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Abstract
Consider the variation seminorm of the Ornstein–Uhlenbeck semigroup Ht in dimension
one, taken with respect to t . We show that this seminorm defines an operator of weak type
(1, 1) for the relevant Gaussian measure. The analogous L p estimates for 1 < p < ∞ were
already known.

Keywords Variation seminorm · Ornstein–Uhlenbeck semigroup · Mehler kernel

Mathematics Subject Classification 42A99 · 47D03

1 Introduction

In order to measure the fluctuations of a family of linear bounded operators At : L p(X) →
L p(X), where t > 0 and X is a measure space, it may be useful to consider quantities involv-
ingmany differences Tt f (·)−Ts f (·), with s, t > 0 and f ∈ L p(X). Among these quantities,
variation and oscillation seminorms are probably the best known. The corresponding varia-
tional inequalities, stating that the L p-norm of the variation or the oscillation of (At f )t>0 is
uniformly bounded by the L p-norm of f , have attracted increasing interest in the last fifty
years.

In fact, in 1976 D. Lépingle proved a first variational inequality for a family of bounded
martingales [19], also providing a weak type (1, 1) variant (see also [22] for extensions and a
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different proof). ThenGaposhkin in [10, 11] considered oscillational inequalities for standard
ergodic averages. Some years later, in 1989, J. Bourgain proved the pointwise convergence of
ergodic averages along polynomial orbits by replacing the classical estimates for the Hardy–
Littlewood maximal function by variational seminorm bounds [4]. Further results may be
found in [13, 15].

After the seminal work by Bourgain, in light of the applications to pointwise convergence
phenomena, the study of variational inequalities spread in many different contexts. For an
updated survey, especially from the point of view of oscillation estimates, we refer to [24].
The recent paper [23] deals with jump inequalities, seen as endpoint results for variation
inequalities. Focusing on the field of harmonic analysis, we recall here the cases of the
Hilbert transform [5], Fejér and Poisson kernels [17], families of truncations of Gaussian
Riesz transforms [12] and the heat and Poisson semigroups of the Laplacian and Hermite
operator [2, 9]. Analogous results have been obtained for semigroups associatedwith Fourier-
Bessel expansions [3], for spherical means or averages along curves (t, ta) in the plane [16]
and for differential and singular integral operators in some weighted Lebesgue spaces [20,
21]. Some results are also known for the Ornstein–Uhlenbeck semigroup; see below.

To define the variation seminorm v(ρ), let φ be a real- or complex-valued function defined
in an interval I . Then for 1 ≤ ρ < ∞

‖φ‖v(ρ),I := sup

(
n∑

i=1

|φ(ti ) − φ(ti−1)|ρ
)1/ρ

,

where the supremum is taken over all finite, increasing sequences (ti )n0 of points in I . This
is a seminorm which vanishes only for constant functions. We will often omit indicating the
interval I . The space V (ρ, I ) consists of those functions φ in I for which ‖φ‖v(ρ),I < ∞.
In this paper we will only consider the variation of continuous functions φ(t).

We next introduce the one-dimensionalOrnstein–Uhlenbeck semigroup. Let R(x) = x2/2
for x ∈ R, and define themeasure dγ∞(u) = (2π)−1/2 exp(−R(u)) du inR. The semigroup
is then given by

Ht f (x) =
∫

f (u) Kt (x, u) dγ∞(u), t > 0,

where f ∈ L1(γ∞) and the kernel Kt is

Kt (x, u) = eR(x)

√
1 − e−2t

exp

(
−1

2

(e−t u − x)2

1 − e−2t

)
, t > 0, (x, u) ∈ R × R. (1.1)

The measure γ∞ is the unique probability measure which is invariant under the semigroup.
Wewill consider the variation of the semigroup, i.e., the seminorm ‖Ht f (x)‖v(ρ),R+ taken

with respect to t and considered as an operator defined for f ∈ L1(γ∞).
When ρ > 2 it is known that this operator is bounded from L p(γ∞) to L p(γ∞) for

1 < p < ∞, even for the Ornstein–Uhlenbeck semigroup in any finite dimension. This
follows from [14], where a general symmetric diffusion semigroup is considered. Another
proof can be found in [18, Corollary 4.5]; it is verified in [1, page 31] that this corollary can
be applied in our setting.

The inspiration for the present work came from a comment in [1, page 31] saying that
no variational weak type (1, 1) bound is known for the Ornstein–Uhlenbeck semigroup. We
will prove the following one-dimensional result.

Theorem 1.1 For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖Ht f (x)‖v(ρ),R+ , x ∈ R,
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where the v(ρ) seminorm is taken in the variable t , is of weak type (1, 1) with respect to the
measure γ∞.

