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Prescient Collision-Free Navigation of Mobile
Robots with Iterative Multimodal Motion Prediction

of Dynamic Obstacles
Ze Zhang, Hadi Hajieghrary, Emmanuel Dean, and Knut Åkesson

Abstract—To explore safe interactions between a mobile robot
and dynamic obstacles, this paper presents a comprehensive
approach to collision-free navigation in dynamic indoor environ-
ments. The approach integrates multimodal motion predictions of
dynamic obstacles with predictive control for obstacle avoidance.
Multimodal Motion Prediction (MMP) is achieved by a deep-
learning method that predicts multiple plausible future positions.
By repeating the MMP for each time offset in the future, multi-
time-step MMPs are obtained. A nonlinear Model Predictive
Control (MPC) solver uses the prediction outcomes to achieve
collision-free trajectory tracking for the mobile robot. The
proposed integration of multimodal motion prediction and tra-
jectory tracking outperforms other non-deep-learning methods
in complex scenarios. The approach enables safe interaction
between the mobile robot and stochastic dynamic obstacles.

Index Terms—Collision avoidance, autonomous agents, deep
learning methods

I. INTRODUCTION

W ITH mobile robots operating alongside human workers
in warehouses and industrial settings, their interaction

becomes inevitable. Obstacle avoidance for mobile robots is
a natural proposition since the emergence of general mo-
bile robots. Static obstacle avoidance is well-developed [1],
whereas dynamic obstacle avoidance is still challenging [2],
mainly due to the uncertainty of obstacles’ future positions.
Industrial Automated Guided Vehicles (AGVs) [3], [4] are
normally equipped with sensors detecting nearby obstacles.
They decelerate and stop if their paths are blocked. Some
AGVs [4] can detour from planned routes. However, most
detour strategies are passive and make no distinct difference
whether the obstacle is static or dynamic. With the emergence
of Autonomous Mobile Robots (AMRs) [5], more proactive
approaches to dynamic obstacle avoidance became prominent.

Humans are proficient at sidestepping dynamic obstacles
due to the capacity to discern the motion intentions of others,
anticipate possible scenarios, and initiate evasive maneuvers
[3]. Nevertheless, future motions are difficult to predict due
to the inherent uncertainty. A simple prediction assumes a
motion model of constant velocity or constant turning rate.
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Fig. 1. The proposed pipeline of dynamic obstacle avoidance for mobile
robots. The vision system captures the static environment and the motions
of dynamic obstacles via deep learning. Gray blocks are system components,
and others are transmitted data. Dashed blocks are assumed to be given.

The reality is intricate since the environment constrains how
a human moves. Hence, a motion predictor should encode
the environmental information and generate multiple estima-
tions of the future position of the target object. The term
multimodal emphasizes the estimation of multiple alternative
future positions, like a pedestrian at an intersection possibly
moving straight, turning left, or turning right. In industrial
environments, workers normally move in repetitive patterns,
which can be exploited to improve the estimation of future
positions. After obtaining predictions, a mobile robot can
approximate its own future states and steer clear of areas that
might be occupied by static or dynamic obstacles. This means
the trajectory planner considers both the robot’s future states
and other dynamic obstacles’ possible future positions.

In this paper, we propose the combination of vision-based
deep learning for iterative Multimodal Motion Prediction
(MMP) with Model Predictive Control (MPC) for trajectory
tracking to perform prescient dynamic obstacle avoidance of
a mobile robot in factories or warehouses, as shown in Fig.
1. To focus on integrating motion prediction with trajectory
tracking, three assumptions are made: (1) The primary sensor
is a ceiling-mounted camera system with overlapping views
[6]. Feeds from cameras merge into a single bird’s-eye-view
of the relevant area. (2) An occupancy grid map of the static
environment is given. This can be generated using a semantic
segmentation neural network as shown in Fig. 2. (3) Dynamic
obstacles are captured by the vision system and tracked.

The main contribution of this paper is threefold:

• Integrating of iterative MMP with MPC trajectory track-
ing to perform collision-free navigation of mobile robots
in dynamic and stochastic environments.

