

j ∈ Rn1×1. This
vector hT

j represents the characteristics of segment S̃j . These
hidden-state outputs are then used to form a new sequence
of vectors [hT

1 ,h
T
2 , . . . ,h

T
K ] ∈ Rn1×K . As shown in Fig. 3,

the new sequence is fed into the second LSTM layer with n2

hidden units. The hidden state HK ∈ Rn2×1 output from the
second LSTM layer is then used as the final feature vector for
classifying heating types. Note that the same set of parameters
(weights and biases) are used for all LSTM units in each
respective LSTM layer. Note also that the LSTM layers in the
function of DL Keras library [20] imply a three-dimensional
tensor (batch size, number of time steps, number of features),
whereas the first LSTM layer of the proposed hierarchical
framework consists of a four-dimensional tensor (batch size,
number of time steps in layer 2 (K), number of time steps in
layer 1 (T ), and number of features (N )). In the DL Keras
library, this is implemented by using an LSTM layer with a
time-distributed wrapper [20].

3) Classification of Heating Types: The final feature vector
HK (obtained from the output of the second LSTM layer)
is then fed into the classifier to determine an electricity
consumer’s heating type. As shown in Fig. 4, the classifier is
formed by a fully connected network with C neurons, in which

C equals the number of heating types considered. The feature
vector HK = [HK

1 , HK
2 , . . . ,HK

n2
]⊤ is then feedforward

through the network, with softmax applied to the network
output to obtain the class probability for individual classes,
ŷ = [ŷ1, ŷ2, . . . , ŷC ]

⊤. Finally, an electricity consumer’s
heating type is classified according to the type with the highest
probability, i.e. ŷ∗ = argmaxc(ŷ).

D. Training and Classification

1) Training: During the training process, the network uses
supervised learning to try and learn a set of parameters.
The network’s coefficients (weights and biases) are optimized
by minimizing categorical cross-entropy among the training
samples. In other words, the difference between the true and
estimated target vector is minimized. The loss function L for
each training sample is defined as:

L(y, ŷ) = −
C∑

c=1

yc · log ŷc, (5)

where yc takes the value 0 or 1 to indicate the correct class,
and ŷc is the estimated probability (softmax output) of class c.
Once the network has been trained, the parameters are frozen
for use in the classification process.

2) Classification Process: Once the coefficients from the
training process have been obtained, the trained network can
be test-run to classify a consumer’s heating type. That is, using
consumers whose data have not been seen by the classifier as
the input for predicting their heating types.

3) Partition between Training and Test Sub-Datasets: Note
that training and test data subsets should be split according to
different consumers, i.e., each consumer’s data are used either
for training or testing. Despite superior test performance may
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Fig. 4. Module 3 of the proposed framework: classification. The fully connected neural network includes a softmax activation function.

be obtained by partitioning each consumer’s data and using
different parts for the training and testing. This is because
different parts of data from the same consumer are highly
correlated. However, the performance may drop significantly
when the classifier is used to classify new consumers. Thus,
we adopt strict consumer-based data partitioning between the
training and test subsets.

III. RESULTS AND PERFORMANCE COMPARISON

A. Setup of Experiments
1) Data Description: The dataset consists of hourly smart

meter measurements from a city in Sweden, taken over four
years (2016-2019). The labels were collected from the energy
declarations of buildings [21]. In this study, we selected one
and two-family dwellings with only one smart meter. Three
of the most common heating types were selected: district
heating district heating (DH), exhaust air heat pump (EAHP),
and direct electric heating (DEH). Outdoor weather data with
a spatial resolution of 2.5 × 2.5 km was also included, as
the weather influences the indoor climate, and can shift the
operating point of heating systems. Over the same four years,
hourly values were collected for outdoor air temperature, wind
speed, solar irradiance, and relative humidity [22], [23]. The
consumer data recordings were then synchronized with the
weather data for the closest grid point, with a total of 40 grid
points used.