In other words, the inequality

γ∞{x ∈ R : ‖Ht f (x)‖v(ρ),R+ > α} ≤ C

α
‖ f ‖L1(γ∞), α > 0, (1.2)

holds for some C > 0 and all functions f ∈ L1(γ∞).
The structure of this paper is as follows. Section2 contains some preliminaries, mainly

concerning the variation seminorm and the t derivative of Kt . In the following sections,
Theorem 1.1 will be obtained as a direct consequence of Propositions 3.1, 4.1 and 5.1. Of
these, Proposition 3.1 deals with the variation only for t ≥ 1. For these values of t , the
estimate (1.2) is slightly strengthened. In Sect. 4, we split the operator given by the variation
for 0 < t ≤ 1 into a local and a global part. This is done by means of a partition of the line
into intervals where the density of γ∞ is essentially constant. Then Proposition 4.1, dealing
with the global part, is proved.

Proposition 5.1 is an estimate of the local part of the variation in 0 < t ≤ 1, and is stated
and proved in the long Sect. 5. The proof goes via Proposition 5.2, which deals with one
of the intervals of the partition at a time, and where γ∞ is replaced by Lebesgue measure.
Finally, Proposition 5.2 is seen to follow from estimates for the variation of integrals of an
L1 function over certain intervals, obtained as a consequence of a known theorem about the
variation of mean values.

Theorem 1.1 is proved in the one-dimensional case, and the handling of integrals over
intervals in Sect. 5 just mentioned seems hard to extend to higher dimensions, because of
geometrical obstructions. Only the results of Sects. 3 and 4 extend easily.

We point out that in Sects. 3 and 4, we use arguments similar to some from the authors’
papers [7] and [8]. Rather than invoking the results from there, we prefer to give the proofs
explicitly.

2 Preliminaries

By C < ∞ and c > 0 we denote many different absolute constants, and X � Y , or
equivalently Y � X , means X ≤ CY . We write X 	 Y if both X � Y and Y � X .

Seminorms of type ‖.‖v(ρ),I will always be taken in one of the variables t or τ .
We will let K̇t (x, u) = ∂Kt (x, u)/∂t .
It is not immediately obvious that the function x 
→ ‖Ht f (x)‖v(ρ),R+ is measurable. But

Ht f (x) is continuous in t for each x , as seen by dominated convergence. In the definition of
the v(ρ) seminorm, it is therefore enough to consider sequences of points ti ∈ Q, thus only
a countable family of sequences. The measurability follows.

We give some simple properties of the variation, and first observe that the seminorm
‖.‖v(ρ) is decreasing in ρ for 1 ≤ ρ < ∞. This seminorm is also subadditive in I , in the
following sense. Take an inner point τ of I and set I+ = I ∩[τ,+∞) and I− = I ∩(−∞, τ ].
Then for 1 ≤ ρ < ∞ and any φ

‖φ‖v(ρ),I ≤ ‖φ‖v(ρ),I+ + ‖φ‖v(ρ),I− .

Lemma 2.1 Let 1 ≤ ρ < ∞.
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(a) If φ ∈ C1(I ) and φ′ ∈ L1(I ), then φ ∈ V (ρ, I ) and

‖φ‖v(ρ),I ≤
∫
I
|φ′(t)| dt .

(b) If φ is monotone and bounded in I , then φ ∈ V (ρ, I ) and

‖φ‖v(ρ),I ≤ 2 sup
I

|φ|.

Both parts here are easy for ρ = 1 and then follow for all ρ.
The variation of products can be estimated as follows.

Lemma 2.2 Let φ and ψ be bounded functions defined in the interval I . Then for any 1 ≤
ρ < ∞

‖φψ‖v(ρ) ≤ ‖φ‖∞‖ψ‖v(ρ) + ‖φ‖v(ρ)‖ψ‖∞.

To prove this, it is enough to write for an increasing sequence (ti ) in I

φ(ti )ψ(ti ) − φ(ti−1)ψ(ti−1) = φ(ti )(ψ(ti ) − ψ(ti−1)) + (φ(ti ) − φ(ti−1))ψ(ti−1),

and then take the 
ρ norm.
We next make some preparations for the proof of Theorem 1.1.
The following estimate of the variation seminormof Ht f (x)will be useful. Let the interval

I be either (0, 1] or [1,∞). From Lemma 2.1(a), we conclude that

‖Ht f (x)‖v(ρ),I ≤
∫
I

∣∣∣∣ ∂

∂t

∫
Kt (x, u) f (u) dγ∞(u)

∣∣∣∣ dt
=

∫
I

∣∣∣∣
∫

K̇t (x, u) f (u) dγ∞(u)

∣∣∣∣ dt
≤

∫ ∫
I

∣∣K̇t (x, u)
∣∣ dt | f (u)| dγ∞(u). (2.1)

To justify moving the differentiation inside the integral in the second step here, we refer to
[8, Lemma 5.3].

