
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Optimization of low-cost

integration of wind and solar power

in multi-node electricity systems

Mathematical modelling and dual solution approaches

Caroline Granfeldt

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2023



This work was supported by
the Swedish Energy Agency (project number 39907-1) and
Chalmers University of Technology

Optimization of low-cost integration of wind and solar power in multi-node
electricity systems
Mathematical modelling and dual solution approaches
Caroline Granfeldt
Gothenburg 2023
ISBN 978-91-7905-892-0

© Caroline Granfeldt, 2023

Doktorshavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5358
ISSN 0346-718X

Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31 772 1000

Typeset with LATEX
Printed by Chalmers digitaltryck
Printed in Gothenburg, Sweden, 2023



Optimization of low-cost integration of wind and
solar power in multi-node electricity systems

Mathematical modelling and dual solution approaches

Caroline Granfeldt

Department of Mathematical Sciences
Chalmers University of Technology

Abstract

The global production of electricity contributes significantly to the release of
CO2 emissions. Therefore, a transformation of the electricity system is of vital
importance in order to restrict global warming. This thesis concerns modelling
and methodology of electricity systems which contain a large share of variable
renewable electricity generation (i.e. wind and solar power).

The two models developed in this thesis concern optimization of long-term
investments in the electricity system. They aim at minimizing investment
and production costs under electricity production constraints, using different
spatial resolutions and technical detail, while meeting the electricity demand.
These models are very large in nature due to the 1) high temporal resolution
needed to capture the wind and solar variations while maintaining chronology
in time, and 2) need to cover a large geographical scope in order to represent
strategies to manage these variations (e.g. electricity trade). Thus, different
decomposition methods are applied to reduce computation times. We develop
three different decomposition methods: Lagrangian relaxation combined with
variable splitting solved using either i) a subgradient algorithm or ii) an ADMM
algorithm, and iii) a heuristic decomposition using a consensus algorithm. In all
three cases, the decomposition is done with respect to the temporal resolution
by dividing the year into 2-week periods. The decomposition methods are
tested and evaluated for cases involving regions with different energy mixes
and conditions for wind and solar power. Numerical results show faster
computation times compared to the non-decomposed models and capacity
investment options similar to the optimal solutions given by the latter models.
However, the reduction in computation time may not be sufficient to motivate
the increase in complexity and uncertainty of the decomposed models.

Keywords: variable renewable electricity, variation management, electricity
system modelling, capacity expansion, cost optimization, Lagrangian relax-
ation, variable splitting, subgradient algorithm, ADMM, consensus algorithm.
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1 Introduction

EU’s roadmap 2050 establishes that the greenhouse gas emissions must de-
crease by some 85% until the year 2050 in order for global warming to be
restricted to 2◦C [9]. The electricity system contributes significantly to the emis-
sions of carbon dioxide, both in the EU and globally (see for example Ritchie
and Roser [49] and underlying data sources). A transformation of the electricity
system is therefore needed, and electricity investment models can be used as a
tool to make informed decisions regarding future electricity generation, storage,
and transmission capacity. The mathematical optimization models describing
the electricity system minimize the investment and production costs of the
system under electricity production constraints, while meeting the electricity
demand.

The existing systems mostly consist of thermal power [31], and thus the tradi-
tional models are designed with this in mind. The characterization of such a
system, dominated by dispatchable generation, include the ability to regulate
the electricity production to meet instant demand. However, a cost-efficient
reduction of greenhouse gas emissions from the electricity system is expected to
imply a large-scale implementation of varying renewable electricity generation
(VRE), such as wind and solar power. To be able to capture the variability in
electricity generation from VRE, a realistic mathematical modeling of future
electricity systems must include a fine discretization of time [32]. Furthermore,
one key strategy to reduce variability of wind power is geographical smooth-
ing through trade. Thus, it is desired to consider a large geographical area in
the modeling of the electricity system while accounting for the transmission
bottlenecks within such an area.

There is, however, a conflict between a high temporal and spatial resolution and
reasonable computing times for electricity system models. For real problem
instances on the European scale, the challenge lies in finding this proper balance
in the mathematical modelling.
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2 1. Introduction

1.1 Purpose and Aims

The purpose of the project is to formulate and analyze mathematical opti-
mization models that capture strategies to manage the variability of variable
renewable electricity generation. The research focuses on techniques and
methodologies for decomposing and solving long-term investment models,
i.e. capacity expansion models, including investments in electricity generation,
energy storage and transmission capacity. A key objective is to examine how
the temporal and spatial resolution impacts the solution times using these
decomposition methods, and—when possible—compare the solutions and
computation times of the decomposed models to the non-decomposed model
optimal solutions.

1.2 Limitations

The models are used to examine long-term capacity investments over large
regions (i.e. entire countries), and are not suited to make decisions regarding
how separate power plants should operate since the models use an aggregated
continuous electricity generation and storage capacity for each region. Further-
more, electricity transmissions within each region are not considered in detail.
We assume a perfect forecast of electricity demand and weather. Thus, there is
no stochasticity in the models and they are purely deterministic. Demand and
weather profiles in terms of, for example, wind speed and water inflow (from
rain and melted ice) to hydropower turbines are based on data from previous
years. Electricity used for heating, and CHP plants (combined heat and power)
which deliver both electricity and heat, are not included in this work.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2, the electricity
system and some of its modelling difficulties are described, along with a review
of some previous modelling work. Chapter 3 presents and compares two
different mathematical optimization models, including variables, constraints
and objective functions. In Chapter 4, the scientific areas and methods used
to solve these models are presented. A summary of the appended papers are
given in Chapter 5, and then finally Chapter 6 discusses conclusions and the
main contributions of this thesis, as well as topics for future research.



2 The Electricity system and
modelling

This chapter discusses the electricity system and some modelling difficulties
that comes with it. It also gives an overview of some previous work done on
electricity system modelling.

Electricity is an energy carrier which can be characterized using different
properties, e.g. voltage, current, energy, or power. In an electricity system,
electric energy is produced in power plants and then transferred to electricity
consumers connected to an electrical grid. Each power plant has an installed
and available production capacity, typically measured in GW, which controls
the amount of electric power that can be produced at any instant. (Specifically,
one watt is defined as one joule per second and thus measures the rate of
transfer.) The electrical energy produced in a power plant is often measured
in GWh, and is thus the product of the power in gigawatts multiplied by the
running time in hours.

The electricity system inside a region typically consists of different types of
sources for electricity production. These can for example be coal power, nuclear
power, hydropower, wind power, solar power, or natural gas turbines.

2.1 Electricity generation technologies

Thermal power plants are, as the name indicates, power plants where heat is
converted to electricity. In steam turbines, water is heated to steam which
is then used to rotate turbines and generate electricity. For gas turbines, the
gas is combusted directly and expanded over the turbine to rotate it. Some
different fuels used as heat sources are fossil fuels, nuclear energy, biofuels,

3



4 2. The Electricity system and modelling

and waste incineration. Some thermal power plants are combined to generate
both electricity and heat (e.g. district heating) to consumers, but in this thesis
only electricity is considered. The concept of thermal cycling refers to generating
electricity at different demand levels. As the demand for electricity varies,
some electricity generating units need to be turned on/off in response to these
variations. However, every time a thermal power plant is turned off and
on, the different components (e.g. boiler, steam lines, turbine) are exposed to
stress caused by the large thermal and pressure variations, which then leads to
maintenance costs.

In a hydropower plant, electricity is generated by leading water through turbines.
The power extracted depends on the water volume and the height difference
between the water’s in- and outflow.

Wind power generates electricity by using the wind to provide mechanical
power through turbines. Wind power is typically divided into onshore and
offshore wind power. Investment and maintenance costs for offshore wind
power are higher compared to onshore wind power [41], but offshore wind is
stronger and steadier compared to onshore wind.

Solar power is the technique to convert the energy from sunlight into electricity.
This can be done by using photovoltaics (PV) or concentrated solar power
(CSP). PVs use solar panels which contain photovoltaic cells that convert light
into an electric current by the use of the photovoltaic effect. CSP is a technique
which uses lenses or mirrors to concentrate sunlight into a small beam, and
then use the resulting heat to generate electricity from steam turbines.

2.2 Energy storage technologies

Energy storage technologies can, as the name suggests, be used to store energy
for later use. This is especially useful for variable renewable energy sources,
since this flexibility allows production to shift according to availability of the
resource and the demand for electricity.

Battery storage systems mostly consist of lithium-ion batteries and are typically
employed for sub-hourly, hourly and daily balancing of the electricity grid. The
relatively high cost of energy storage capacity however limits the applicability
of batteries to manage variations of long duration.

Hydrogen storage uses an electrolysis process, which is based on using electricity
to split water into hydrogen and oxygen. This process takes place inside
an electrolyzer. Unlike batteries, it is possible to use hydrogen storage as a
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seasonal storage which implies that it can store energy in one season and
then discharge in another when there is high demand. There is, however, a
low overall efficiency for storing and regenerating electricity from hydrogen.
Hence, this thesis does not consider the use of fuel cells to reproduce electricity;
hydrogen is in this work mainly used as a demand-side management strategy.
Shortly put, investing in hydrogen allows the demand for electricity to be
moved in time (see also Section 2.4 for a discussion on variation management).
There is currently a growing demand for hydrogen from industry; e.g. in steel
production to remove oxygen from the iron ore. Previously, carbon and coke
have been used for this process and thereby producing carbon dioxide as a
byproduct, while the use of hydrogen only generates water vapor; see also the
project HYBRIT [30].

Hydropower storage in terms of reservoirs are also included in this work. We do
not consider pumped hydropower systems though, where excess energy is used to
pump water into reservoirs for later use. Dependent on the reservoir capacity
and other environmental and location constraints, pumped hydropower can
store its energy up to a week.

2.3 Electricity system modelling

The modelling of the electricity system can be done on different system levels,
which vary with the types of questions that are asked. For example, the unit
commitment problem studies how a set of electricity generators (e.g. power
plants in a country, or turbines inside a power plant) should operate (i.e.
dispatch electricity) in order to meet the demand at the lowest system cost
(or highest revenue). Investment models (i.e. capacity expansion models)
look at cost-efficient investments in new capacity to meet future demand.
These models typically consider a longer time horizon compared to the unit
commitment problem, but instead lack in system details. This thesis addresses
investment models, and therefore the focus here will be on those types of
models.

In general, the investment models vary in scope and resolution in three different
dimensions: temporal, spatial, and technological system detail. Figure 2.1 gives
an illustration of the different model complexities, where a larger volume of
the cube indicates a larger, and typically more complex, problem. The models
tend to become very large if all dimensions have a high resolution/detail,
and therefore electricity system investment models typically make resolution
sacrifices in at least one dimension.
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Spatial
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Figure 2.1: Illustrations of the problem complexity depending on the temporal resolu-
tion, spatial resolution, and technological system detail.
a) High temporal and spatial resolution, but low technological system detail.
b) High spatial resolution and technological system detail, but low temporal resolution.
c) High temporal resolution and technological system detail, but low spatial resolution.
d) High temporal and spatial resolution, and high technological system detail.
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The differences in temporal scope is related to the size of the time step, and the
length of the time horizon. For models with a large share of VRE, a fine time
resolution is needed in order to capture the variations, and thus the size of the
time step needs to be in magnitude of a few hours. The time horizon typically
ranges from a single year to a longer time span, for example all years up until
2050. The longer time horizon can be motivated by the lifetime of power plants,
which is approximately 40 years for thermal power plants. The spatial scope
can be everything from the unit commitment problem on a single power plant,
to models which contain several countries. For the latter case, the spatial scope
relates to the size of the interconnected transmission grids. Typically, for a
high spatial resolution to be feasible, some simplifications in the technological
system details need to be done. As mentioned earlier, electricity is produced by
different electricity generation technologies, e.g. coal power, hydropower, and
wind power. The production capacity, measured in GW, determines an upper
limit for how much electricity can be produced during a time instant. Instead
of looking at separate power plants, assuming an aggregated capacity in each
region will cause a loss of some system detail, but reduce the problem size
significantly. Previous work by Göransson [18] has, however, shown that the
loss is marginal for the total system cost. The author also showed that the loss
is marginal for the average full load hours for each electricity production type,
including wind power. In terms of technological system details, besides using
aggregated capacity, system details typically vary with the constraints included
in the model. For example, using different types of storages such as batteries
or hydrogen, which connect several time steps with each other, increases the
model complexity. Also, hydropower connects over several time steps and
is in that sense similar to storage constraints. Another complicating feature
is caused by including thermal cycling in the modelling since this typically
is modelled by integer variables (that are also connected over time). As will
be seen in Section 3.1, however, this latter complication can be linearized to
reduce complexity [61].

2.4 Variations in the electricity system

The variation of electricity demand is regular and related to our behavior as
consumers. It can be divided into three main categories: seasonal variations,
weekly variations, and diurnal variations. The seasonal variations has an
annual cycle, where the demand varies throughout the year. In the northern
European countries, the demand is higher during the darker and colder seasons
due to electric heating, and lower in the warmer seasons when heating is not
necessary. The contrary holds true in southern Europe, where the demand
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is higher during the summer months due to the need for air conditioning
in buildings. Moreover, less electricity is typically used during the nights
compared to the days, and thus the demand also follows a diurnal cycle.
However, the pattern of electricity use on weekends compared to workdays
also differs, and therefore a weekly cycle exists. Figure 2.2 shows the electricity
demand variations according to the described cycles.

Traditionally, the electricity demand (usually referred to as load) is divided
up in three different groups: base load, intermediate load, and peak load.
Figure 2.3 demonstrates a load duration curve, where the load in a region has
been sorted over all the hours of the year, from highest to lowest demand.
The base load is consistent throughout the year, and typically the electricity
production technologies that satisfy it run at full capacity during all hours.
These production technology types generally have high investment costs, but
low running costs. Examples include nuclear power and steam-engined power
run by fossil fuels (e.g. coal). The peak load period has a significantly higher
demand compared to the average load level and is fulfilled by for example gas
turbines, i.e. technologies that are expensive to operate but have comparatively
low investment costs. Intermediate load corresponds to the period in between
base load and peak load, and can for example be covered by combined cycle
gas turbines, which combine several heat engines that all use the same source
of heat, e.g. natural gas or biogas. The engines then work in tandem which
allows them to extract heat energy from each other. These types of plants are
better at following the load curve changes compared to base load production
technologies.

The electricity system has historically been designed to meet the above men-
tioned load variations. However, variable renewable energy (VRE) sources
such as wind and solar power are intermittent and non-dispatchable. This
means that they are not always available as they depend on factors which can
not be controlled. These factors include the weather and the location of wind
turbines and solar panels, and thus different regions have different conditions.
Nonetheless, while the wind variations are irregular, they can under some con-
ditions still be fairly slow. If a large geographical scope (e.g. a group of wind
farms, or all wind turbines in a country) is considered, there can be several
days of high wind power production and then several days of low wind power
production [28]. Hence, a key strategy to manage variations from wind power
includes a large geographical scope, and thus also electricity trade between
regions to smoothen the effect of wind variability.

Figure 2.4 illustrates an example of the wind power production at different
wind penetration levels during a week. For the lower level case, wind power
will start to compete with base load production during times when the electric-
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(a) Diurnal variations of the electricity demand in a region in Sweden.

(b) Weekly variations of the electricity demand in a region in Sweden.

(c) Seasonal variations of the electricity demand in a region in Sweden.

Figure 2.2: Load variations on different time scales.
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Figure 2.3: A load duration curve to illustrate how base, intermediate and peak load
are used in the electricity system. The curve corresponds to the annual load, sorted
according to the size of the load.

ity demand is low. As discussed earlier, it is expensive to modify the output for
base load production and thus wind power production will likely be curtailed
during those hours. This means that the output from wind power production
is deliberately decreased (even though more could have been produced) in
order to balance the electricity supply and demand. If instead the case when
the wind penetration level is higher is considered, there will be situations
when the wind power production meets a larger share of the demand. In some
situations, it could meet a large share of the electricity demand for a long time.
This implies that there are longer periods when base load generation is not
needed in the electricity system. Curtailing all the wind power production
would in that case be too costly, and the alternative is then to turn off the base
load production during these time periods. Furthermore, for the shorter time
periods when demand can’t be met entirely by wind power production only,
it is not favorable to use base load production technologies. The reason for
this is that since base load production is costly to invest in, and also expensive
to start up, it is not cost-efficient to only use it during bursts of a few days a
time. Instead, during these time periods intermediate and peak load produc-
tion types will likely be used, since they better complement the wind power
production pattern. However, to manage variations such as these in the long
and short term requires the solution of an optimization problem which should
be captured by the electricity system investment models.
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Figure 2.4: Example of wind power production at different penetration levels in a load
curve during a week.

Solar power, just like the load, has regular variations that directly relates to
the sunlight such that the production is highest in the middle of the day. The
amplitude of the solar power production varies between days, but the general
production pattern coincides with the demand curve; see Figure 2.5. This
means that for low solar power penetration levels, it can replace peak load
production. However, for higher penetration levels the solar power starts
to compete with the base load production during the day. It would not be
cost-efficient to only run base load production during the night, and therefore
intermediate load production types would typically be used for these time
periods. Moreover, the solar peak production is more narrow than the demand
peak. This implies that when the sun is setting in the afternoon, the demand
for electricity is still high and thus other electricity production need to cover
that peak demand.

