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The quantum approximate optimization algorithm:
optimization problems and implementations
PONTUS VIKSTÅL
Department of Microtechnology and Nanoscience (MC2)
Applied Quantum Physics Laboratory
Chalmers University of Technology

Abstract

This thesis explores the Quantum Approximate Optimization Algorithm
(QAOA), a hybrid classical-quantum algorithm designed to solve combinatorial
optimization problems. The goal of this algorithm is to iteratively optimize a
variational state to approximate the ground state of a cost Hamiltonian that
encodes a combinatorial optimization problem. The focus of this thesis is the
application of QAOA to the Exact Cover problem, an abstraction of the Tail
Assignment problem – a problem omnipresent in aviation.

This thesis also includes a demonstration of the practical implementation of
QAOA on a superconducting quantum computer, demonstrating empirical proof
of QAOA’s functionality. It also investigates running QAOA using noise-biased
qubits, namely cat qubits, which exhibit resilience to certain types of errors.

This thesis also explores novel multi-qubit gates obtained from the simul-
taneous application of two controlled-Z gates on current quantum hardware,
leading to the efficient creation of large entangled states.

Lastly, the thesis delves into virtual distillation, an error-mitigation protocol,
and assesses its performance under various types of errors.

Overall, this thesis validates the promise of QAOA in solving real-world
optimization problems while also offering insights into error mitigation.

Keywords: Quantum approximate optimization algorithm, quantum comput-
ing, error mitigation, cat qubits
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Preface

Pause for a second, and imagine, if you will, all the atoms in the observable Uni-
verse – a mind-boggling 1080 of them. That is a number so massive that it is too
hard to grasp, but now picture a device that could perform computations on an
equivalent number of states, all at the same time! Surely, such a device must be
as big as the Universe itself? Believe it or not, it would actually not be the size
of galaxies, but it would instead fit right in the palm of your hand, and we are
only a few years, maybe a decade away from realizing it. What I have in mind
is a quantum processor, where a quantum computer with only 300 quantum
bits (qubits) could theoretically tackle such an extensive range of states, which
speaks to the extraordinary potential of quantum computing. This concept had
its origins in 1925 when Erwin Schrödinger wrote down his famous Schrödinger
equation that accurately describes the “ticking clock” of any quantum system.
This laid the foundation for the first quantum revolution with the development
of quantum mechanics, and what followed was the second quantum revolution
with remarkable technological inventions such as transistors, MRI, lasers, and
superconductors. Today we are at the beginning of the third quantum revo-
lution, which involves quantum computing, quantum communication, quantum
sensing, and quantum cryptography.

The power of quantum computing lies in exponential growth: each added
qubit effectively doubles the computational power. In simple terms, to double
the computational power of a classical computer, you need to double the number
of transistors on your chip. In contrast, with a quantum computer, just adding
a single qubit doubles the computational power, which makes it already difficult
to simulate a quantum computer with 50 qubits using classical supercomputers.

The potential applications of quantum computing are vast and diverse, rang-
ing from cryptography to drug discovery, optimization problems, and beyond.
Certainly, while the potential of quantum computing is immense, it does not
come without its fair share of skepticism and doubt. There are several key is-
sues that skeptics often highlight. Firstly, there is the technological challenge of
building a reliable and scalable quantum computer, and then there is a question
about the practical applications of quantum computing. While theoretically,
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quantum computers could solve certain problems faster than classical comput-
ers, classical computers will likely remain more efficient for many tasks. It is
unclear how many problems fall into the former category and whether quantum
computers will be able to solve them in practice. But from a more philosophical
point of view, it is fascinating to think of the Universe as a giant computer
playing out its simulation according to the rules of quantum mechanics. If we
can build a computer that can mimic these rules, we would not just be opening
up a new frontier in computing but also getting access to the computational
inner workings of the Universe itself.

However, reaching the full potential of quantum computing is a bit like bal-
ancing a pen on its tip. It is a delicate task, susceptible to the smallest of
disturbances. Qubits are no different – any loss of information to the environ-
ment makes them decohere and lose their “quantumness”. Yet, there exists a
silver lining – quantum error correction, but it demands a significant overhead
of qubits. Therefore, to fully harness the power of quantum computing, we will
likely need millions of qubits.

Nevertheless, on our journey to this goal, we encounter Noisy Intermediate
Scale Quantum (NISQ) devices with a few hundred non-error corrected qubits.
This poses the question: can we do something useful with these devices? In this
thesis, we aim to delve into the current state of quantum algorithms for NISQ
devices and try to shed light on the potential of quantum computing to tackle
complex computational problems.
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Chapter 1
Introduction

The past fifty years have seen an extraordinary reduction in computer hardware
size, mainly due to technological advancements that facilitated the miniaturiza-
tion of transistors within our devices. However, as these transistors approach
the size of atoms, they begin experiencing quantum effects that can interfere
with their functioning [1, 2]. Researchers are therefore trying to leverage these
quantum effects to turn this challenge into an advantage by proposing a new
computational paradigm known as “quantum computing”.

The origins of quantum computing date back to the early 1980s when the
physicists Paul Benioff, Yuri Manin, and Richard Feynman independently and
concurrently proposed the idea of a quantum computer [3–5]. They recognized
that classical computers require exponentially scaling resources in the number of
transistors to accurately simulate quantum systems, which led them to propose
the idea of a quantum mechanical system that could simulate other quantum
mechanical systems. Building on these ideas, researcher David Deutsch, in
1985, formulated the mathematical model of a quantum Turing machine [6],
which paved the way for the quantum circuit model which he later developed
in 1989 [7]. The field then took a massive leap forward in 1997 with Peter
Shor’s discovery of a quantum algorithm capable of solving prime factorization
exponentially faster than the best-known classical algorithm [8]. The difficulty
of finding the prime factors of large numbers for classical computers is used in
public-key cryptography, such as the RSA [9]. As such, with a large enough
quantum computer, the public-key cryptosystems could easily be hacked.

Despite these advancements, quantum computing faces several challenges
and limitations. One of the most significant issues is the sensitivity to noise,
which affects the lifetime of quantum bits or qubits. This noise imposes con-
straints on the size and complexity of quantum circuits, limiting the scope and
applicability of quantum algorithms. Addressing these challenges requires devel-
oping sophisticated error correction techniques to achieve fault-tolerant quan-
tum computing architectures [10–13], which typically requires a large overhead

1



1. Introduction

of qubits [14]. For example, estimates on the requirements of running Shor’s
algorithm for factoring cryptographically hard numbers have shown to require
millions of qubits with error correction [15].

Nevertheless, as small-size, Noisy Intermediate Scale Quantum (NISQ) de-
vices become available [16], academics and companies want to explore their
usefulness. In fact, experimental demonstrations have already shown the ability
to run a quantum algorithm on a NISQ device that would take classical super-
computers thousands of years to replicate the results [17]. However, this exper-
iment has since been disputed with the emergence of clever classical simulation
techniques that can, in fact, replicate the results of these quantum computing
experiments in only a few hours [18, 19]. Despite these disputes, research contin-
ues, with the hope that NISQ devices could demonstrate significant power and
usefulness in the near future. Nevertheless, a substantial challenge lies ahead:
the quest to discover quantum algorithms capable of solving real-world problems
faster than any existing classical algorithm. One promising candidate for this is
the Quantum Approximate Optimization Algorithm (QAOA) [20], which aims
to solve combinatorial optimization problems. These are types of problems that
frequently arise in industry, such as aviation [21], portfolio optimization [22],
and vehicle routing [23].

The QAOA, which is the main topic of this thesis, is classified as a heuristic
hybrid quantum-classical algorithm. The hybrid character comes from the fact
that a quantum computer prepares some N -qubit state that is measured, and
the measurement results are then processed by a classical computer that tells the
quantum computer how to slightly change how the N -qubit state is prepared,
and because no theoretical proof of speed up exists for this algorithm, it is
heuristic. Although, for a few problems, such as the MaxCut, lower bounds exist
on the performance guarantee [20], which therefore makes it an approximate
algorithm. However, in most cases, one has to simply run the algorithm and see
what happens.

In this thesis, we set out to explore the QAOA, its application to combina-
torial optimization problems, its implementation on a quantum computer, and
how error mitigation can reduce noise in the estimation of expectation values.

1.1 Outline of the thesis
In the first chapter of the thesis, Chapter 2, we will give an introduction to
quantum computing, the fundamental building block, qubits, and how to op-
erate on them. Next, in Chapter 3, we delve into QAOA, which is the main
topic of this thesis. Afterward, in Chapter 4, we show how to use QAOA to
solve a real-world optimization problem, thus presenting a concrete example of
quantum computing’s practical application. Then, in Chapter 5, we show how
to implement and run QAOA on an actual superconducting qubit device and
discuss the possible role of “cat qubits” in the future for making QAOA more
error resilient. In Chapter 6, we study a quantum error-mitigation technique
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1.1. OUTLINE OF THE THESIS

called “virtual distillation”. This technique can reduce errors in estimating ex-
pectation values, and we assess its ability to cope with different types of errors
that occur during the protocol. Concluding the thesis in Chapter 7, we present
a summary of the central findings, review the appended papers, and give an
outlook for potential future research trajectories based on the insights gathered
in this thesis.
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Chapter 2
Quantum computing

In this chapter, we will be giving an introduction to qubits and how to manip-
ulate them using quantum gates. This is followed by how to model an open
quantum system interacting with its environment.

2.1 Qubits
Just as a classical computer uses bits that are either 0 or 1 and that can physi-
cally be represented as a low and a high voltage in a wire, a quantum computer
uses qubits |0〉 or |1〉 (often called computational basis states). A qubit can, for
example, be physically manifested as two states of an atom (e.g., ground state
|0〉 and excited state |1〉) or the number of Cooper pairs on the superconducting
island formed by a Josephson junction and a capacitor [24, 25], see Figure 2.1.
Qubits are described using “ket” notation, which uses angled brackets and looks
like |0〉. A typical choice to represent the |0〉 and |1〉 states are as column vectors:

|0〉 ≡
(
1
0

)
, |1〉 ≡

(
0
1

)
. (2.1)

Qubits are represented as column vectors instead of single numbers because
quantum systems, like atoms, can exist in a linear combination or “superposi-
tion” of both states at once. This superposition for a general qubit state can be
described as

|ψ〉 = α |0〉+ β |1〉 ≡
(
α
β

)
. (2.2)

In this equation, α and β are two complex numbers with a sum of absolute
squares equal to 1 to ensure proper normalization of the qubit, |α|2 + |β|2 = 1.
When a qubit is measured in the computational basis, there is a |α|2 probability
of finding it in the |0〉 state, and |β|2 probability of finding it in the |1〉 state.