• Processing of MMP results to formulate MPC problems.
• Evaluating the proposed integration in robot-warehouse

scenarios and providing a comparative analysis.
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II. RELATED WORK

Dynamic obstacle avoidance techniques [7] are multifarious
with two general classes: active and passive. Mobile robots
with active strategies anticipate potential collisions by consid-
ering dynamic obstacles’ current and future positions, while
robots with passive strategies react only when obstacles are
detected in their paths. Traditional motion planning methods
[7] can adapt to passive dynamic obstacle avoidance, such as
the dynamic window approach and artificial potential field. Be-
sides, trajectory planning methods for dynamic environments,
such as the timed-elastic-band [8], can adapt to changing
environmental layouts by adjusting the trajectory in real time.
However, these approaches are not designed for including
MMP in the loop. To design active strategies, an idea is
to modify classic motion planning algorithms by considering
motions of other agents and obstacles [9]–[11]. Nowadays,
more learning-based and optimization-based approaches are
proposed owing to the rise of machine learning and increase
in computing power, such as reinforcement learning [12],
[13], and Model-Predictive Control (MPC) [14], [15]. MPC
is an optimization-based approach and can handle nonlinear
constraints, which provides a viable strategy for solving the
dynamic obstacle avoidance problem.

To achieve a successful proactive dynamic obstacle avoid-
ance, the prerequisite is to predict the motions of dynamic
obstacles. In earlier studies of dynamic obstacle avoidance,
it is assumed that the motions of obstacles are known or
modeled by deterministic motion models, such as the constant
velocity model [16] and the reciprocal velocity obstacle [17].
To contemplate more complex and uncertain motion patterns,
MMP with uncertainty is important. There are increasing
studies that use deep learning to make these motion predictions
[18]–[20]. The Winner-Takes-All (WTA) loss for multiple hy-
potheses [18], [21] is a meta-loss for training neural networks.
It selectively updates the best hypothesis determined as the
closest one to the ground truth based on a specific criterion.
A defect is that the WTA loss may discard some hypotheses
rather than updating them and the neglected hypotheses cannot
be identified. To mitigate this issue, a modified Evolving WTA
(EWTA) loss, proposed in [18], updates the ktop best hypothe-
ses instead of only the best prediction. The parameter ktop
decreases according to a predefined schedule during training.
This approach is shown to have better performance than WTA
but still has the omission of some hypotheses from updates.

In [22], we proposed an Adaptive WTA (AWTA) and a
Swarm WTA (SWTA) to mitigate this problem. The AWTA
updates hypotheses according to an adaptive range, therefore,
more hypotheses are updated. However, the usage of the
adaptive range results in a convergence that draws hypotheses
to a single point. The SWTA counteracts the convergence by
changing the base loss function into the minimal loss among
all hypotheses in the range. The AWTA and SWTA are used
in this work and are further discussed in Section IV-A. In
[18], a mixture density network is used to estimate multimodal
probability distributions based on hypotheses generated by
the EWTA. However, the generated multimodal probability
distributions may have abnormal or redundant components,

Fig. 2. The occupancy grid map is estimated by BiSeNet [23]. Static obstacles
are recognized via contour detection (red curves), from this a convex hull is
computed that is then represented by a set of convex polygons (red polygons).

as discussed in [22]. These abnormal components are not
desirable when generating geometric motion predictions as
they introduce abnormal dimensions that hinder trajectory
tracking and potentially block feasible paths. Thus, we use
the WTA with clustering instead.

III. PRELIMINARIES

To deploy obstacle avoidance in trajectory tracking, we
introduce a receding horizon of the future and check potential
collisions at every step in the horizon. Therefore, future
positions of dynamic obstacles need to be estimated.

A. Motion Prediction with Uncertainty

In MMP, we use the past trajectory of an object to predict
its future positions. Assume that all positions of robots and
dynamic obstacles are equidistantly sampled in time. Let
p
(i)
k = [x

(i)
k , y

(i)
k ]⊤ be a position in the Cartesian coordinate

system, of obstacle i at time step k ∈ Z. Then, a trajectory
segment is a temporal sequence of positions, for kend > kstart,

T (i)
kstart:kend

= ⟨p(i)
kstart

, p
(i)
kstart+1, . . . , p

(i)
kend

⟩, (1)

which describes the obstacle’s motion.
For convenience, a set of non-negative integers, in the

closed interval [a, b] and b > a ≥ 0, is written as N[a,b].
Assuming M alternative predictions are made for a future
position τ time steps ahead, a single-time-step MMP (sMMP)
is represented by mp̂

(i)
τ , where m ∈ N[1,M ]. A multi-time-step

MMP (mMMP) includes all future positions 1, . . . , τmax steps
ahead of the current observed position, as in (2).

M T̂ (i)
1:τmax

= ⟨
⋃

m∈N[1,M]

{mp̂(i)
τ } | τ ∈ N[1,τmax]⟩. (2)

The prediction is based on the past τp positions. We call τmax
the maximum prediction time offset and τp the look-back range.
To simplify the notation, and to acknowledge the fact that at
time step k the previous τp positions are used to estimate
the future τmax positions, write T (i)

−τp:0
to denote the τp past

positions preceding step k together with the observed position
at k and T (i)

1:τmax
to denote the τmax future positions after k.