The operation of power plants in response to variations is a variation manage-
ment strategy. It should be noted, however, that other variation management
strategies for VRE integration exist. Typically, these can be found on the de-
mand side, the production side, and by the use of energy storage units. In
terms of the latter, batteries or hydrogen storage can be used to store energy
when production is high, and discharged at a later point when production is
lower. For example, storage units could be used to complement solar power to
manage the peak demand in the afternoons. This flexibility also helps to avoid
curtailing electricity since excess electricity from VRE production can be stored
for later use. On the demand side, load shifting can be used to shift some of the
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Figure 2.5: Example of solar power production at different penetration levels in a load
curve during a week.

load from hours with high demand to hours when there is less demand. This
could for example be smart charging of electric vehicles, which means that the
vehicles are charged (or discharged during peak load) when it is beneficial to
the system in terms of load and electricity production. Peak load generation
or reduced base load generation are examples of supply side variation man-
agement. Some of the mentioned variation management strategies have been
evaluated by van Ackooij et al. [60] using multi-objective optimization for costs
and emissions on energy systems comprised of different energy mixes.

In conclusion, incorporating a high share of VRE sources, such as wind or
solar power, into the energy mix requires additional variation management
strategies compared to a system with a low share of VRE sources. For this to
be successful, it is likely necessary to step away from the traditional way of
designing the electricity system.

2.5 Previous work on electricity system modelling

In general, the computational requirements can be classified into two categories
such that they are either 1) solver-based (mathematical optimization of the
solving process) or 2) model-based (simplification of the real-world problem in
the model) [35]. A common solver-based approach is to use a two-step simula-
tion, where the first step is to determine a cost-effective pathway for capacity
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investments. The second step is then to optimize the dispatch assuming the
investments determined in the first step. The method allows highly detailed
systems where the temporal and spatial scope are extensive; see for example
Breyer et al. [4]. However, the drawback of this two-step approach is that it
reduces the accuracy of the results. Different decomposition methods have also
been employed for large-scale capacity expansion planning. For instance, Lara
et al. [36] consider a Benders decomposition algorithm, where at each iteration
a Benders master problem determines the investments decisions, and then each
Benders subproblem (one for each year during the planning horizon) is solved
separate.

Other work aiming to reduce computation time and computer memory require-
ments are model-based as they focus on simplifying the time representation
itself. Ringkjøb et al. [48] have reviewed 75 different modelling tools used
for analysing energy and electricity systems with large shares of VRE. The
authors identify one of the remaining challenges: how to represent short-term
variability in long-term studies. A methodological review of strategies to in-
tegrate short-term variations is given by Collins et al. [8], where the authors
discuss methods to improve the time representation in long-term electricity
system investment models that use the traditional ways of time representation.
Pfenninger et al. [44] review several articles that discuss time representation
for energy system models which contain a substantial level of VRE. Hoffmann
et al. [27] have reviewed different time series aggregation methods for energy
system models, and Teichgraeber and Brandt [58] recently published a com-
prehensive overview of existing time series aggregation methods in energy
systems. Traditional time representation methods for electricity system invest-
ment models typically belong to a family of methods denoted as time slices.
Integral time slices can for example be a single time slice per year or a small
set of seasonal and daily time slices to represent the differences in demand
dependent on season, weekday, or time of day. Time slicing methods that
are based on approximating the joint probability distribution of the load and
VRE generation are developed by for example Wogrin et al. [62] and Lehtveer
et al. [39]. Another time slicing method is the representative days method, as
suggested by Nahmmacher et al. [42], which identifies a number of 24-hour
segments based on load and VRE patterns over a day. Time reduction meth-
ods based on these principles have been implemented and shown promising
results for long-term investment model, see for example Mai et al. [40], Gils
[16], Gerbaulet and Lorenz [15] and Frew and Jacobson [12]. The methods have
been compared and evaluated in Reichenberg et al. [47].

However, the integral time slicing methods have traditionally not worked
when considering a larger geographical scope which includes regional trade.
The reason for this is that approximating the joint probability distribution is
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challenging since, unlike variations in load, variations in VRE generation does
not follow a common pattern across a wide geographical scope. Thus, the
integral time slicing methods can not properly account for wind and solar
variations in models where a large geographical scope is considered. Further-
more, smoothing effects through trade is an important variation management
strategy for VRE and thus, as is also concluded by Reichenberg et al. [47], the
integral time slicing method is not ideal for a multi-node electricity system
model with large shares of VRE. The representative days approach on the other
hand can be employed in network models and therefore incorporate trade
(see for example [11]). This time representation can also handle short term
storage, but as the representative days typically consist of diurnal slices, it
does not account for storage between days which requires interconnected time
steps. An alternative is to model over longer time periods, i.e. weeks, but this
increases model complexity and thus computation time. Hence, simplification
in the spatial or technological system detail dimensions might be necessary to
compensate for the increased complexity. A comparison of different clustering
methods to reduce the spatial scope is done by Frysztacki et al. [14]. How-
ever, as concluded by Frysztacki et al. [13], a low spatial resolution can lead to
sub-optimal investment decisions for wind and solar generation, while higher
spatial resolution provides better results; this is especially important for energy
systems with a high share of VRE.



3 Mathematical modelling

The problem studied in this thesis, for which we have developed two math-
ematical models (and three decomposition methods), consists of minimizing
investment and operational costs while meeting the demand for electricity
in a European electricity system. Europe has here been divided into several
regions, chosen according to country borders and, if existent, infrastructural
bottlenecks within the countries; see Figure 3.1. The variation management
strategies accounted for in the models include electricity trade between regions,
flexible electricity production, and energy storage.

A time period stretching from 2020 to 2050 is studied where we consider both
existing production capacity [GW] as well as new investments. The total time
period is divided into different investment periods in order to account for the
technological lifetime of different power plants, i.e. the production capacity
lifetime. Moreover, it allows the capture of policy changes and technology
advancements such as increased efficiency. To reduce model complexity and
problem size, we assume aggregated capacity in each region at the cost of losing
some system detail. Each region produces electricity (measured in GWh/h) to
meet its electricity demand. Trade along the electricity grid is possible between
regions, where both existing transmission lines and investments into new
transmission capacity are considered. Similar to that of electricity production
capacity, the transmission capacity works as an upper limit for the electricity
transmission.

Thermal cycling is included as previous work has shown that is has a sub-
stantial impact on the cost-optimal electricity system composition [19]. Fur-
thermore, to keep the model linear, thermal cycling is accounted for using a
relaxed unit commitment approach as described by Weber [61]. This method is
explained in greater detail in Section 3.1, but to briefly summarize, variables
are used to represent active (hot) production capacity in thermal power plants
that is available for electricity generation in each time step. Moreover, there are
some special constraints for renewable energy production, such as production

15
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Figure 3.1: The different regions in Europe used in the model.

and capacity limits from weather, competing land use, and population density.
Hydropower has constraints for ramp rates, i.e. the rate at which the electricity
output can increase or decrease, and balance constraints for its energy storage.
Other energy storage in the model include hydrogen and batteries. Lastly, we
should account for the total system carbon dioxide emissions. This can be
represented by a hard constraint, or by using a cost (and thus penalize carbon-
emitting technologies) in the objective. For reasons relating to the solution
methods, we have chosen to use the cost representation; see also Chapter 6 for
further discussion regarding this.
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3.1 Full-scale electricity system investment model

The problem is represented using a linear network model with additional side
constraints. The sets used in this model are given by Table 3.1. The different
regions are defined by the set R. Transmission lines between regions are given
by the set A ⊆ R×R. Thus, from region q ∈ R to region r ∈ R, there exists
a transmission line if (q, r) ∈ A. The model uses different types of cables for
transmission, and they are given by the set K. The set P represents all the
electricity production technologies, and it consists of three subsets: Pthermal,
Pren, and Pe-lysis. The first subset is the set of thermal power technologies, the
second subset is a set of renewable electricity generation technologies, and the
last subset is the set of electrolysis technologies Pe-lysis. The set of renewables
is defined as Pren := Pwind ∪ Psolar ∪ Phydro, which are generation technologies
for wind power, solar power, and hydropower, respectively. Different storage
technologies are denoted by L. It contains the set of battery technologies Lbat,
and the set of hydrogen technologies LH2 .

The modelling years are given by the set S. Furthermore, the model uses the
concept of investment periods, denoted I, which are used to know at what
year an investment in production capacity was made. This is relevant for two
reasons: firstly, the model covers several years. Hence, if an investment is made
at year s of technology type p, it should not be possible to use that invested
capacity prior to the year s. Secondly, since all production technologies have an
expected technical lifetime (dependent on the specific technology type p ∈ P),
then in order to know for how long that invested capacity can be used it is
crucial to know when the investment was made. Therefore, the set IP

active(s, p)
contains the investment periods for each technology type p ∈ P (with its own
lifespan Up) that are active at year s ∈ S. Note that S ⊂ I. Similar to the
set of active investment periods for the electricity generation technologies, a
set of active periods for the transmission technologies is needed. This set is
denoted IK

active(s), and it contains the active investment periods at year s ∈ S.
It is assumed that the different types of transmission technologies have a
technical lifetime that outlives the model years, and therefore the set is not
dependent on the transmission types k ∈ K. The set of time steps within a year
is denoted T , and it is defined as T = {τ, 2τ, ..., T} such that τ is the time step
length of the model. Then, an element in the set T is given by tσ = στ , where
σ ∈ {1, 2, . . . , �T

τ �}. Note that tσ+1 = tσ + τ holds. Lastly, since thermal cycling
is considered in this model, Tstart(p), is the set of consecutive time steps in the
start-up interval for technology p ∈ P .

A full nomenclature list is given in Appendix A.1. The mathematical constraints
and objective for the problem are described below. All the decision variables in
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the model, beside some auxiliary variables, are non-negative.

Table 3.1: The index sets used in the full-scale model

symbol representation member
R regions r
A ⊆ R×R; transmission lines between regions q, r
K technologies for transmission k
P := Pthermal ∪ Pren ∪ Pe-lysis; electricity generation/consumption

technologies
p

Pthermal thermal power technologies p
Pren := Pwind ∪ Psolar ∪ Phydro; renewable technologies p
Pwind wind technologies p
Psolar solar technologies p
Phydro hydropower technologies p
Pe-lysis electrolyser technologies h
L := Lbat ∪ LH2 ; electricity storage technologies �
Lbat battery technologies �
LH2 hydrogen storage technologies �
I := {1960, 1970, . . . , 2050}; investment years, defining invest-

ment periods
i

S := {2020, 2030, . . . , 2050}; new capacity investment years; s
S ⊂ I

IP
active(s, p) := I ∩ {s− Up, . . . , s}; investment periods for each technol-

ogy type p ∈ P with lifespan Up that
is active at year s ∈ S

i

IK
active(s) := I ∩ {1960, . . . , s}; investment periods for transmission

technologies that are active at year
s ∈ S

i

T := {τ, 2τ, . . . , T}; time steps within a year, where τ is
the step length

t

Tstart(p) ⊂ T ∪ {0}; consecutive time steps in the start-
up interval for technology p ∈ P

t

Transmission and meeting the demand

We begin by introducing the decision variables (both measured in GWh/h)

xpristσ = generated electricity of technology type p ∈ P in region r ∈ R at

year s ∈ S , investment period i ∈ IP
active(s, p) and time step tσ ∈ T ;

vkqrstσ = electricity traded with transmission type k ∈ K from region q ∈ R
to region r ∈ R, (q, r) ∈ A, at year s ∈ S and time step tσ ∈ T .
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Define vnet
rstσ as the auxiliary variables used to express the net import [GWh/h]

to region r ∈ R in year s ∈ S at time step tσ ∈ T , i.e.

vnet
rstσ :=

∑
k∈K

∑
q:(q,r)∈A

vkqrstσ −
∑
k∈K

∑
j:(r,j)∈A

vkrjstσ , r ∈ R, s ∈ S, tσ ∈ T .

(3.1.1)
Now, define the decision variables

b
charge
�rstσ

= charging [GWh/h] of storage technology � ∈ L in region r ∈ R
in year s ∈ S at time step tσ ∈ T ;

b
discharge
�rstσ

= discharging [GWh/h] of storage technology � ∈ L in region r ∈ R
in year s ∈ S at time step tσ ∈ T ;

and let bnet
rstσ be the auxiliary variables representing the net battery charge

[GWh/h] in region r in year s at time step tσ :

bnet
rstσ :=

∑
�∈Lbat

(
b

charge
�rstσ

− b
discharge
�rstσ

)
, r ∈ R, s ∈ S, tσ ∈ T . (3.1.2)

Define

h
consumption
rstσ = aggregated electricity consumption [GWh/h] in the

electrolysers in region r ∈ R in year s ∈ S at time step tσ ∈ T ,

and let drstσ denote the demand for electricity in region r ∈ R at year s ∈ S
and time step tσ ∈ T . The electricity demand balance constraint can then for
r ∈ R, s ∈ S and tσ ∈ T be formulated as∑

p∈P

∑
i∈IP

active(s,p)

xpristσ + vnet
rstσ ≥ drstσ + bnet

rstσ + h
consumption
rstσ . (3.1.3)

Thus, all electricity generation and net import has to meet the demand, net
battery charge and any electricity needed for hydrogen electrolysers.

Generation and transmission limits

For each region r ∈ R and investment period i ∈ I, define the decision
variables

ypri = installed capacity [GW] of electricity generation technology p ∈ P;

y�ri = installed capacity [GWh] of electricity storage technology � ∈ L.
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Let agen
pri and asto

�ri be existing electricity generation and storage capacity, respec-
tively, where p ∈ P , � ∈ L, r ∈ R and i ∈ I \ S. Fix the investment variable to
existing capacity such that no new investments can be made prior to "now":

ypri = a
gen
pri , p ∈ P, r ∈ R, i ∈ I \ S, (3.1.4a)

y�ri = asto
�ri, � ∈ L, r ∈ R, i ∈ I \ S. (3.1.4b)

The transmission is limited by the transmission capacity. It is possible to invest
into new capacity, but there is however some capacity previously installed.
Let atra

kqr be a parameter which denotes the installed transmission capacity on
transmission line (q, r) ∈ A of transmission type k ∈ K. Define

ukqri = installed transmission capacity [GW] for transmission type k ∈ K
from region q to region r, (q, r) ∈ A, at investment period i ∈ I.

and similar to (3.1.4), fix them to the existing capacity such that

ukqri = atra
kqri, k ∈ K, (q, r) ∈ A, i ∈ I \ S. (3.1.5)

Furthermore, for symmetry reasons, the transmission capacity for arcs
(q, r) ∈ A and (r, q) ∈ A should be the same:

ukqri = ukrqi, k ∈ K, (q, r) ∈ A, i ∈ I. (3.1.6)

This assumes that transmission is always possible in both directions, but for
each solution it will only occur trade in one direction due to it otherwise being
inefficient. The directed arcs are defined such that if (q, r) ∈ A then (r, q) ∈ A.
Moreover, there is an upper limit on the amount of transmission capacity:∑

i∈IK
active(s)

ukqri ≤ umax
kqr , k ∈ K, (q, r) ∈ A, s ∈ S. (3.1.7)

(Note that using the definition of IK
active(s) as in Table 3.1, these constraints are

redundant for s ∈ S \ {2050}.)

Lastly, the transmission should not exceed the total transmission capacity—
both new and old—modelled as

vkqrstσ ≤
∑

i∈IK
active(s)

ukqri, k ∈ K, (q, r) ∈ A, s ∈ S, tσ ∈ T . (3.1.8)



3.1. Full-scale electricity system investment model 21

Storage technologies

Define the decision variables

b
storage
�rstσ

= electricity storage level [GWh] in storage technology � ∈ L
in region r ∈ R in year s ∈ S at time step tσ ∈ T .

The charging and discharging of electricity in storage technologies should not
exceed the total installed storage capacity. Let δinj

� and δwith
� be the injection

and withdrawal rate, respectively, of storage technology � ∈ L. Furthermore,
the battery storage level is also limited by the installed battery capacity. These
conditions are summarized in Constraints (3.1.9a)–(3.1.9c):

b
charge
�rstσ

≤
∑

j∈IP
active(s,�)

δ
inj
� y�rj , � ∈ L, r ∈ R, s ∈ S, tσ ∈ T , (3.1.9a)

b
discharge
�rstσ

≤
∑

j∈IP
active(s,�)

δwith
� y�rj , � ∈ L, r ∈ R, s ∈ S, tσ ∈ T , (3.1.9b)

b
storage
�rstσ

≤
∑

j∈IP
active(s,�)

y�rj , � ∈ L, r ∈ R, s ∈ S, tσ ∈ T . (3.1.9c)

For � ∈ L, r ∈ R and s ∈ S, the electricity storage level depends on the
previous level and net charging of the storage, i.e.

b
storage
�rstσ

+ η
charge
�s τb

charge
�rstσ

− τ

η
discharge
�s

b
discharge
�rstσ

≥
{
b

storage
�,r,s,tσ+1

, tσ ∈ T \ {T},
b

storage
�,r,s,τ , tσ = T,

(3.1.10)

where η
charge
�s and η

discharge
�s is the efficiency for charging and discharging, re-

spectively, storage technology � ∈ L in year s ∈ S .