5



2. Quantum computing

E1

E2

E3

|1⟩

|0⟩

Figure 2.1: (a) Representation of an atom. (b) Circuit diagram of the transmon
qubit, commonly referred to as an “artificial atom”. It consists of a Josephson
junction (box with a cross) which acts as a non-linear inductor parallel to a
capacitor. (c) Both systems exhibit an energy spectrum with non-equidistant
energy levels. This characteristic can be used to isolate the two lowest energy
levels and use them to encode a qubit.

The act of measuring the qubit thus affects its state, causing it to be either |0〉
or |1〉 after the measurement.

This idea can be extended to multiple qubits. For example, consider a system
of N qubits; its most general state can be expressed as a superposition of all
possible binary strings of length N , denoted by {0, 1}N . Each of these binary
strings is associated with a complex amplitude, αz, resulting in the following
representation:

|ψ〉 =
∑

z∈{0,1}N

αz |z〉 , with
∑

z∈{0,1}N

|αz|2 = 1. (2.3)

The critical requirement here is that the sum of the squares of the absolute values
of these complex amplitudes must equal 1, ensuring the total probability remains
conserved in this larger system. This extension underlines the scalability of
quantum computing, demonstrating that the memory available with every added
qubit grows exponentially.

Finally, a qubit’s quantum state can be visualized as a unit vector inside
a unit sphere called the Bloch sphere, as shown in Figure 2.2. The state of a
single qubit can be described in terms of polar and azimuthal angles (φ, θ) on
the Bloch sphere as

|ψ〉 = cos θ
2
|0〉+ eiφ sin θ

2
|1〉 , 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, (2.4)

2.1.1 Continuous- versus discrete-variable qubits
Quantum computation is not limited to discrete-variable qubits, meaning that
the qubit is encoded in a two-level system. It is also possible to encode in-
formation into systems described by continuous variables, like position and
momentum or the amplitude of the electromagnetic field [26]. The differ-
ence between a discrete- and continuous-variable quantum system is that the
discrete-variable quantum system is described by a finite Hilbert space, while
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2.2. QUANTUM GATES

|0〉+|1〉√
2

|0〉+i|1〉√
2

|0〉

|1〉

|ψ〉

φ

θ

Figure 2.2: Bloch sphere showing the computational basis states |0〉 and |1〉,
and a general qubit state |ψ〉 = cos θ/2 |0〉+ eiφ sin θ/2 |1〉.

a continuous-variable quantum system is described by an infinite dimensional
Hilbert space [27]. As an example, a discrete-variable qubit is a qubit encoded
in a two-dimensional Hilbert space, such as the two lowest energy levels of a
transmon, and therefore, the dimension of the qubit is the same as the dimension
of the physical state as shown in Figure 2.3a. On the other hand, a continuous-
variable qubit, such as the cat qubit, is a qubit encoded in a two-dimensional
subspace of an infinite-dimensional Hilbert space, as shown in Figure 2.3b. This
redundancy in the physical encoding, as we will explore in Section 5.2, offers
protection against certain types of errors, such as bit-flip or dephasing-errors.

To be more precise, a cat state is a superposition of two coherent states
with opposite phases. Coherent states |α〉 are states of the harmonic oscillator
that are closest to classical states in that their expectation values correspond to
the classical equation of motion of the harmonic oscillator. A coherent state is
defined as an eigenstate of the annihilation operator a with eigenvalue â |α〉 =
α |α〉, where α is a complex number. Mathematically the cat state is defined as∣∣C±

α

〉
= N±(|α〉 ± |−α〉) with N± =

√
2(1± e−2|α2|), (2.5)

where the plus or minus sign corresponds to the even and odd cat states, re-
spectively. When written in the photon number basis, the even cat state is a
superposition of even Fock states, while the odd cat state is a superposition of
odd number Fock states. The even and odd cat states are thus orthogonal to
one another and can therefore be used to encode a qubit.

2.2 Quantum gates
Analogous to classical computers, which employ elementary gates such as AND
or NOT to carry out operations on bits, quantum computers use quantum gates
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2. Quantum computing

Figure 2.3: (a) A discrete-variable qubit. A qubit with a Hilbert space of di-
mension 2 is encoded in a physical state of the same dimension. (b) A continuos
variable qubit. Two cat-states seen as their phase space representation (Wigner
functions). These cat qubits are orthogonal to one another and can therefore be
used to encode a qubit. Each cat qubit lives in an infinite dimensional Hilbert
space. The size of the dots of the harmonic potential corresponds to the photon
number occupation of each cat qubit.

to change the probability amplitudes of one or several qubits. The Schrödinger
equation fundamentally dictates the change of these probability amplitudes in a
quantum system over time. This linear differential equation explicates the time
evolution of a closed quantum system,

ih̄d |ψ(t)〉
dt

= Ĥ |ψ(t)〉 . (2.6)

In this equation, h̄ is the reduced Planck’s constant. By opting for suitable units,
we can assign h̄ a value of 1, thereby ignoring it in this thesis. The Hamiltonian
is represented by Ĥ, whose eigenvalues correspond to the allowed energies of
the system. For a N qubit system the Hamiltonian can be represented as a
2N × 2N matrix with 2N eigenstates |ψi〉, and 2N energy eigenvalues such that
Ĥ |ψi〉 = Ei |ψi〉. Thus there exists a basis where the Hamiltonian is diagonal

Ĥ =
2N∑
i=1

Ei |ψi〉〈ψi| . (2.7)

When the Hamiltonian is known, we can find a solution to the Schrödinger
equation. In the case of a Hamiltonian that is time-independent, the solution is
simply given in terms of the evolution operator

Û(t) = e−iĤt. (2.8)

If we know the initial state of the system, |ψ(0)〉, all future states can be
computed by applying the time evolution operator Û(t) on it, represented as
|ψ(t)〉 = Û(t) |ψ(0)〉. Important types of Hamiltonians are the Pauli matrices:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (2.9)
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2.2. QUANTUM GATES

|0〉+|1〉√
2

|0〉+i|1〉√
2

|0〉

|1〉

•••
•

•
•

•
•
•
•

Figure 2.4: Bloch sphere showing the action of the quantum logic operation
Ry(π/2) applied to the |0〉 state.

A quantum state evolving under one of the Pauli matrices, i.e., Ĥ = σ̂k, k ∈
{x, y, z}, with t = θ/2, implements the rotational quantum gate

Rk(θ) ≡ e−i θ2 σ̂k . (2.10)

Such gates are labeled as rotational quantum gates since they correspond to
rotations around one of the three primary axes of the Bloch sphere. For instance,
applying the quantum gate Ry(π/2) corresponds to an anticlockwise rotation of
π/2 around the y-axis, which is depicted for the initial state |0〉 in Figure 2.4.

The Hadamard gate, represented by H (not to be confused with the Hamil-
tonian Ĥ), is another significant single-qubit gate. If the input state of the
qubit is |0〉, it will yield the output state (|0〉+ |1〉)/

√
2, and if the input is |1〉,

it will result in (|0〉 − |1〉)/
√
2. The Hadamard gate can be expressed in matrix

representation as

H |ψ〉 ⇐⇒ 1√
2

(
1 1
1 −1

)(
α
β

)
=

1√
2

(
α+ β
α− β

)
, (2.11)

or illustrated as a quantum circuit as

|0〉 H
|0〉+ |1〉√

2
(2.12)

The Hadamard gate equates (up to a global phase) to a π/2 rotation around
the y-axis, succeeded by a π rotation around the x-axis, Rx(π)Ry(π/2) = −iH.

2.2.1 Multi-qubit gates
Apart from single-qubit gates, there exist multi-qubit gates, the simplest among
which are two-qubit gates. An example of a common two-qubit gate is the
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2. Quantum computing
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Figure 2.5: (a) Two transmon qubits capacitively coupled together. For q1, the
Josephson junction has been replaced with a SQUID which allows the frequency
of q1 to be tuned in time by threading an external flux Φext through the loop.
(b) Frequency of the qubits. (c) Population transfer. Here the qubits are
ordered as |q0q1〉.

controlled-Z gate (cz-gate). This quantum gate adds a minus sign to the |11〉-
state. In mathematical terms cz |11〉 = − |11〉, where |11〉 is compact notation
for |1〉⊗|1〉, and ⊗ is the tensor product. In the case of a transmon qubit, such a
gate can be implemented using flux-tunable transmon qubits [28–30]. For such
a qubit, the Josephson junction of the transmon is replaced by two Josephson
junctions in parallel, also known as a Superconducting Quantum Interference
Device (SQUID), see leftmost part of Figure 2.5a. The qubit frequency can
then be tuned in situ by threading an external magnetic flux Φext through the
SQUID. From circuit quantization, we can expand the cosine potential of the
Josephson junction to the fourth order. With this, the Hamiltonian for the flux
tunable transmon can be written in the eigenbases of the quantum harmonic
oscillator as [24]

Ĥtransmon = ω(Φext)â
†â+

α

2
â†2â2, (2.13)

where ω(Φext) is the frequency of the qubit and can be controlled by the external
flux, α is the Kerr non-linearity, and â and â† are the familiar annihilation
and creation operators. The first term in the Hamiltonian corresponds to the
standard quantum harmonic oscillator. However, the second term, known as the
Kerr term, accounts for the non-linearity introduced by the Josephson junction
and provides the necessary anharmonicity to isolate two levels and form a qubit.