We compute and estimate K̇t (x, u).

Lemma 2.3 For all (x, u) ∈ R
n × R

n and t > 0, we have

K̇t (x, u) = Kt (x, u)

(
− e−2t

1 − e−2t + e−2t (e−t u − x)2

(1 − e−2t )2
+ e−t u(e−t u − x)

1 − e−2t

)
. (2.2)

Moreover, for t ≥ 1 one has∣∣K̇t (x, u)
∣∣ � eR(x) exp

( − c
(
e−t u − x

)2 )(
e−t |u| + e−2t ). (2.3)

Proof We omit the proof of (2.2). When t ≥ 1, (2.2) implies that

|K̇t (x, u)| � Kt (x, u)
(|e−t u − x | e−t |u| + e−2t (e−t u − x)2 + e−2t ) . (2.4)

For t ≥ 1 (1.1) shows that Kt � eR(x) exp
(
−c

(
e−t u − x

)2). Changing the value of c here,
we may neglect the factors e−t u − x in (2.4) and obtain (2.3). �
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3 The case of large t

In this section we consider the variation of Ht f (x) only for 1 ≤ t < ∞.

Proposition 3.1 For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖Ht f (x)‖v(ρ),[1,+∞), x ∈ R,

is of weak type (1, 1) with respect to the measure γ∞. In fact, one has the following stronger
result: If ρ > 2 and ‖ f ‖L1(γ∞) = 1, then

γ∞
{
x ∈ R : ‖Ht f (x)‖v(ρ),[1,∞) > α

}
� 1

α
√
logα

, α > 2. (3.1)

Notice that, when t is large, the estimate (1.2) is enhanced by a logarithmic factor. In [6]
and [7], an analogous phenomenon was already observed both for the Ornstein–Uhlenbeck
maximal operator and for the Gaussian Riesz transform.

Proof Let f be normalized in L1(γ∞). We integrate (2.3), getting∫ ∞

1

∣∣K̇t (x, u)
∣∣ dt � eR(x)

∫ ∞

1
exp

( − c
(
e−t u − x

)2 )(
e−t |u| + e−2t) dt .

In the last parenthesis in the second integrand here, we consider first only the term e−t |u|
and make the change of variable e−t u − x = y, separately for u > 0 and u < 0. As a result,∫ ∞

1
exp

(−c(e−t u − x)2
)
e−t |u| dt ≤

∫
R

exp(−cy2) dy 	 1.

Taking also the term e−2t in the integral above into account, we conclude that∫ ∞

1

∣∣K̇t (x, u)
∣∣ dt � eR(x).

Now (2.1) leads to

‖Ht f (x)‖v(ρ),[1,∞) � eR(x).

It is easily seen that

γ∞
{
x : eR(x) > β

}
� 1

β
√
logβ

, β > 2.

From this (3.1) follows, and since (1.2) is trivial for α ≤ 2, Proposition 3.1 is proved. �

4 The global case with small t

We first split the operator Ht in a local and a global part, in a way adapted to γ∞. Let η ≥ 0
be a smooth function in R+ which is 1 in (0, 1/2] and 0 in [1,∞). The local part of the
semigroup is defined by

H loc
t f (x) =

∫
f (u) Kt (x, u) η((1 + |x |)|x − u|) dγ∞(u).

The global part Hglob
t = Ht − H loc

t is given by a similar expression, with η(.) replaced by
1 − η(.).
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Proposition 4.1 For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖Hglob
t f (x)‖v(ρ),(0,1], x ∈ R,

is of weak type (1, 1) with respect to the measure γ∞.

Proof We first give an estimate of the number of zeros of the function t 
→ K̇t (x, u) for
0 < t < 1. From (2.2) we see that we can write

K̇t (x, u) = Kt (x, u)
Px,u(e−t )

(1 − e−2t )2
,

where Px,u is a polynomial of degree at most 4, with coefficients depending on x and u. Thus
K̇t (x, u) can have at most four zeros in (0, 1). Denote these zeros by t1, . . . , tN−1; the ti and
also N will depend on (x, u), and N ≤ 5. Set also t0 = 0 and tN = 1. Then∫ 1

0
|K̇t (x, u)| dt =

N∑
1

∣∣∣∣
∫ ti

ti−1

K̇t (x, u) dt

∣∣∣∣ ≤ 10 sup
(0,1]

Kt (x, u).