Hydrogen storage uses an electrolysis process, which is based on using electric-
ity to split water into hydrogen and oxygen. This process takes place inside an
electrolyser. Let hconsumption

rst be a variable representing the electricity consump-
tion of the electrolyser [GWh/h] in region r ∈ R, year s ∈ S time step t ∈ T .
The electrolysis process is limited by the installed electrolyser capacity:

h
consumption
rstσ ≤

∑
p∈Pe-lysis

∑
j∈IP

active(s,p)

yprj , r ∈ R, s ∈ S, tσ ∈ T . (3.1.11)

Hydrogen storage investments are stimulated by introducing a demand for



22 3. Mathematical modelling

electricity in hydrogen production for industry corresponding to 20% of the
annual electricity demand evenly distributed over the year. Let dhydrogen

rs be
this hydrogen demand in region r ∈ R, year s ∈ S. Moreover, let ηes be the
efficiency of electrolyser p ∈ Pe-lysis in year s ∈ S . The hydrogen demand must
be met by hydrogen production and net discharge from the hydrogen storage:

ηpsh
consumption
rstσ +

∑
�∈LH2

(
b

discharge
�rstσ

− b
charge
�rstσ

)
≥ dhydrogen

rs , (3.1.12)

for tσ ∈ T , p ∈ Pe-lysis, r ∈ R and s ∈ S .

Thermal cycling

The idea of thermal cycling is that for thermal power plants, the capacity that
has been taken out of operation has a minimum downtime that corresponds
to the time it takes to start-up the capacity before it can generate electricity
once again. Furthermore, and more importantly, the start-up cost for a unit
is typically high and thermal cycling constraints can be used to capture this
property. Introduce the decision variables

zpristσ = available hot capacity [GWh/h] of technology type p ∈ Pthermal in

region r ∈ R at year s ∈ S for investment period i ∈ IP
active(s, p) and

time step tσ ∈ T ;

z+pristσ = started hot capacity [GWh/h] of technology type p ∈ Pthermal in

region r ∈ R at year s ∈ S for investment period i ∈ IP
active(s, p)

from time step tσ−1 ∈ T to time step tσ ∈ T .

The capacity that is currently up and running in a thermal power plant is
referred to as hot or available capacity. The electricity generation should never
exceed the available capacity. Likewise, it is required to generate a minimum
level of electricity depending on the available capacity in order for it to stay hot.
Letting φp denote the percentage corresponding to the minimum load level,
this yields the constraints

φpzpristσ ≤ xpristσ ≤ zpristσ , (3.1.13)

for i ∈ IP
active(s, p), p ∈ Pthermal, r ∈ R, s ∈ S , and tσ ∈ T .

To connect the started capacity to the available capacity, the following con-
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straints are used for i ∈ IP
active(s, p), p ∈ Pthermal, r ∈ R, and s ∈ S :

z+pristσ ≥
{
zpristσ − zp,r,i,s,tσ−1

, tσ ∈ T \ {1},

zpristσ − zprisT , tσ = τ.
(3.1.14)

The difference in available capacity between the time steps tσ and tσ−1 will
then correspond to the started capacity. Since it is costly to start new capacity
the variable z+pristσ is penalized in the objective function. Hence, z+pristσ equals
zero whenever zpristσ ≤ zp,r,i,s,tσ−1

holds. Moreover, m ∈ Tstart(p), p ∈ Pthermal,
hours back in time, the started hot capacity is limited by the available capacity
zpristσ . This yields, for i ∈ IP

active(s, p), p ∈ Pthermal, r ∈ R, s ∈ S, and tσ ∈ T ,
the constraints

∑
j∈IP

active(s,p)

yprj − z+pristσ ≥
{
zp,r,i,s,tσ−m, m ∈ Tstart(p) \ {tσ, . . . , T},

zp,r,i,s,T+tσ−m, m ∈ Tstart(p) \ {0, . . . , tσ−1}.
(3.1.15)

These constraints are a linearization of start-up constraints more intuitively
modeled as integers. The idea is that capacity that has been taken out of
operation has a minimum downtime before it can be started again; see Weber
[61] for further details.

As a simple example, consider Figure 3.2b. Here, the minimum down-time is
three; thus we look at the hot capacity three time steps back. The amount of
capacity that is available for start-up is capacity that has not been used in any
of these time steps. The hot capacity is the largest for step t− 2; therefore it will
limit z+t the most.

(a) Hot capacity is limited by the total
amount of installed capacity in time step t.

(b) The minimum down-time for hot ca-
pacity limits the possible start-up capacity.

Figure 3.2: Illustrations for thermal cycling.
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Renewables

Letting θprtσ denote a profile for technology p ∈ Pwind ∪ Psolar in region r ∈ R
at time step tσ ∈ T , in terms of share of total installed capacity, the upper pro-
duction limit of wind and solar power due to weather and climate is modelled
as

xpristσ ≤ θprtσ
∑

j∈IP
active(s,p)

yprj , (3.1.16)

for p ∈ Pwind ∪ Psolar, r ∈ R, i ∈ IP
active(s, p), s ∈ S , and tσ ∈ T .

Not all areas are suitable for installations of wind farms since wind speed
and terrain varies across the regions. Thus, due to reasons regarding land
exploitation, there is an upper limit on the possible investments into wind
capacity in each region; let Wpr be that upper limit for wind type p ∈ Pwind in
region r ∈ R. Then, this limit is modelled as∑

i∈IP
active(s,p)

ypri ≤ Wpr, p ∈ Pwind, r ∈ R, s ∈ S. (3.1.17)

Introduce the decision variables

wrstσ = hydropower storage [GWh] in region r ∈ R at year s ∈ S
at time step tσ ∈ T ,

and let grtσ be the inflow into the reservoirs in region r ∈ R at time step tσ ∈ T ,
assumed to be the same over the years. The hydropower balance constraint is
then, for p ∈ Phydro, r ∈ R and s ∈ S , modelled as

wrstσ + grtσ −
∑

i∈IP
active(s,p)

τ · xpristσ ≥
{
wr,s,tσ+1

, tσ ∈ T \ {T},

wrsτ , tσ = T.
(3.1.18)

where τ [h] denotes the length of the time step. The upper limit for the hy-
dropower storage, denoted Hr for each r ∈ R, is modelled as

wrstσ ≤ Hr, r ∈ R, s ∈ S, tσ ∈ T . (3.1.19)

The production level for hydropower cannot change too quickly, which is mod-
elled by ramping rate constraints. Let δinc

r and δdec
r denote shares corresponding

to the maximum change level in region r ∈ R. For i ∈ IP
active(s, p), p ∈ Phydro,

r ∈ R, and s ∈ S , the following constraints imply an upper limit on the rate of
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increase and decrease, respectively, of the storage level:

(1 + δinc
r )xpristσ ≥

{
xp,r,i,s,tσ+1

, tσ ∈ T \ {T},

xprisτ , tσ = T.
(3.1.20a)

(1 + δdec
r )xpristσ ≤

{
xp,r,i,s,tσ+1

, tσ ∈ T \ {T},

xprisτ , tσ = T.
(3.1.20b)

Lastly, no new investments in hydropower capacity are allowed. Thus,

yprs = 0, p ∈ Phydro, r ∈ R, s ∈ S. (3.1.21)

Emissions

The emissions arise from running the power plants (e.g. fuel), but also from
start-ups of plants since fuel is needed for this. Furthermore, there are extra
emissions when not running on full capacity, due to reduced efficiency. Let
epri denote the emissions released [CO2/MWh] by technology type p ∈ P in
region r ∈ R for capacity made in investment period i ∈ I. Let e+pri and ẽpri
denote the emissions released from start-ups and from running on part-load,
respectively, for technology type p ∈ Pthermal in region r ∈ R and investment
period i ∈ I. The total emissions for year s ∈ S and time step tσ ∈ T is then
expressed as

etot
stσ :=

∑
r∈R

(∑
p∈P

∑
i∈IP

active(s,p)

τeprixpristσ

+
∑

p∈Pthermal

∑
i∈IP

active(s,p)

(
e+priz

+
pristσ

+ τ ẽpri(zpristσ − xpristσ )
))

.

(3.1.22)
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Objective

The objective is to minimize the total system costs. The sum (3.1.23a) considers
the investment costs in electricity production technologies, with cinvtech

ps repre-
senting the investment cost (including annuity costs) for technology type p ∈ P
in year s ∈ S , and comf

p is the fixed operation and maintenance costs for technol-
ogy type p ∈ P . The analogous investment costs for storage technologies are
given by (3.1.23b). The sum (3.1.23c) considers the costs of electricity produc-
tion, with crun

pri denoting the run costs for technology type p ∈ P in region r ∈ R,
where the investment is done in investment period i ∈ I. The sum (3.1.23d)
describes the additional costs for thermal power technology types p ∈ Pthermal
using c+prs as the start-up cost for thermal capacity in region r ∈ R and year
s ∈ S, and c̃prs as the additional cost for running on part-load capacity, and
the sum (3.1.23e) corresponds to the costs carbon dioxide emissions. The sum
(3.1.23f) corresponds to the investment costs in new transmission capacity, with
cinvtra
kqr being the investment cost in transmission capacity of type k ∈ K between

regions (q, r) ∈ A. This cost parameter is halved compared to the real cost
in order to compensate for the network representation of using directed arcs,
while in reality electricity is sent in either direction on the same transmission
line. Finally, the sum (3.1.23g) covers the transmission cost of sending elec-
tricity using transmission technology k ∈ K on transmission line (q, r) ∈ A,
where the corresponding cost parameter is denoted ctra

kqr. The objective is thus
to minimize

∑
s∈S

(∑
p∈P

∑
r∈R

(
cinvtech
ps + comf

p

)
yprs (3.1.23a)

+
∑
�∈L

∑
r∈R

(cinvsto
�s + comf

� )y�rs (3.1.23b)

+
∑
p∈P

∑
r∈R

∑
i∈IP

active(s,p)

∑
tσ∈T

τcrun
prixpristσ (3.1.23c)

+
∑

p∈Pthermal

∑
r∈R

∑
i∈IP

active(s,p)

∑
tσ∈T

(
c+prsz

+
pristσ

+ τ c̃prs(zpristσ − xpristσ )
)

(3.1.23d)

+
∑
tσ∈T

cCO2
s etot

stσ (3.1.23e)

+
∑
k∈K

∑
(q,r)∈A

cinvtra
kqr ukqrs (3.1.23f)

+
∑
k∈K

∑
(q,r)∈A

∑
tσ∈T

τctra
kqrvkqrstσ . (3.1.23g)
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3.2 Hours-to-Decades model

The major difference between the full-scale model presented in Section 3.1
and the Hours-to-Decades model is that the latter model 1) disregards explicit
yearly connections and instead links the years implicitly by adding operational
costs to the objective, and 2) is decomposed into 2-week segments, within each
of which the chronology is retained, providing 26 separate submodels. The
purpose of this decomposition is to take advantage of the possibility to solve
the submodels in parallel, which thus would shorten the computing times.
The Hours-to-Decades model is solved by the use of a heuristic algorithm,
i.e. a consensus loop which enables information to be exchanged between the
submodels. Each separate subproblem represents the problem of meeting the
demand for electricity while minimizing investment and operational costs in
its 2-week segment. In the consensus loop, information from the solutions is
gathered in capacity–cost curves in which the capacity invested in all 2-week
segments have the lowest cost, while additional capacity invested in a subset
of the segments is more expensive. The smaller the subset of segments, the
more expensive the capacity. The solution process is iterated until there is
consensus, i.e. until the capacity–cost curves are unchanged between iterations.
The methodology for solving this model will be further discussed in Chapter
4, while the remainder of this section will focus on the electricity system
investment model.

Table 3.2 provides a list of the sets used in this model. The notation here differs
from the previous model as it was originally primarily aimed at an energy
system modelling audience.

The set I is the set of all regions. The set P contains electricity generation
technologies Pgen := Pwind ∪ P therm ∪ Psolar, i.e. wind power, thermal power,
and solar power. It also contains Pbat, Pelectrolysis, and Phydrogen, which are
the sets of battery technology, electrolyzer technology, and hydrogen storage
technology, respectively. The set Q is the set of all transmission technologies,
which are the same as in the full-scale model. The set S := {1, . . . , S} contains
all 2-week segments, where S = 26. The set of time steps for each s ∈ S
is denoted Ts := {(s − 1)T + 1, . . . , sT}. The model uses thermal cycling
constraints similar to the previous model, and therefore Kp denotes the set of
hours in the start-up interval for technology p ∈ Pthermal. The set of cost classes
R are calculated by the capacity–cost curves in the consensus loop, and are
used to determine the cost of an investment.



28 3. Mathematical modelling

Table 3.2: The index sets used in the Hours-to-Decades model

symbol representation member
I set of all regions i, j
P := Pbat ∪Pelectrolysis ∪Phydrogen ∪Pgen; set of all tech-

nology aggregates
p

Pbat set of all battery technologies p
Pelectrolysis set of all electrolyzer technologies p
Phydrogen set of all hydrogen storage technologies p
Pgen := Pwind ∪ P therm ∪ Psolar; set of all electricity gener-

ation technologies
p

Pwind set of all wind technologies p
P therm set of all thermal technologies p
Psolar set of all solar technologies p
Q set of technologies for transmission q
S := {1, . . . , S}; set of all 2-week segments (typically,

S = 26)
s

Ts := {(s− 1)T + 1, . . . , sT}; set of all time steps in the
2-week segment s ∈ S

t

Kp := {0, . . .}; set of hours in the start-up interval for
technology p ∈ Pthermal

k

R set of cost classes, i.e. the steps in the capacity–cost
curve

r

A full nomenclature list is given in Appendix A.2. The constraints and objective
function for the model are given below. All variables are non-negative besides
the variable for electricity export.

Network balance and generation limits

Define the decision variables

wipr = installed electricity generation and storage capacity in technology
p ∈ P in region i ∈ I and cost class r ∈ R,

hijqr = installed transmission capacity between regions i ∈ I and j ∈ I \ {i},
using transmission technology q ∈ Q in cost class r ∈ R.
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The consensus loop to be described in Chapter 4 computes cost class potentials,
denoted M e

ipr and Mh
ijqr, which acts as upper limit for the respective investment

variables. This yields the constraints

wipr ≤ M e
ipr, i ∈ I, p ∈ P, r ∈ R, (3.2.1)

hijqr ≤ Mh
ijqr, i ∈ I \ {j}, j ∈ I, q ∈ Q, r ∈ R. (3.2.2)

Introduce the decision variables

gipt = electricity generation in region i ∈ I of production type p ∈ Pgen

during time step t ∈ Ts, s ∈ S ,

gipt = energy storage in region i ∈ I in battery type p ∈ Pbat

during time step t ∈ Ts, s ∈ S ,

gipt = hydrogen storage in region i ∈ I in battery type p ∈ Phydrogen

during time step t ∈ Ts, s ∈ S ,
eijt = exported electricity from region i ∈ I to region j ∈ I \ {i}

in time step t ∈ Ts, s ∈ S ,

b
charge
ipt = charging of battery technology p ∈ Pbat in region i ∈ I and time

step t ∈ Ts, s ∈ S ,

b
discharge
ipt = discharging of battery technology p ∈ Pbat in region i ∈ I and

time step t ∈ Ts, s ∈ S .

Let dhydrogen
it denote the electricity consumption of the electrolyzer. The demand

for electricity, Dit, must be met in all regions at all times. This is expressed, for
i ∈ I and t ∈ Ts, s ∈ S , by the constraints

∑
p∈Pgen

gipt ≥ Dit + d
hydrogen
it +

∑
j∈I\{i}

eijt +
∑

p∈Pbat

(
b

charge
ipt − b

discharge
ipt

)
. (3.2.3)

The import and export of electricity are required to be balanced, and the export
may not exceed the installed transmission capacity, as expressed by the relations

−eijt = ejit ≤
∑

m∈I\{i}

∑
q∈Q

∑
r∈R

himqr, i ∈ I\{j}, j ∈ I, t ∈ Ts, s ∈ S, (3.2.4)

e
pos
ijt = |eijt| = max

{
eijt, ejit

}
, i ∈ I\{j}, j ∈ I, t ∈ Ts, s ∈ S. (3.2.5)
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Let θipt ∈ [0, 1] be a profile, which is weather-dependent for wind and solar
power but equals 1 for all p ∈ P therm. The level of electricity generation may
not exceed the installed capacity, which is weighted by the weather profile:

gipt ≤
∑
r∈R

wiprθipt, i ∈ I, p ∈ P \ Pelectrolysis, t ∈ Ts, s ∈ S. (3.2.6)

Battery storage

Flow batteries and lithium ion batteries are amongst the investment options
in the model. An energy balance constraint is needed to manage the storage
of each battery type. The battery storage level during the last time step of
each 2-week segment s ∈ S constrains the battery storage level in the first time
step of the same 2-week segment. Here, gipt is the storage level of the battery,
ηpb

charge
ipt is the charging of the battery where ηp is the efficiency of battery type

p ∈ Pbat, and b
discharge
ipt is the discharging of the battery. For each i ∈ I, p ∈ Pbat

and s ∈ S the constraints are expressed as

gipt + ηpb
charge
ipt − b

discharge
ipt ≥

{
gi,p,t+1, t ∈ Ts \ {sT},
gi,p,t−(T−1), t = sT.