The experimental implementation of the cz-gate involves taking one flux-
tunable transmon and one fixed frequency transmon and coupling them to-

10



2.2. QUANTUM GATES

Figure 2.6: The Λ- and V -type systems. g1 and g2 are the coupling strengths
between q0, q1 and q0, q2 respectively, and δ is the detuning from resonance.

gether1, see Figure 2.5a. Next, to achieve the desired −1 phase on the |11〉
state, the |11〉 state is brought into resonance with the |02〉 state, which lies
outside of the computational subspace, see Figure 2.5b. When these states be-
come degenerate, oscillations will occur between the state |11〉 and |02〉 and vice
versa, see Figure 2.5c. During a complete oscillation cycle, the |11〉 state will
acquire a geometrical phase factor of −1, which is just what one wants for the
cz-gate.

Nevertheless, even though single-qubit gates and a two-qubit are enough
to facilitate universal quantum computation2 [1, 31], three-qubit gates are of
importance since they can create large-scale entanglement [32] with shorter cir-
cuit depth compared to using two-qubit gates, which can facilitate the imple-
mentation of more complex quantum algorithms. For example, decomposing a
three-qubit gate, like the Fredkin or Toffoli gate, requires at least five two-qubit
gates [33, 34]. Therefore it is of practical advantage to have access to three-qubit
gates since they can reduce gate synthesis.

In paper Paper C, we show how a three-qubit gate can be synthesized by
simultaneously applying two two-qubit gates. Using the setup in Figure 2.7a,
the simultaneous application of two cz-gates, one between qubit q0 and q1 and
one between q0 and q2 will activate the transitions |110〉 ↔ |200〉 ↔ |101〉 and
|201〉 ↔ |111〉 ↔ |210〉, where the states are ordered as |q0q1q2〉. This will form
a Λ- and a V -type system, as shown in Figure 2.6. The effect of activating these
transitions will result in a non-trivial three-qubit gate. The resulting three-qubit
gate, which we named cczs, was found to be

cczs(θ, φ, γ) = |0〉〈0| ⊗ Î ⊗ Î + |1〉〈1| ⊗ Uczs(θ, φ, γ), (2.14)

where θ, φ, and γ are fixed through the couplings and detunings. For equal
1It works if both are flux-tunable as well, but during the implementation of the gate one

of them will be fixed in frequency.
2Universal quantum computation means that a set of quantum gates can be used to

construct any arbitrary quantum computation. An example of a universal gate set is
{Rx(θ),Rz(φ),cz}.
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2. Quantum computing

coupling strengths and no detuning, one obtains

Uczs(π/2, π, 0) =


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1

 . (2.15)

This gate has a more similar unitary since one can recognize the effect of a
cz-gate as well as a swap-like gate. In particular, when the control qubit is in
state 1, it will swap the state of the two target qubits and add an additional
minus-phase to the state, see Figure 2.7c. Also the |111〉 state will also acquire a
geometrical phase, see Figure 2.7d. Remarkably, this three-qubit gate proved to
be

√
2 times faster than a single cz-gate. This increase in speed thus enhances

the potential of three-qubit gates to facilitate more efficient implementation of
quantum algorithms.

From numerical simulations of an ideal quantum computer, we obtained
an average gate fidelity3 of 99.46%. This high fidelity indicates that the gate
operation is reliable and effective, producing the intended state of the qubit
with high probability.
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Figure 2.7: The cczs-gate. (a) Illustration of the circuit, q1 and q2 are flux-
tunable qubits, meaning that their frequency can be tuned by changing the
magnetic flux through the SQUID, while q0 can be a fixed frequency qubit. (b)
Frequency of the qubits. (c)-(d) Population transfer. The qubits are labeled
according to |q0q1q2〉.

3The average gate fidelity is calculated as the overlap between the output state and the
target state averaged over all possible input states [35].
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2.3 Open quantum systems
In reality, no quantum system exists in complete isolation. A constant exchange
occurs, whether it involves thermal photons energizing the qubit, spurious two-
level systems coupled to the qubit causing leakage, or cosmic rays striking it [14,
36]. As such, a comprehensive understanding of the dynamics of a qubit requires
a framework that encapsulates its interaction with the surrounding environment.
In the upcoming section, we will explore the Lindblad master equation and
the Kraus operator formalism. The former equation describes the continuous
time-evolution of a quantum system as it interacts with its environment, while
the latter can be understood as the integrated version of the Lindblad master
equation.

2.3.1 Closed quantum systems
As seen, the dynamics of a closed quantum system are described by the Schrödi-
nger equation (2.6). If a quantum system consists of more than a single state
vector |ψ〉, it is regarded as being in a mixed state. The dynamic behavior of
these mixed states is described using the density operator formalism. Here, a
density operator ρ̂ is formed as a probability-weighted sum of pure states

ρ̂ =
∑
k

pk |ψk〉〈ψk| , (2.16)

where pk is the probability of observing the system in the state |ψk〉 upon
measurement. The density operator ρ̂ also obeys the normalization condition
that the sum of all probabilities pk should equal 1:

Tr[ρ̂] =
∑
k

pk = 1. (2.17)

For a closed quantum system in a mixed state, the density operator’s time
evolution can be expressed as

dρ̂(t)
dt

= −i[Ĥ, ρ̂(t)] , (2.18)

which is the well-known, celebrated Liouville-von Neumann equation.

2.3.2 Lindblad master equation
The description of a closed quantum system might be a good approximation
for certain scenarios, but it can sometimes fall short. This becomes especially
relevant in quantum computing, where it is crucial to understand how the en-
vironment influences our qubits and induces decoherence. The environment is
typically considered larger than the system, i.e., containing many more degrees

13



2. Quantum computing

of freedom [37]. For instance, one might imagine the environment as a large
number of independent harmonic oscillators, similar to the free modes of the
electromagnetic field.

In general, the total Hamiltonian for a quantum system interacting with an
environment can be formulated as

Ĥtot = Ĥsys + Ĥenv + Ĥint, (2.19)

where Ĥsys refers to the system’s Hamiltonian, Ĥenv refers to the environmen-
tal Hamiltonian, and Ĥint describes the interaction Hamiltonian coupling the
system and the environment together. The whole system’s equation of motion
is closed, thereby following the Liouville-von Neumann equation

dρ̂tot(t)

dt
= −i[Ĥtot, ρ̂tot(t)] . (2.20)

The purpose of a master equation is to determine the system’s equation of
motion, excluding the combined system and environment. By taking the partial
trace of the total density operator over the environmental variables, a reduced
density operator for the system can be introduced:

ρ̂sys = Trenv[ρ̂tot]. (2.21)

The equation of motion that describes the reduced density operator in the pres-
ence of dissipation processes between the system and its environment in the
interaction picture is given by the Lindblad master equation

dρ̂sys(t)

dt
= −i[Ĥsys(t), ρ̂sys(t)]

+
∑
n

γn
2

(
2Γ̂nρ̂sys(t)Γ̂

†
n − ρ̂sys(t)Γ̂

†
nΓ̂n − Γ̂†

nΓ̂nρ̂sys(t)
)
, (2.22)

where Γ̂n are the jump operators through which the environment couples to the
system and γn represents the corresponding decay rates4. Eq. (2.22) extends the
Liouville-von Neumann equation to a system incorporating dissipation processes
with its environment, and when all γn = 0 one retains the Loiville-von Neuman
equation. The derivation of the Lindblad master equation will not be reproduced
in this thesis, but can be found in several other sources [37–39]. However, it is
generally assumed that the system and environment are initially uncorrelated,
meaning that they are in a product state, and the Born and Markov approxi-
mations are then used to determine the jump operators Γ̂j .

2.3.3 Kraus operator formalism
The Kraus operator formalism is another powerful method of describing the
evolution of open quantum systems [1, 40]. It represents the system’s evolution

4For a N -qubit system there are at most 2N − 1 number of independent jump operators.
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through a set of operators K̂i known as Kraus operators, which encapsulate the
system’s dynamics and its interaction with the environment. Mathematically it
is defined as a completely positive trace preserving map

Λ(ρ̂) =
n∑

i=1

K̂iρ̂K̂
†
i , (2.23)

for some n ≤ d2, where d = 2N is the Hilbert space dimension. Moreover, the
Kraus operators fulfill the following completeness relation for the map to be
trace preserving

n∑
i=1

K̂†
i K̂i = Î . (2.24)

The Lindblad master equation and the Kraus operator formalism are closely
related. The Lindblad equation describes the continuous time-evolution of an
open quantum system. In contrast, the Kraus operators describe the changes
in the system’s state after a finite amount of time.

The Lindblad equation provides the generator for the time-evolution super-
operator in the Kraus representation. This is similar to how the Hamiltonian
is the generator for the time-evolution operator U for closed quantum systems.
In other words, the Kraus operators can be constructed by solving the Lind-
blad equation for a given time interval. Thus, both provide complementary
perspectives on the dynamics of open quantum systems and are invaluable tools
in understanding and calculating the evolution of such systems.

In Paper E, we use both the Kraus operator formalism and the Lindblad
master equation to model the interaction of a cat qubit with its environment,
which is described by single-photon loss, and in Paper D we use the Kraus
operator formalism to model dephasing or depolarizing errors that occur during
an error-mitigation protocol.
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Chapter 3
The quantum approximate
optimization algorithm

The QAOA is a versatile and powerful quantum algorithm for solving combina-
torial optimization problems on near-term quantum hardware [20, 21, 41–45]. It
combines classical optimization and quantum computing as a hybrid algorithm
that leverages the capabilities of quantum devices for solving complex problems.
QAOA has gained a lot of attention due to its potential applications in a wide
range of areas, including aviation [21], finance [22], machine learning [46], and
logistics [23], where finding optimal solutions is of paramount importance.

At the core of the QAOA lies a variational approach that aims to approx-
imate the solution to a given optimization problem by preparing a variational
state on the quantum computer, parameterized by a set of classical parameters.
The classical optimization component of the algorithm is responsible for ad-
justing these parameters to minimize the expected value of the problem’s cost
function. The iterative nature of the QAOA allows it to gradually increase the
search space in Hilbert space in search of the optimal solution. This approach
makes QAOA particularly suitable for near-term quantum devices, as it can
be effectively implemented on devices with a limited number of qubits and cir-
cuit depth. As quantum hardware continues to advance, QAOA is believed to
play a crucial role in unlocking the potential of quantum computing to tackle
challenging optimization problems.