2) Dataset Partition: The dataset was partitioned into train-
ing/validation/test subsets with a 60/20/20 ratio, according to
the number of consumers/households. That is, data sequences
from individual consumers were used only in training, valida-
tion, or testing. Table I summarizes the size of the subsets for
each heating type studied.

3) Pre-Processing: Due to some changes in the sampling
frequency (faulty communication), measurement data with a
difference of less than 0.1 kWh/h between two adjacent hours
for 20 consecutive hours were filtered out. However, data from
only two successive missing values were interpolated linearly.
Lastly, a masking layer was added to the network to deal with
missing values. In other words, time steps with missing values
were skipped. This made it possible to classify consumers
using various data lengths.

TABLE I
DATASET PARTITION: NUMBER OF INDIVIDUAL CUSTOMERS USED

(EXCLUSIVELY) IN EACH SUBSET.

Heating
type a Train Validation Test Total

DH 1264(33%) 422(11%) 421(11%) 2107(54%)

EAHP 380(10%) 126(3%) 127(3%) 633(16%)

DEH 686(18%) 229(6%) 229(6%) 1144(29%)

Total 2330(60%) 777(20%) 777(20%) 3884(100%)

a DH: district heating; EAHP: exhaust air heat pump; DEH: direct electric
heating

4) Network Hyperparameters: The number of hidden units
in our experiments was determined by performing a grid
search over numbers of hidden units, including 4, 8, 16, and
32 for each LSTM layer. The combination with the lowest
validation loss (using the validation set) was selected. We
used an Adam optimizer [24] with a learning rate of 1e−3 and
β1 = 0.9, β2 = 0.999, ϵ = 1e−7. A reduce-on-plateau learning
rate scheduler was used to reduce the learning rate by 10%
if the validation loss had not been reduced over five epochs.
An early-stopping strategy was used where the learning was
terminated if there had been no gain for 50 epochs. The
network coefficients corresponding to the lowest validation
loss were allocated to the final classifier. A mini-batch size
of 128 was selected for training.

Furthermore, one can see from Table I that the number
of consumers in the three types of heating was unbalanced.
One main reason is that some heating technologies were more
popular at different years of construction, as well as the
availability, potential and investment of the different technolo-
gies. To manage the imbalanced dataset, the training loss was
inversely proportional to the class frequencies of the training
set. Oversampling or undersampling techniques have also
been evaluated to make the data more balanced in different
classes. However, they did not show improved classification
performance in our preliminary tests. Other techniques, such as
GANs (generative adversarial networks) [25] could be useful
to enrich the training dataset by adding synthetic data with
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the same distribution of that class. However, it is beyond the
scope of this paper.

5) Criteria for Performance Evaluation: Precision, recall,
and F1-score were used to evaluate the performance of each
heating type class c, and the accuracy of the test set was used
to measure the total classification accuracy, defined as:

Precisionc =
TPc

TPc + FPc
, (6)

Recallc =
TPc

TPc + FNc
, (7)

F1,c = 2
Precisionc · Recallc

Precisionc + Recallc
, (8)

Accuracy =

∑C
c=1 TPc∑C

c=1 TPc + FPc

, (9)

where TPc is the true positive number of class c (in which
consumers are correctly classified), FPc is the false positive
number for class c (in which consumers that do not belong to
class c are wrongly classified as class c), and FNc is the false
negative number (in which consumers belonging to class c are
misclassified).

6) Implementation: The proposed framework was pro-
grammed whose performance was tested on a PC with a 3.7
GHz Intel i9 processor with 128 GB of memory, and an
NVIDIA GeForce RTX 3080 GPU with 10 GB of memory.
The network was implemented, trained, and evaluated, using
the Keras library’s basic functions (including the Keras layers
LSTM, Dense, TimeDistributed, and Masking) [20]. Further-
more, the network was trained using the computer’s GPU to
speed up the computation, though it could also be trained using
the CPU.