(3.2.7)

Each battery type has an installed storage capacity, and the charging and
discharging of batteries may not exceed this limit:

b
charge
ipt ≤

∑
r∈R

wipr, i ∈ I, p ∈ Pbat, t ∈ Ts, s ∈ S, (3.2.8)

b
discharge
ipt ≤

∑
r∈R

wipr, i ∈ I, p ∈ Pbat, t ∈ Ts, s ∈ S. (3.2.9)

Hydrogen storage

Hydrogen storage uses an electrolysis process, which is based on using electric-
ity to split water into hydrogen and oxygen. This process takes place inside an
electrolyzer. The investments in hydrogen storage are stimulated by introduc-
ing a demand for electricity in hydrogen production for industry. Let Dhydrogen

i

be the industry demand for hydrogen which is evenly distributed over the
year, in region i ∈ I. The hydrogen production in the electrolyzer is given by
ηpd

hydrogen
it for p ∈ Phydrogen, i ∈ I and t ∈ Ts, s ∈ S, where ηp denotes the

efficiency of charging the hydrogen storage. Furthermore, the storage level and
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the charging and discharging of the hydrogen storage during the last time step
of the 2-week segment are used to constrain the hydrogen storage level in the
first time step of the same 2-week segment. Thus, for i ∈ I, p ∈ Phydrogen and
s ∈ S , this is modelled as

gipt + ηpd
hydrogen
it −D

hydrogen
i ≥

{
gi,p,t+1, t ∈ Ts \ {sT},
gi,p,t−(T−1), t = sT.

(3.2.10)

The electricity consumption of the electrolyzer, dhydrogen
it , may not exceed the

installed electrolyzer capacity:

d
hydrogen
it ≤

∑
r∈R

wipr, i ∈ I, p ∈ Pelectrolysis, t ∈ Ts, s ∈ S. (3.2.11)

Wind and solar power

The wind power capacity in technology p ∈ Pwind and region i ∈ I is limited
by the regional resources Aip, which implies an upper bound on wind power
investments: ∑

r∈R
wipr ≤ Aip, i ∈ I, p ∈ Pwind. (3.2.12)

For solar power, there is a total resource constraint for each modeled region
i ∈ I: ∑

r∈R

∑
p∈Psolar

wipr ≤
∑

p∈Psolar

Aip, i ∈ I. (3.2.13)

Thermal cycling

As in the previous model, thermal cycling is here accounted for by applying
the relaxed unit commitment approach suggested by Weber [61]. Let

gactive
ipt = capacity that is active and available for generation in each time

step t ∈ Ts, s ∈ S , in region i ∈ I and within each technology

aggregate p ∈ P therm.
gon
ipt = capacity started in each time step t ∈ Ts, s ∈ S , in region i ∈ I

and within each technology aggregate p ∈ P therm;
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The electricity generation should stay below the active capacity in each time
step. Moreover, the minimum load share of the active capacity for technology
p ∈ P therm is given by φp, and the electricity generation is not allowed to be
below this level. Hence, the following inequalities are included in the model:

ξmin
p gactive

ipt ≤ gipt ≤ gactive
ipt , i ∈ I, p ∈ P therm, t ∈ Ts, s ∈ S. (3.2.14)

As in the previous model, the active capacity is limited in each time step by
the sum of the started capacity and the active capacity in the previous time
step. However, for the first time step of each 2-week segment, except the
first segment, the active capacity in the previous time step is represented by
the active capacity in the last time step of the previous segment, as given by
the previous iteration of the consensus loop (see Chapter 4.4), i.e. by Gactive

i,p,t−1.
Moreover, for the first time step of the first segment (i.e. for t = 1), the active
capacity in the last time step of the last segment is used, as given by the previous
iteration of the consensus loop, i.e. by Gactive

i,p,ST . For i ∈ I and p ∈ P therm, these
relations are modelled by the inequalities

gactive
ipt ≤ gon

ipt +

⎧⎪⎨
⎪⎩
gactive
i,p,t−1, t ∈ Ts \ {(s− 1)T + 1}, s ∈ S,
Gactive

i,p,t−1, t = (s− 1)T + 1, s ∈ S \ {1},
Gactive

i,p,ST , t = 1.

(3.2.15)

Define the variable

c
cycl
ipt = resulting thermal cycling costs in region i ∈ I for technology

type p ∈ P therm in time step t ∈ Ts, s ∈ S .

As in the previous model, the start-up cost is proportional to the started capacity
gon
ipt, while the part-load cost is proportional to the difference between the active

generation capacity and the generation level. In order to avoid boundary effects
on the last time step of the 2-week segment, we include a value for the active
capacity which is proportional to the solution given in the previous iteration.
This scaling is based on the start-up cost Con

i,p,t+1G
on
i,p,t+1 and active capacity

Gactive
i,p,t+1 paid in the first hour of the following 2-week segment. For each i ∈ I

and p ∈ P therm, these constraints are expressed as

c
cycl
ipt ≥Con

iptg
on
ipt + C

part
ipt

(
gactive
ipt − gipt

)
−Gipt, t ∈ Ts, s ∈ S, (3.2.16)



3.2. Hours-to-Decades model 33

where

Gipt :=
gactive
ipt

2
·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, t ∈ Ts \ {sT}, s ∈ S,
Con

i,p,t+1G
on
i,p,t+1

Gactive
i,p,t+1

, t = sT, s ∈ S \ {S},
Con

ip1G
on
ip1

Gactive
ip1

, t = ST.

(3.2.17)

Hence, if thermal capacity is active in the end of one 2-week segment and also
in the beginning of the subsequent 2-week segment, the start-up cost for that
capacity is shared equally between the segments.

As explained previously, thermal generation is subject to a start-up time, i.e.
it takes some time for a thermal power plant to heat up before it can deliver
electricity. Thus, in the model, once capacity is deactivated, it cannot become
active again during the interval Kp, which encompasses the time-steps k in the
start-up interval. For i ∈ I and p ∈ P therm, this is expressed as

gon
ipt ≤

∑
r∈R

wipr − gactive
i,p,t−k, t ∈ Ts, s ∈ S, k ∈ Kp \ {t, . . . , sT}. (3.2.18)

Objective

For each 2-week segment s ∈ S, the objective function to be minimized is
expressed as

ctot
s :=

∑
i∈I

∑
p∈P

∑
r∈R

C inv
p λe

iprswipr (3.2.19a)

+
∑
i∈I

∑
p∈P

∑
t∈Ts

(
Crun

pt gipt + c
cycl
ipt

)
(3.2.19b)

+
∑
q∈Q

∑
i∈I

∑
j∈I\{i}

∑
r∈R

Ch-inv
q λh

ijqrshijqr (3.2.19c)

+
∑
i∈I

∑
j∈I\{i}

∑
t∈Ts

C
exp
t e

pos
jit , (3.2.19d)

where (3.2.19a) represents the costs for investments in the different technologies
in the different regions, (3.2.19b) the running costs of the different technologies
in the different regions at all time steps within the 2-week segment, (3.2.19c) the
costs for investments in technologies for transmission of electricity between the
regions, and (3.2.19d) the costs of transmitting electricity between the regions
in each time step within the 2-week segment.
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Here, for the cost class r ∈ R and segment s ∈ S, the parameters λe
iprs and

λh
ijqrs represent shares of the investment costs for electricity generating tech-

nologies p ∈ P in region i ∈ I and transmission technologies q ∈ Q between
regions i ∈ I and j ∈ I \ {i}, respectively.

3.3 Comparison of the different models

The two models presented in Sections 3.1 and 3.2, respectively, are very alike
in terms of structure and type of constraints. There are however some key
differences as the models serve different purposes and can be used to answer
different questions.

The full-scale model can be seen as a starting point as it contains many of the
features necessary to analyze for variable renewable electricity integration,
but is demanding to solve for high resolution data. Thus, for large problem
instances with multiple regions, it is necessary to employ some decomposition
method to be able to solve the model within reasonable computation times, or
even at all as problems of that size will struggle with memory management.
If solved with a smaller spatial resolution however, i.e. a single region, it can
be used to provide feasible solutions to the full-scale model. This is especially
useful to evaluate results from both the full-scale model and the Hours-to-
Decades model, but also to provide us with upper bounds necessary in the
subgradient algorithm described in Section 4.3.1.

The Hours-to-Decades model from Paper IV was the initial idea on how to
split the model over the temporal dimension, and it showed very promising
results as it converged in only a few iterations of the consensus algorithm.
However, the decomposition method lacks in some aspects as it is not a pure
mathematical decomposition of the problem, but rather a heuristic. Moreover,
for storage that typically extends two weeks (i.e. seasonal storage such as
hydrogen), the method is unable to properly dimension the needed capacity.

However, based on the results from the Hours-to-Decades model, a math-
ematical decomposition based on Lagrangian relaxation that uses the same
2-week approach was tested and evaluated on the full-scale model as well; see
Chapter 4 and Papers I–III. The advantage of this method is that it—in theory—
should be able to dimension the seasonal storage, but this unfortunately proved
difficult in practice.
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their theory

The models introduced in Chapter 3 are by nature very large and therefore
practically impossible to solve in reasonable computation times. To counteract
this, different mathematical methods need to be used. This chapter provides a
mathematical background to modelling and the optimization methods utilized
for solving the electricity systems models discussed in Chapter 3.

4.1 Linear programming

A linear program (LP) is a convex optimization problem with affine objective
and constraint functions, where the variables x are restricted to be non-negative.
All LPs can be written on standard form, i.e.

minimize z := c�x,
subject to Ax = b,

x ≥ 0,
(4.1.1)

where c ∈ R
n, x ∈ R

n, A ∈ R
m×n, b ∈ R

m, and m, n ∈ Z+. Hence, m is the
number of constraints and n is the dimension of the variable space.

Many problems can be described as linear programs, and several clever solution
methodologies exist to solve them, e.g. the simplex algorithm or interior penalty
methods (see Boyd and Vandenberghe [3]). However, for very large-scale
models these methods typically have to be complemented with decomposition
techniques to make the problems solvable within reasonable computation
times. Several such methods use Lagrangian duality and Lagrangian relaxation
as a foundation.

35
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4.2 Lagrangian dual concepts

The model structure for very large optimization problems can often be exploited
by using Lagrangian duality and Lagrangian relaxation, which first came to
light by the seminal work of Held and Karp [25]. Some decomposition methods
relating to electrical energy applications are also covered by Sagastizábal [53].

4.2.1 Lagrangian relaxation

Many large optimization problems are structured such that they consist of
several smaller and separate problems connected by some overlapping, typi-
cally complicating, constraints. Each separate problem is, however, often more
easily solvable in comparison to the full problem. Lagrangian dual methods,
such as Lagrangian relaxation, can take advantage of this problem structure;
see Guignard [21].

The idea of Lagrangian relaxation is to relax the connecting constraints such
that the remaining problem is separable into several subproblems. Consider
the linear optimization problem to

minimize z := c�x,
subject to g(x) ≤ 0m,

x ∈ X,
(4.2.1)

where c ∈ R
n, x ∈ R

n, g : Rn → R
m, X ⊂ R

n, m, n ∈ Z+. We also assume
that {x ∈ X | g(x)) ≤ 0m} �= ∅ such that there exists a feasible solution.
Here, g(x) ≤ 0m are connecting constraints while the remaining set x ∈ X is
separable; see Figure 4.1.

. . .

Figure 4.1: A block diagonal matrix besides the rows representing the connecting
constraints. Here, the dark area corresponds to the connecting constraints g(x), while
the lighter area is the separable set x ∈ X .
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Define the Lagrangian function L : Rm+n → R such that

L(x,π) := c�x+ π�g(x), (4.2.2)

using the Lagrangian multipliers π ∈ R
m. The Lagrangian dual problem is

then defined as
max
π≥0

h(π), (4.2.3)

where
h(π) := min

x∈X
L(x,π) = min

x∈X

(
c�x+ π�g(x)

)
(4.2.4)

and h : Rm → R is denoted the Lagrangian dual function. Here, for some
π ≥ 0m, the problem of minimizing the Lagrangian function L over its first
argument x ∈ X is referred to as the subproblem, and since we assumed a
block diagonal structure of the set x ∈ X , this problem is separable.

Let z∗ denote the optimal objective function value in problem (4.2.1). By weak
duality, h(π) ≤ z∗ then holds for any π ≥ 0; that is, any feasible solution to
the dual problem provides a lower bound on the optimal objective value of
the original problem. Furthermore, any feasible solution x̄ provides an upper
bound for z∗ since the inequality z∗ ≤ z(x̄) holds. Moreover, strong duality
implies that the equality z∗ = h∗ holds.

4.2.2 Augmented Lagrangian

The augmented Lagrangian method adds an additional penalty term (i.e. the
augmentation) to the Lagrangian function, penalizing the constraint equa-
tions. The idea was independently introduced by Hestenes [26] and Powell
[46], with the purpose to combine the advantages of the penalty method and
the multiplier method. It was later on extended to the case of optimization
with inequality constraints by Rockafellar [50, 51], but we will for this section
consider the equality case. Thus, consider once more the linear optimization
problem (4.2.1), but now with equality constraints:

minimize z := c�x,
subject to g(x) = 0m,

x ∈ X,
(4.2.5)

where the corresponding Lagrangian function is defined as in (4.2.2). We can
modify problem (4.2.5) by adding a quadratic penalty term to the objective.
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Then, for some penalty parameter ρ > 0, the modified problem is

minimize z := c�x+
ρ

2
|| g(x)||22,

subject to g(x) = 0m,
x ∈ X.

(4.2.6)

Note that this problem is equivalent to the original problem (4.2.5), since for any
feasible x the term added to the objective is zero. Hence, the optimal solution
and objective function value have not changed. The augmented Lagrangian
function is then defined as

Lρ(x,π) := c�x+ π�g(x)+
ρ

2
|| g(x)||22. (4.2.7)

The associated dual problem is to

max
π∈Rm

hρ(π), (4.2.8)

where the augmented dual function is defined as

hρ(π) := min
x∈X

Lρ(x,π) = min
x∈X

(
c�x+ π�g(x)+

ρ

2
|| g(x)||22

)
. (4.2.9)

The augmented Lagrangian has several beneficial properties, including that the
dual function (4.2.9) can be shown to be differentiable under rather mild condi-
tions on the original problem [2]. For large values of the penalty parameter ρ,
the augmented primal objective becomes strongly convex, which is especially
useful for nonlinear objective functions. Moreover, the penalty used here is
softer than penalties used in, for example, interior point methods such as the
barrier method. Thus, the iterates of penalty methods that use the augmented
Lagrangian are not confined to interior points.

4.2.3 Variable splitting

For the two models presented in Chapter 3, relaxing over the time dimension
is tricky since some variables are time-independent. A clever workaround for
this exploits variable splitting, introduced by Jörnsten and Näsberg [34]. Let
us demonstrate this method in Example 1. Note that since this method was
developed simultaneously by different researchers, it is therefore also referred
to as Lagrangian decomposition [22] or variable layering [17].

Example 1. Divide the annual time steps T into time periods (i.e. segments of
M weeks) over the year such that the subset Tn defines the time steps in period
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n ∈ N := {1, ..., N}. Hence, T := {T1, . . . , TN} =
N⋃

n=1
Tn. Moreover, define

Tn := {sn, . . . , tn}, and let tn−1 = sn − 1 for n �= 1. It then follows, that for any
m,n ∈ N where m �= n, the intersection Tm ∩ Tn = ∅ must hold.

Define the variables xt ∈ R+ and y ∈ R+, representing the electricity generation
in time step t ∈ Tn, n ∈ N , and the invested capacity, respectively. Let X be

the feasible set for x such that xt ∈ X :=
N×

n=1

Xn for t ∈ T . Then, consider the

problem to

minimize
y,xt

cinvy +
∑
n∈N

∑
t∈Tn

crun
t xt, (4.2.10a)

subject to (xt)t∈Tn
∈ Xn, n ∈ N , (4.2.10b)

an−1xtn−1
+ bnxsn ≥ dn, n ∈ N \ {1}, (4.2.10c)

xt ≤ y, t ∈ Tn, n ∈ N , (4.2.10d)
y ∈ [0, Y ], (4.2.10e)

where cinv and crun
t , t ∈ Tn, n ∈ N , are investment costs and run costs, respec-

tively, and Y represents some large number acting as an upper limit for the
investment variable y. The block structure corresponding to model (4.2.10)
is given in Figure 4.2. Note that this problem is a simplified version of the

Figure 4.2: The model structure of problem (4.2.10). The dark boxes represent the
variable investment variable y, and the rows they are included in correspond to the
constraints (4.2.10d). The lighter small boxes represent constraints (4.2.10c), and the
larger light boxes illustrate constraints (4.2.10b).

models introduced in Chapter 3. Here, (4.2.10b) represent all constraints which
do not span over multiple time periods. The constraints (4.2.10c) on the other
hand correspond to constraints that cover multiple time periods, such that
an−1xtn−1

belongs to period n−1 while bnxsn and dn belong to period n. These
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constraints can be relaxed without issues to make the problem separable over n.
However, the constraints (4.2.10d) are a bit more problematic since the variable
y is time independent. The constraints xt ≤ y can be relaxed, but they represent
an important property of the electricity system (i.e. that you can not produce
more electricity than the installed capacity). Thus, they are very important for
the model structure and should preferably not be relaxed.