In the next section, we will review the formalism of QAOA, and we will make
the connection between the quantum adiabatic algorithm and QAOA.
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3. The quantum approximate optimization algorithm

3.1 From the quantum adiabatic algorithm
to the QAOA

The QAOA draws inspiration from the Quantum Adiabatic Algorithm (QAA),
which was also developed by Farhi et al. [47, 48]. The QAA uses adiabatic
evolution to slowly transition from the lowest energy eigenstate of an initial
Hamiltonian, to the lowest energy eigenstate of a cost Hamiltonian. The QAA
Hamiltonian is formulated as the sum of two non-commuting Hamiltonians,
which can be represented as

Ĥ(t) = (1− s(t))ĤB + s(t)ĤC , (3.1)

where s(0) = 0 and s(T ) = 1, with T denoting the total running time of the
algorithm. The initial Hamiltonian (ĤB) has an easily prepared ground state,
while the cost Hamiltonian (ĤC) typically has a ground state that is hard to
prepare. For a N -qubit system, a simple initial Hamiltonian that is generally
used is

ĤB = −
N∑
i=1

σ̂x
i , (3.2)

which has |+〉⊗N as its ground state. For combinatorial optimization problems,
ĤC can often be written in the form of an Ising Hamiltonian

ĤC =
N∑
i=1

hiσ̂
z
i +

∑
i<j

Jij σ̂
z
i σ̂

z
j , (3.3)

where σ̂z
i are Pauli-Z operators. The Ising model allows the encoding of a wide

variety of problems, where the values of hi and Jij are problem-specific.
To ensure the highest likelihood of ending up in the ground state of the

cost Hamiltonian, the total time T has to be of the order O(1/∆E2
min), with

∆Emin signifying the minimum energy gap between the evolution’s two lowest
instantaneous energy eigenstates. While a linear time-dependence, s(t) = t/T ,
is often assumed, more sophisticated evolution schemes also exist that could
potentially speed up the evolution [49, 50].

The QAOA is based on the insight that a possible way to simulate the QAA
on a gate-based quantum computer is using trotterization. As discussed by
Sun et al. [51], the trotterization of a continuous time-evolving operator can be
expressed as

Û(T ) ≡ T exp

[
−i
∫ T

0

Ĥ(t)dt

]
≈

p∏
k=1

exp
[
−iĤ(k∆t)∆t

]
, (3.4)

where Û(T ) denotes the evolution operator from 0 to T , T represents the time-
ordering operator, and p is a large integer, which results in ∆t = T/p being a
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small time segment. When considering two non-commuting operators, Â and
B̂, and a sufficiently small ∆t, the Trotter formula can be used:

ei(Â+B̂)∆t = eiÂ∆teiB̂∆t +O(∆t2). (3.5)

This formula can be applied to the discretized time evolution operator in
Eq. (3.4) to yield

Û(T ) ≈
p∏

k=1

exp
[
−i(1− s(k∆t))ĤB∆t

]
exp
[
−is(k∆t)ĤC∆t

]
. (3.6)

As a result, it becomes feasible to approximate the QAA by alternately applying
ĤC and ĤB in a sequential manner.

Farhi, Goldstone, and Gutman introduced a groundbreaking yet remarkably
simple idea, which involves truncating the product in Eq. (3.6) to an arbitrary
positive integer and redefining the time dependence in each exponent as (1 −
s(k∆t))∆t → βk and s(k∆t)∆t → γk. Consequently, the fixed time segments
transform into angles or variational parameters subject to optimization:

Û =

p∏
k=1

e−iβkĤBe−iγkĤC , p ∈ Z+. (3.7)

Generally the minus-sign in Eq. (3.2) is absorbed into βk such that ĤB is rede-
fined as

ĤB →
N∑
i=1

σ̂x
i . (3.8)

Hence the final state of the QAOA can be expressed as

|ψp(~γ, ~β)〉 =
p∏

k=1

e−iβkĤBe−iγkĤC |+〉⊗N
, (3.9)

where ~γ = (γ1, γ2, . . . , γp) and ~β = (β1, β2, . . . , βp) are vectors. Each βk lies
within the range from 0 to π. This can be observed by substituting βk → βk±π
into Eq. (3.9) and noting that e±iπĤB =

∏
i e±iπσ̂x

i =
∏

i(−Îi), which is mere a
global phase on all qubits. Similarly, if the eigenvalues of the cost Hamiltonian
are integers, γk can be shown to lie between 0 and 2π for similar reasons.
However, the challenge of selecting appropriate angles (~γ, ~β) remains.

To pick the angles, a cost function must be constructed from which the angles
can be optimized, and the cost function must be able to be fed into a classical
computer that can optimize the angles and query the quantum computer. The
construction of the cost function is an active topic of research [52], but typically
a cost function is constructed as an expectation value from the final state and
the cost Hamiltonian:

Fp(~γ, ~β) = 〈ψp(~γ, ~β)|ĤC |ψp(~γ, ~β)〉 . (3.10)
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level 1 level p Classical computer
. . .

. . .

...
...

...
...

. . .

|0〉⊗n

H

e−iγ1ĤC e−iβ1ĤB e−iγpĤC e−iβpĤB

Optimize
Fp(~γ, ~β)

H

H

Quantum computer

Update the angles (~γ, ~β)

Figure 3.1: Schematic representation of the QAOA. The quantum processor
prepares the variational state |ψp(~γ, ~β)〉. The angles (~γ, ~β) are optimized in a
closed loop using a classical optimizer based on the cost function.

This makes sure that by minimizing the expectation value the variational state
occupies more of the low eigenenergy states of the cost Hamiltonian. Typically,
this process requires the quantum computer to query a classical optimizer, which
informs the quantum computer how to adjust the variational state by slightly
modifying the angles to minimize the expectation value, as shown in Figure 3.1.

Significant research has been conducted on the classical optimization part
of QAOA [53, 54], as well as to allow for different initial Hamiltonians ĤB [55–
57]. For example, numerous numerical investigations have explored various
classical optimizers [58, 59]. Other studies have discovered heuristic methods
that improve the classical optimization procedure [44, 60, 61]. Nonetheless, noise
and finite sampling errors present unique challenges for optimizers in practice. In
a few experiments running QAOA [62–64], Bayesian optimization [65], Nelder-
Mead [66], and Model gradient descent [64] are some of the classical optimizers
that have been implemented.

Finally, a well-studied problem in the context of QAOA is the MaxCut prob-
lem [44, 64, 67–69]. The reason why MaxCut is a well-studied problem is that it
is a nontrivial problem that is easy to understand, and it has been extensively
studied in classical computing, providing a basis for comparison [70]. It was fur-
thermore the problem that Farhi et al. studied in their original QAOA paper,
where they found nontrivial performance guarantees for the algorithm [20].

The objective of MaxCut is: given a graph G = (V,E), where V is the set
of vertices and E is the set of edges, the goal is to partition the set of vertices
of the graph into two subsets, such that the sum of the edge weights going
from one partition to the other is maximum. In other words, it seeks to “cut”
the graph so that the number of edges between the two partitions (the “cut”)
is maximized, hence the name MaxCut. Mathematically the problem can be
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1 2

34

5 S

Figure 3.2: A maximum cut of a graph with 5 vertices. The dashed red line
corresponds to the cut edges. An edge is cut if two vertices connected by an
edge are assigned different colors.

formulated as an optimization problem

minimize − 1

2

∑
{i,j}∈E

wij(1− sisj), (3.11)

subject to: si ∈ {−1, 1} i ∈ V. (3.12)

where wij is the edge weight between vertex i and j, and si determines the
partition of each vertex i in the graph. An example of a graph and its maximum
cut is shown in Figure 3.2.

To map this problem onto a cost Hamiltonian, all we have to do is to replace
the classical variables si with Pauli-Z matrices. The corresponding MaxCut
Hamiltonian then reads

ĤC = −1

2

∑
{i,j}∈E

wij(Î − σ̂z
i σ̂

z
j ), (3.13)

where the ground state to this Hamiltonian corresponds to the maximum cut.
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Chapter 4
Application of QAOA to a
real-world optimization
problem

Quantum computing has introduced a new approach for solving complex opti-
mization problems. Notably, the QAOA has emerged as a promising candidate.

In this chapter, we will see how QAOA can be applied to solve a real-world
optimization problem, specifically, the tail-assignment problem.

4.1 The tail-assignment problem
The tail-assignment problem is a complex combinatorial optimization problem
arising in the airline industry, specifically in aircraft scheduling [71, 72]. The
primary objective of the tail-assignment problem is to assign a specific aircraft
(identified by its tail number), also called a route, to a sequence of flights in
such a way that operational constraints are satisfied while minimizing opera-
tional costs. The problem is crucial to the efficient utilization of airline resources
and has a direct impact on customer satisfaction, punctuality, and overall prof-
itability of an airline.

Several factors and constraints must be considered when solving the tail-
assignment problem, including:

1. Maintenance requirements: Each aircraft must undergo periodic mainte-
nance checks, which need to be scheduled within the tail assignment plan.

2. Flight connections: An aircraft assigned to a particular flight must be
available at the corresponding departure airport at the correct time.
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3. Aircraft compatibility: Some flights may require specific aircraft types due
to factors like seating capacity, range, or airport constraints.

4. Crew constraints: Crew schedules and regulations must be taken into
account, ensuring that they are assigned to aircraft within legal limits
and considering their qualifications.

5. Turnaround times: The minimum time between an aircraft’s arrival and
its subsequent departure, which includes refueling, cleaning, and passenger
boarding, must be respected.

The tail-assignment problem is an NP-hard problem, which means that find-
ing an optimal solution becomes exponentially increasingly difficult as the num-
ber of flights and aircraft grows. The typical classical algorithm to tackle this
problem is column generation [73].

The tail-assignment problem can formally be defined as follows:

min
∑
r∈R

crzr, (4.1)

s.t.
∑
r∈R

afrzr = 1, ∀f ∈ F, (4.2)

zr ∈ {0, 1}, ∀r ∈ R, (4.3)

where R is the set of all routes, cr is the cost of route r, F is the set of all
activities, i.e., flights or group of sequential flights, afr is 1 if activity f is
included in route r, and zr are binary decision variables that state if route r is
part of the solution or not. Problems with thousands of flights and about 80
aircrafts are common for medium-sized carriers [71].