Commonly, the output of regular neural networks is one
estimation of the ground truth. To consider multimodality,
a network can generate multiple hypotheses of the future
position. In this work, an improved WTA loss is utilized for
training networks producing multiple predictions. Given an
input x ∈ X and its corresponding label y ∈ Y , where X and
Y are input and label datasets, a neural network F : X → Y
mapping from the input to the label, is used to generate Z
hypotheses {zh}Zz=1. For each hypothesis zh, a base-loss zl



ZHANG et al.: PRESCIENT COLLISION-FREE NAVIGATION OF MOBILE ROBOTS WITH ITERATIVE MMP OF DYNAMIC OBSTACLES 3

Fig. 3. Comparison between the EWTA, AWTA, and SWTA training results on the Standard Drone Dataset. Large black circles represent the current positions
and smaller circles are past positions. The SWTA result produces multimodal prediction clearly and counteracts the clustering effect in AWTA, while the
network trained by EWTA can not identify multiple alternatives.

can be computed. The WTA loss is a meta-loss over these Z
base-losses as shown in (3), where δ(·) is the Kronecker delta
function and Z denotes the set {1, 2, . . . , Z}. The WTA loss
only updates the winner with the smallest loss.

LWTA =
∑
z∈Z

wzl(y,
zh), wj = δ(j = argmin

z∈Z

zl). (3)

Hypotheses from the network can be regarded as samples from
a predicted probability distribution of the future position. If
two hypotheses are close enough, they should belong to the
same mode. By clustering all hypotheses into different modes,
the sMMP mp̂(i) is obtained.

B. Trajectory Tracking Using Model Predictive Control

In trajectory planning, a controller guides a mobile robot to
stay within a neighborhood around a reference path, which
should be free from obstacles. The controller adjusts the
robot’s moving direction and may deviate from the reference
path to avoid collisions. The generation of collision-free tra-
jectories can be formulated as a receding horizon optimization
problem, with the reference deviation error as a loss term, and
obstacle avoidance as constraints, as in (4)-(6).

For a mobile robot, let f : Rns×nu → Rns be its discrete-
time nonlinear kinematics or dynamics, where ns is the
dimension of the state and nu is the dimension of the action,
thus sk+1 = f(sk,uk), where sk ∈ Rns and uk ∈ Rnu are
the state and input vectors at time k, respectively. Let O be
the set of a-priori known static obstacles and Dk be the set of
dynamic obstacles at time step k. Assuming the finite horizon
in the controller is N , the trajectory generation problem is
formulated in (4)-(6),

min
uk:k+N−1

Jk+N +

k+N−1∑
j=k

(
||sj − s̃j ||2Qs

+ ||uj − ũj ||2Qu

)
, (4)

s.t. sj+1 = f(sj ,uj), (5)

p
(s)
j /∈ O ∪ Dj , ∀j ∈ N[k,k+N−1], (6)

where Jk+N is the terminal cost; s̃ and ũ are reference states
and reference actions; Qs and Qu are penalizing weights;
p
(s)
j = [x

(s)
j , y

(s)
j ]⊤ is the position of the robot in sj . In

this study, a pre-determined reference path Pref is provided
without considering dynamic obstacles. The reference path is

an ordinal list of map points. The reference state sj is obtained
by shifting positions along the path as the robot advances. The
reference action uj is defined by the user.

C. Modeling of Obstacles

Obstacles are described by geometric shapes and obstacle
sets are defined by occupied points inside the corresponding
shapes. Static obstacles are modeled as polygons represented
by sets of inequalities [24]. Let O = ∪i O(i) be the set of
static obstacles, where each obstacle set O(i) is closed and
defined by an intersection of some half-spaces. Assuming a
static-obstacle set O(i) has NE edges, then

O(i) = {p ∈ R2 | b(i)j − (a
(i)
j )⊤p > 0, ∀j ∈ N[1,NE ]}, (7)

where a
(i)
j and b

(i)
j are coefficients defining a half-space. To

indicate if a point p = [x, y]⊤ is inside O(i),

ιO(p | a(i), b(i)) =

NE∏
j=1

max
{
0,
[
b
(i)
j − (a

(i)
j )⊤p

]}
, (8)

where a(i) = {a(i)
j , j ∈ N[1,NE ]} and b(i) = {b(i)j , j ∈

N[1,NE ]}. The indicator is zero outside the polygon and
positive inside the polygon, and with a higher value if the
point is closer to the center of the polygon.

