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Abstract
In a networked control system (NCS), the control loop is closed through a
communication medium. This means that sensor measurements and/or con-
trol signals can be exchanged through a communication link. NCSs have
many benefits, such as wiring reduction (elimination in the case of wireless
communication), installation cost reduction, and simplification of upgrades
and restructuring. However, network congestion, impairments of the wireless
links (such as bandwidth limitations, packet losses, delays, and noises) may
degrade system performance and even cause instability. These issues have
motivated a great deal of research over the past 20 years and have given rise
to a number of approaches to prevent congestion and compensate for delays
and/or packet losses.

An interesting class of NCSs that has not received enough attention is an
NCS whose systems are uncertain and subject to state and inputs hard con-
straints. These hard constraints may stem from the system itself, its environ-
ment, or be proposed by the designer in order to guarantee safety or a certain
performance.

The contribution of this thesis is introducing a design framework that guar-
antees robust constraint satisfaction for a class of multi-agent NCSs with a
shared communication medium that is subject to bandwidth limitation and
prone to packet losses.

The proposed framework is built upon reachability analysis to determine
the communication demand for each system such that local constraints are
satisfied and scheduling techniques to guarantee satisfaction of the commu-
nication demands. The thesis explores offline and online scheduling designs
under various communication topologies, optimal control designs under state
and output feedback, and scheduling and control co-design for NCSs with hard
constraints.

Keywords: Networked Control Systems, Robust Invariance, Model Pre-
dictive Control, Communication Scheduling.
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CHAPTER 1

Introduction

Networked Control Systems (NCSs) consist of a set of spatially distributed
systems in which sensors, actuators, and controllers communicate through a
shared band-limited digital network. The use of a shared network to connect
spatially distributed elements enables a flexible structure with reduced main-
tenance and installation costs in general [1]. As a result, NCSs are used in
a broad range of areas such as wireless sensor networks [2]–[5], autonomous
driving [6], [7], remote surgery [8], [9], and industrial automation [10], [11],
to name a few. However, imperfections of the communication link, such as
bandwidth limitation and packet loss, may degrade the performance or cause
instability [12]. Therefore, it is necessary to consider in control design the
communication link imperfections and the Medium Access Control (MAC)
mechanism employed. There are typically two types of MAC mechanisms: (a)
random access (event-triggered), in which systems get access to the network
randomly; and (b) scheduling (time-triggered), which determines which sys-
tem gets access to the network at each time slot [13]. While event-triggered
schemes may reduce the communication frequency in some cases, assessing
their performance is generally challenging. Furthermore, scheduling schemes
may perform better when the effect of the shared communication network is
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Chapter 1 Introduction

considered explicitly [14]. Moreover, constraint satisfaction is hard to guar-
antee, if possible at all, under random access schemes.

NCSs composed of systems with hard state and input constraints constitute
a class that has been largely overlooked. State and input constraints may arise
from physical limitations or control design to guarantee safety or performance
requirements. This class of NCSs has applications in safety-critical systems,
such as autonomous driving. Control and communication schedule co-design
for constrained NCSs is the main topic of this thesis.

1.1 Research Question
The work presented in this thesis has specifically focused on addressing the
following research question:

Research Question: How to co-design communication schedule and con-
trol for perturbed multi-agent NCSs with a lossy shared communication medium
to ensure satisfaction of state and input constraints for all systems?

This primary research question can be further broken down into several
sub-questions, considering a multi-agent NCS with a shared communication
medium and constrained perturbed systems:

• Q1: How to determine the schedulability of the network when stabilizing
feedback policies are applied to each system?

• Q2: If the network is found to be schedulable (as answered in Q1), how
can a feasible schedule be obtained?

• Q3: How can Q1 and Q2 be addressed in the presence of a lossy com-
munication medium?

• Q4: How does control design influence schedulability?

• Q5: What are the methodologies to design optimal control policies for
the systems to enable schedulability?

• Q6: How can optimal scheduling and control be co-designed effectively?

To answer Q1-Q6, we employ reachability analysis, Model Predictive Control
(MPC), and various scheduling techniques and findings from existing litera-
ture, which are briefly introduced in the following subsection.
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1.1 Research Question

Constrained Networked Control Systems

MPC, initially discovered in the 1960s and later rediscovered in the 1970s [15],
stands as the primary systematic control design technique explicitly account-
ing for state and input constraints. A more recent development is the robust
version of MPC, known as tube-based MPC, which ensures constraint satisfac-
tion in the presence of bounded disturbances [16], [17]. Further advancements
have been made in [18], where control design incorporates perturbed output
measurements. However, these outcomes cannot be directly applied to NCSs
due to potential feedback loop disruptions caused by network imperfections,
such as delays and packet losses.