B. Results and Discussion

Ten random dataset partitions were used in the experiments,
with the network re-trained for each new one and the perfor-
mance re-tested.

1) Overall Performance: Tests were conducted to demon-
strate the proposed framework’s effectiveness, and the perfor-
mance of unseen consumers was calculated. A sliding window
of T = 30 days was used for data segmentation of training,
validation, and test data alike. Table II shows the classification
performance by using smart meter measurements and their
corresponding outdoor air temperature, solar irradiance, rela-
tive humidity, and wind speed. The results showed an average
accuracy of 94.2%. Furthermore, the classifier showed better
performance in identifying consumers with DH than those
with electric heating, including both EAHP and DEH. One
reason could be that consumers with DH generally consumed
less electricity during the heating period than similar buildings
with electric heating sources. The confusion matrix obtained
from the test set (Table III) further illustrates the perfor-
mance of individual classes. It indicates that the classifier has
some difficulty distinguishing between the two electric heating
types. This could be due to their similarities; both EAHP
and DEH have increased electricity usage during the heating
period, albeit increasing by different amounts.

TABLE II
TEST PERFORMANCE OF THE PROPOSED FRAMEWORK WITH DATA

SEGMENTS OF T = 30 DAYS. ALL PERFORMANCE VALUES IN THE TABLE
ARE AVERAGED ± STANDARD DEVIATION OVER 10 RUNS* .

Heating
typea

Precision
(%)

Recall
(%)

F1−score
(%)

Total accuracy
(%)

DH 98.5± 0.6 97.7± 0.8 98.1± 0.4

EAHP 86.3± 3.7 85.5± 3.8 85.8± 2.6 94.2± 0.9

DEH 90.9± 2.0 92.6± 2.5 91.7± 1.2

* By dataset re-partitions, followed by re-training and re-testing, a DH: district
heating; EAHP: exhaust air heat pump; DEH: direct electric heating

TABLE III
CONFUSION MATRIX: TEST PERFORMANCE USING PROPOSED

FRAMEWORK WITH A ROLLING WINDOW OF T = 30 DAYS. VALUES ARE
AVERAGED ± STANDARD DEVIATION OVER 10 RUNS* NORMALIZED TO

THE CLASS SIZE.

Predicted heating type (%)

DHa EAHPb DEHc

Actuald
heating

type
(%)

DH 97.7± 0.8 1.0± 0.5 1.3± 0.5

EAHP 2.0± 1.1 85.5± 3.8 12.4± 3.6

DEH 1.7± 0.9 5.8± 1.8 92.6± 2.5

* By dataset re-partitions, followed by re-training and re-testing, a DH: district
heating, b EAHP: exhaust air heat pump, c DEH: direct electric heating, d the
actual heating-type label indicates the heating type declared at the time the
energy declaration was issued.

To further visualize the class separability of the automat-
ically extracted features, the high-dimensional feature space
is reduced to two dimensions using t-distributed stochastic
neighbor embedding (t-SNE) [26]. Fig. 5 shows this two-
dimensional feature space, with each sub-figure corresponding
to one of the ten runs of the experiment. Three distinct clusters
can be observed, each corresponding to one heating type.
It is also evident that a small number of consumers were
wrongly classified as another type. This relates to the minor
classification errors seen in Table II, which is further analyzed
below.

2) Error analysis: An error analysis was performed to
further analyze the misclassifications. This was done by eval-
uating the classification errors in relation to the heated area
and the age of the building (Fig. 6), and to the geographical
location of consumers (Fig. 7). It is worth mentioning that
such analysis is only a hint of the possible causes of errors
as the information on building and behavior characteristics is
incomplete. Fig. 6 (left) shows that for households with EAHP
or DEH, there was only a small difference between the heated
area for the correct and incorrect classified samples. However,
there was a larger difference for buildings with DH, where the
correct classified samples had a median of 142 m2, whereas
the incorrect ones had a larger heated area of 174 m2. The
confusion matrix in Table III shows that approximately half
of the misclassified DH was classified as EAHP and half as
DEH (1.0% as EAHP, 1.3% as DEH). The potential reasons
for the classification error may include: i) large buildings with
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Fig. 5. Plots of the heating-type features learned from the proposed hierarchical LSTM layers, with four years’ worth of data segmented over 30 days.
The Scikit-learn [27] function t-SNE was used for these plots. These sub-figures show the results in ten runs, in which the dataset was re-partitioned, then
re-trained and re-tested.