In Paper A, we study QAOA applied to simplified instances of the tail-
assignment problem. We made simulations of instances of the problem derived
from real-world data, which was provided by the Jeppesen company. These
instances were reduced to fit on a quantum computer with 8, 15, and 25 qubits,
with a total of 10 instances for each size. These sizes were chosen so that it is
possible to fit the simulation of QAOA on a classical computer. The reduction
procedure resulted in only one feasible solution per instance. This means that
the cost cr can be neglected since it is only relevant to include it if there exist
multiple solutions to Eq. (4.2). This simplified the problem to only solving
Eq. (4.2), which is equivalent to an Exact Cover problem. An example of an
Exact Cover problem is depicted in Figure 4.1. The next step was to map this
mathematical formulation to a cost Hamiltonian ĤC . To map the Exact Cover
problem onto a cost Hamiltonian, one has to first transform Eq. (4.2) into a
cost function. This can be done by subtracting 1 from the r.h.s of Eq. (4.2) and
squaring the expression:

C(z) =
u∑

i=1

 v∑
j=1

aijzj − 1

2

. (4.4)
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R F
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f3

f2

f1

Figure 4.1: Example of an Exact Cover problem. The goal is to pick a subset
of vertices from the set R such that one and only one edge from the subset
lands on each of the vertices in the set F . In this example, the subset {r1, r4}
corresponds to an exact cover.

Here u ≡ |F | denotes the cardinality of F and v ≡ |R| denotes the cardinality of
R. This formulation as a cost function makes sure that there exists a solution
if and only if there exists a string z such that C(z) is zero.

Next, we want to write this cost function in the form of an Ising Hamiltonian
Eq. (3.3). This is done by substituting the binary variables zj ∈ {0, 1} with spin
variables sj ∈ {1,−1},

zj =
1− sj

2
.

By using this substitution and expanding the square of Eq. (4.4), we obtain the
Ising energy function for the Exact Cover problem

E(s1, . . . , sv) =
∑

1≤i<j≤v

Jijsisj +
v∑

i=1

hisi, (4.5)

where

Jij ≡
1

2

u∑
k=1

akiakj (4.6)

is a penalty term related to having two or more routes covering the same flight,
and

hi ≡
1

2

u∑
j=1

aji

(
v∑

k=1

ajk − 2

)
(4.7)

is a penalty related to over or under-covering the number of flights, i.e., leav-
ing flights unattended will result in a cost. Finally, we quantize Eq. (4.5) by
promoting the spin variables si to Pauli-Z matrices as si → σ̂z

i . The resulting
Hamiltonian is

ĤC =
∑

1≤i<j≤v

Jij σ̂
z
i σ̂

z
j −

v∑
i=1

hiσ̂
z
i . (4.8)
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The ground state of this Hamiltonian corresponds to the solution to the Exact
Cover problem.

To assess the performance of QAOA for solving the TAS instances, we look at
the success probability, which is defined as the squared magnitude of the overlap
between the solution state vector |zsol〉 and the variational state |ψp(~γ, ~β)〉.
Mathematically, this is represented as

| 〈zsol|ψp(~γ, ~β)〉|
2
. (4.9)

In Figure 4.2a we plot the mean success probability as a function of the iteration
level p. This is done using the optimal variational parameters discovered for the
three different problem sizes. As can be observed, the success probability tends
to increase with the iteration level across all instances. In Figure 4.2b, we
present a simulation of the success probability versus p for a single instance
selected from each problem size, extending up to p = 20.

An interesting observation from this simulation is that the instances with
25 qubits consistently exhibited a higher success probability than those with
15 qubits at any given iteration level of the QAOA. This might initially seem
counter-intuitive, as one would typically expect larger instances (i.e., more
qubits) to correspond to more challenging problems. To explain this unex-
pected finding, we conducted further analysis and proposed that the success
probability is not solely determined by the size of the problem (i.e., the number
of qubits). Instead, it also depends on the structure of the problem. Specifically,
we discovered an empirical relationship between the connectivity of the problem
graph, as shown in Figure 4.2c, and the single-shot success probability of the
algorithm. From this, we inferred that a more connected graph is associated
with a more complex problem. This suggests that the structure of the problem
can influence the performance of the QAOA. Finally, Figure 4.2d illustrates the
probability of observing a specific eigenvalue of the cost Hamiltonian ĤC for
one of the 25-qubit instances and is demonstrated across the iteration levels
p = 0, 1, 2. As can be seen, when p increases the variational state occupies more
of the eigenstates associated with a low cost.

In summary, these findings suggest that QAOA could potentially be a power-
ful algorithm for solving the tail-assignment problem. However, it is important
to note that these results are obtained for relatively small problem sizes, and
further research is needed to understand the potential and limitations of this
approach fully.
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25 Routes8 Routes 15 Routes

Figure 4.2: (a) This figure depicts the mean success probability as a function
of the iteration level p, utilizing the optimal found variational parameters for
the three distinct problem sizes: 8, 15, and 25 qubits. The error bars in the
figure represent the standard deviation of the mean success probability. (b)
The success probability | 〈zsol|ψp(~γ, ~β)〉|

2
as a function of p is shown for a single

instance selected from each problem size. (c) The three instances displayed in
(b) represented graphically. (d) The likelihood of obtaining a specific cost (or
equivalently, the likelihood of measuring a specific eigenvalue of the cost Hamil-
tonian) from a measurement of the state |ψp(~γ, ~β)〉 is shown for the iteration
levels p = 0, 1, 2 for one of the 25 qubit instances. Here, p = 0 represents the
initial or “random” state |+〉⊗N .
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Chapter 5
Implementation of QAOA

The QAOA has been implemented on various hardware platforms such as pho-
tonic [74], trapped ion [75], and superconducting quantum processors [62–64,
64, 76]. To prepare the variational state |ψp(~γ, ~β)〉 on an actual quantum com-
puter, the unitary matrices in Figure 3.1 must be decomposed into single and
two-qubit gates. The decomposition depends on the primitive quantum gates
available for the specific hardware. In Paper B, we implemented the QAOA
on a two-qubit superconducting qubit device. Here we will illustrate how the
variational state can be constructed using a universal gate set utilized in Pa-
per B, composed of single-qubit rotations Rx(θ), and Rz(φ), and the two-qubit
cz-gate.

The initial state for QAOA can be generated by applying the Hadamard
gate to each qubit in the all-zero state |0〉⊗N . Since the Hadamard gate is not
part of the gate set, it must be compiled using a combination of gates, which
can be done with three rotations: two around the x-axis and one around the
z-axis, H = iRx

(
π
2

)
Rz

(
π
2

)
Rx

(
π
2

)
. The unitary involving the sum of Pauli-X

matrices

e−iβĤB = e−iβ
∑N

i=1 σ̂x
i =

N∏
i=1

e−iβσ̂x
i , (5.1)

can be written as a product, as all Hamiltonian terms commute. This unitary
can be implemented as parallel single-qubit rotations around the x-axis

e−iβσ̂x
i ≡ Rx(2β) (5.2)

The cost Hamiltonian has two components: a two-body Hamiltonian and a
single-body Hamiltonian. These terms commute, allowing them to be applied
in any order

e−iγĤC =
∏

1≤i<j≤N

e−iγJij σ̂
z
i σ̂

z
j

N∏
i=1

e−iγhiσ̂
z
i . (5.3)
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The single-qubit term can be implemented as rotations around the z-axis

e−iγhiσ̂
z
i ≡ Rz(2γhi) (5.4)

while the two-qubit interaction can be implemented using a local single-qubit
gate between two controlled-cz and Hadamard-gates

e−iγJij σ̂
z
i σ̂

z
j ≡

H Rx(2γJij) H
(5.5)

If all elements of the interaction matrix Jij are non-zero, a total number of
N(N − 1)/2 cz-gates for each level p would be required. However, this assumes
that two-qubit gates can be directly applied between any two qubits, which is
not always possible due to hardware constraints. Nonetheless, swap-gates can
be used to move distant qubits close to each other,

|ψ〉 |φ〉

|φ〉 |ψ〉
≡

|ψ〉 H H |φ〉

|φ〉 H H H H |ψ〉
(5.6)

Furthermore, the number of swap gates needed for this depends, of course, on
the hardware’s connectivity. For instance, in a linear array of qubits, each qubit
can be made to interact with all other qubits using a circuit depth of N with
N(N − 1)/2 number of swap-gates [77].

5.1 Experimental realization of QAOA in a
superconducting device

In Paper B, we explored the application of the QAOA on a hardware plat-
form composed of two superconducting transmon qubits and one parametrically
modulated coupler. The primary objective was to conduct a proof of principle
experiment aimed at solving small instances of the Exact Cover problem, which
was inspired by the TAS problem. The experiment successfully demonstrated
the implementation of QAOA with up to p = 2 on the Chalmers superconduct-
ing quantum processor, with an observed increase in success probability from
p = 1. This was made possible by achieving sufficiently high gate fidelities.

In the paper, we applied the QAOA to four different Exact Cover problems,
as outlined in Table 5.1. For p = 1, we applied a simple grid search for finding
the optimal parameters (γopt, βopt). From the results in Figure 5.1, it can be seen
that our measurements showed excellent agreement with theoretical predictions,
indicating low coherent and incoherent error rates. This was a significant finding
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Table 5.1: The four distinct Exact Cover problems, each with two subsets, along
with their solutions and corresponding sets of coefficients in the cost Hamilto-
nian ĤC = h1σ̂

z
1 + h2σ̂

z
2 + Jσ̂z

1 σ̂
z
2 , are presented.

Problem Subsets h1 h2 J Solution
A r1 = {f1, f2} −1/2 0 1/2 |10〉

r2 = {f1}
B r1 = {f1, f2} −1 0 0 |10〉 or |11〉

r2 = {}
C r1 = {f1} −1/2 −1/2 0 |11〉

r2 = {f2}
D r1 = {f1, f2} −1/2 0 1/2 |10〉 or |01〉

r2 = {f1}

as it demonstrated the potential of our approach in solving optimization prob-
lems using a quantum computer. For p > 1, the classical brute force approach
for finding the optimal angles scales doubly exponentially in p, necessitating
the exploration of more resource-efficient optimization techniques. We investi-
gated three classical optimizers: Bayesian optimization with Gaussian processes
(BGP), Nelder-Mead, and covariance matrix adaptation evolution strategy. Ul-
timately, there was no significant difference in the performance observed among
the different classical optimizers, except that BPGs exhibited a slightly higher
convergence probability than the other two. At the end of the optimization, a
success probability of 96.6% was observed for p = 2. This can be compared to
the theoretical predicted success probability of 100% that an ideal (noise-free)
quantum computer would achieve. We attribute the divergence from 100% to
decoherence and imperfect gates.