In the context of unconstrained linear systems, the co-design of control and
communication schedules has been explored in [19] using the rollout approach.
This method finds optimal control inputs and transmission decisions over a
horizon, assuming that the optimal control policy is periodically employed
after the horizon. The approach is extended in [20] to address state and input
constraints. While investigations in [19], [20] consider a static network, where
a fixed communication budget is used over a finite time, the rollout approach
has been applied in [21], [22] under a traffic shaping scheme for communication,
also known as a token-bucket network. In this dynamic setup, communication
resources can be accumulated by not transmitting. The proposed rollout
scheme in [22] is subsequently extended to handle constrained systems with
bounded disturbances [23] through the use of the so-called multi-step, or H,
robust control Invariant (RCI) sets. The multi-step RCI set ensures constraint
satisfaction during intervals when no transmission is triggered. Building upon
these principles, the Rollout scheme and H-RCI set concept are more recently
utilized in [24] for output feedback design, an extension of robust output
feedback MPC in [18]. While packet loss has been considered in [25], the
focus was limited to undisturbed constrained linear systems.

The preceding research studies explore various aspects of perturbed con-
strained NCSs. However, they are limited to examining communication rates
and lack proposals for a medium access scheme in multi-agent scenarios. Ad-
ditionally, these studies have not addressed the issue of robust constraint
satisfaction in the presence of packet loss.
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Chapter 1 Introduction

Scope
This thesis centers around the co-design of control and communication sched-
ules for multi-agent NCSs utilizing a shared and lossy communication medium.
The systems are generally regarded as discrete linear time-invariant (LTI) with
bounded process and measurement disturbances. Notably, the thesis does not
delve into stochastic scenarios; rather, its primary objective is to guarantee
robust satisfaction of state and input constraints.

Contributions
The main contributions of this thesis are as follows:

• Necessary and sufficient conditions are established for the existence of a
feasible communication schedule for perturbed constrained multi-agent
NCSs and heuristic approaches are proposed to finding feasible schedules
under various communication topology scenarios, including those with
packet loss (Paper A, Paper B, Paper C);

• The thesis presents optimal robust control designs, based on accurate
state or perturbed output measurements, for perturbed constrained multi-
agent NCSs. These designs enable schedulability by minimizing the
communication demand for each system (Paper D, Paper F);

• Online joint communication schedule and control design method are
introduced for constrained multi-agent NCSs (Paper E);

• The thesis proposes an optimal constraint decoupling technique for cou-
pled multi-agent NCSs to enable schedulability (Paper G).

1.2 Thesis Outline
This thesis is divided into two parts. Part I comprises six chapters that lay
the groundwork for the research. In Chapter 1, the research question is intro-
duced, along with an overview of relevant studies, the scope of the research,
and the thesis outline. Chapter 2 revisits technical definitions and results on
MPC, reachability, invariance, and scheduling, providing the essential tech-
nical background for the subsequent chapters. Chapter 3 presents relevant
background and results on scheduling techniques utilized in the thesis, while
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1.2 Thesis Outline

Chapter 4 delves into the control techniques and results used. The summary of
the included publications in Part II is presented in Chapter 5, and Chapter 6
offers concluding remarks, along with several suggestions for future research
directions.

Part II comprises seven pertinent publications that contribute to addressing
the research question posed in this thesis.
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CHAPTER 2

Technical Background

This chapter serves as an introduction to MPC and two scheduling techniques
used in the thesis. The definitions and results presented here lay the founda-
tion of the rest of the thesis. In the first section, standard MPC, recursive
feasibility, robust invariance, robust MPC, and robust output feedback MPC
are reviewed. The second section focuses on the Pinwheel Problem (PP) and
the Windows Scheduling Problem (WSP) from the scheduling literature, along
with various available results on the schedulability of these problems.

2.1 Model Predictive Control
This section introduces MPC, recursive feasibility, robust invariance, robust
MPC, and robust output feedback MPC. Interested reader is referred to [26]
for a comprehensive reading.