Since the computation (2.1) remains valid with an extra factor 1 − η((1 + |x |)|x − u|),
we conclude

‖Hglob
t f (x)‖v(ρ),(0,1] �

∫
| f (u)| sup

(0,1]
Kt (x, u) (1 − η((1 + |x |)|x − u|)) dγ∞(u). (4.1)

We claim that for 0 < t ≤ 1 and all (x, u)

sup
(0,1]

Kt (x, u) (1 − η((1 + |x |)|x − u|)) � eR(x) (1 + |x |). (4.2)

If 1− η((1+ |x |)|x − u|) �= 0, we have |x − u| > 1/(2(1+ |x |)) and thus for 0 < t ≤ 1
also

(1 + |x |)−1 < 2|x − u| ≤ 2|x − et x | + 2|et x − u| = 2(et − 1)|x | + 2et |x − e−t u|
≤ 2et(1 + |x |) + 2e|x − e−t u|.

Now, if t(1 + |x |)2 < 1/(4e) we get a bootstrap implying

(1 + |x |)−1 < 4e|x − e−t u|.
Then we see from (1.1) that

e−R(x) Kt (x, u) 	 t−1/2 exp

(
−1

2

(e−t u − x)2

t

)

≤ t−1/2 exp

(
−1

2

1

16e2t(1 + |x |)2
)

� 1 + |x |,

and (4.2) follows. On the other hand, if t(1 + |x |)2 ≥ 1/(4e), (4.2) also follows, since then
t−1/2 � 1 + |x |.

Combining now (4.1) and (4.2), we get

‖Hglob
t f (x)‖v(ρ),(0,1] � eR(x) (1 + |x |) ‖ f ‖L1(γ∞).

This ends the proof of Proposition 4.1, because

γ∞
{
x : eR(x) (1 + |x |) > β

}
� 1

β
, β > 0.

�
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5 The local case with small t

This section consists of the proof of the following result.

Proposition 5.1 For each ρ > 2 the operator that maps f ∈ L1(γ∞) to the function

‖H loc
t f (x)‖v(ρ),(0,1], x ∈ R

n,

is of weak type (1, 1) with respect to the measure γ∞.

5.1 Splitting of the line into local intervals

The localization means that the value H loc
t f (x) depends only on the restriction of f to the

interval {u : |u − x | ≤ 1/(1 + |x |)}, and we will split the line into intervals of similar type.
Choose an increasing sequence (x j )∞0 with x0 = 0 such that for j = 0, 1, . . .

x j+1 − 1

1 + x j+1
= x j + 1

1 + x j
.

This recursion formula determines the sequence uniquely. We have x j+1 − x j < 2 for all
j ≥ 0, so that x j ≤ 2 j . Thus x j+1 − x j � 1/ j and x j → +∞ as j → ∞. (In fact, x j is
close to 2

√
j − 1, as shown in the Appendix.) For j < 0 we let x j = −x| j |.

The intervals

I j =
[
x j − 1

1 + |x j | , x j + 1

1 + |x j |
]

, j ∈ Z,

are pairwise disjoint except for endpoints, and they cover R. If supp f ⊂ I j , we claim that
the support of H loc

t f is contained in the interval

Ĩ j =
[
x j − 4

1 + |x j | , x j + 4

1 + |x j |
]

.

To verify this, let x ∈ supp H loc
t f . Then x has distance at most 1/(1+ |x |) from some point

in I j , so that

|x − x j | ≤ 1

1 + |x | + 1

1 + |x j | , (5.1)

which implies

1 + |x | ≥ 1 + |x j | − 1

1 + |x | − 1

1 + |x j | ≥ |x j | − 1 ≥ 1 + |x j |
3

,

the last inequality holding only if |x j | ≥ 2. But if |x j | < 2, one has the same estimate, since
then 1 + |x | ≥ 1 ≥ (1 + |x j |)/3. The claim now follows from (5.1).

We also observe that if supp f ⊂ I j and j > 0, then supp H loc
t f ⊂ {x ≥ 0}. Indeed,

I j ⊂ [1,∞) when j > 0, so if x ∈ supp H loc
t f we must have x ≥ 1 − 1/(1 + |x |) ≥ 0.

The intervals Ĩ j have bounded overlap. Therefore, it is enough to prove Theorem 1.1 for
functions f supported in I j , with a bound that is uniform in j ∈ Z.

In each Ĩ j , the density of γ∞ is essentially constant, since e−R(x) 	 e−R(x j ) for x ∈ Ĩ j ,
and this is uniform in j . Therefore, we can pass to Lebesgue measure in u and in x . We
replace f ∈ L1(γ∞), supported in I j , by g(u) = f (u) e−R(u) ∈ L1(du), with the same
support. Instead of H loc

t , we can then consider the operator

Hloc
t g(x) = 1√

1 − e−2t

∫
g(u) exp

(
−1

2

(e−t u − x)2

1 − e−2t

)
η((1 + |x |)|x − u|) du,
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where we deleted the essentially constant factor eR(x).
We conclude from the above that the following proposition implies Proposition 5.1.