Dynamic obstacles have uncertain future positions, both
concerning the multimodality and the local uncertainty within
each mode. We use two-dimensional ellipses to represent the
different modes of future positions. The time step k is omitted
in the following definitions for brevity. For an ellipse centered
at pµ = [xµ, yµ]

⊤ with axes σ = [σx, σy]
⊤, a variable ιD

indicating if a point p = [x, y]⊤ is inside the ellipse can be
defined as (9). The indicator is zero outside the ellipse and
positive inside the ellipse, and with a higher value if the point
is closer to the center of the ellipse.

ιD(p |pµ,σ) = max

{
0,

[
1− (

x− xµ

σx
)2 − (

y − yµ
σy

)2
]}

. (9)

Then, the set D occupied by Nd ellipses can be defined as:

D = {p ∈ R2 | ∃ i ∈ N[1,Nd], ιD(p|p(i)
µ ,σ(i)) > 0}. (10)
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IV. COLLISION-FREE TRAJECTORY TRACKING IN DYNAMIC
ENVIRONMENTS

Given (i) static obstacles represented by convex polygons;
(ii) MMPs of dynamic obstacles; (iii) a reference path Pref
without considering dynamic obstacles; (iv) kinematic and
dynamic constraints of a mobile robot, the goal is to compute a
sequence of control actions that avoid obstacles while staying
near the provided reference path.

The motion prediction neural network is trained offline
using the SWTA loss. The input x to the network is the
occupancy grid map and location masks of dynamic obstacles,
and the output is multiple hypotheses of the future position
of the dynamic obstacle. During runtime, the neural network
infers future positions of a dynamic obstacle for multiple time
steps. The network handles one dynamic obstacle at a time.
Formally, at time step k, for dynamic obstacle i, we want to
predict M future trajectories

M
T̂ (i)

1:τmax
for each step between

1 and τmax, based on its observed trajectory segment T (i)
−τp:0

.
The predictions of dynamic obstacles are used to generate
a sequence of control actions to avoid collisions through a
refined MPC formulation, which is described in Section IV-B.

A. Iterative Multimodal Motion Prediction

A challenge of having multiple hypotheses {zh}Zz=1 is to
determine which ones to update during training, as updating all
hypotheses yields the same behavior as having one hypothesis.
The WTA approach handles this by updating the hypothesis
with the lowest loss and suffers from abandoned hypotheses.
To address this, the EWTA method updates a varying set of
hypotheses but still leaves some hypotheses abandoned near
equilibrium points, i.e., average positions of ground truths. In
[22], the SWTA was proposed to further mitigate this problem.

The training of the proposed MMP approach requires three
steps: the evolving step (EWTA), the adaptive step (AWTA),
and the swarm step (SWTA). In the first phase, the EWTA
loss is used and some hypotheses are close to the ground
truths while others are close to the equilibrium points. Next,
the AWTA loss is used to continue training. The idea of the
AWTA is to find an adaptive range radp as in (11), defined
with a hyperparameter α. All hypotheses within radp will
be updated. In the AWTA defined in (12), all hypotheses
with a loss smaller than radp will be updated during training
and gradually converge. With a suitable α, the abandoned
hypotheses are updated and converge to other hypotheses
close to them. A side-effect of this convergence is that the
local uncertainty of each mode diminishes, which is inherently
important for trajectory planning. The SWTA loss, depicted in
(13), is employed to counteract the convergence caused by the
AWTA. It achieves this by giving greater updates to hypotheses
within each cluster that are closer to the ground truth, causing
them to diverge from the others, thereby representing the local
uncertainty. The difference in behavior between the EWTA,
AWTA (after EWTA), and SWTA (after EWTA and AWTA)
on the Standard Drone Dataset [25] are shown in Fig. 3.

In [22], an iterative manner is proposed to generate mMMP,
which appends a prediction time offset channel to the original
input x. However, including all offset values in the training

dataset enlarges its size and slows down the training. Instead,
we randomly select offset values from a range N[1,τmax] for
each input trajectory. We have observed that the random se-
lection does not affect the MMP performance and significantly
decreases the training time.

radp = min
z∈Z

(zl) + α

(
max
z∈Z

(zl)−min
z∈Z

(zl)

)
, (11)

LAWTA =
∑
z∈Z

w′
zl(y,

zh), w′
z = δ(zl ≤ radp), (12)

LSWTA =
∑
z∈Z

w′
z min

i∈Z
l(y, ih), w′

z = δ(zl ≤ radp). (13)

During inference, each observed trajectory of a dynamic
obstacle is transferred into a stack of masks ⟨B−τp , . . . ,B0⟩,
and each mask indicates the location of the obstacle at that
time. The occupancy grid map and the time offset channel
are appended to the stack of location masks. Specifically,
the location mask B is an image of the same dimension as
the occupancy grid map and is defined using the bivariate
Gaussian distribution with a zero correlation as in (14), where
bij is the pixel value of the i-th row and the j-th column in
B, uµ and vµ are the location coordinates of the dynamic
obstacle on the image axes, σu and σv are preset.

bij =
1

2πσuσv
exp

(
−1

2

[(
j − uµ

σu

)2

+

(
i− vµ
σv

)2
])

. (14)

The bivariate Gaussian distribution is used to indicate the
location of the object and also provides additional information
about the distance from a pixel to the ground truth. The time
offset channel has the same size as the occupancy grid map,
and each entry contains the value of the offset τ .