This research contributed to the ongoing efforts in the field of quantum
computing to harness the power of quantum algorithms for solving complex
real-world problems and paved the way for future research in the application of
quantum algorithms to combinatorial optimization problems.

5.2 Study of QAOA implementation with
cat qubits

In our previous work, Paper E, we explored the implementation of QAOA with
cat qubits. One of the key characteristics of cat qubits is that the dominant
noise mechanism, photon losses, results in Z-biased noise on the logical cat
subspace [78, 79], which means that σ̂z errors are more likely to happen than
σ̂x and σ̂y errors. This noise bias is a significant aspect as it influences the
performance of error correction [80] and error mitigation strategies [81], the
latter which we will explore in Chapter 6, and it can yield better performance
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Figure 5.1: The cost function F (γ, β) for the four different instances of the Exact
Cover problems, as given in Table 5.1, is depicted in panels (a)–(d). These
panels display a 61×61 grid, with each experimental data point being the average
of 5000 measurements conducted on the Chalmers quantum processor. The
dashed lines represent the positions of the line-cuts in panels (e)–(h). These
panels provide a comparison between the experimental results (open circles) and
theoretical predictions (solid lines) for the four Exact Cover problems. Each
color, as indicated at the top, corresponds to either a state probability or the
value of the cost function F .

for QAOA in the presence of errors, as we will see in this chapter.
In this section, we will explain how QAOA can be implemented using cat

qubits and present the results from benchmarking its performance for small
instances of the MaxCut problem. We find that cat qubits are more robust to
noise than discrete-variable qubits, showing promise for implementing QAOA
using cat qubits on NISQ devices.

Our study focuses on implementing QAOA with cat qubits using two-photon
pumped Kerr Nonlinear Resonators (KNRs) [79, 82–84]. Such a system can, for
example, be realized by coupling a resonator to a SQUID and adding a varying
magnetic flux through the SQUID at twice the resonator frequency to generate
pairs of photons in the resonator. The Hamiltonian for the two-photon pumped
KNR is given by

Ĥ = −∆â†â−Kâ†2â2 +G(â†2 + â2), (5.7)

where ∆ = 2ωr − ωp is the detuning of the resonator frequency ωr and the
two-photon pump frequency ωp, K is the amplitude of the Kerr non-linearity
(compared to previous chapters, we have named the Kerr-nonlinearity K instead
of α to match with the notation in Paper E, and as not to confuse it with the
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|C+
α ⟩ ≡ |+⟩
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≡ |1̄⟩

Figure 5.2: The computational states of the cat qubit that lie along one of the
three principal axes visualized on the Bloch sphere along with their Wigner
function.

displacement amplitude of the coherent state |α〉) and G is the amplitude of the
two-photon pump. When the detuning ∆ = 0, the Hamiltonian can be written
as

Ĥ = −K
(
â†2 − G

K

)(
â2 − G

K

)
+
G2

K
. (5.8)

Since â |α〉 = α |α〉, the coherent states |±α〉 with α =
√
G/K are degenerate

eigenstates of the Hamiltonian Eq. (5.8) with eigenenergy G2/K. Thus, any
linear combination of |±α〉 are also degenerate eigenstates, such as the even and
odd linear combination of these two coherent states:∣∣C±

α

〉
= N±(|α〉 ± |−α〉) with N± =

√
2(1± e−2|α2|), (5.9)

which are known as the even and odd cat states. We can take advantage of this
well-defined subspace to encode our computational basis states |0̄〉, |1̄〉, defining
the qubit (the bar notation is used to distinguish the computational states from
the zero and one photon number states). To this aim, one possibility is to
directly identify the qubit basis states with |α〉 and |−α〉 [85]. However, these
states are quasi-orthogonal as 〈−α|α〉 = e−2α2 . Another possibility consists in
choosing the following encoding [86]:

|0̄〉 = |C+
α 〉+ |C−

α 〉√
2

, |1̄〉 = |C+
α 〉 − |C−

α 〉√
2

. (5.10)
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Table 5.2: Average gate fidelity of the Rzz(Θ) and Rx(θ)-gate for the cat qubit
and the discrete-variable qubit, respectively. The results are averaged over 20
points evenly spaced between 0 and π.

Avg. gate fid. (%) Rzz(Θ) Rx(θ)

Cat qubits 99.16 98.60
Discrete-variable qubits 99.16 98.62

In this case, the computational basis states are orthogonal even for small α,
while for large α, they are approximately equal to |0̄〉 ≈ |α〉 and |1̄〉 ≈ |−α〉. In
Figure 5.2, the computational states that lie along one of the principal axes of
the Bloch sphere are shown along with their Wigner function. For single-photon
losses, the encoding of Eq. (5.10) constitutes a noise-biased qubit where the loss
of single-photons results in a phase error plus an exponentially small bit-flip
error on the computational states with respect to α. Indeed, by defining the
projection operator Î = |0̄〉〈0̄|+ |1̄〉〈1̄|, its action on the annihilation operator â
gives

Î âÎ =
α

2
(η + η−1)σ̂z + iα

2
(η − η−1)σ̂y, (5.11)

where η ≡ N+/N−, and σ̂z, σ̂y are the two Pauli matrices in the computational
subspace of the cat qubit. For large α, η → 1 which results in Î âÎ = ασ̂z, and
we thus see that a single-photon loss event corresponds to a phase-error on the
computational basis states.

5.2.1 Running QAOA with cat qubits
In order to run QAOA, one needs to prepare all resonators in the state |+〉, i.e.,
in the case of the cat qubit, the cat state |C+

α 〉. Such a cat state can be generated
deterministically in KNRs by starting from the vacuum, which is an eigenstate
of Hamiltonian Eq. (5.8) for G = 0, and then adiabatically increasing G [82, 84].
Since the Hamiltonian in Eq. (5.8) is symmetric under parity inversion â→ −â,
the KNR follows the adiabatic evolution from the vacuum while also conserving
the parity, [eiπâ†â, Ĥ] = 0, thus ending up in the even parity cat state |C+

α 〉.
Alternatively, a cat state can also be generated using a sequence of SNAP and
displacement gates applied to the vacuum state [87].

The other gates needed to run QAOA are implemented according to Refs. [82,
84], where the Rz(φ)-gate is implemented in KNRs by means of a single-photon
drive E(t)(â† + â). The Rx(θ)-gate is implemented through a time-dependent
detuning ∆(t)â†â, and Rzz(Θ)-gate is implemented through a time-dependent
beam-splitter interaction between two KNRs g(t)(â†1â2 + â1â

†
2).

In our simulations, we benchmarked MaxCut on 30 randomly generated
Erdős–Rényi graphs with 8 vertices and with edge probability 0.5. This means
that each vertex of the graph is connected to every other vertex with a proba-
bility of 50%.
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Figure 5.3: The mean approximation ratio averaged over 30 instances of 8-qubit
MaxCut graphs. The circle corresponds to the approximation ratio of an ideal
(noise-free) quantum computer. The square is the approximation ratio obtained
using cat qubits, and the triangle is with discrete-variable qubits, meaning qubits
encoded into discrete two-level systems. The average gate fidelity was chosen to
be close to identical for the cat qubits and discrete-variable qubits with values
reported in Table 5.2.

A typical single-photon loss to Kerr nonlinearity ratio of 1500/K was chosen,
and in order to make a fair comparison between the performance of the cat
qubit and the discrete-variable qubit, we chose the single-photon loss rate for the
discrete-variable qubit such that the average gate fidelities are the same between
the two systems. By doing so, we can compare which encoding, continuous
versus discrete, is the best for QAOA. Using the average gate-fidelities that
were numerically calculated for the cat qubits in Table 5.2, the corresponding
single-photon loss rate for the discrete-variable qubits that result in the same
average gate fidelity as for the cat qubits were obtained, which are also presented
in Table 5.2.

As a metric for comparison between the performance of cat qubits and the
discrete-variable qubits, we look at the approximation ratio, defined as

r ≡ Tr(ρ̂ĤC)

Cmax
, (5.12)

where the numerator is the expected cut value with ρ̂ the density matrix out-
put from QAOA, and Cmax is the value of the maximum cut. The simulation
results are presented in Figure 5.3. In both scenarios, the approximation ra-
tio initially increases with p. However, at one point, the noise from the gates
implementing the QAOA sequence begins to negatively impact the advantage
of using larger depth circuits, leading to a decrease in the approximation ratio.
The findings indicate that with identical average gate fidelities, the cat qubit
device consistently outperforms the discrete-variable qubit device at all itera-
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Table 5.3: Error channel in the computational basis of the cat qubit for the
Rx(π/2), and Rzz(π/2)-gate. The error channel is shown for coefficients with
absolute values greater than ≥ 10−3.

Gate Error Channel Coefficients

Rx(π/2)
(1− py − pz)ρ̂+ pzσ̂z ρ̂σ̂z + pyσ̂yρ̂σ̂y

+ pyzσ̂yρ̂σ̂z + pzyσ̂z ρ̂σ̂y

py = 0.01, pz = 0.01,
pyz = pzy = −0.002

Rzz(π/2) (1− p1 − p2)ρ̂+ p1σ̂
z
1 ρ̂σ̂

z
1 + p2σ̂

z
2 ρ̂σ̂

z
2 p1 = 0.005, p2 = 0.005

tion levels p, suggesting an advantage for the cat qubit implementation. In the
context of discrete-variable qubits, the peak approximation ratio is reached at
p = 3, whereas for cat qubits, this peak is achieved at p = 4.