Proposition 5.2 For ρ > 2 and each j ∈ Z, the operator that maps g ∈ L1(I j ) to

‖Hloc
t g(x)‖v(ρ),(0,1]

is bounded from L1(I j ) to L1,∞( Ĩ j ), where the intervals are endowed with the Lebesgue
measure. This is uniform in j .

5.2 Proof of Proposition 5.2

For symmetry reasons, it is enough to consider only j ≥ 0 and only points x ∈ R+. With
j ≥ 0 fixed, we let g ∈ L1(I j ). The expression for Hloc

t g(x) will be rewritten in terms of
integrals of only g(u) over many intervals which depend on t . Here we follow [5, proof of
Lemma 2.4], writing

exp(−y2/2) = −
∫ ∞

y

de−s2/2

ds
ds = −

∫ ∞

0
χy<s

de−s2/2

ds
ds

and

η(y) = −
∫ ∞

y

dη(σ )

dσ
dσ = −

∫ 1

1/2
χy<σ

dη(σ )

dσ
dσ.

As a result,

Hloc
t g(x) =

∫ ∞

0

de−s2/2

ds

∫ 1

1/2

dη(σ )

dσ
Rs,σ
t g(x) dσ ds, (5.2)

where

Rs,σ
t g(x) = 1√

1 − e−2t

∫
g(u) χ|e−t u−x |/√1−e−2t<s χ(1+|x |)|x−u|<σ du. (5.3)

Observe that it is not enough to prove that the v(ρ) seminorm of Rs,σ
t g(x), taken with

respect to t , defines an operator of weak type (1,1) for each s and σ . This is because L1,∞
is not a normed space. Instead we will estimate the variation of Rs,σ

t g(x) for all s and σ

in terms of one operator of weak type (1,1) (actually a small number of such operators and
actually with a factor s + 1, which is integrable against de−s2/2/ds).

A few times below, we will use the simple inequalities

y ≤ ey − 1 ≤ 4y for 0 ≤ y ≤ 2. (5.4)

The second inequality holds because the function (ey − 1)/y is increasing for these y, as
seen from the power series.

In the sequel, we fix an x ∈ Ĩ j ∩ R+ and let s > 0 and 1/2 < σ < 1, but we temporarily
allow all t > 0. We will soon introduce many quantities which will depend on x, s, t
and sometimes σ ; in order not to make the notation too heavy, we will systematically omit
indicating the dependence on x .

Since the inequality |e−t u−x |/√1 − e−2t < s can be rewritten as |u−et x | < s
√
e2t − 1,

the integration in (5.3) is taken over the interval

Jt (s, σ ) =
{
u ∈ R : |u − et x | < s

√
e2t − 1 and |u − x | <

σ

1 + x

}
.
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Fig. 1 Graph of Qs (t) with
x = 2, s = 1. Here σ = 3/4

Observe that Jt (s, σ ) is nonempty precisely when

s
√
e2t − 1 + σ

1 + x
> et x − x, (5.5)

or equivalently Qs(t) < σ/(1 + x), where

Qs(t) = x(et − 1) − s
√
e2t − 1 .

An instance of this function is plotted in Fig. 1.
Since Q′

s(t) = xet − se2t/
√
e2t − 1, one finds by squaring each of these two terms

that Q′
s(t) > 0 if and only if x > s and t > t̃(s), where t̃(s) > 0 is determined by

e2̃t(s) = x2/(x2 − s2). If x ≤ s, we set t̃(s) = +∞. It follows that Qs(t) is strictly{
decreasing in 0 < t < t̃(s)
increasing in t̃(s) < t < +∞.

(5.6)

Further, Qs(0) = 0, and if x > s, then Qs(t) → +∞ as t → +∞. We conclude that
there exists a t1(s, σ ) ∈ (0,+∞] such that

Jt (s, σ ) �= ∅ ⇔ Qs(t) < σ/(1 + x) ⇔ 0 < t < t1(s, σ ).

Moreover, t1(s, σ ) < +∞ if and only if x > s.
For later use, we make a similar observation regarding the inequality Qs(t) < 0. There

exists a t0(s) ∈ (̃
t(s), t1(s, σ )

) ∪ {+∞}, finite if and only if x > s, such that

Qs(t) < 0 ⇔ 0 < t < t0(s). (5.7)

(Actually, t0(s) is given by et0(s) = x2+s2

x2−s2
if x > s.)

We let

T = T (s, σ ) := 1 ∧ t1(s, σ ) = sup{t ∈ (0, 1] : Qs(t) < σ/(1 + x)}.
Then T (s, σ ) ∈ (0, 1], and from now on we consider only 0 < t ≤ 1.