B. Prescient Dynamic Obstacle Avoidance

The mMMP produces Z · τmax hypotheses as in (15), with
Z hypotheses for each offset τ of the dynamic obstacle i.

Z
T̂ (i)

1:τmax
= ⟨

⋃
j∈N[1,Z]

{j p̂(i)
τ } | τ ∈ N[1,τmax]⟩. (15)

After training, during runtime, at each time step, the Clustering
and Gaussian Fitting (CGF) approach, outlined in [22], is used
to cluster all hypotheses related to dynamic obstacles based on
their spatial proximity. This clustering operation yields a total
of M ′ distinct hypotheses, as it merges hypotheses associated
with multiple dynamic obstacles. This merging is beneficial as
it reduces the possibility of obtaining overlapping obstacles.

Given MMPs, the control actions of the mobile robot are ex-
pected to be affected. The MPC formulation accounts for both
static and dynamic obstacles by including them as constraints.
MPC solvers are typically designed to handle both hard and
soft constraints. Hard constraints must be satisfied invariably,
whereas soft constraints are designed with an expectation of
fulfillment, but with room for violation. We use both of them to
regulate the robot’s behavior. For static obstacles, soft and hard
constraints are formulated in (19) via the indicator as in (8).
All static obstacles are inflated by the size of the robot for both
soft and hard constraints. Similarly, for dynamic obstacles,
typically humans, soft and hard constraints are formulated in
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(20) via the indicator as in (9). However, due to the uncertainty
of MMPs, three different kinds of margins are used for safer
navigation. In hard constraints, all dynamic obstacles and their
motion predictions are expanded by the size of the robot. On
the one hand, the soft constraints for dynamic obstacles at the
current time handle an extra margin rextra, which is composed
of the safety margin rsaf and the social margin rsoc. On the
other hand, soft constraints for motion predictions of dynamic
obstacles handle the extra margin equal to rsaf. The purpose
of this choice is to provide better feasibility and more safe
guarantee for dynamic obstacles.

In the implementation, we use the OpEn engine [26] to solve
the MPC problem, which can cope with both hard and soft
constraints. The details are discussed in the next section. The
use of soft constraints provides several benefits, their flexibility
allows for separate treatment of different types of obstacles,
and the tolerance to deprioritize certain soft constraints in
favor of more crucial requirements. In situations where the
mobile robot’s path is obstructed by obstacles, yet feasible
solutions are easily accessible, soft obstacle-avoidance con-
straints are often sufficient to prevent collisions. Conversely,
when a feasible solution is elusive or non-existent, the robot
may violate soft constraints, which may subsequently result
in collisions. Therefore, hard obstacle-avoidance constraints
become indispensable.

The objective function comprises reference deviation terms
as (16)-(18), and soft obstacle avoidance terms as (19) and (20)
at time step k, where No and Nd are the numbers of static
and dynamic obstacles with QO and QD being the penalty
weights. In (20), p

(i)
k and σ′(i)

k represent the position and
axes of the i-th obstacle, and σ′(i)

k = σ
(i)
k + rextra where σ

(i)
k

is the original axes calculated using the CGF [22] and rextra is
the extra margin.

J
(s)
k = Js(sk, s̃k) = ||sk − s̃k||2Qs

, (16)

J
(u)
k = Ju(uk, ũk) = ||uk − ũk||2Qu

, (17)

J
(a)
k = Ja(uk,uk−1) = ||uk − uk−1||2Qa

, (18)

JO(sk) =

No∑
i=1

||ιO(p(s)
k | a(i), b(i))||2QO , (19)

JD(sk) =

Nd∑
i=1

||ιD(p
(s)
k | p(i)

k , σ′(i)
k )||2QD . (20)

To make the objective function more compact, let JR(k) =
J
(s)
k + J

(u)
k + J

(a)
k . The full MPC formation, using sampling

time ∆ts and ∆uj = uj − uj−1 (at k = 0, uk−1 = 0) is

min
uk:k+N−1

J
(s)
N +

k+N−1∑
j=k

[JR(j) + JO(sj) + JD(sj)] , (21)

s.t. sj+1 = f(sj ,uj), (22)
uj ∈ [umin,umax], (23)
∆uj

∆ts
∈ [u̇min, u̇max], (24)

p
(s)
j /∈ O, (25)

p
(s)
j /∈ Dj , ∀j ∈ N[k,k+N−1]. (26)

Compared to (4), three terms are added in (21), which are
the penalty on the acceleration Ja and the soft constraints of

the static and dynamic obstacle avoidance JO and JD. During
runtime, only the first generated action is used at each step.
In the implementation, we set N = 20 and J

(s)
N = 0.