Standard Model Predictive Control
Dynamic optimization is a widely used tool for decision-making across a di-
verse range of applications. These applications encompass tasks like deter-

9



Chapter 2 Technical Background

mining the most fuel-efficient flight path for an airplane between two cities or
identifying the most cost-effective approach to operate a chemical plant. Such
problems can be formulated and solved as dynamic optimization problems.
Dynamic optimization is often solved based on a dynamic model, i.e.,

x(k + 1) = f(x(k), u(k)), x(0) = x0 (2.1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, x0 is the initial
state, and k ∈ Z+ represents time in the discrete domain. The cost function
for the optimization can be expressed as

min
u(0),...,u(N−1)

N−1∑
i=0

q(x(i), u(i)) + p(x(N)) (2.2)

where q(x, u) and p(x) are the stage and terminal costs, respectively. Note
that the cost function is defined over the finite horizon N . In order to find
the optimal decisions, one can solve the problem

min
u(0),...,u(N−1)

N−1∑
i=0

q(x(i), u(i)) + p(x(N)) (2.3a)

x(k + 1) = f(x(k), u(k)), ∀k ∈ {0, 1, . . . , N − 1} (2.3b)
h(x(k), u(k)) ≤ 0, ∀k ∈ {0, 1, . . . , N − 1} (2.3c)

x(0) = x0 (2.3d)

where inequities (2.3c) represents state and input constraints. Solving the
optimization problem (2.3) yields the optimal decisions, i.e., u⋆(0), . . . , u⋆(N−
1). However, usually not all optimal decisions are applied to the actual system.
In order to deal with model inaccuracies, Receding Horizon Control (RHC)
can be used as follows:

1. solve (2.3) and find optimal decisions u⋆(0), . . . , u⋆(N − 1),

2. apply u⋆(0) to the system and discard u⋆(1), . . . , u⋆(N − 1),

3. set x0 as the measured state value at the following time instant,

4. go to step 1.

10



2.1 Model Predictive Control

The RHC scheme incorporates a closed-loop feedback mechanism that en-
hances the robustness of the calculated optimal decisions and mitigates model
inaccuracies to a certain degree. Instead of solving the optimization problem
(2.3) repeatedly, one might be able to solve it explicitly, i.e., u⋆ = g(x0), un-
der some simplifying assumptions, which is beyond the scope of this thesis.

While the RHC scheme addresses model mismatches through repeated op-
timizations, closed-loop stability of the system is not guaranteed (stability is
not discussed in this thesis). Furthermore, while the optimization problem
(2.3) may be feasible for the initial state x(0), there is no guarantee, in gen-
eral, that admissible optimizers exist along the closed-loop state trajectory.
The latter issue is known as recursive feasibility, which is discussed in the
following subsection.

Invariance and Recursive Feasibility
In the RHC scheme, a constrained optimization problem is solved recursively.
The optimization problem should be initially feasible, otherwise constraint
softening may be applied when appropriate, see [27]. Given initial feasibility,
recursive feasibility can be guaranteed using invariant sets, as described next.

Consider an autonomous discrete linear time invariant (LTI) system, de-
scribed by

x(t + 1) = Ax(t) (2.4a)
x(t) ∈ X , ∀t ≥ 0 (2.4b)

where X is a polyhedron that represents the state’s admissible set.
Definition 1 (Positive Invariant Set): Set S ⊆ X is a positively invariant

set for system (2.4) if

x(0) ∈ S =⇒ x(t) ∈ S, ∀t ≥ 0. (2.5)

Definition 2 (Maximal Positive Invariant Set): Consider {S} as the set
of all invariant sets for system (2.4). Then, S∞ is the maximal positively
invariant set for the system if S∞ ∈ {S} and

S ⊆ S∞, ∀S ∈ {S}. (2.6)

11



Chapter 2 Technical Background

Set S∞ can be determined using Algorithm 3.1 in [28] (or similarly Algo-
rithm 11.1 in [26]). While set S∞ is not finitely determined in general, it
becomes finitely determined under some conditions.

Theorem 1 (slightly rephrased Theorem 4.1 in [28]): Suppose the following
assumptions hold: i) max |λi(A)| < 1, ii) set X is fully dimensional and
bounded, iii) set X includes the origin in its interior. Then, set S∞ is finitely
determined.