Notice that T (s, σ ) < 1 if and only if Qs(1) > σ/(1 + x).
Further,

{t ∈ (0, 1] : Jt (s, σ ) �= ∅} =
{

(0, T (s, σ )) if Qs(1) ≥ σ/(1 + x)
(0, T (s, σ )] = (0, 1] otherwise.
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In the first case here, JT (s,σ )(s, σ ) = ∅ and Rs,σ
T (s,σ )g(x) = 0. We observe that Rs,σ

t g(x)
is in all cases defined and continuous as a function of t for 0 < t ≤ T (s, σ ).

Next, we deduce a bound for T (s, σ ). Since T (s, σ ) ≤ t1(s, σ ), any t < T (s, σ ) satisfies
(5.5). Using first (5.4) and then (5.5) multiplied by x together with (5.4), and finally the
inequality between the geometric and arithmetic means, we get

x2 t ≤ x2 (et − 1) < sx
√
8t + σ

x

1 + x
≤ x2t

2
+ 4s2 + 1.

Hence,
x2 T (s, σ ) ≤ 8(s2 + 1). (5.8)

When Jt (s, σ ) is nonempty, we write its endpoints as

Jt (s, σ ) = (k−
t (s, σ ), k+

t (s, σ )),

and they are

k+
t (s, σ ) =

(
xet + s

√
e2t − 1

)
∧

(
x + σ

1 + x

)

and

k−
t (s, σ ) =

(
xet − s

√
e2t − 1

)
∨

(
x − σ

1 + x

)
.

From the last expression, it follows that

k−
t (s, σ ) < x ⇔ Qs(t) < 0 ⇔ t < t0(s); (5.9)

see (5.7).
The next step in the proof of Proposition 5.2 will be to apply the following theorem,

obtained in the discrete setting in [13]. It can easily be transferred to the setting of R, see [5,
proof of Lemma 2.1]. Define the one-sided mean values of a function φ ∈ L1(R) by

M+
τ φ(x) = 1

τ

∫ x+τ

x
φ(u) du, x ∈ R, τ > 0,

and M−
τ φ(x) similarly using the interval (x − τ, x).

Theorem 5.3 ([13, Theorem 3.6]) For 2 < ρ < ∞, the operator that maps f ∈ L1(R) to
the function

‖M+
τ φ(x)‖v(ρ),R+ , x ∈ R,

is of weak type (1,1) with respect to Lebesgue measure in R. Here the variation is taken in
the variable τ .

This clearly holds also with M+
τ replaced by M−

τ .
Thus we need to rewrite Rs,σ

t g(x) = (1 − e−2t )−1/2
∫
Jt (s,σ )

g(u) du in terms of mean
values of g in intervals with one endpoint at x .

With 0 < t ≤ T (s, σ ), we define J+
t (s, σ ) = (x, k+

t (s, σ )), which is an interval of length

|J+
t (s, σ )| = k+

t (s, σ ) − x =
(
(et − 1)x + s

√
e2t − 1

)
∧ σ

1 + x
. (5.10)

We further define J−
t (s, σ ) = (k−

t (s, σ ), x), considered as an oriented interval in the sense
that if x < k−

t (s, σ ), an integral over J−
t (s, σ ) is interpreted as minus the integral over
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(x, k−
t (s, σ )). Its length is

|J−
t (s, σ )| = |k−

t (s, σ ) − x |
=

∣∣∣x(et − 1) − s
√
e2t − 1

∣∣∣ ∧ σ

1 + x
= |Qs(t)| ∧ σ

1 + x
, (5.11)

as follows from the expression for k−
t (s, σ ) if one separates the cases when the equivalent

statements of (5.9) are true or false.
We now have for any 0 < t ≤ T (s, σ )

Rs,σ
t g(x) = 1√

1 − e−2t

∫
J+
t (s,σ )

g(u) du + 1√
1 − e−2t

∫
J−
t (s,σ )

g(u) du

= |J+
t (s, σ )|√
1 − e−2t

M+
|J+

t (s,σ )| g(x) ± |J−
t (s, σ )|√
1 − e−2t

M∓
|J−

t (s,σ )| g(x), (5.12)

where one should read the upper signs in ± and ∓ if k−
t (s, σ ) < x and otherwise the lower

signs. Notice that the two terms here cancel for t = T (s, σ ) if JT (s,σ )(s, σ ) = ∅, since then
Qs(T (s, σ )) = σ/(1 + x) and so k+

t (s, σ ) = k−
t (s, σ ) = x + σ/(1 + x).