Fig. 6. Classification performance as a function of left) heated area and right)
year of construction, where DH = district heating, EAHP = exhaust air heat
pump, and DEH = direct electric heating. The boxplot was based on the test
performance over all ten dataset re-partitions.

DH could have a higher electricity consumption which the DL
model did not capture; ii) the buildings had supplementary
electric heating which was not included in the dataset, leading
to an increased weather-dependent electricity consumption; iii)
buildings that have changed heating system had, in general, a
higher heated area. This would however need to be verified
by contacting the consumers individually.

Furthermore, Fig. 6 (right) shows a large difference between
the age of the buildings and the different heating types where
DH was seen in both older and newer houses, EAHP mainly in
houses from the 80s and forward, and DEH mainly in houses
from the 70s. Even though the age of the building could be
included in the model, there is a risk that the classifier could
show a bias. Moreover, the median of incorrect classified
samples was on average eight years older for houses with
EAHP than the correct ones. The confusion matrix in Table
III shows that most of the misclassified EAHP samples were
classified as DEH (12.4% as DEH, 2.0% as DH). This could
indicate that an older heat pump with a lower coefficient of
performance (COP) and/or lower rated capacity was installed,

Fig. 7. Misclassification rate per zip code, based on the test performance over
all ten dataset re-partitions. (This map was created using ArcGIS® software
by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are
used herein under license. Copyright © Esri. All rights reserved. For more
information about Esri® software, please visit www.esri.com)

which is more dependent on additional heat from for instance
the heat pump’s immersion heater, thus using more electricity
as a similar building with a modern and larger EAHP. This
however also needs to be verified by contacting the consumers
individually. Similarly, houses with DH which were correctly
classified had a median that was on average eight years older
than the incorrect samples. This could also be due to older
buildings with poor isolation in need of supplementary electric
heating. However, the result also showed a large spread. Even
though DEH did not show a large difference in the median,
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TABLE IV
IMPACT OF TEST PERFORMANCE WHEN DIFFERENT WEATHER VARIABLES WERE ADDED TO THE SMART METER DATA USING THE PROPOSED

FRAMEWORK. IN ALL EXPERIMENTS, A DATA SEGMENT LENGTH OF T = 30 DAYS WAS USED. ALL PERFORMANCE VALUES WERE AVERAGED ±
STANDARD DEVIATION OVER 10 RUNS* . THE BEST PERFORMANCE APPEARS IN BOLD.

Items of data useda Precision (%) Recall (%) F1−score (%) Accuracy (%)
DHb EAHPc DEHd DH EAHP DEH DH EAHP DEH Total