This is where we let variable splitting work its magic. The main idea is to refor-
mulate the problem such that copies of some primal variables are introduced
(in this example, the variable y). Constraints are added to ensure consistency be-
tween the original variables and the copies; then these consistency constraints
are Lagrangian relaxed. Therefore, let us introduce the splitting variables for
the investment variable in problem (4.2.10) by letting y

split
n = y, n ∈ N . The

equivalent problem formulation is given by

minimize
y,y

split
n ,xt

cinv

N

∑
n∈N

ysplit
n +

∑
n∈N

∑
t∈Tn

crun
t xt, (4.2.11a)

subject to (xt)t∈Tn
∈ Xn, n ∈ N , (4.2.11b)

an−1xtn−1
+ bnxsn ≥ dn, n ∈ N \ {1}, (4.2.11c)

ysplit
n = y, n ∈ N , (4.2.11d)

xt ≤ ysplit
n ≤ Y, t ∈ Tn, n ∈ N , (4.2.11e)

y ∈ [0, Y ]. (4.2.11f)

See Figure 4.3 for an illustration of the new matrix structure.

Figure 4.3: The model structure of problem (4.2.11), after the variable splitting reformu-
lation. The constraints above the dashed line are the same as in Figure 4.2 but has had y

replaced by y
split
n , and below the dashed line we see the constraints (4.2.11d).
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Here, we can relax (4.2.11c) and (4.2.11d) to make the problem separable while
letting the model structure in each subproblem n ∈ N remain; see also Fig-
ure 4.4.

(a) The model structure of problem (4.2.11). The striped boxes correspond to the constraints that
will be relaxed.

(b) The resulting model structure when constraints (4.2.11c) and (4.2.11d) have been relaxed.

Figure 4.4: The new model structure when constraints (4.2.11c) and (4.2.11d) have been
relaxed in problem (4.2.11).

As illustrated by Example 1, variable splitting is an innovative and resourceful
way to accomplish consensus using Lagrangian duality. For problems with the
specific structure concluded in the example, the dual problem has some nice
properties which simplify its solution process. Let us contemplate this while
we review Example 2.

Example 2. Consider once more problem (4.2.11) from Example 1. Now, let πn

and λn, respectively, denote the Lagrangian dual variables corresponding to
the relaxation of the constraints (4.2.11d) and (4.2.11c). To simplify the notation
in this example, we introduce the variable xt0 ≥ 0 and define a0 := −1, b1 := 0,
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d1 := 0, and let xt0 ≥ 0. Next, we extend the constraints (4.2.11c) to the case
n = 1, with the result that xt0 is forced to the value 0. The Lagrangian dual
function is then defined by the minimization of the subproblem, according to

h(π) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

min
y,y

split
n ,xt

[∑
n∈N

cinv

N y
split
n +

∑
n∈N

∑
t∈Tn

crun
t xt +

∑
n∈N

πn(y − ysplit
n )

+
∑
n∈N

λn

(
dn − (an−1xtn−1

+ bnxsn)
) ]

s.t. (xt)t∈Tn
∈ Xn, n ∈ N ,

xt ≤ y
split
n ≤ Y, t ∈ Tn, n ∈ N ,

y ∈ [0, Y ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2.12a)

= min
y∈[0,Y ]

∑
n∈N

πny (4.2.12b)

+
∑
n∈N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

min
y

split
n ,xt

[(
cinv

N − πn

)
y

split
n +

∑
t∈Tn

crun
t xt

+ λn

(
dn − (an−1xtn−1

+ bnxsn)
) ]

s.t. (xt)t∈Tn
∈ Xn,

xt ≤ y
split
n ≤ Y, t ∈ Tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2.12c)

The corresponding dual problem is

maximize h(π),
subject to πn ∈ R, n ∈ N ,

λn ≥ 0, n ∈ N ,
(4.2.13)

and we can see that it has some additional properties:

min
y∈[0,Y ]

∑
n∈N

πny =⇒

⎧⎪⎪⎨
⎪⎪⎩
y = 0, when

∑
n∈N

πn ≥ 0,

y = Y, when
∑
n∈N

πn < 0.
(4.2.14)

Thus, the solution to the problem to min
y∈[0,Y ]

∑
n∈N

πny will always either be 0

or Y , dependent on the value of π. It could, however, be argued that the
variable y should be unbounded as we lack a reasonable upper bound. Thus,
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consider the special case that Y → ∞, such that y is not bounded. Then,
for

∑
n∈N πn < 0, the subproblem (4.2.12b) is unbounded, thus providing

an infeasible primal problem. Therefore, this implicit constraint on the dual
variables can be expressed explicitly in the dual problem. Furthermore, since
the inequality

∑
n∈N πn ≥ 0 implies that y = 0 in the solution to (4.2.12b), we

can remove the variable y in the subproblem when the dual problem is subject
to this constraint. Thus, with y = 0 the subproblem (4.2.12a) is separable over
n ∈ N , which means that the solution process can be parallelized.

The analogous reasoning for the subproblem in (4.2.12c) yields that if the
inequality πn > cinv

N holds, the nth subproblem will be unbounded, n ∈ N .
Hence we include the explicit constraints πn ≤ cinv

N , n ∈ N , in the dual problem.
Under these conditions, the Lagrangian dual problem can thus be stated as to

maximize ĥ(π),

subject to
∑
n∈N

πn ≥ 0,

πn ≤ cinv

N
, n ∈ N ,

(4.2.15)

where

ĥ(π) =
∑
n∈N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

min
y

split
n ,xt

[(
cinv

N − πn

)
y

split
n +

∑
t∈Tn

crun
t xt

+ λn

(
dn − (an−1xtn−1

+ bnxsn)
) ]

s.t. (xt)t∈Tn
∈ Xn,

xt ≤ y
split
n , t ∈ Tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.2.16)

As concluded in the above examples, combining variable splitting with La-
grangian relaxation yields subproblems which are separable. In the next section,
we will discuss different methodologies for solving the decomposed problem.

4.3 Lagrangian dual solution methods

After a problem has been decomposed, it can be solved using different solution
methodologies. This section covers the two Lagrangian dual methods that have
been evaluated in this work: a subgradient algorithm, and an approximate
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consensus ADMM approach.

4.3.1 Subgradient algorithm

The subgradient algorithm was developed by N. Z. Shor in 1962; see Shor [56]
for a full review of the early history of nonsmooth optimization. This method
has often been applied to solve optimization problems, especially together with
Lagrangian duality. Larsson et al. [38] formulated the conditional subgradient
method, which combines subgradient methods with subgradient projection
methods. However, we begin by a definition.

Definition 1. A vector γ ∈ R
n is a subgradient of the concave function h at

π̄ ∈ R
n if the inequality

h(π) ≤ h(π̄) + γ�(π − π̄) (4.3.1)

holds for all π ∈ R
n. The set of subgradients of h at π̄ is called the subdifferential,

denoted ∂h(π̄).

Geometrically, a subgradient to the function h at the point π̄ is a vector defining
a supporting hyperplane to the epigraph of h at π̄. The subgradient algorithm,
assuming a dual problem on the form as in (4.2.3), is provided in Algorithm 1.
Here, we assume that π ∈ Π, i.e. Π is the feasible set for the multipliers π.

Algorithm 1 Subgradient algorithm

1: Initiate π0 ∈ Π and h0
best = h(π0). Let k := 0.

2: Find a subgradient to h at the point πk

=⇒ solve the subproblem min
x∈X

L(x,πk),

which gives a solution x(πk).
A subgradient to h is then given by γk := g(x(πk)).

3: For some αk > 0, calculate the new point πk+1 := ProjΠ{πk + αkγ
k}.

4: Update hk+1
best := max{hk

best, h(π
k+1)}.

5: Termination criteria fulfilled =⇒ stop.
Otherwise, let k := k + 1 and go to 2.

The step lengths αk are chosen according to some rule which guarantees con-
vergence. The Polyak step length rule [45] has seen much use in practice, and
is used in Papers I and II. It is defined as

αk =
θk
(
h∗ − h(πk)

)
|| g(x(πk))||22

(4.3.2)
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under the conditions

0 < ε1 ≤ θk ≤ 2− ε2 < 2, k = 0, 1, 2, .... (4.3.3)

Here, θk acts as a scaling parameter for the step length, and the parameters
ε1 and ε2 define positive limits for the scaling parameter. Polyak showed that
using (4.3.2) together with (4.3.3) guarantees theoretical convergence to an
optimal solution to the dual problem (4.2.3). However, the dual optimal value
h∗ is typically not known. If so, an upper bound h̄ ≥ h∗ can be used instead to
achieve finite convergence to an ε-optimal solution, where we define ε-optimal
as h(πk) ≥ 2h∗ − h̄− ε for any ε > 0; see [45, Theorem 4].

In Papers I and II, the upper bound is given by solving the full-scale model but
with isolated regions and thus without trade. This provides a feasible solution,
but not optimal due to the lack of trade (unless the original problem instance
only considers a single region). The upper bound is then the sum of the total
system costs for all the included regions. Another alternative, as examined in
Paper II, is to solve the full-scale model with trade but with disconnected years.
The model is then solved iteratively for each year, where the investments from
previous years are fixed to the solution provided by the previous iteration.

The value of the scaling parameter θk can be chosen in different ways. One
method that in practice has been shown to give fast convergence to an opti-
mal solution is presented by Caprara et al. [5]. The authors present the use
of an adaptive method, where the value of the parameter is updated every
few subgradient iterations; see Paper I for further details on how this was
implemented.

Recovery of feasible solutions

In general, subgradient optimization methods often identify near-optimal dual
solutions, but do not directly provide solutions to the primal problem. The
conditional subgradient method constructs a sequence {x(πk)} of solutions to
the Lagrangian subproblem, but these solutions are typically not feasible in
the original primal problem since they do not have to satisfy the relaxed con-
straints. Thus, the sequence {x(πk)} does not converge to the optimal primal
solution. To remedy this, we generated in Papers I and II ergodic sequences of
subproblem solutions. As first presented by Larsson et al. [37], ergodic sequences
create approximations of primal solutions by averaging the solutions from
the subproblems. The authors showed that the ergodic sequences in the limit
produce optimal solutions to the original problem. An enchanced version in
terms of convergence speed was introduced by Gustavsson et al. [24]. This
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version exploits more information from later subproblem solutions than from
earlier ones. See also Paper I for additional details on this approach.

Termination criterion

In Papers I and II, we use as a termination criterion for the duality gap such
that the algorithm terminates when the following criterion is satisfied:

UBD − LBD
UBD

< εgap. (4.3.4)

Here, UBD is an upper bound on the objective value of the primal problem and
LBD is a lower bound on the optimal objective value of the primal problem.
The left–hand–side is defined as the relative duality gap, and we say that
it should be smaller than some small positive number εgap. Since we are
working with an LP, strong duality implies that the duality gap is zero in the
optimal solution. For numerical reasons however, we let εgap := 10−4 in our
implementation. Moreover, convergence is typically sluggish and thus a large
number of iterations are necessary to fully (or approximately) close the dual
gap. We noticed however in our implementation that the solutions became
reasonable after only a few iterations. Therefore, the algorithm was terminated
after a fixed number of iterations.

Lower bounds on the optimal objective value of the primal problem are given
by the Lagrangian function evaluated for the Lagrangian multipliers, and thus
a result of the subgradient algorithm. In Paper II, the upper bound is given by
either 1) solving the full-scale model with isolated regions (and thus solve it
once for every region, without any option for trade), or 2) by disconnecting the
years and solve the full-scale model sequentially, where we in each year use
the investments made previous years.

Updating the dual multipliers

If the dual problem has constraints on the dual variables, then the update
from the subgradient algorithm may lead to values on the multipliers that are
infeasible. If so, the multiplier needs to be projected on the feasible region. Let

π̄ := πk − αkγ
k

as in the subgradient algorithm update. For most multiplier vectors π, the
projection according to step 3 in Algorithm 1 can be made separately for each
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element of each vector. Thus, the projection is given by

πk+1
j :=

{
π̄j , π̄j ≥ 0,

0, π̄j < 0,

where j refers to element j in the respective multiplier vector.

For the multiplier πn in the dual problem (4.2.15) in Example 2, with c :=
cinv

N
,

the projection corresponds to solving the problem to

minimize 1
2 ||π − π̄||2 = 1

2

∑
n∈N

(πn − π̄n)
2, (4.3.5a)

subject to
∑
n∈N

πn ≥ 0, (4.3.5b)

πn ≤ c, n ∈ N , (4.3.5c)

with the KKT conditions (where λ and ψn are multipliers of the constraints
(4.3.5b) and (4.3.5c), respectively)⎛

⎜⎝
π1

...
πN

⎞
⎟⎠−

⎛
⎜⎝

π̄1

...
π̄N

⎞
⎟⎠− λ

⎛
⎜⎝
1
...
1

⎞
⎟⎠+

∑
n∈N

ψnen = 0,

λ(−
∑
n∈N

πn) = 0,

ψn(πn − c) = 0, n ∈ N .

(4.3.6)

π1

π2

Figure 4.5: The projection problem for N = 2. Here,
the green area is the feasible region. For points inside
the blue cones, the projection should be onto the corre-
sponding extreme points. For any other points outside
the green area, the projection is defined by the corre-
sponding shortest Euclidean distance to the triangle.
The blue cones are spanned by the gradients of the
active constraints in the extreme points.

The projection problem, illustrated in Figure 4.5 for the case N = 2, has the
property that it is a convex quadratic program. Therefore, the Lagrangian dual
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of this problem is also a convex quadratic program. To see this, Lagrangian
relax the constraint (4.3.5b). Then, using the Lagrange multiplier λ, the La-
grangian function is

L(π, λ) := 1
2

∑
n∈N

(πn − π̄n)
2 − λ

∑
n∈N

πn =
∑
n∈N

(
1
2 (πn − π̄n)

2 − λπn

)
.

Let Ln(πn, λ) :=
1
2 (πn− π̄n)

2−λπn, such that L(π, λ) =
∑

n∈N Ln(πn, λ) holds.
It follows that the function L is separable with respect to n ∈ N , where Ln is a
quadratic, convex, and differentiable function with respect to its first argument.

Now, define

hn(λ) := minimum Ln(πn, λ) = minimum 1
2 (πn − π̄n)

2 − λπn

subject to πn ≤ c subject to πn ≤ c

so that the Lagrangian dual function is given by

h(λ) =
∑
n∈N

hn(λ) =
∑
n∈N

(
minimum 1

2 (πn − π̄n)
2 − λπn

subject to πn ≤ c

)
.

For a constant value of λ, the minimum for Ln over πn ∈ [−∞, c] is attained
when either ∂Ln(πn,λ)

∂πn
= 0 or πn = c. Since

∂Ln(πn, λ)

∂πn
= πn − π̄n − λ = 0 ⇐⇒ πn = π̄n + λ,

it follows that Ln(·, λ) attains its minimum for

πn =

{
π̄n + λ, π̄n ≤ c− λ,

c, π̄n > c− λ.
(4.3.7)

Hence, the function h can be expressed according to the following:

h(λ) =
∑

n∈N :π̄n≤c−λ

(
1
2λ

2 − λ(π̄n + λ)
)
+

∑
n∈N :π̄n>c−λ

(
1
2 (c− π̄n)

2 − λc
)

=
∑

n∈N :π̄n≤c−λ

(
− 1

2λ
2 − λπ̄n

)
+

∑
n∈N :π̄n>c−λ

(
1
2 (c− π̄n)

2 − λc
)
.

The function h is clearly a quadratic and concave function of λ.
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The Lagrangian dual problem is given by

maximum h(λ),
subject to λ ≥ 0.

The dual function is differentiable, and thus the derivative can be used to find
the maximum. Hence, the dual problem is maximized when ∂h(λ)

∂λ = 0 or
λ = 0:

∂h(λ)

∂λ

∣∣∣
λ
= −

∑
n∈N :π̄n+λ≤c

(λ+ π̄n)−
∑

n∈N :π̄n+λ>c

c

=⇒ ∂h(λ)

∂λ
= −

∑
n∈N

min{π̄n + λ ; c} = 0.

(4.3.8)

The partial derivative ∂h(λ)
∂λ is decreasing (though not strictly) for increasing

values of λ. Hence, it will be zero for a specific value of λ. As an example,
consider Figure 4.6, where we use the property

−min{π̄n + λ ; c} = max{−(π̄n + λ) ;−c}.

λ

∂h(λ)
∂λ

−π̄1

−π̄2

−π̄3

−π̄4

−c

−4c

λ∗

Figure 4.6: The partial derivative as a func-
tion of λ. The optimal value λ∗ is where the
partial derivative is equal to zero.

The gradient of the function h changes in the break points corresponding to
λ = c − π̄n, n ∈ N . Thus, between two break points, the point at which
∂h(λ)
∂λ = 0 holds will be passed, and this corresponds to the optimal value λ∗.
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Using the optimal value λ∗, the optimal values π∗
n, n ∈ N , are then given by

(4.3.7). The method discussed here to find the projection point is described in
Algorithm 2.

Algorithm 2 Algorithm to solve the projection problem

1: if π̄n > 0 for all n ∈ N then
2: λ∗ = 0
3: else
4: Calculate all break points λn := c− π̄n, n ∈ N , and define λ0 := 0.