V. IMPLEMENTATION

The presented approach has been implemented in Python1

and extended to ROS. The occupancy grid map is assumed to
be given. As illustrated in Fig. 2, the occupancy grid map
is transformed into a geometric map, where obstacles are
recognized and simplified using contour detection and convex
polygons. At runtime, the motion predictor gives mMMPs of
dynamic obstacle positions according to their past positions.
The MPC controller commands the action of the mobile robot.
The proposed pipeline is shown in Fig. 1.

The mobile robot was implemented using a unicycle model
(27) assuming no slip of the wheels, with the state sk =

[x
(s)
k , y

(s)
k , θ

(s)
k ]⊤ and the action uk = [uv,k, uω,k]

⊤, specif-
ically, p

(s)
j = [x

(s)
k , y

(s)
k ]⊤ indicates the x and y position of

the robot, θ(s)k is the heading of the robot, uv,k and uω,k are
linear speed and angular velocity of the robot respectively,

sk+1 = f(sk,uk) =

x
(s)
k +∆tsuv,k cos(θ

(s)
k )

y
(s)
k +∆tsuv,k sin(θ

(s)
k )

θ
(s)
k +∆tsuω,k

 . (27)

A. Implementation of the Control Strategy

In the evaluation, the OpEn engine [26] is used to solve
nonlinear MPC optimization problems, which can handle
inequality constraints using the penalty method. The penalty
method treats constraints as extra terms multiplied by penalty
coefficients in the objective, which transfers the original con-
strained problem into an unconstrained problem. Given the
uncertainty of the constraints, the way PANOC handles the
constraints by lifting them into the objective function is a
viable strategy for this application. Since the penalty method
requires numerical iterations, a maximum solving time is set
to restrict the number of iteration loops.

B. Implementation of the Motion Prediction Strategy

The input to the neural network is a stack of images
containing the environment, the observed positions of the
target object, and the prediction time offset channel. The
backbone is ResNet34 [27] and the output layer is a linear
layer with Z × Do output units, where Z is the number of
hypotheses and Do is the dimension of each hypothesis. In
this case, each hypothesis is a guess of a two-dimensional
location, therefore, Do = 2. Hyperparameters of the SWTA
loss and training profile are the same as [22].

The neural network is trained on a simulated dataset ob-
tained from the warehouse scene as shown in Fig. 7. Pedes-
trians are simulated to walk on pre-defined paths around the
whole map with random noise on their velocities. There are
580 trajectories collected for training, which gives 265270
training data samples. During the training, the first 14 epochs

1Code is available: https://github.com/Woodenonez/DyObAv MPCnWTA
Warehouse

https://github.com/Woodenonez/DyObAv_MPCnWTA_Warehouse
https://github.com/Woodenonez/DyObAv_MPCnWTA_Warehouse
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TABLE I
EVALUATION RESULTS (AVERAGE OVER 100 RUNS). STARRED METHODS ARE DEEP-LEARNING AIDED.

METHODS IN BOLD FONT ARE PROPOSED BY US. METRICS IN BOLD FONT ARE THE BEST RESULTS.

Scenario Method Smoothness Clearance (m) Deviation (m) Solving time (sec) Success (%)linear angular static dynamic mean std max mean max

Scenario 1

MPC-WTA* 0.028 0.036 0.511 0.750 0.429 0.261 0.738 0.061 0.517 95
MPC-WTA-F* 0.030 0.039 0.501 0.786 0.434 0.267 1.095 0.050 0.125 94

MPC-CV 0.065 0.075 0.837 0.304 0.270 0.280 1.055 0.191 0.518 22
DWA 0.041 0.083 0.993 0.279 0.142 0.074 0.456 0.173 0.311 46

DWA-CV 0.045 0.094 0.989 0.308 0.204 0.142 0.704 0.195 0.413 48

Scenario 2

MPC-WTA* 0.034 0.044 0.577 0.941 0.211 0.143 0.840 0.051 0.517 94
MPC-WTA-F* 0.046 0.042 0.574 0.863 0.224 0.160 1.064 0.052 0.121 81

MPC-CV 0.031 0.054 0.544 0.686 0.186 0.126 0.564 0.108 0.516 54
DWA 0.039 0.033 0.632 0.350 0.183 0.102 0.400 0.206 0.305 58

DWA-CV 0.042 0.034 0.651 0.298 0.205 0.109 0.398 0.207 0.323 62

are trained via the EWTA loss with a decaying ktop, and the
next three epochs are trained via the AWTA loss, followed by
another three epochs trained via the SWTA loss.