We will next consider the variation in 0 < t ≤ T (s, σ ) of the two mean values in (5.12),
and start with M+

|J+
t (s,σ )| g(x). Since |J+

t (s, σ )| is a nondecreasing, continuous function of

t in this interval, we can reparametrize M+
|J+

t (s,σ )| g(x), 0 < t ≤ T (s, σ ), as M+
τ g(x) with

0 < τ ≤ τ0 for some τ0 = τ0(s, σ ). This reparametrization does not change the variation,
so that

‖M+
|J+

t (s,σ )| g(x)‖v(ρ),(0,T ] = ‖M+
τ g(x)‖v(ρ),(0,τ0]

for each s and σ , with the variations taken with respect to t and τ , respectively. Extending
the range of τ here, we conclude that

‖M+
|J+

t (s,σ )| g(x)‖v(ρ),(0,T ] ≤ ‖M+
τ g(x)‖v(ρ),R+ . (5.13)

The right-hand side here is independent of s and σ , and Theorem 5.3 applies to it.
To deal with M∓

|J−
t (s,σ )| g(x), we first consider the case when t0(s) < T (s, σ ). At the point

t = t0(s), the difference k
−
t (s, σ ) − x changes sign, and |J−

t0(s)
(s, σ )| = 0. Observe that if

x is a Lebesgue point for g, then M+
|J−

t (s,σ )| g(x) tends to g(x) as t ↓ t0(s) and similarly

for M−
|J−

t (s,σ )| g(x) as t ↑ t0(s). Then the second factor in the last term of (5.12) will be

continuous in t also at t = t0(s), if interpreted as g(x) at this point. This last term, with the
± sign, is also continuous, because the first factor is continuous and vanishes at t = t0(s).
We will consider the variation of M∓

|J−
t (s,σ )| g(x) separately in the subintervals 0 < t ≤ t0(s)

and t0(s) ≤ t ≤ T (s, σ ).
To obtain subintervals where the length |J−

t (s, σ )| is monotone, we invoke (5.6) and split
(0, t0(s)] further into

(
0, t̃(s)

]
and

(̃
t(s), t0(s)

]
. We can now reparametrize as before in each

of the three subintervals of (0, T (s, σ )] obtained. The only little difference is that τ may now
run in an interval that stays away from 0, but we can still extend its range toR+. We conclude
that for every Lebesgue point x ∈ Ĩ j ∩ R+, thus for a.a. x ∈ Ĩ j ∩ R+,

‖M∓
|J−

t (s,σ )| g(x)‖v(ρ),(0,T ] ≤ 2 ‖M−
τ g(x)‖v(ρ),R+ + ‖M+

τ g(x)‖v(ρ),R+; (5.14)

here and below T = T (s, σ ). This ends the case t0(s) < T (s, σ ).
The remaining case t0(s) ≥ T (s, σ ) is slightly easier. Then T (s, σ ) = 1, and k−

t (s, σ ) < x
for t < 1. If t̃(s) < 1, we split (0, 1] into (

0, t̃(s)
]
and

[̃
t(s), 1

]
; otherwise no splitting is

123



V. Casarino et al.

necessary. When t0(s) = 1, we again need to assume that x is a Lebesgue point. It follows
that (5.14) holds also in this case.

Since we are going to apply Lemma 2.2 to the products in (5.12), we observe that the
L∞ norms of the means in (5.12) are controlled by standard maximal operators of g. More
precisely,

‖M+
|J+

t (s,σ )| g(x)‖L∞ ≤ M+g(x), (5.15)

‖M+
|J−

t (s,σ )| g(x)‖L∞ ≤ M+g(x), (5.16)

and

‖M−
|J−

t (s,σ )| g(x)‖L∞ ≤ M−g(x), (5.17)

where the L∞ norms are taken with respect to t , and

M±g(x) = sup
τ>0

M±
τ |g|(x).

It remains to deal with the two factors in front of the mean values in (5.12). They are

F± := |J±
t (s, σ )|√
1 − e−2t

=
∣∣∣x(et − 1) ± s

√
e2t − 1

∣∣∣ ∧ (σ/(1 + x))
√
1 − e−2t

(5.18)

=
∣∣∣∣ x(et − 1)√

1 − e−2t
± set

∣∣∣∣ ∧ σ

(1 + x)
√
1 − e−2t

, (5.19)

where we used (5.10) and (5.11).

Lemma 5.4 For ρ ≥ 1, s > 0 and σ ∈ (1/2, 1),

‖F±‖L∞(0,T ] � s + 1 and ‖F±‖v(ρ),(0,T ] � s + 1,

where the norm and the seminorm are taken in the variable t .

Proof We have from (5.19)

|F±| ≤ xet (et − 1)√
e2t − 1

+ set ≤ 4xet t√
2t

+ es � x
√
t + s � s + 1,

where the second inequality comes from (5.4) and the last step uses (5.8). The first inequality
of the lemma is verified.

For the second inequality, we will apply Lemma 2.1(b). The factors F± are not always
monotone in t , but we will split the interval (0, T (s, σ )] into subintervals where they are
monotone. The splitting may depend on s, σ and x , but the number of subintervals will be
no larger than C . This will be done in several steps.