An argument for why the cat qubits perform better can be understood by
how the two gates: Rx(θ) and Rzz(Θ) handle errors. For example, consider a
σ̂z error that occurs prior to the Rx(θ)-gate. By commuting the error through
the Rx(θ)-gate we obtain we obtain

Rx(θ)σ̂z = e−iθσ̂x/2σ̂z = cos
(
θ

2

)
σ̂z − i sin

(
θ

2

)
σ̂xσ̂z = σ̂zRx(−θ), (5.13)

where in the last equality, we have used the anti-commutation relation σ̂xσ̂z =
−σ̂zσ̂x. This shows that a σ̂z error introduces an additional π rotation of the
Rx(θ)-gate. For the Rzz(Θ)-gate, a σ̂z error acting on either of the two qubits
commutes through the gate, meaning only the Rx(θ)-gate will be influenced by
dephasing errors, resulting in an additional π-rotation. This is evident from
Table 5.3, where we have extracted the error channel for the cat qubit for the
two gates. In this scenario, the error channel can be considered as a channel
applied post-gate. For the Rzz(Θ), it is observed that the gate maintains the
noise channel structure, implying that the error channel remains as σ̂z errors
post-gate, while the Rx(θ)-gate depolarizes the channel, as indicated by the
presence of the σ̂y terms.

For the discrete-variable qubit, in addition to σ̂z errors, both σ̂x and σ̂y
errors can occur. This will lead to faulty implementations for both the Rx(θ)-
and Rzz(Θ)-gate. Furthermore, for a typical graph, the number of Rzz(Θ)-gates
for each level-p is equivalent to the number of edges in the MaxCut graph. On
average, the graphs we examined had a mean edge count of 14.1, while the
Rx(θ)-gate count is equivalent to the number of vertices, or equivalently the
number of qubits, which was 8 in this case.
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Chapter 6
Error mitigation

The evolution of quantum computing hinges on effectively managing quantum
errors. While fault-tolerant quantum error correction is critical for scalable
quantum computation, current state-of-the-art quantum processors fail to meet
the requisite hardware performance and resource overheads needed for imple-
menting quantum error correction on multiple qubits. As such, alternative tech-
niques for noise mitigation have been developed, including those based on scaling
noise [88–91], predictive noise learning [92, 93], and exploiting noise-free circuit
symmetries to flag for errors [94–98]. In particular, these techniques are less
resource-intensive than quantum error-correcting codes.

Recently, there has been a surge of interest in algorithm- and noise-specific
error-mitigation techniques [81, 89, 91, 95, 99–102]. A new technique that has
shown considerable promise is virtual distillation, also known as error suppres-
sion by derangement [101, 102]. This method has been demonstrated to expo-
nentially suppress errors in the estimation of the expectation value of observ-
ables, something that is very relevant for QAOA. The approach involves the use
of M redundant copies of a noisy quantum state that are cyclically permuted
to calculate the expectation value. Under the assumption that noise merely
mixes the ideal state with orthogonal error states, the symmetries inherent in
the cyclic-permutation state can exponentially suppress the contributions of the
error states to the expectation value.

In practical applications, as we will see in this chapter, virtual distillation
is typically implemented using an auxiliary qubit and controlled-swap (cswap)
gates. However, this method is vulnerable to errors itself, as errors can oc-
cur during the cswap-gates. Therefore, in Paper D, we conducted an in-depth
exploration of how different types of noise affects the virtual distillation cir-
cuit. We found conditions that make errors less harmful, thereby enhancing the
performance of the virtual distillation protocol in practical settings.
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Figure 6.1: (a) The expectation value of an observable Â under ideal and noisy
conditions. Noise introduces a bias with respect to the ideal expectation value.
(b) Quantum computation employing virtual distillation for error mitigation.
This technique significantly reduces the bias introduced by noise.
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6.1 Virtual distillation
In many quantum computing applications, including QAOA, the estimation
of expectation values is of paramount importance. However, due to noise, a
quantum computer often prepares a noisy mixed state ρ̂, rather than the ideal
state |ψideal〉. Therefore the expectation value of some observable Â will not be
with respect to the ideal state

〈Â〉ideal = Tr(Â |ψideal〉〈ψideal|), (6.1)

but with respect to the mixed state

〈Â〉noisy = Tr(Âρ̂). (6.2)

This results in a bias in the expectation value of an observable Â, given by
〈Â〉noisy − 〈Â〉ideal, see Figure 6.1a. The primary objective of quantum error-
mitigation is to minimize this bias.

To fix the ideas, consider the output state from a N -qubit quantum circuit.
This output state can be decomposed via spectral decomposition as

ρ̂ =
d∑

k=1

λk |ψk〉〈ψk| , (6.3)

where d = 2N and λk is the probability that the system is found in the state
|ψk〉 when measured in the eigenbasis of ρ̂. We can assume for convenience
that the probabilities λk are listed in descending order λ1 > λ2 . . . > λd. Now,
if the dominant eigenvector of the density matrix, i.e., the state with largest
eigenvalue, is close to the ideal state, then 〈ψ1| Â |ψ1〉 would be a very good
approximation of the ideal expectation value1. However, erroneous eigenvec-
tors |ψk 6=1〉 contribute to the bias of the estimated expectation value. Virtual
distillation aims to suppress these contributions via the following novel idea.
Consider the scenario where we generate M instances (copies) of the state ρ̂.
The most probable outcome during this state generation is that we obtain the
dominant eigenvector of the state: with a likelihood of λM , the state (right after
the state generation) is |ψ1, ψ1, . . . , ψ1〉. Calculating the expectation value of
an observable Â on the first subsystem yields the sought-after result

〈ψ1, . . . , ψ1, ψ1| Â1 |ψ1, . . . , ψ1, ψ1〉 = 〈ψ1| Â |ψ1〉 〈ψ1|ψ1〉 . . . 〈ψ1|ψ1〉
= 〈ψ1| Â |ψ1〉 . (6.4)

1This condition is satisfied when the noise in the quantum circuit maps the ideal states to
states that are orthogonal to it; otherwise the dominant eigenvector will drift and limit the
error suppression efficiency [101, 102]. In general, for a multi-qubit state, both single-qubit
depolarizing or dephasing errors can cause the dominant eigenvector to drift. However, it has
been shown that the severity of this drift is exponentially smaller than the incoherent decay
of fidelity [102].
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Here the bold subscript indicates that the operator Â acts on the first sub-
system. The next most probable event is that one of the registers, let us say
the first register, is detected in the orthogonal erroneous eigenvector |ψk 6=1〉; a
measurement then yields the error term

〈ψk, . . . , ψ1, ψ1| Â1 |ψk, . . . , ψ1, ψ1〉 = 〈ψk| Â |ψk〉 〈ψ1|ψ1〉 . . . 〈ψ1|ψ1〉
= 〈ψk| Â |ψk〉 . (6.5)

However, if we instead measure the expectation value of the product Â swap1M ,
where swap1M interchanges subsystem 1 and M , we get

〈ψk, . . . , ψ1, ψ1| Â1 |ψ1, . . . , ψ1, ψk〉 = 〈ψk| Â |ψ1〉 〈ψ1|ψ1〉 . . . 〈ψ1|ψk〉 = 0. (6.6)

In this case, the swap operator altered the sequence of the subsystems, and
the outcome is 0 due to the orthogonality of the eigenvectors. This concept
can easily be extended to the situation where all subsystems are swapped, al-
lowing only permutation-symmetric states to contribute to the measurement of
expectation values.

To illustrate this, consider Ŝ(M), an operator that acts on M subsystems
and cyclically shifts these subsystems and whose operation can be represented
as follows

Ŝ(M) |ψ1, ψ2, . . . , ψM 〉 = |ψ2, ψ3, . . . , ψ1〉 . (6.7)

By measuring the following expression

Tr[Â1Ŝ
(M)ρ̂⊗M ]

= Tr[Â1
∑

k1...kM

λk1 ... λkM
|ψk2 , ψk3 , ... , ψk1〉〈ψk1 , ψk2 ... , ψkM

|]

=
∑

k1...kM

λk1 ... λkM
Tr[Â |ψk2〉〈ψk1 |]Tr[|ψk3〉〈ψk2 |] . . .Tr[|ψk1〉〈ψkM

|]

=
∑

k1...kM

λk1
... λkM

δk3,k2
... δk1,kM

Tr[Â |ψk2
〉〈ψk1

|]

= Tr[Â
∑
k1

λMk1
|ψk1

〉〈ψk1
|] = Tr[Âρ̂M ], (6.8)

we obtain the expectation value of Â with respect to ρ̂M , which is not a le-
gitimate state since its trace is not 1. Therefore we have to normalize this
expression by dividing it by Tr[Ŝ(M)ρ̂⊗M ] = Tr[ρ̂M ], yielding the final result

〈Â〉mitigated =
Tr(Â1Ŝ

(M)ρ̂⊗M )

Tr(Ŝ(M)ρ̂⊗M )
=

Tr(Â
∑

k λ
M
k |ψk〉〈ψk|)∑

k λ
M
k

. (6.9)

From this, we see that when |ψ1〉 corresponds to the output of the ideal (noise-
free) quantum circuit, 〈Â〉mitigated approaches the ideal expectation value at an
exponential rate with respect to M . Note that this is all done without actually
preparing the state ρ̂M/Tr(ρ̂M ), hence the name “virtual”.
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The process of measuring the observable Ŝ(M) in the denominator of Eq. (6.9)
is similar to the Hadamard test [103]. This procedure starts with the preparation
of M collective copies of the state ρ̂, along with an auxiliary qubit initialized
in the state |+〉 = (|0〉 + |1〉)/

√
2. Following this initialization, the cyclic shift

operator Ŝ(M) is applied to the M copies of ρ̂. This operation is conditioned
on the auxiliary qubit being in the state |1〉. The final step involves measuring
the auxiliary qubit in the X-basis (also known as the plus/minus-basis), as
depicted in Figure 6.1b. The measurement of the auxiliary qubit results in a
phase-kickback effect, whereby the expectation value obtained from measuring
the auxiliary qubit equates to Tr(Ŝ(M)ρ̂⊗M ). This can quite easily be seen
mathematically. The state right before the measurement of the auxiliary qubit
is

1

2

(
Î ⊗ ρ̂⊗M + |0〉〈1| ⊗ ρ̂⊗M Ŝ(M) + |1〉〈0| ⊗ Ŝ(M)ρ̂⊗M

)
, (6.10)

where we have used the fact that Ŝ(M)ρ̂⊗M Ŝ(M) = ρ̂⊗M . By measuring the
expectation value of the σ̂x operator of the auxiliary qubit, we get the desired
result

1

2
Tr[σ̂x ⊗ ρ̂⊗M + |1〉〈1| ⊗ ρ̂⊗M Ŝ(M) + |0〉〈0| ⊗ Ŝ(M)ρ̂⊗M ]

=
1

2
Tr[Î ⊗ Ŝ(M)ρ̂⊗M ] = Tr[Ŝ(M)ρ̂⊗M ]. (6.11)

Moreover, to measure the numerator of Eq. (6.9), it is beneficial to consider
the symmetrized version of the operator Â for simplifying the analysis. The
symmetrized operator Â is defined as follows:

Â(M) =
1

M

M∑
i=1

Âi. (6.12)

Given that the symmetrized observable Â(M) commutes with Ŝ(M), it is possible
to measure the product Â(M)Ŝ(M). This is achieved by first measuring Ŝ(M)

using the Hadamard test described above, followed by measuring Â(M) on the
subsystems.