C. Integration into ROS

The control and motion forecasting approaches have been
integrated into ROS. The proposed method is simulated within
ROS and visualized using Gazebo and RViz. The proposed
approach plans the trajectory for a mobile robot within the
setting of a warehouse, where the robot is operating alongside
human workers. This is discussed further in the next section.

VI. EVALUATION

In this section, the proposed method is evaluated both quan-
titatively and qualitatively. The quantitative analysis considers
two aspects: tracking performance and real-time performance.
We compare the proposed method against other popular meth-
ods for trajectory planning. Additionally, the proposed method
is implemented in ROS and validated via Gazebo.

A. Tracking performance

The following metrics are used to evaluate trajectory track-
ing methods:

• Success rate. A successful run is defined as when the
robot traverses the map without any collisions and reaches
the goal before a time-out.

• Smoothness (of action). In most cases, the robot is ex-
pected to execute smooth movements. The action smooth-
ness is measured as the second derivative of the action,
commonly referred to as the jerk.

• Clearance. Clearance refers to the minimal distance to
obstacles during a trip. We distinguish between clearance
from static obstacles and dynamic obstacles. The under-
lying idea is that the clearance should be large unless the
reference path specifically instructs the robot to stay in
close proximity to obstacles.

• Deviation. Given that a reference path is provided, the
robot should follow it closely, deviating only when nec-
essary to avoid obstacles.

We compare four methods: MPC-WTA* (ours), MPC-WTA-
F* (ours, a faster version by constraining the solving time),
MPC-CV (the motion prediction is offered by constant ve-
locity models with Kalman filters, similar to [15]), DWA (the

Fig. 4. Illustration of scenario 1 using MPC-WTA. The arrow indicates the
movement patterns of the human.

dynamic window approach [7]), and DWA-CV (the dynamic
window approach with constant velocity motion prediction
models, similar to [10]). Note that we do not compare with the
MPC method without motion predictions because it generally
cannot avoid dynamic obstacles. In order to track the reference
path, compared to the original DWA, an extra cost measuring
the distance from the candidate trajectory to the reference
trajectory is added in the evaluated DWA. For the DWA, the
linear speed resolution is 0.1 m/s and the angular speed resolu-
tion is 0.1 rad/s, which gives 40 candidates. Using the double
resolution does not increase the success rate significantly.

All the methods are evaluated in two scenarios in the
warehouse environment and the final results are obtained over
100 runs. The reason to have multiple runs is that the simulated
agents have stochastic behaviors as shown in Fig. 4 and 5.
In the first scenario, as in Fig. 4, a pedestrian and a robot
are approaching an intersection. The pedestrian will turn right
and potentially collide with the robot. The second scenario,
as illustrated in Fig. 5, is a pedestrian walking in parallel
with the robot and making a sudden turn at the crossing.
As shown in Table I, the proposed approach has the highest
success rate and the best comprehensive performance. The
evaluation shows the importance of considering MMPs in
dynamic obstacle avoidance problems. In comparison, the
DWA has less deviation, which means it is not good at dealing
with unexpected behaviors of dynamic obstacles.

We also evaluate the influence of different maximum solving
times on the performance. In MPC-WTA*, the maximum
solving time is 0.5 seconds while in MPC-WTA-F* it is 0.1
seconds, which means MPC-WTA-F* is more likely to give
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Fig. 5. Illustration of scenario 2 using the DWA. The arrow indicates the
movement pattern of the human.

an infeasible solution. In Scenario 1, there is a relatively easy
solution where the controller commands the robot to steer right
to avoid the potential collision. On the contrary, in Scenario
2, the MMP of the pedestrian completely blocks the robot
resulting in no feasible solution to detour but to stop. Thus,
in Scenario 1, these two methods have a very close success
rate, but MPC-WTA-F* has a distinctly lower success rate in
the second scenario. The solving time in the evaluation is
discussed further in the following sub-section.