To begin with, we consider only F−. We split (0, T (s, σ )] at t = t̃(s) if t̃(s) < T (s, σ ),
and also at t = t0(s) if t0(s) < T (s, σ ).

The splitting then continues, and now we take both F+ and F− into account. The next

split depends on which of the quantities
∣∣∣x(et − 1) ± s

√
e2t − 1

∣∣∣ and σ/(1 + x), occurring

in the minimum in (5.18), is the smaller. Since
∣∣∣x(et − 1) ± s

√
e2t − 1

∣∣∣ is monotone in

each subinterval obtained so far, this may give one split for F+ and another for F−. Next,
observe that in the subintervals where σ/(1 + x) is the smaller, we see from (5.19) that

F± = σ/
(
(1 + x)

√
1 − e−2t

)
, which is monotone. It only remains to consider the case
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when
∣∣∣x(et − 1) ± s

√
e2t − 1

∣∣∣ is the smaller quantity in (5.18). Then (5.19) shows that

F± = P±, where

P± = x(et − 1)√
1 − e−2t

± set .

The derivative of P± is seen to vanish precisely when

x
et − 2e−t + e−2t

(1 − e−2t )3/2
= ∓set .

In this equation, we multiply by the denominator and square both sides. After multiplication
by a suitable power of et , the result will be a polynomial equation in et , with only a bounded
number of solutions. Thus we can split our subintervals further, into intervals where P± is
monotone.

This ends the splitting, and Lemma 2.1(b) implies the second inequality of Lemma 5.4. �
We can now finish the proof of Proposition 5.2. Applying Lemma 2.2 to the two products

in (5.12), we get

‖Rs,σ
t g(x)‖v(ρ),(0,T ]

≤ ‖F+‖L∞(0,T ]‖M+
|J+

t (s,σ )| g(x)‖v(ρ),(0,T ] + ‖F+‖v(ρ),(0,T ] ‖M+
|J+

t (s,σ )| g(x)‖L∞(0,T ]

+ ‖F−‖L∞(0,T ]
(
‖M+

|J−
t (s,σ )| g(x)‖v(ρ),(0,T ] + ‖M−

|J−
t (s,σ )| g(x)‖v(ρ),(0,T ]

)
+ ‖F−‖v(ρ),(0,T ]

(
‖M+

|J−
t (s,σ )| g(x)‖L∞(0,T ] + ‖M−

|J−
t (s,σ )| g(x)‖L∞(0,T ]

)
.

Using Lemma 5.4 together with (5.13), (5.15), (5.14), and (5.17), we conclude that for a.a.
x

‖Rs,σ
t g(x)‖v(ρ),(0,T ]

� (1 + s)
(‖M+

τ g(x)‖v(ρ),R+ + ‖M−
τ g(x)‖v(ρ),R+ + M+g(x) + M−g(x)

)
.

The four terms to the right here are independent of s and σ , and we can insert this estimate
in (5.2) and integrate with respect to s and σ. The result will be

‖Hloc
t g(x)‖v(ρ),(0,1] � ‖M+

τ g(x)‖v(ρ),R+ + ‖M−
τ g(x)‖v(ρ),R+ + M+g(x) + M−g(x)

for a.a. x ∈ Ĩ j ∩ R+. In view of Theorem 5.3, this shows that the operator given by
‖Hloc

t g(x)‖v(ρ),(0,1] is of weak type (1,1) as stated in Proposition 5.2. This ends the proofs
of Proposition 5.2 and also that of Proposition 5.1.

Appendix. Asymptotics of xj

Claim:

x j = 2
√
j − 1 + O

(
1√
j

)
, j → +∞.

Toprove this, let z j = 1+x j for j = 1, 2, . . . . The recursion formula says that z j+1−z j =
1/z j + 1/z j+1. We have

z2j+1 − z2j = (z j+1 + z j )

(
1

z j
+ 1

z j+1

)
= 2 + z j+1

z j
+ z j

z j+1
> 2. (5.20)
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Writing z2j as a telescoping sum, we obtain

z2j = z20 +
j−1∑
0

(
z2ν+1 − z2ν

) ≥ 1 + 2 j,

and so z j+1 − z j ≤ 2/
√
1 + 2 j . We continue with the sum in (5.20), getting

z2j+1 − z2j = 2 + z j+1 − z j
z j

+ 1 + z j − z j+1

z j+1
+ 1 = 4 + (z j+1 − z j )

(
1

z j
− 1

z j+1

)

= 4 + (z j+1 − z j )2

z j z j+1
= 4 + O

(
1

(1 + 2 j)2

)
.

Summing as above, we find
z2j = 4 j + O(1),

and so z j = 2
√

j + O(1/
√

j). This proves the claim.
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