Let N0 := N ∪ {0}
5: Calculate the partial derivative for all break points, i.e. ∂h(λn)

∂λ , n ∈ N0

6: Find λi and λj such that

∂h(λi)
∂λ = min

n∈N0:
∂h(λn)

∂λ ≥0

{
∂h(λn)

∂λ

}
and ∂h(λj)

∂λ = max
n∈N0:

∂h(λn)
∂λ ≤0

{
∂h(λn)

∂λ

}

7: if {n ∈ N0 : ∂h(λn)
∂λ ≥ 0} = ∅ then

8: λ∗ := 0
9: else if λi = λj then

10: λ∗ := λi = λj

11: else
12: Linear interpolation gives

λ∗ :=
(0− ∂h(λi)

∂λ )(λj − λi)
∂h(λj)

∂λ − ∂h(λi)
∂λ

+ λi

13: if λ∗ < 0 then
14: λ∗ := 0

15: Use λ∗ to calculate π∗
n, n ∈ N , according to (4.3.7)

If there does not exist a point λ ≥ 0, for which ∂h(λ)
∂λ = 0 holds, then this implies

that ∂h(λ)
∂λ = −∑n∈N min{π̄n+λ ; c} �= 0. This can happen when π̄n > 0 for all

n ∈ N , which implies that λ∗ = 0 and the function h(λ) has no zero derivative
for λ ≥ 0. There are also some other special cases that can occur which we need
to consider; see Examples B.1 and B.2 in Appendix B.
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It should be noted that if thermal cycling constraints are included, the dual
problem and the corresponding projection problem will be to

minimize 1
2 ||π − π̄||2 = 1

2

∑
n∈N

(πn − π̄n)
2 +

1

2

∑
n∈N

∑
k∈K

(μkn − μ̄kn)
2,

subject to
∑
n∈N

πn ≥ 0,

πn +
∑
k∈K

μkn ≤ c, n ∈ N ,

μkn ≥ 0, k ∈ K, n ∈ N ,

which is a bit more complicated than problem (4.3.5) above. We noticed how-
ever that, at least in our implementation, the constraints πn +

∑
k∈K

μkn ≤ c,

n ∈ N , was consistently satisfied throughout each subgradient iteration of the
examined problem instances. Hence, although our problems included ther-
mal cycling, Algorithm 2 was still applied successfully to solve the projection
problem for the dual multipliers.

4.3.2 Alternating direction method of multipliers (ADMM)

Augmented Lagrangian methods add an additional penalty term (i.e. the aug-
mentation) to the Lagrangian function. In particular, the alternating direction
method of multipliers (ADMM) is an algorithm which uses partial updates for
the dual variables. It combines properties from dual ascent methods, which
typically allow problems to be decomposed and thus solved in parallel, with
good convergence properties from the method of multipliers. See Boyd et al.
[2] for extensive details on ADMM and its background.

Consider the convex optimization problem to

minimize v∗ := f(z) + g(y),
subject to Az +By = c

(4.3.9)

with variables z ∈ R
n and y ∈ R

�, where A ∈ R
m×n, B ∈ R

m×�, c ∈ R
m,

and f : Rn → R and g : R� → R are convex functions. We also assume that
{z ∈ R

n,y ∈ R
� |Az +By = c} �= ∅ such that there exists a feasible solution.

The augmented Lagrangian to problem (4.3.9), where π ∈ R
m is the dual

variable, is expressed as

Lρ(z,y;π) := f(z)+ g(y)+π�(Az+By− c)+
ρ

2
||Az+By− c||22, (4.3.10)
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and we define the ADMM-algorithm as the iterative updates

zk+1 := argmin
z

Lρ(z,y
k;πk), (4.3.11a)

yk+1 := argmin
y

Lρ(z
k+1,y;πk), (4.3.11b)

πk+1 := πk + ρ
(
Azk+1 +Byk+1 − c

)
, (4.3.11c)

where k > 0 is the iterator and ρ > 0 is a constant parameter. Here, (4.3.11a)
is a z-minimization step, (4.3.11b) is a y-minimization step, and (4.3.11c) is a
dual variable update with the step size equal to the augmented Lagrangian
parameter ρ. Typically, z0 and y0 are some feasible starting points, with some
arbitrarily value of π0 ∈ R

m.

Multi-block ADMM

The two-block ADMM can be extended to a multi-block approach, where the
problem is divided into more than two parts, hence yielding further sequential
updates each iteration. Revisit once more problem (4.2.11) in Example 1, but
with added slack variables u for the inequality constraints (4.2.11c):

minimize
y,y

split
n ,xt

cinv

N

∑
n∈N

ysplit
n +

∑
n∈N

∑
t∈Tn

crun
t xt, (4.3.12a)

subject to (xt)t∈Tn
∈ Xn, n ∈ N , (4.3.12b)

an−1xtn−1
+ bnxsn = un + dn, n ∈ N \ {1}, (4.3.12c)

ysplit
n = y, n ∈ N , (4.3.12d)

xt ≤ ysplit
n ≤ Y, t ∈ Tn, n ∈ N , (4.3.12e)

y ∈ [0, Y ]. (4.3.12f)

Let x̄n := ((xt)t∈Tn) and define zn := (y
split
n , x̄n, un). For n ∈ N , let Zn denote

the remaining feasible set for the variables zn when constraints (4.3.12c) and
(4.3.12d) are relaxed. We can then rewrite problem (4.3.12) in matrix form,
where we then consider the problem to

minimize
0≤y≤Y, zn∈Zn

∑
n∈N

fn(zn) + g(y), (4.3.13a)

subject to
∑
n∈N

Anzn + by − c = 0. (4.3.13b)
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Here, we have |N |+ 1 = N + 1 blocks. Define the augmented Lagrangian as

L̂ρ :=
∑
n∈N

fn(zn) + g(y) + π�
(∑

n∈N
Anzn + by − c

)

+
ρ

2

∣∣∣∣∣
∣∣∣∣∣
∑
n∈N

Anzn + by − c

∣∣∣∣∣
∣∣∣∣∣
2

2

,

(4.3.14)

and the corresponding multi-block ADMM algorithm is as follows:

zk+1
n := argmin

zn

L̂ρ(z
k+1
1 , . . . , zn, . . . , z

k
N , yk;πk), n ∈ N , (4.3.15a)

yk+1 := argmin
y

L̂ρ(z
k+1
1 , . . . , zk+1

N , y;πk), (4.3.15b)

πk+1 := πk + ρ

(∑
n∈N

Anz
k+1
n + byk+1 − c

)
. (4.3.15c)

Approximate consensus ADMM

Define f(x) :=
∑

n∈N fn(x) for x ∈ R
m and consider the problem to

minimize
xn∈Xn,y∈Y

∑
n∈N

fn(xn), (4.3.16a)

subject to xn − y = 0, n ∈ N , (4.3.16b)

such that y ∈ R
m is a common global variable, xn ∈ R

m with N := {1, . . . , N}
are local variables and fn : Rm → R are convex functions. The constraint
expresses that all the variables should be equal, i.e. reach consensus. As stated
by Boyd et al. [2], it can be seen as a technique for turning additive objec-
tives

∑
n∈N fn(x), which do not split across terms, into separable objectives∑

n∈N fn(xn) which do split.

Now, the augmented Lagrangian is given by

L̃ρ(x1, . . . ,xN ,y;π) :=
∑
n∈N

L̃ρ,n(xn,y;πn)

:=
∑
n∈N

(
fn(xn) + π�

n (xn − y) +
ρ

2
||xn − y ||22

)
.
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The corresponding ADMM algorithm, referred to as consensus ADMM, is

xk+1
n := argmin

xn

L̃ρ,n(xn,y
k;πk), n ∈ N , (4.3.17a)

yk+1 :=
1

N

∑
n∈N

(
xk+1
n + (1/ρ)πk

n

)
, (4.3.17b)

πk+1
n := πk

n + ρ
(
xk+1 − yk+1

)
, n ∈ N . (4.3.17c)

See also Parikh and Boyd [43] for additional details on consensus ADMM. Note
that the consensus ADMM approach allows us to update the local variables in
step (4.3.17a) in parallel.

Let us once again consider problem (4.3.12). Its structure contains blocks
that are sequentially connected, meaning that each subproblem n shares some
variables from subproblems n − 1 and n + 1. Hence, although our example
has many similarities with problem (4.3.16), the connected constraints force the
sequential update seen in (4.3.15).

However, in Paper III we consider an approximate consensus ADMM approach,
where we—like in the consensus ADMM—solve the subproblems in parallel.
Thus, using the same variable definitions as in problem (4.3.13), i.e. x̄n :=

((xt)t∈Tn) and zn := (y
split
n , x̄n, un) ∈ Zn, and with L̂ρ defined as in (4.3.14),

our new scheme becomes

zk+1
n := argmin

zn

L̂ρ(z
k
1 , . . . , zn, . . . , z

k
N , yk;πk), n ∈ N , (4.3.18a)

yk+1 := argmin
y

L̂ρ(z
k+1
1 , . . . , zk+1

N , y;πk), (4.3.18b)

πk+1 := πk + ρ

(∑
n∈N

Anz
k+1
n + byk+1 − c

)
. (4.3.18c)

Note that unlike in problem (4.3.16) and its corresponding consensus ADMM
algorithm (4.3.17), y is in this problem a scalar with the same dimension as xt.

Convergence

The traditional two-block ADMM, i.e. the algorithm (4.3.11), converges under
the assumptions that 1) the functions f and g are closed, proper and convex,
and that 2) the unaugmented Lagrangian function L0(z,y;π) has a saddle
point; see also Boyd et al. [2]. In practice, the ADMM algorithm tends to
converge very slowly to high accuracy. However, the method often converges
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to modest accuracy within a few tens of iterations and thereby provides results
acceptable for most large-scale problems. Nevertheless, the choice of ρ tends to
greatly influence the practical convergence of the ADMM-algorithm. If ρ is too
large, then there is not enough emphasis on minimizing the objective. On the
other hand, if ρ is too small, then there is not enough emphasis on feasibility.
Consensus ADMM is considered robust in the choice of ρ as it is guaranteed
to converge for any choice of ρ > 0, under the same two assumptions as the
standard ADMM (Chang et al. [6]). See also Shi et al. [54, 55] and Hong and
Luo [29] for additional results on convergence for consensus ADMM.

Multi-block ADMM is not necessarily convergent. According to Chen et al. [7],
convergence requires the same assumptions as the two-block ADMM, and the
additional condition that any two coefficient matrices in a general multi-block
problem are orthogonal, i.e. in the problem to

minimize
xn

N∑
n=1

fn(xn),

subject to
N∑

n=1

Anxn − c = 0,

for some N ≥ 3, the conditions A�
i Aj = 0 for all i, j = 1, . . . , N , i �= j, should

be satisfied. This latter requirement is however typically difficult to examine in
practice. However, some strategies exist for dealing with lack of convergence;
Hong and Luo [29] e.g. added a relaxation factor to the Lagrange-multiplier
update step. Sun et al. [57] suggested to interchange the order of the variable
update by, in each ADMM iteration, solve or update the blocks in a randomly
permuted order. Consequently, this latter approach successfully eliminated the
divergence example constructed in [7].

To summarize, the three well-established ADMM algorithms discussed here
(i.e. two-block, multi-block, and consensus ADMM) have promising chances of
convergence. The approximate consensus algorithm in Paper III, however, to
the best of our knowledge, currently lacks proper convergence conditions.

Termination criterion

Consider again problem (4.2.11) on matrix form, i.e. the problem (4.3.13). A
common stopping criterion considers the primal and dual feasibility. The
primal residual, here denoted rk at iteration k, is given by the sum of all
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subgradients. For the problem (4.3.13), this implies

rk :=
∑
n∈N

Anz
k
n + byk − c = 0. (4.3.20)

The dual feasibility conditions are

0 ∈ ∂fn(z
∗
n) +A�

nπ
∗, n ∈ N ,

0 ∈ ∂g(y∗) + b�π∗.
(4.3.21)

The latter condition is always satisfied for yk+1 (see details in Boyd et al.
[2]). For some n ∈ N , the former conditions give us, since zk+1

n minimizes
L̂ρ(z

k
1 , . . . , zn, . . . , z

k
N , yk;πk) by definition,

0 ∈ ∂fn(z
k+1
n ) +A�

nπ
k + ρA�

n

⎛
⎝ ∑

i∈N\n
Aiz

k
i +Anz

k+1
n + byk − c

⎞
⎠

= ∂fn(z
k+1
n )

+A�
n

⎛
⎝πk + ρrk+1 + ρ

⎛
⎝ ∑

i∈N\n
Ai

(
zk
i − zk+1

i

)
+ b

(
yk − yk+1

)⎞⎠
⎞
⎠

= ∂fn(z
k+1
n ) +A�

nπ
k+1 + ρA�

n

⎛
⎝ ∑

i∈N\n
Ai

(
zk
i − zk+1

i

)
+ b

(
yk − yk+1

)⎞⎠ ,

or equivalently,

ρA�
n

⎛
⎝ ∑

i∈N\n
Ai

(
zk+1
i − zk

i

)
+ b

(
yk+1 − yk

)⎞⎠ ∈ ∂fn(z
k+1
n ) +A�

nπ
k+1.

(4.3.22)
The dual residual at iteration k is thus defined as

skn := ρA�
n

⎛
⎝ ∑

i∈N\n
Ai

(
zk
i − zk−1

i

)
+ b

(
yk − yk−1

)⎞⎠ . (4.3.23)

The algorithm is terminated when the primal and dual residuals satisfy a
stopping criterion, i.e., for some tolerances εprimal > 0 and εdual > 0,

|| rk ||2 ≤ εprimal, || sk ||2 ≤ εdual. (4.3.24)
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4.4 Heuristic consensus algorithm

Distributed computing and multi-agent systems in computer science often
require their processes to reach consensus, thus coordinating their many candi-
date values to agree on a single consensus value. Different methods for this
can be applied, dependent on the studied application.

In Paper IV, a heuristic consensus algorithm is used to connect the models
separated by the 2-week segments. When the algorithm begins, the starting
point is that all 2-week segments share the investment cost equally, i.e. the
costs are weighted by 1/26. The 26 different electricity system models are
then solved, and information on investments in different types of generation,
transmission, and storage capacity in each 2-week segment is collected to form
one capacity–cost curve for each technology and region. The idea is that the
investments form the basis for the investment cost in the subsequent solve.
The cost of the capacity that is invested in all 2-week segments is weighted by
1/26, however, if, e.g. only k problems have made the investment, the capac-
ity is weighted by 1/k of the investment cost for all 2-week segments in the
next iteration. Figure 4.7 illustrates an example of a capacity–cost curve. The
remainder of this section presents the capacity–cost curve construction for gen-
eration technologies; the construction for transmission technologies are done
analogously. Figure 4.8 presents a schematic illustration of the methodology.

Figure 4.7: An example of a capacity–cost curve. Let w1 = 20, w2 = 40, w3 = 100,
w4 = 55, w5 = 40, and w6 = 80. Then, L = {w1, w2, w3, w4, w5, w6} and sorted as
L = {w1, w2, w5, w4, w6, w3}
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Figure 4.8: A schematic illustration of the modelling methodology.

The capacity–cost curves are composed by 26 steps, where the length of the
first step corresponds to the capacity investment level that is common to all 26
subproblems. The length of the second step represents, in addition to the first
step, the capacity investment which is shared by all the 2-week segments except
one, and so on. In order to determine the lengths of the steps, the number Rips

of 2-week segments that have lower or equal levels of installed capacity of
technology p ∈ P in region i ∈ I than the 2-week segment s ∈ S is calculated
as1

Rips = 1 + S −
∑
u∈S

[wipu ≤ wips], i ∈ I, p ∈ P, s ∈ S, (4.4.1)

1The Iverson bracket [33] returns 1 if the expression within the brackets is true; otherwise it
returns 0.
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where S is the set of 2-week segments. It follows that the length of the first step
in the capacity–cost curve M e

i,p,r1
is given by

M e
i,p,r1 =

∑
s∈S

[Rips = 1]wips

∑
s∈S [Rips = 1]

, i ∈ I, p ∈ P, (4.4.2)

where r1 is the first element in the set of cost classes R. For i ∈ I and p ∈ P ,
the lengths of the subsequent steps in the capacity–cost curve are calculated
sequentially as

M e
i,p,rm =

∑
s∈S [Rips = m]wips∑

s∈S [Rips = m]
−

m−1∑
n=1

M e
i,p,rn , m ∈ {2, . . . , |R|}. (4.4.3)

The length of the last step in the capacity–cost curve is set to be very large, i.e.
three times the maximum annual load in the respective region. The height of
each step in the capacity–cost curve, i.e. the weight of the investment, is given
by the number of 2-week segments sharing the investment, as

λe
i,p,s,rm =

1

S − (m− 1)
, m ∈ {1, . . . , |R|}. (4.4.4)

This cost is slightly modified in two ways: 1) the cost share is lower in the
first iterations in order to enable the capacity with a high investment costs
to stabilize before extinction, and 2) the cost share is lower for those 2-week
segments that have not invested in the capacity that other 2-week segments
have. This "rebate" is then reduced with the iteration number. Hence, for i ∈ I ,
p ∈ P , and s ∈ S , it holds that

λe
i,p,s,rm =

αnips

S − βn(m− 1)
, m ∈ {1, . . . , |R|}, n ∈ {1, . . . , 10}, (4.4.5)

where the choices for the parameters αnips and βn in each iteration n are
listed in Table 4.1. The parameter αnips can take on a high (αhigh

nips) or low
(αlow

nips) value depending on whether or not investments have been made for
the corresponding region, technology, and 2-week segment (i, p, s).