B. Real-time aspects

For real-time performance, three processes need to be ana-
lyzed, including visual sensor measurement, neural network
inference, and MPC optimization. In Table I, the solving
time only includes the decision-making process without the
motion prediction part. The sensor measurement and neural
network inference normally cost constant time. Since the
sensor measurement is out of the scope of this paper, only
the inference time is analyzed. On NVIDIA GTX 1650 Max-
Q, the inference time is about 0.3 seconds per object. Note that
the deep learning process is not optimized and runs on a low-
performance GPU. After optimizing and using better GPUs,
this process can be much faster. Meanwhile, in practice, the
number of objects should be limited. Only objects close to the
robot are considered.

The MPC optimization latency depends on the solving loop.
As in TABLE I, on Intel i7-9750H, the solving time is around
0.05 seconds for no obstacle, and may increase if obstacles
block the way. To restrict the solving time, a timeout can be
added. However, in the penalty method, when the maximum
solving time is reached and the solver stops, it doesn’t guaran-
tee a feasible solution. To eliminate the risk of collisions, an
extra monitor on the loss function can be added such that
the robot will stop when the objective value in the MPC
is higher than a threshold. Meanwhile, a local sensor/brake
system should be used in a physical implementation.

C. Real-world simulation

Apart from the evaluation under Python simulation, the
proposed approach is also implemented in ROS for real-
world simulation. As shown in Fig. 6, with the help of MMP
(yellow ellipses in the Python simulation and purple dots in
the ROS simulation), the mobile robot can take evasive action
in advance.

Fig. 6. Illustration of a similar scenario simulated in Python (left) and
ROS/RViz (right). The scenario depicts the robot trying to avoid a pedestrian
before the pedestrian moves toward the robot. The red arrow indicates the
motion direction of the robot (red circle in Python, white rectangle in ROS),
while the blue arrow indicates the predicted motion intention of the pedestrian
(blue circle in Python, red dot in ROS).

The real-world simulation is illustrated in Fig. 7 which
shows a scenario where a human and a robot are moving
toward each other. The robot considers all the possible routes
the human can take and maneuvers to reduce the possibility
of collision. In the specific incident depicted in Fig. 7, the
robot estimates several possibilities for the future trajectory of
the human based on the map’s topology and chooses to steer
left until the probability that the human will turn into the left
corridor is high. The complete ROS simulation can be found
inside the repository mentioned in the last section.

We compare the proposed MPC-WTA method to the Timed-
Elastic-Band (TEB) method [8]. In this method, the initial
trajectory generated by a global planner is occasionally opti-
mized during runtime to minimize the time-optimal objective,
separation from an unforeseen obstacle, and compliance with
the kinodynamic constraints of the robot such as maximum
velocities and accelerations. This evaluation is implemented
in ROS. However, when the robot encounters highly dynamic
obstacles such as humans, the TEB method lacks agility
in responding to changes in the obstacle’s trajectory. This
limitation is the result of the compromise between the length
of the prediction horizon and the frequency of re-calculation
of the trajectory. To improve the robot’s ability to react swiftly
to avoid a pedestrian, the prediction time horizon should be
reduced; this comes at the cost of more frequent optimization.
To gain a comparable performance in terms of clearance
and smoothness, we adjust the prediction horizon of TEB to
achieve a similar result with MPC-WTA. The average solving
time of TEB is 0.726 seconds, which is higher than our method
with the average solving time of 0.412 seconds.

VII. CONCLUSION AND FUTURE WORK

In this article, we proposed a comprehensive dynamic obsta-
cle avoidance solution for mobile robots based on a complete
pipeline from a vision system to actual action command
for mobile robots. In addition to the high-level pipeline, we
integrated a deep learning method for multimodal motion
prediction with MPC trajectory generators. The approach is
shown to outperform other non-deep-learning approaches and
is also evaluated in Python using ROS under warehouse scenes
and shows feasibility and safety.

Future work would focus on three aspects: improving the
architecture of the neural network for motion prediction to in-
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(a) (b) (c) (d)
Fig. 7. (a) Gazebo simulation of a Mobile Industrial Robot MiR100 in a warehouse. (b-d) ROS visualization (RViz) of the reference path the mobile robot is
trying to follow (in green), the trajectory of the human actor (in red), the predicted future trajectory of the human (in purple), and the actual trajectory of the
mobile robot (in blue). The obstacles detected by the robot are inflated (illustrated in red) proportional to the size of the robot. Figures b-d illustrates how
the robot predicts the future trajectory of the actor and plans its trajectory accordingly. Full videos: https://shorturl.at/vKV08.

crease the prediction accuracy and shorten the inference time;
modifying the reference generator and the MPC formulation to
achieve fast convergence in the optimization step; studying the
influence of delay from the vision system and how to handle
the always present delays. Finally, we plan to evaluate the
approach in a physical scenario for a fleet of mobile robots.
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