However, a critical question still lingers: how do we decompose Ŝ(M), and
more importantly, could errors that occur during the implementation of Ŝ(M)

potentially undermine the effectiveness of this error-mitigation protocol? These
are not trivial concerns, as the protocol’s success hinges on accurately imple-
menting Ŝ(M). Any errors introduced during this process could potentially
exacerbate the very issues the protocol aims to mitigate. In the following sec-
tion, we will delve into these questions, exploring the decomposition of Ŝ(M) and
examining the potential impact of errors on the efficacy of the error-mitigation
protocol.
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Figure 6.2: The virtual distillation circuit for two copies (M = 2). The circuit
includes single-qubit errors, denoted by Λ, which are explicitly depicted in the
circuit layout.

6.1.1 Noise in the virtual distillation circuit
We now turn our attention to the practical implementation of virtual distillation.
Specifically, we will focus on the case where M = 2, which will simplify the
decomposition of the cyclic shift operator Ŝ(2).

For M = 2, the cyclic shift operator Ŝ(2) can be factorized into a tensor
product of N swap-gates, and its controlled version can be factorized into a
product of N cswap-gates. To model the impact of errors during the protocol,
we assume that a single-qubit noise channel is applied after every gate to the
qubits involved, as depicted in Figure 6.2.

We consider two types of single-qubit noise channels. The first is the depo-
larizing channel, which describes a process where information is completely lost
with a probability ε, and is given by

Λdep(ρ̂) = (1− ε)ρ̂+
ε

3
(σ̂xρ̂σ̂x + σ̂yρ̂σ̂y + σ̂z ρ̂σ̂z), (6.13)

where {σ̂x, σ̂y, σ̂z} are the Pauli operators and ε is the error probability. The
second error channel is the pure-dephasing channel, a biased noise channel. This
channel describes the loss of phase information with a probability ε. It describes
the loss of phase information with a probability ε,

ΛZ(ρ̂) = (1− ε)ρ̂+ εσ̂z ρ̂σ̂z. (6.14)

Of course, we could have chosen an error channel with biased X- or Y -noise.
However, we can always redefine the computational basis states on the Bloch
sphere and call all of this Z-biased noise.
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In Paper D, we derive an expression for the mitigated expectation value in
the presence of errors in the virtual distillation circuit and find that it is given
by

〈Â〉Λmitigated =
Tr(Λ̄(Â)ρ̂2)

Tr(ρ̂2)
, (6.15)

where Λ̄ = Λ⊗ . . .⊗Λ is a tensor product of N single-qubit error channels Λ ∈
{Λdep,ΛZ}. From Eq. (6.15), we see that the influence of errors on the mitigated
expectation value depends on the observable Â. Since a general observable on
N qubits can be expressed as a sum of N -qubit Pauli strings from the set
{Î , σ̂x, σ̂y, σ̂z}⊗N , it is sufficient to consider Â ∈ {Î , σ̂x, σ̂y, σ̂z}⊗N . In this case,
each Pauli matrix transforms as

Λdep(σ̂k) = (1− 4ε/3)σ̂k, for k ∈ {x, y, z}, (6.16)

ΛZ(σ̂k) =

{
(1− 2ε)σ̂k, for k ∈ {x, y},
σ̂k, for k ∈ {z},

(6.17)

Therefore the mitigated expectation value for the two types of noise can be
expressed as

〈Â〉Λdep
mitigated =

(
1− 4

3
ε

)n Tr(Âρ̂2)
Tr(ρ̂2)

, (6.18)

〈Â〉ΛZ
mitigated = (1− 2ε)

n′ Tr(Âρ̂2)
Tr(ρ̂2)

, (6.19)

where n is the number of Pauli operators in Â and n′ is the number of {σ̂x, σ̂y}
operators in Â. As an example, if Â = Î ⊗ σ̂x ⊗ σ̂z, then n = 2 and n′ = 1.
From this, we can see that errors in the virtual distillation circuit attenuate
the expectation values, leading to an increase in bias with respect to the ideal
expectation value. However, it is important to note that when the mitigated
expectation value of an observable Â is a tensor product of Pauli Z-operators,
meaning n′ = 0, the mitigated expectation value is completely immune to pure
dephasing in the distillation circuit, and dephasing noise will therefore not in-
troduce any bias. Moreover, performing local Clifford transformations, e.g.,
the Hadamard, on the state ρ̂ before sending it into the virtual distillation cir-
cuit makes it possible to measure any Pauli observable without attenuating the
mitigated expectation value given dephasing noise.

In conclusion, our findings suggest that implementing the virtual distillation
protocol in a system that is strongly biased towards dephasing noise will not
introduce any additional bias in the estimation of the expectation value. More-
over, this also avoids the need to rely on other error mitigation techniques in
addition to virtual distillation for mitigating errors.
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Chapter 7
Conclusion and outlook

7.1 Summary
This thesis presents a study of the QAOA, a hybrid classical-quantum algo-
rithm that leverages the strengths of both quantum processors and classical
optimizers. The primary objective of this algorithm is to iteratively optimize
a variational state to approximate the ground state of a cost Hamiltonian that
encodes a combinatorial optimization problem. The focus of this thesis has been
the application of QAOA to the Exact Cover problem, a simplified model of the
tail-assignment problem – a problem that involves assigning aircraft to specific
flights. This thesis has also delved into the practical implementation of solving
a simple optimization problem on the Chalmers quantum computer, providing
empirical evidence of QAOA’s functionality. Moreover, this thesis also presented
a study of the implementation of QAOA using qubits with favorable noise prop-
erties, specifically cat qubits. Finally, this thesis explored virtual distillation,
an error-mitigation protocol, and assessed its performance under various types
of errors.

In Chapter 2, as further detailed in Paper C, we demonstrate numerical
simulations of the simultaneous execution of two cz-gates on existing quantum
hardware resulting in new exotic three-qubit gates.

In Chapter 4, as outlined in Paper A, we investigate the application of QAOA
to the Exact Cover problem, an abstraction of the tail-assignment problem.
The algorithm was applied to instances corresponding to 8, 15, and 25 qubits,
allowing for the calculation of the success probability, a metric indicating the
probability of finding the optimal solution in a single-shot measurement. This
success probability is shown to increase with the iteration parameter p, which
is directly associated with the depth of the quantum circuit.

In Chapter 5, as illustrated in Paper B, we present the implementation and
execution of a toy instance of the Exact Cover problem on the Chalmers quan-
tum computer. The experimental results closely matched the theory, providing
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the first experimental verification of the impact of the algorithmic depth on the
success probability in QAOA. This is followed by a theoretical investigation of
the implementation of QAOA with cat qubits using two-photon pumped Kerr
non-linear resonators, as detailed in Paper E. Simulation results suggest that
cat qubits yield a higher approximation ratio than discrete-variable qubits based
on two-level systems when applied to 8-qubit instances of the MaxCut problem
in the presence of single-photon losses. This suggests a potential advantage of
using cat qubits in QAOA implementations.

Finally, in Chapter 6, as outlined in Paper D, we investigate the effect of
noise in a protocol known as virtual distillation, an error mitigation method
aimed at reducing noise in the estimation of expectation values. Analytical
evidence corroborate the robustness of this protocol against dephasing noise.
The findings substantiate that virtual distillation enhances the performance of
QAOA amidst dephasing noise, thereby offering a potential avenue for effective
error mitigation in such settings.

7.2 Outlook
Looking ahead, there are several promising avenues for future research that
build upon the findings of this thesis:

1. Benchmarking quantum devices with larger optimization prob-
lems: One of the key challenges in quantum computing is scaling up the
size of the problems that can be solved. As quantum hardware continues
to improve, running larger tasks on quantum devices will be possible. A
crucial aspect of this progression will be benchmarking the time to solu-
tion with a classical optimizer. This will provide a more comprehensive
understanding of the computational advantages offered by quantum de-
vices. It will also allow for a more direct comparison between quantum
and classical computing capabilities. This benchmarking process will be
instrumental in identifying the areas where quantum computing can pro-
vide the most significant benefits and in guiding the development of future
quantum algorithms and hardware.

2. QAOA experiment on cat qubits: Cat qubits have shown promise re-
garding their resistance to certain types of noise. A logical next step would
be to run a proof-of-principle QAOA experiment using cat qubits. This
experiment could provide valuable insights into the practical advantages
and challenges of using cat qubits in QAOA and other quantum algo-
rithms. It could also help further to elucidate the behavior of cat qubits
under real-world conditions and contribute to the ongoing development of
quantum error correction and error-mitigation techniques.

3. Implementation of virtual distillation using the three-qubit cczs-
gate: The virtual distillation protocol has shown potential for mitigating
the effects of noise in quantum computations. An interesting direction for
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future research would be to run virtual distillation using the three-qubit
cczs-gate that we presented in Section 2.2.1. As outlined in Section 6.1.1
the virtual distillation can be implemented using cswap-gates. However,
compiling this circuit using the cczs-gate is another possibility that we
would like to explore further.
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