The construction of the capacity–cost curve is summarized in Algorithm 3.
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Table 4.1: Parameter values used in the consensus loop

iteration number (n) αlow
nips βn α

high
nips

1 0.5 0.5 0.1
2 0.6 0.6 0.1
3 0.7 0.7 0.2
4 0.8 0.8 0.2
5 0.8 0.9 0.3
6 0.8 1.0 0.4
7 0.8 1.0 0.5

≥ 8 0.8 1.0 0.6

Algorithm 3 Creating the capacity–cost curve

1: Create a list L of the capacities such that L := (wip1, wip2, . . . , wipS).
2: Sort the list L in ascending capacity size order. Each unique element

represents a step in the capacity–cost curve.
3: The height of each step in the capacity–cost curve, i.e. λe

iprs, is determined
by the number of 2-week segments sharing the investment. For each ele-
ment, the number of 2-week segments sharing the investment corresponds
to S reduced by the order of the element in the list L.

4: if ∃ duplicates in list L then
remove duplicates from the list L

5: The length of the steps corresponds to capacity, such that each new step
occurs at the values present in the reduced list L∗. The potential of each cost
class, M e

i,p,rm
, is given by the capacity in the capacity–cost curve reduced

by the capacity of the prior step.

Yearly linkages

In traditional electricity system investment models, the represented years are
linked by the investment variables. However, the Paper IV model disregards
any possible influence that future years might have on investments. This is
based on the hypothesis that investments are made only to meet exactly the
demand for electricity in the cost-optimal system, largely ignoring future needs
in terms of capacity.

The cost of CO2 emissions, investment costs (due to learning), efficiencies and
discount rate can change between years and may influence the investment
decisions. For scenarios with gradually increasing costs for generation capacity
or operation over the years, this increase is likely to impact investments and
needs to be transferred to prior years. Electricity generation technologies
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that rely on fossil fuels are for example typically subject to a gradual increase
in operational costs over the decades considered, which reduces the cost-
competitiveness of these technologies in the long-term perspective. Under
the assumption that the total cost for investments and operation of a power
plant is evenly distributed across all of its hours of operation, some of the
operational costs from later years need to be shifted to earlier years. The net
present value of these future operational cost (with interest rate δ) is added
to the objective function. Thus, for p ∈ P and t ∈ Ts, s ∈ S, we define the
additional operational costs, Cadd

pty , as

Cadd
pty :=

1

Zp

y+Zp∑
n=y

1

(1 + δ)(n−y)
(Crun,n

pt − Crun,y
pt ), y ∈ Y, (4.4.6)

where y ∈ Y is the year considered, i.e. the year in which investments are made,
and Zp is the lifetime of technology p ∈ P . The costs (4.4.6) are added to the
running cost Crun

pt , in the objective function (3.1.23) for the respective years.
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5 A summary of the appended
papers

This section summarizes the appended papers and highlights their different
models and decomposition methods. Figure 5.1 visualizes their interrelations.
Note that the papers are not numbered chronologically.

Paper I
Single node

Subgradient alg.

Paper II
Multi-node

Subgradient alg.

Paper III
Multi-node
ADMM alg.

Paper IV
Multi-node

Consensus alg.

Figure 5.1: Illustration of the relation between the appended papers. Directions indicate
that ideas/methods in the origin paper are generalized or applied in the destination
paper.

Paper IV introduces the initial idea to decompose the temporal representation of
an electricity system investment model into 2-week periods through a heuristic
consensus algorithm. Paper I explores the same temporal decomposition
through the use of Lagrangian duality methods combined with a subgradient
solution algorithm, but on a model with a smaller spatial scope. Paper II
presents an extension to the model in Paper I by introducing trade and storage,
thereby making it similar to the model in Paper IV. Finally, Paper III considers
the same model and decomposition as in Paper II, but utilizes an approximate
consensus ADMM solution algorithm.
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Paper I: A Lagrangian relaxation approach to an elec-

tricity system investment model with a high temporal

resolution

In this paper, we formulate a long-term electricity system investment model
that accounts for some variation management strategies to capture the vari-
ations from intermittent electricity production technologies. The model is
decomposed using Lagrangian relaxation in combination with variable split-
ting. The decomposition results in 26 subproblems—each representing a time
period of two weeks—which can be solved in parallel. The Lagrangian dual
problem is solved by using a subgradient algorithm, which leads to 26 different
subproblem solutions each iteration of the algorithm. Ergodic sequences are
used to create a single solution in terms of production technology investments
for each of the 26 subproblems, and these 26 investment solutions are then
combined through a heuristic algorithm.

The decomposed model is implemented and solved using Julia [1] and
JuMP [10] together with the Gurobi [23] solver. Three different cases, all
involving single and isolated regions without the possibility for trade, are
examined: 1) Hungary (HU), a region with poor conditions for wind power
and medium conditions for solar PV, 2) Ireland (IE), a region with good wind
power conditions, and 3) southern Sweden (SE3), a region with a large share of
existing hydropower. The solutions found by the decomposed model provide
capacity investments similar to the optimal solution for investments provided
by the non-decomposed model. The heuristic used to combine the subproblem
solutions can be further developed as it tends to overestimate the wind power
capacity which increases the total system costs. The most important extension
to this work is to include the possibility to trade with neighbouring regions,
and also to include energy storage options in terms of hydrogen and batteries.

This paper has been resubmitted to OR Spectrum after it received minor revi-
sions. The initial ideas were presented at the Swedish Operations Research
Conference, Linköping (2017), and some later ideas on the Swedish Opera-
tions Research Conference, Nyköping (2019) and virtually at EUROPT 2021
Workshop on Advances in Continuous Optimization, Toulouse (2021).
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Paper II: Managing the temporal resolution in a multi-

node electricity system investment model: Parallel

computations by variable splitting and Lagrangian

relaxation

We formulate an extension to the long-term electricity system investment model
in Paper I, where we in this paper consider a multi-node model with electricity
trade and energy storage in terms of batteries and hydrogen storage. The
model uses the same 2-week decomposition and subgradient algorithm as in
Paper I and is implemented and solved using Julia [1] and JuMP [10] together
with the Gurobi [23] solver. The subproblems are separable, which allows
a parallel computing process. The parallel implementation furthermore has
potential to reduce computation times and memory requirements compared to
a non-decomposed model, although the extent of this reduction depends on
the computer(s) and problem properties.

The method is tested on several cases (the British Isles, Iberian Peninsula and
Sweden) with and without variation management options, with mixed results.
The non-decomposed model for the multi-node cases involving electricity
trade is unfortunately too large to be solvable on the used hardware. Thus,
to evaluate the presented method, the results are compared with outcomes
from the full-scale model but with either i) isolated regions, thus removing the
option for trade but keeping the perfect foresight, or ii) disconnected years,
which allows trade but has limited foresight. For most instances, our method
provides capacity investments similar to the solutions provided by the other
model implementations where it represents a reasonable ”middle ground” in
terms of capacity investments. However, due to the chosen costs of carbon-
dioxide emissions, natural gas technology is often picked for new investments
in favour of biomass plants. The computation times for the decomposed model
challenges especially the model with disconnected years, where it performs
better in all the tested instances. The computations for the model with isolated
regions can on the other hand also be performed in parallel, which hence
provides it with substantially quicker computation times than the other options.

It should be noted that the decomposed model fails to provide reasonable
results for seasonal storage, which is to store energy during summer or winter,
and discharge it during the other respective season. In this paper, this corre-
sponds to hydrogen storage and hydropower reservoirs. The most important
addition to this work however would be to compare this subgradient solution
methodology to the popular ADMM-approach.
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This paper is a complete manuscript and will shortly be submitted to a journal.
The main ideas have been presented at the Stockholm Optimization Days 2022,
Stockholm (2022).

Paper III: An approximate consensus ADMM ap-

proach to a multi-node electricity system investment

problem with a high temporal resolution

We consider in this paper the same multi-node model with electricity trade
and energy storage as in Paper II, but solve it using an approximate consensus
ADMM-approach. The temporal resolution is decomposed into 2-week periods
throughout the year, with any overlapping constraints Lagrangian relaxed. The
algorithm is implemented in Julia [1] and JuMP [10] and solved using the
Gurobi [23] solver.

As in Paper II, the method is evaluated on the British Isles, Iberian Peninsula
and Sweden, with different combinations of variation management techniques.
The method’s efficiency is assessed by comparing it to the results from the sub-
gradient method developed in Papers I–II. The solutions from the subgradient
method and ADMM algorithm share the same production pattern in terms
of base, peak and intermediate power. The total system costs are consistently
a few percent higher for the ADMM algorithm compared to the subgradient
method in the trade cases. For a single region with different energy storage
options, ADMM occasionally outperforms the subgradient method in terms of
costs, but both methods are worse than the optimum. The computation times
in both methods are better if compared to a corresponding non-decomposed
multi-node model, but especially the solution times are exceptionally better
for the ADMM algorithm. However, this is primarily the result of the ADMM
algorithm using a 6h time step (due to otherwise reaching the memory limit),
compared to the 3h time step used in the subgradient algorithm. Moreover, the
time it takes to build the model and perform the algorithm outside the Gurobi
solver is a big drawback of the method, as the result is a drastically increased
summarized computation time which extends beyond the computation time
for the subgradient method. The main advantage however of the ADMM
algorithm compared to the subgradient method is an easier implementation,
especially since it circumvents 1) the requirement to recover primal feasible
solutions and the need to use ergodic sequences, and 2) the need for an upper
bound on the system cost to calculate the step length. Both methods however
fail to dimension the need for seasonal storage, i.e. hydrogen storage and
hydropower reservoirs. Thus, the 2-week decomposition might not be the best
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approach if energy storage over longer time-scales than two weeks is of vital
importance to the application.

The quality of the work in this paper can initially be raised by revisiting
implementation of the model and ADMM algorithm, which potentially can
shorten the computation times. The most important extension however would
be to further examine if convergence conditions can be expressed for our
approximate consensus ADMM algorithm.

This paper have neither been presented nor submitted to a journal. Submission
is expected early autumn.

Paper IV: Management of wind power variations in

electricity system investment models: A parallel com-

puting strategy

In this paper, we develop a mathematical model and a heuristic method which
account for variation management strategies in a long-term electricity system
investment model. The Hours-to-Decades model discretizes the time dimen-
sion into 2-week segments and solves the resulting 26 separate problems in
parallel. Information between the segments is then exchanged in a consensus
loop, and the main idea is that the investments from the different solutions
form the basis for the investment costs in the subsequent solve. This process is
then iterated until consensus for the investments made by all 26 problems is
reached.

The model is implemented in GAMS and then solved using CPLEX. Different
cases are considered, with some variation management options including
energy storage and trade. The different regions considered are: (1) Ireland,
which is a region with good conditions for wind power, (2) Ireland and UK,
for the case when trade for Ireland is considered, (3) central Spain, a region
with good conditions for solar power, and (4) Iberian Peninsula for central
Spain trade. The solutions found by the Hours-to-Decades model possess
an increased total system cost of approximately 1 % compared to the same
electricity investment model but with connected time. The resulting energy mix
shows that the Hours-to-Decades model responds to variation management
similar to the connected-time model. When it comes to the computation times,
the Hours-to-Decades model are able to solve the problem faster than a time-
connected model. This is even more prominent when several regions with
trade are included. As an example, when two regions are considered the
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Hours-to-Decades model takes around half an hour to solve while the run time
for the time-connected model is several days. A drawback of the method is,
however, that it cannot dimension seasonal storages. The results of the cases
studied indicates, however, that seasonal storage capacity can be dimensioned
post-process.

Our heuristic method targets the combination of wind variation management
and trade in electricity system models. Nevertheless, if wind power or trade
are not of relevance for the investigated regions, representative days or integral
time slicing are likely more efficient modelling methodologies.

This paper was initially presented by Lisa Göransson at the International
Energy Workshop, Paris (2019), and later published in SN Operations Research
Forum, 2:25 (see [20]).



6 Conclusions and ideas for
future research

To summarize, we have developed two electricity system models that can
be used as a tool to analyze long-term investments in an electricity system
that contains a large share of variable renewable electricity generation. We
have further suggested three decomposition methods to decrease computation
times for all the models presented in this thesis. The first method, which
is the one used in the Hours-to-Decades model, can be seen as a heuristic
approach to variable splitting. This approach provided us the initial idea to
develop the second method which uses Lagrangian relaxation combined with
variable splitting, and a solving process based on a subgradient algorithm.
This later led to our third method, in which we utilize the same decomposition
approach with Lagrangian relaxation and variable splitting, but solve the
model using an approximate consensus ADMM algorithm. These contributions
target the stated objectives to (i) formulate mathematical long-term investments
models that capture strategies to manage the variability of variable renewable
electricity generation, (ii) develop and evaluate decomposition methods for
said models, and (iii) examine the impact on the solution times for different
spatial resolutions.

The main conclusion is that our different methods produce numerical results
with faster computation times compared to the non-decomposed models, and
capacity investment options similar to the solutions provided by the latter
models. They are furthermore able to do so while allowing a parallel solution
process, thus potentially reducing the necessary computer memory. However,
the suggested methods are sensitive to parameter settings, and the fine-tuning
of algorithm parameters to a specific problem instance likely requires some
trial and error. Moreover, although the solutions are acceptable after only a few
iterations, the convergence speed for the subgradient method is typically slow,
requiring many iterations before satisfying traditional termination criteria. For
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the approximate consensus ADMM, convergence to the optimum is, to the
best of our current knowledge, not even guaranteed. Hence, the potential
reduction in memory requirement and computation time may not be sufficient
to motivate the increase in complexity and uncertainty of the decomposed
models.

6.1 Additional reflections

Among other things, we have concluded that the most important part of the
original model structure is kept when using a decomposition over 2-week
periods. Indeed, in each subproblem we basically solve the entire electricity
system model, but for a smaller time interval. Hence, for both the decomposed
full-scale model and the Hours-to-Decades model, the subproblems have a
structure which is very similar to their respective non-decomposed model.
For each of the two models, this furthermore leads to subproblem solutions
which are very similar to each other. Therefore, the optimal solution provided
by each subproblem is decent in terms of a solution to the non-decomposed
problem. As a comparison, consider a decomposition over groups of variable
types instead. For example, electricity generation and investments could be
one group, and hot capacity and start-up capacity another group. Here, we
assume that we relax constraints that connect different groups which then
makes the problem separable into a few subproblems. The most important
model structures would immediately be lost, and most likely a massive number
of iterations for the algorithms (i.e. subgradient method and ADMM) would
be required before the method converges.

As earlier concluded, the decomposition methods developed in this thesis make
the models parallelizable with the potential to reduce computation times. A
nice feature of the chosen 2-week decomposition is that since the subproblems
have the same model structure and several parameters with the same value (e.g.
costs), they also take approximately the same amount of time to solve. There is
therefore not much idle time in the solution algorithms. As a counterexample,
consider the case that a single subproblem had taken much longer time to
solve compared to the other subproblems. Consequently, each iteration of the
algorithm would include some "waiting time" before the dual variable updates
could be done. This is, however, not the case if all subproblems finish solving
their model simultaneously.

Another reflection is that if we would model the emission limits as a hard
constraint, it would need to be relaxed for the optimization problem to become
separable. It would hence be penalized in the objective using different dual
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variables for each subproblem, with the values of the dual variables being
updated in the subgradient iterations. Thus, providing from the start a reason-
able cost for the emissions in the original problem will in theory 1) make the
Lagrangian problem separable with respect to emissions, since these are not
constrained, 2) lower the complexity of the model, since fewer dual variables
are required, and 3) provide better subproblem solutions, since emissions are
penalized with the same costs in all of the subproblems.

The results in Papers II–IV showed us that the decomposition methods based on
a 2-week time representation is not able to correctly estimate seasonal storage.
The subproblems provided by this decomposition struggle to capture model
structure and properties that stretch beyond their own time period. Thus,
the conclusion is that our 2-week decomposition is likely not a recommended
approach if properly dimensioned seasonal storage is of high importance to
the user.

6.2 Future perspective

There exists several ideas for possible research directions from here. The model
itself can be extended to include additional variation management strategies,
such as electric vehicles. Other ideas involve further exploration of the applied
solution methodologies. For instance, the convergence to optimal solutions
in the limit for ergodic sequences used together with the variable splitting
approach needs to be examined. Furthermore, the heuristic used to combine the
subproblem solutions in Papers I and II can be further developed. In addition,
possible convergence conditions for the approximate consensus ADMM used
in Paper III have not been investigated.

Other methods to decompose the problem could moreover be investigated. For
instance, a column generation approach would yield the same subproblems as
given by our current decomposition, but with the added benefit of finite theoret-
ical primal convergence. Tonbari and Ahmed [59] presents a fully distributed
Dantzig-Wolfe decomposition algorithm, where the master problem is solved
using a consensus ADMM method. If viewed from the perspective of two-stage
stochastic optimization, the approach resembles the use of progressive hedging
algorithms [52].