SM 97.9± 0.9 78.0± 5.2 89.6± 3.0 96.0± 1.0 82.6± 4.8 89.7± 3.0 97.0± 0.6 80.2± 4.0 89.6± 2.0 92.0± 1.4

SM+T 98.4± 0.7 82.7± 4.9 90.5± 2.1 97.3± 1.0 84.6± 3.3 90.7± 3.4 97.8± 0.6 83.5± 2.0 90.5± 1.1 93.3± 0.8

SM+S 97.6± 1.0 81.0± 3.9 90.4± 2.1 96.6± 0.6 83.6± 3.3 90.4± 3.0 97.1± 0.4 82.2± 3.1 90.4± 1.7 92.7± 1.2

SM+H 97.9± 1.0 83.8± 4.5 90.8± 1.9 96.9± 1.0 85.2± 3.9 91.4± 2.3 97.4± 0.5 84.3± 2.1 91.1± 1.0 93.4± 0.8

SM+W 98.0± 1.0 83.3± 5.1 90.1± 2.2 97.3± 1.2 83.6± 5.2 90.9± 2.4 97.6± 0.9 83.3± 3.5 90.5± 1.4 93.2± 1.3

SM+T+S+H+W 98.5± 0.6 86.3± 3.7 90.9± 2.0 97.7± 0.8 85.5± 3.8 92.6± 2.5 98.1± 0.4 85.5± 2.6 91.7± 1.2 94.2± 0.9

* By dataset re-partitions, followed by re-training and re-testing,a SM: smart meter; T: outdoor air temperature; S: solar irradiance; H: relative humidity; W:
wind speed, b DH = district heating, c EAHP = exhaust air heat pump, d DEH = direct electric heating

it still misclassified 5.8% as EAHP (and 1.7% as DH). This
could be due to the training process and decision boundary
being affected by some EAHP behaving similarly to DEH,
or that some consumers have changed class (upgraded their
system).

Fig. 7 shows that some areas have a higher share of
misclassified samples. This indicates that there could be a
geographical bias which could be further analyzed. For in-
stance, in the area with the highest share of misclassifications
(see Fig. 7), buildings with DH were misclassified as EAHP.
Through manual investigation, we found that the buildings in
this area had collectively changed the heating system from DH
to EAHP [28]. On one hand, this shows that the information
from the energy declaration used for the training process may
be outdated since issued. This can affect the training process
and the evaluation of the model. On the other hand, it also
shows that the model was able to identify whether a consumer
had changed the heating system.

3) Impact of Adding Weather Data: Test performance in
various scenarios was evaluated to examine the impact of
adding different types of weather measurement data to the
smart meter measurements. Table IV shows the test per-
formance upon the addition of outdoor weather data vari-
ables (i.e., outdoor air temperature, relative humidity, global
irradiance, and wind speed) individually. The results show
that adding weather data increased the test accuracy from
92.0% to between 92.7% and 93.4%. Further, these weather
variables were complementary, and the highest average test
accuracy (94.2%) was obtained when all four weather data
variables were used in combination with smart meter data. In
particular, a large improvement can be seen for the precision of
EAHP which increased from 78.0% to 86.3%. The increased
performance of the F1-score for all three heating types also
shows that adding weather data increases the separability
between all three classes.

4) Impact of Training Set Size: DL methods require a large
set of training samples. A sensitivity analysis was performed
to evaluate how the performance was affected by the size of
the training data set. The size of the training subset (randomly
selected from the training set) varied from 50 customers to
the full training set sized 2330 customers. Fig. 8 shows the
performance on the test set versus the classifier trained by
different-sized training sets. The general trend was that the test

performance improved as the size of the training set increased.
In particular, there was a steep increase at the beginning of
the graph. Furthermore, the results indicate that even higher
performance could be obtained if more data were used. Note
that the stochastic variations of the curve were due to the
random subset sampling and the random nature of the ML
implementation (e.g., dropout, batch partition).

Fig. 8. Test accuracy as a function of training set size. The line and shaded
area show the average ± standard deviation of the test accuracy over all ten
dataset re-partitions.

C. Comparison to other Machine Learning Algorithms

The classifier obtained from the proposed framework was
compared to four existing ML-based methods using manually
extracted features, including clustering by k-means with dy-
namic time warping (DTW) [5], and classification by support
vector machine (SVM), random forests (RF) and k-NN [10],
[11]. Furthermore, a single-layer LSTM-based DL algorithm
was also implemented for comparison. These methods and
algorithms were re-implemented using the same data set and
dataset partitions as described in Section III-A.