Lastly, another possible direction to pursue involves a spatial decomposition
(i.e. over regions) compared to the temporal decomposition (i.e. 2-week peri-
ods) done in this thesis, as indicated by the results in Paper II.
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A Nomenclature

A.1 Full-scale model

Table A.1: The index sets used in the full-scale model

symbol representation member
R regions r
A ⊆ R×R; transmission lines between regions q, r
K technologies for transmission k
P := Pthermal ∪ Pren ∪ Pe-lysis; electricity generation/consumption

technologies
p

Pthermal thermal power technologies p
Pren := Pwind ∪ Psolar ∪ Phydro; renewable technologies p
Pwind wind technologies p
Psolar solar technologies p
Phydro hydropower technologies p
Pe-lysis electrolyser technologies h
L := Lbat ∪ LH2 ; electricity storage technologies �
Lbat battery technologies �
LH2 hydrogen storage technologies �
I := {1960, 1970, . . . , 2050}; investment years, defining invest-

ment periods
i

S := {2020, 2030, . . . , 2050}; new capacity investment years; s
S ⊂ I

IP
active(s, p) := I ∩ {s− Up, . . . , s}; investment periods for each technol-

ogy type p ∈ P with lifespan Up that
is active at year s ∈ S

i

IK
active(s) := I ∩ {1960, . . . , s}; investment periods for transmission

technologies that are active at year
s ∈ S

i

T := {τ, 2τ, . . . , T}; time steps within a year, where τ
denotes the step length

t
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Tstart(p) ⊂ T ∪ {0}; consecutive time steps in the start-
up interval for technology p ∈ P

t

Table A.2: The decision variables used in the full-scale model

symbol restriction explanation unit
xpristσ ≥ 0 generated electricity of technology type p ∈ P in re-

gion r ∈ R using technology from investment period
i ∈ IP

active(s, p) in year s ∈ S and time step tσ ∈ T

GWh/h

ypri ≥ 0 investments in production capacity (both new and
old) for technology p ∈ P in region r ∈ R during
investment period i ∈ I

GW

y
split
prin ≥ 0 investments in production capacity (both new and

old) for technology p ∈ P during investment period
i ∈ I for subproblem n ∈ N

GW

y�ri ≥ 0 investments in battery and hydrogen capacity for
technology � ∈ L in region r ∈ R during investment
period i ∈ I

GWh

y
split
�rin ≥ 0 investments in battery and hydrogen capacity for

technology � ∈ L in region r ∈ R during investment
period i ∈ I for subproblem n ∈ N

GWh

vkqrstσ ≥ 0 electricity traded with transmission type k ∈ K from
region q to region r, (q, r) ∈ A, in year s ∈ S and
time step tσ ∈ T

GWh/h

ukqri ≥ 0 investments in new transmission capacity for trans-
mission type k ∈ K between regions q and r, where
(q, r) ∈ A, during investment period i ∈ I

GW

u
split
kqrin ≥ 0 investments in new transmission capacity for trans-

mission type k ∈ K between regions q and r, where
(q, r) ∈ A, during investment period i ∈ I for sub-
problem n ∈ N

GW

b
charge
�rstσ

≥ 0 charging of battery type � ∈ Lbat in region r ∈ R
during year s ∈ S and time step tσ ∈ T

GWh/h

b
discharge
�rstσ

≥ 0 discharging of battery type � ∈ Lbat in region r ∈ R
during year s ∈ S and time step tσ ∈ T

GWh/h

b
storage
�rstσ

≥ 0 battery storage level in battery type � ∈ Lbat in region
r ∈ R during year s ∈ S and time step tσ ∈ T

GWh

h
consumption
rstσ

≥ 0 electricity consumption in the electrolyser used for
hydrogen production in region r ∈ R during year
s ∈ S and time step tσ ∈ T

GWh/h

h
storage
�rstσ

≥ 0 hydrogen storage level in technology � ∈ Phydro in
region r ∈ R during year s ∈ S and time step tσ ∈ T

GWh

wrstσ ≥ 0 stored hydropower in region r ∈ R, year s ∈ S at
time step tσ ∈ T

GWh
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zpristσ ≥ 0 hot capacity of technology type p ∈ P in region r ∈ R
at investment period i ∈ IP

active(s, p), year s ∈ S at
time tσ ∈ T

GWh/h

z+pristσ ≥ 0 increase in hot capacity from time step tσ−1 ∈ T to
tσ ∈ T for technology type p ∈ P in region r ∈ R at
investment period i ∈ IP

active(s, p), year s ∈ S

GWh/h

Table A.3: The auxiliary variables used in the full-scale model

symbol restriction explanation unit
vnet
rstσ net electricity import to region r ∈ R in year s ∈ S

and time step tσ ∈ T (if negative then export)
GWh/h

bnet
rstσ net charge of battery type � ∈ Lbat in region r ∈ R

during year s ∈ S and time step tσ ∈ T (if negative,
then net discharge)

GWh/h

etot
stσ ≥ 0 auxiliary definition variable for the total system

emissions at year s ∈ S in time step tσ ∈ T
tonnes CO2

Table A.4: The parameters used in the full-scale model

symbol representation unit
a

gen
pri Existing electricity generation capacity of technology

p ∈ P in region r ∈ R in investment period i ∈ I \ S
GW

asto
�ri Existing electricity storage capacity of technology � ∈ L

in region r ∈ R in investment period i ∈ I \ S
GW

atra
kqri Existing transmission capacity of technology k ∈ K

on transmission line (q, r) ∈ A in investment period
i ∈ I \ S

GW

cinvtech
ps Investment cost for technology type p ∈ P during year

s ∈ S. Includes an annuity factor
ke/GW

comf
p Fixed operation and maintenance costs for technology

type p ∈ P
ke/GW

crun
pri Run cost for technology type p ∈ P in region r ∈ R

using technology from investment period i ∈ I
ke/GWh

cinvsto
�s Investment cost for technology type � ∈ L in year s ∈ S .

Includes an annuity factor
ke/GWh

comf
� Fixed operation and maintenance costs for technology

type � ∈ L
ke/GWh

cinvtra
kqrs Investment cost of new transmission capacity of tech-

nology k ∈ K on transmission line (q, r) ∈ A during
year s ∈ S. This cost is divided by two to compen-
sate for double arcs since the network is expressed only
with non-negative arcs. Includes an annuity factor

ke/GW
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ctra
kqr Transmission cost of transmission technology k ∈ K on

transmission line (q, r) ∈ A
ke/GWh

c+prs Upstart cost for technology type p ∈ P in region r ∈ R
in year s ∈ S

ke/GW

c̃prs Part-load cost for technology type p ∈ P in region
r ∈ R using technology at year s ∈ S

ke/GWh

c
CO2
s The costs for emissions at year s ∈ S ke/tonnes CO2

drst Electricity demand in region r ∈ R at year s ∈ S and
time step t ∈ T

GWh/h

d
hydrogen
rs Hydrogen demand from industry in r ∈ R, year s ∈ S GWh/h

epri Emissions per produced GWh of technology p ∈ P in
region r ∈ R using technology from investment period
i ∈ I

tonnes CO2/GWh

e+pri Upstart emissions for technology type p ∈ Pthermal in
region r ∈ R using technology from investment period
i ∈ I

tonnes CO2/GW

ẽpri Extra emissions when running on part-load for technol-
ogy type p ∈ Pthermal in region r ∈ R using technology
from investment period i ∈ I

tonnes CO2/GWh

grt Inflow into hydro power from rain, ground etc. in
region r ∈ R during time step t ∈ T

GWh

Hr Upper limit for hydropower storage in region r ∈ R GWh
umax
kqr Maximum transmission capacity of technology k ∈ K

that is possible on transmission line (q, r) ∈ A
GW

Up The lifespan of technology type p ∈ P years
Wpr Maximum capacity of wind, i.e. land availability, for

wind technology p ∈ Pwind in region r ∈ R
GW

δinc
r The maximum ramping rate for water level increase in

hydropower in region r ∈ R
share

δdec
r The maximum ramping rate for water level decrease in

hydropower in region r ∈ R
share

δ
inj
� injection rate of storage technology � ∈ L 1/h
δwith
� withdrawal rate of storage technology � ∈ L 1/h
η

charge
�s efficiency of charging storage technology � ∈ L in year

s ∈ S
share

η
discharge
�s efficiency of discharging storage technology � ∈ L in

year s ∈ S
share

ηps efficiency of electrolyser p ∈ Pe-lysis in year s ∈ S share
θprt Weather profile for renewable technologies p ∈ Pren in

region r ∈ R at time step t ∈ T
share

τ time step length h
φp Minimum load level for technology p ∈ Pthermal share
I The total number of investment periods in the model
S The total number of years where it is possible to make

new investments in capacity
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T The number of total time steps in the model

A.2 Hours-to-Decades model

Table A.5: The index sets used in the Hours-to-Decades model

symbol representation member
I set of all regions i, j
P := Pbat ∪ Pelectrolysis ∪ Phydrogen ∪ Pgen; set of all tech-

nology aggregates
p

Pbat set of all battery technologies p
Pelectrolysis set of all electrolyzer technologies p
Phydrogen set of all hydrogen storage technologies p
Pgen := Pwind ∪ P therm ∪ Psolar; set of all electricity genera-

tion technologies
p

Pwind set of all wind technologies p
P therm set of all thermal technologies p
Psolar set of all solar technologies p
Q set of technologies for transmission q
S := {1, . . . , S}; set of all 2-week segments (typically,

S = 26)
s

Ts := {(s − 1)T + 1, . . . , sT}; set of all time steps in the
2-week segment s ∈ S

t

Kp := {0, . . .}; set of hours in the start-up interval for
technology p ∈ Pthermal

k

R set of cost classes, i.e., the steps in the cost–supply
curve

r

Y set of years y
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Table A.6: The variables used in the Hours-to-Decades model

symbol restriction explanation unit
wipr ≥ 0 investment in region i ∈ I in generation tech-

nology p ∈ Pgen in cost class r ∈ R
GW

wipr ≥ 0 investment in storage capacity in region i ∈ I,
technology p ∈ Pbat ∪ Phydrogen in cost class
r ∈ R

GWh

hijqr ≥ 0 investment in transmission capacity between
regions i, j ∈ I using transmission technology
q ∈ Q in cost class r ∈ R

GW

gipt ≥ 0 electricity generation in region i ∈ I, technol-
ogy p ∈ Pgen at time step t ∈ Ts, s ∈ S

GWh/h

gipt ≥ 0 battery storage in region i ∈ I, technology
p ∈ Pbat at time step t ∈ Ts, s ∈ S

GWh

gipt ≥ 0 hydrogen storage in region i ∈ I, technology
p ∈ Phydrogen at time step t ∈ Ts, s ∈ S

GWh

eijt electricity export from region i ∈ I to region
j ∈ I at time step t ∈ Ts, s ∈ S (eijt < 0
represents import to i from j)

GWh/h

e
pos
ijt ≥ 0 absolute value of electricity export from region

i ∈ I to region j ∈ I at time step t ∈ Ts, s ∈ S
GWh/h

c
cycl
ipt ≥ 0 resulting thermal cycling costs in region i ∈ I

for technology p ∈ P at time step t ∈ Ts, s ∈ S
ke/h

b
charge
ipt ≥ 0 battery charging in region i ∈ I, technology

p ∈ Pbat at time step t ∈ Ts, s ∈ S
GWh/h

b
discharge
ipt ≥ 0 battery discharging in region i ∈ I, technology

p ∈ Pbat at time step t ∈ Ts, s ∈ S
GWh/h

gactive
ipt ≥ 0 activated thermal capacity in region i ∈ I , tech-

nology p ∈ P therm at time step t ∈ Ts, s ∈ S
GW

gon
ipt ≥ 0 started thermal capacity in region i ∈ I, tech-

nology p ∈ P therm at time step t ∈ Ts, s ∈ S
GW

d
hydrogen
it ≥ 0 electricity consumption in the electrolyzer in

region i ∈ I at time step t ∈ Ts, s ∈ S
GWh/h
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Table A.7: The parameters used in the Hours-to-Decades model

symbol representation unit
S number of 2-week segments 1
T number of time steps in each 2-week segment 1
C inv

p investment cost of technology p ∈ Pgen ke/GW
C inv

p investment cost of storage capacity for technology
p ∈ Pbat ∪ Phydrogen

ke/GWh

Ch-inv
q,i,j investment cost of transmission technology q ∈ Q

between regions i, j ∈ I
ke/GW

λe
ipsr share of the investment cost for technology p ∈ P in

region i ∈ I taken by cost class r ∈ R and segment
s ∈ S

1

αnips, βn parameters used to compute λe
ipsr in iteration n of

the consensus loop
1

λh
ijqrs share of the investment cost for transmission tech-

nology q ∈ Q between regions i, j ∈ I taken by cost
class r ∈ R and segment s ∈ S

1

Crun
pt running cost of technology p ∈ P at time step t ∈ Ts,

s ∈ S
ke/GWh

C
exp
t cost of transmitting electricity at time step t ∈ Ts,

s ∈ S
ke/GWh

M e
ipr cost class potential for generation technology p ∈ P

in region i ∈ I and cost class r ∈ R
GW

Mh
ijqr cost class potential for transmission technology

q ∈ Q between regions i, j ∈ I in cost class r ∈ R
GW

Dit demand for electricity in region i ∈ I at time
t ∈ ∪s∈STs

GWh/h

D
hydrogen
i electricity demand for hydrogen in region i ∈ I GWh/h

ηp efficiency of technology p ∈ P 1
Aip regional resources based on land available in region

i ∈ I for technology p ∈ P
GW

ξmin
p minimum share of load for p ∈ P therm 1
Con

ipt start-up cost in region i ∈ I for technology
p ∈ P therm at time step t ∈ Ts, s ∈ S

ke/(GW·h)

C
part
ipt part-load cost in region i ∈ I for technology

p ∈ P therm at time step t ∈ Ts, s ∈ S
ke/GWh

Gactive
i,p,t activated thermal capacity from previous iteration

in region i ∈ I, technology p ∈ P therm at time step
t ∈ Ts, s ∈ S

GW
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Gon
i,p,t started thermal capacity from previous iteration in

region i ∈ I, technology p ∈ P therm at time step
t ∈ Ts, s ∈ S

GW

θipt weather profile for region i ∈ I of technology p ∈ P
at time step t ∈ Ts, s ∈ S

1

Cadd
pty additional, future, running cost for technology

p ∈ P at time step t ∈ Ts, s ∈ S and year y ∈ Y
ke/GWh

Zp technical lifetime of technology p ∈ P years



B Dual multiplier projection
examples

This appendix contains some examples of the dual multiplier projection dis-
cussed in Section 4.3.1. Recall that in these examples, the break point for
problem n ∈ N := {1, . . . , N} is calculated as λn := c − π̄n, and the partial
derivative is given by ∂h(λi)

∂λ = −∑n∈N min{π̄n + λi ; c}.

Example B.1. We here provide a numerical example to demonstrate why it is
necessary to add λ0 = 0 as a break point (as done in step 4 in Algorithm 2).

Let N = 4 with π̄1 = 1, π̄2 = π̄3 = π̄4 = −1, and c = 5. The corresponding
break points are λ1 = c − π̄1 = 4 and, for i = 1, 2, 3, we get λi = c − π̄i = 6.
Thus, to calculate the partial derivative for λ ∈ [0, 4), the break point λ0 := 0
needs to be added.

The partial derivative for each break point is then

∂h(λ0)
∂λ = −∑4

n=1 min{π̄n ; c} = − (min{1 ; 5}+ 3 · min{−1 ; 5}) = 2

∂h(λ1)
∂λ = −∑4

n=1 min{π̄n + λ1 ; c} = − (min{5 ; 5}+ 3 · min{3 ; 5}) = −14,

∂h(λ2)
∂λ = −∑4

n=1 min{π̄n + λ2 ; c} = − (min{7 ; 5}+ 3 · min{5 ; 5}) = −20,

and ∂h(λ3)
∂λ = ∂h(λ4)

∂λ = ∂h(λ2)
∂λ = −20.

Figure B.1 shows an illustration of the partial derivative as a function of λ,
where λ∗ = 0.5. Note that if λ0 had not been added as a break point, Algo-
rithm 2 would not catch the optimum λ∗ as the partial derivative is not positive
for the other break points. (Step 7 would set it to 0.)
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λ

∂h(λ)
∂λ

−π̄1

−π̄2,−π̄3,−π̄4

−c

−4c

λ∗

Figure B.1: The partial derivative as
a function of λ. The optimal value
λ∗ is where the partial derivative
is equal to zero. Here, this corre-
sponds to λ∗ = 0.5.

Example B.2. This example illustrates the case where λ∗ < 0 after the linear
interpolation step in Algorithm 2, which indicates that the partial derivative is
negative for all λ > 0.

Let N = 3 with π̄1 = 1, π̄2 = 3, π̄3 = 10, and c = 5. The corresponding break
points are λ1 = c− π̄1 = 4, λ2 = c− π̄2 = 2, and λ3 = c− π̄3 = −5.

We calculate the partial derivatives:

∂h(λ0)
∂λ = −∑3

n=1 min{π̄n ; c} = − (1 + 3 + 5) = −9,

∂h(λ1)
∂λ = −∑3

n=1 min{π̄n + λ1 ; c} = − (5 + 5 + 5) = −15,

∂h(λ2)
∂λ = −∑3

n=1 min{π̄n + λ2 ; c} = − (3 + 5 + 5) = −13,
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∂h(λ3)
∂λ = −∑3

n=1 min{π̄n + λ2 ; c} = − (−4− 2 + 5) = 1,

and let Figure B.2 correspond to the partial derivative as a function of λ.

λ

∂h(λ)
∂λ

−π̄1

−π̄2

−π̄3

−c

−3c

λ∗

Figure B.2: The partial derivative
as a function of λ. The optimal
value λ∗ is where the partial deriva-
tive is equal to zero. For this case,
λ∗ = −4.5, which is not feasible.

Here, we note that λ∗ = −4.5 �≥ 0. Thus, there does not exists a solution where
the partial derivative is zero for λ ≥ 0, and thus it must hold that λ∗ = 0. In
Algorithm 2, this corresponds to the last if-statement in steps 13-14.
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