For the implementation of clustering by k-means with DTW
[5], the energy profiles extracted from the daily electric-
ity consumption and outdoor air temperature using support-
vector regression were clustered into k clusters. k was then
searched from 2, 3, 4, 5, 6, 7, with a Silhouette score as the
selection criteria (see [5] for further details). The clusters
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were categorized using the majority of heating-type samples.
For comparison, we categorize each cluster according to the
majority of heating-type samples of the training set. The
unknown samples were then classified according to the cluster
they belonged to.

For the implementation of classifiers using SVM, RF and k-
NN [10] and [11], 91 features from smart meter measurements
and 8 features per weather variable were extracted for each
week. In both papers, the default hyperparameter settings were
used as stated in the ML package used by the authors. We
conducted a grid search of the hyperparameters selected in
[10] and [11] for fair comparison (for SVM, searching grids
for C and γ were 0.001, 0.01, 0.1, 1, 10, 100; for k-NN, k
was searched from 1 to 30; for RF, the minimum number
of samples required to be a leaf node was searched from
2, 4, 8, 16, 32)). The best-performing hyperparameters from the
validation set were then chosen.

Lastly, for a single-layer LSTM, no segmentation was
applied to the input sequence S̃. Instead, it takes the entire
sequence of length D as input, see Section II-C1. After the
single-layer LSTM, the classifier was formed as described
in II-C3. The number of hidden units n was searched from
4, 8, 16, 32. The best-performing hyperparameter on the vali-
dation set was also chosen here.

Table V summarizes the test performance from these meth-
ods in terms of average accuracy, F1-score, precision and
recall. One can see from the table that the classifier in
the proposed framework generated the best average accuracy
(94.2%) in the test set among the six methods. However, there
were two cases (EAHP in precision, and DEH in recall) in
which the classifier did not top the list. On the other hand,
the classifier in the proposed framework shows the best F1-
score (harmonic mean of precision and recall) for all three
heating types. For k-means, despite the high F1-score for DH,
the low value for DEH and zero value for EAHP showed
that the model was not able to distinguish between DEH and
EAHP, thus resulting in a lower accuracy of 76.8%. SVM
showed the best performance out of the conventional classifiers
with an accuracy of 92.0%. Comparing the F1-score, it also
shows that the proposed model in particular improved upon
the classification of EAHP and DEH. The table also shows
the effectiveness of the proposed framework over a single-
layer LSTM network, which showed a test accuracy of 90.1%.
Furthermore, as for the proposed framework, the conventional
classifiers as well as the single-layer network also showed
a lower F1-score for EAHP as compared to DEH, and in
particular to DH. This could be tied back to the error analysis
in Section III-B2, where the misclassifications were analyzed
in relation to the heated area, the age of the building, and the
geographical location. One potential reason for the lower F1-
score for EAHP could be that the incorrectly classified EAHP
samples had an older heat pump with a lower COP and/or
lower rated capacity installed. The heat pump’s immersion
heater could then for instance be used for additional heat, thus
using more electricity than a similar building with a larger
EAHP and with a higher COP.

IV. DISCUSSION

Due to the limitation on already collected measurements
from past years, our study was limited to hourly-based smart
measurement sequences. It will be possible to have higher
sampling rate measurements in the future with the second
generation of smart meters rolling out in Sweden. It would
be of interest for further study to see whether a high sampling
rate can further improve the performance of the classifier.

Furthermore, experiments were conducted on smart meter
data collected from one large city in Sweden. It would be
of interest to evaluate the performance of the model with
buildings from other areas or countries. This can be useful,
especially for smaller DSOs with a limited number of training
samples as training the proposed model with a small set could
lead to less desirable classification performance as shown in
Fig. 8.

If the demand characteristics change over time, e.g. through
demand-response and behind-meter generation and/or storage,
ML methods that depend on expert-defined features need to be
re-evaluated to see if the existing features would be still capa-
ble of discriminating the different heating types and whether
new features need to be added. The proposed DL method,
however, automatically extracts features without requiring
specific knowledge from experts. This is one of the main
advantages of the proposed DL method for heating system
classification over existing ML methods on such applications.
The improved accuracy of the proposed method over the
existing methods is another merit. In many countries, DSOs
use Verlander’s/Rusck’s method and/or typical load curves for
peak load estimation. The parameters of Verlander’s method
and the typical load curve are developed for consumers of
different types and heating systems [29]. The improved heating
type classification directly affects the estimation accuracy of
these parameters, which impacts the accuracy of the resulting
peak load estimation. This has also a direct impact on the
estimation of the grid hosting capacity for electric vehicles
and solar PVs.

V. CONCLUSIONS

The proposed hierarchical LSTM-based framework has
successfully classified electricity consumers’ heating types
by using smart meters and weather measurement sequences.
The experiments were conducted on the electricity data on
consumers consisting of one and two-family dwellings, for
identifying their usage of either district heating, exhaust air
heat pumps, or direct electric heating. Our experimental re-
sults on the test set using the proposed method have shown
good performance (average accuracy 94.2%). Further detailed
empirical tests have shown that adding outdoor weather data
to smart meter measurements has improved performance (in-
creased accuracy by 2.2%). Comparing with four existing
ML algorithms using expert-defined handcrafted features as
well as an LSTM algorithm with a simple architecture also
showed marked improvement (with accuracy increased be-
tween 2.2% to 17.4%). As the developed framework is able
to classify the heating types automatically using available
measurement data, the need for such tedious activities as
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TABLE V
COMPARISON OF TEST PERFORMANCE WITH FOUR EXISTING ML METHODS AS WELL AS A SINGLE-LAYER LSTM

. All performance values were averaged ± standard deviation over 10 runs*. The best performance is highlighted with bold font.
Methoda Precision (%) Recall (%) F1−score (%) Accuracy (%)

DHb EAHPc DEHd DH EAHP DEH DH EAHP DEH Total

k-Means DTW [5] 95.1± 1.1 0± 0 57.2± 1.3 91.1± 1.4 0± 0 93.2± 1.9 93.1± 1.1 0± 0 70.9± 1.4 76.8± 1.1

SVM [10] 96.5± 0.7 96.4 ± 2.0 83.5± 2.2 97.3± 1.0 65.9± 4.3 96.7 ± 1.0 96.9± 0.6 78.2± 3.0 89.6± 1.4 92.0± 1.1

RF [10] 96.6± 0.7 92.5± 2.5 82.6± 1.6 95.7± 1.1 68.3± 3.0 95.9± 1.6 96.2± 0.7 78.6± 1.9 88.8± 1.2 91.3± 0.8

k-NN [10] 96.4± 1.4 96.3± 2.3 83.0± 4.3 97.3± 0.8 64.3± 13.3 96.6± 1.1 96.8± 0.9 76.4± 11.2 89.2± 2.9 91.7± 2.5

Single layer LSTM 97.7± 1.0 76.3± 3.2 84.3± 2.9 95.9± 0.9 74.6± 5.2 87.9± 3.2 96.8± 0.3 75.3± 2.5 86.0± 1.3 90.1± 0.7

Proposed 98.5 ± 0.6 86.3± 3.7 90.9 ± 2.0 97.7 ± 0.8 85.5 ± 3.8 92.6± 2.5 98.1 ± 0.4 85.8 ± 2.6 91.7 ± 1.2 94.2 ± 0.9

* By dataset re-partitions, followed by re-training and re-testing, a SVM: support vector machine; RF: random forest; k-NN: k-nearest neighbor; k-means
DTW: k-means with dynamic time warping; proposed: proposed hierarchical two-layer LSTM with a segment length of one month (T = 30 days), b DH:
district heating, c EAHP: exhaust air heat pump, d DEH: direct electric heating.

contacting household consumers individually is minimized. A
reliance on expert knowledge for selecting features can also be
avoided. The improved knowledge of heating types facilitates
a reliable estimation of the demand flexibility potential from
these electricity consumers. Future work would be on training
with larger data sets from different countries, including more
heating types.
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