Invariant sets can also be defined for non-autonomous systems. Consider
the following LTI system, described by

x(t + 1) = Ax(t) + Bu(t) (2.7a)
x(t) ∈ X , ∀t ≥ 0 (2.7b)
u(t) ∈ U , ∀t ≥ 0, (2.7c)

where sets X and U are polyhedrons that represent the state and input ad-
missible sets.

Definition 3 (Control Invariant Set): Set C ⊆ X is a control invariant set
for system (2.7) if

x ∈ C =⇒ ∃u ∈ U s.t. (Ax + Bu) ∈ C. (2.8)

Definition 4: [Maximal Control Invariant Set] Consider {C} as the set of
all control invariant sets for system (2.7). Then, C∞ is the maximal control
invariant set for the system if C∞ ∈ {C} and

C ⊆ C∞, ∀C ∈ {C}. (2.9)

One can use Algorithm 11.2 in [26] for computation of C∞. In general, this
algorithm may not be finitely determined and the approximated set computed
iteratively in the algorithm may not even converge to C∞. Convergence and
finite determinability of C∞ is guaranteed in [29] under several restrictive
conditions. For example, in cases where control input u(t) is unbounded.
However, as conjectured by the study, set C∞ may be finitely determined under
a much more general setting. In cases where C∞ is not finitely determined,
one can use an invariant approximation of the set instead, which is finitely
determined under certain conditions [30].

Given a control invariant set C for system (2.7), one can modify optimization
problem (2.3) used in the RHC scheme to guarantee recursive feasibility as
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follows:

min
u(0),...,u(N−1)

N−1∑
i=0

q(x(i), u(i)) + p(x(N)) (2.10a)

x(k + 1) = Ax(k) + Bu(k), ∀k ∈ {0, 1, . . . , N − 1} (2.10b)
x(k) ∈ X , ∀k ∈ {0, 1, . . . , N − 1} (2.10c)
u(k) ∈ U , ∀k ∈ {0, 1, . . . , N − 1} (2.10d)

x(N) ∈ C (2.10e)
x(0) = x0. (2.10f)

Optimization problem (2.10) is recursively feasible due to the terminal con-
straint (2.10e). Assume that (2.10) is initially feasible and consider the follow-
ing sequence as its optimizer, u⋆(0), . . . , u⋆(N−1). After applying u⋆(0) to the
system, one feasible solution for the next iteration is u⋆(1), . . . , u⋆(N − 1), ū,
where ū ∈ U is defined such that (Ax(N) + Bū) ∈ C. Note that the control
input ū exists since C is control invariant. Interested reader is referred to [31],
[32] for more details on recursive feasibility and stability.

While recursive feasibility can be guaranteed using control-invariant sets, as
described above, the dynamical model of the system may be inaccurate, and
recursive feasibility may not hold in the presence of unknown perturbations.
This issue is addressed next.

Robust MPC
In this subsection, a robust MPC scheme is recalled, which guarantees stability
and recursive feasibility in presence of bounded perturbations.

Consider the following system

x(t + 1) = Ax(t) + Bu(t) + w(t), ∀t ≥ 0 (2.11a)
x(t) ∈ X , u(t) ∈ U , w(t) ∈ W, ∀t ≥ 0, (2.11b)

where w(t) is an unknown disturbance and sets X , U , and W are bounded
polyhedrons which include the origin within their interiors.

In order to tackle recursive feasibility, robust invariance is recalled next.
Definition 5 (Robust Positive Invariant Set): Set S ⊆ X is a robust pos-

itively invariant (RPI) set for system (2.11) with B = 0, if

x(0) ∈ S =⇒ x(t) ∈ S, ∀w(t) ∈ W, ∀t ≥ 0. (2.12)

13
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Definition 6 (Maximal Robust Positive Invariant Set): Consider {S} as
the set of all invariant sets for system (2.11) with B = 0. Then, S∞ is the
maximal robust positively invariant (MRPI) set for the system if S∞ ∈ {S}
and

S ⊆ S∞, ∀S ∈ {S}. (2.13)

Set S∞ can be determined using Algorithm 11.4 in [26]. While set S∞ is
not finitely determined in general, it becomes finitely determined under some
conditions. For instance, when eigenvalues of A are within the unitary circle.
Also note that the algorithm might return an empty set, which implies that
no RPI set for the system exists.

Definition 7 (minimal Robust Positive Invariant Set): Consider {S} as
the set of all positively invariant sets for system (2.11) with B = 0. Then,
S0 is the minimal robust positively invariant (mRPI) set for the system if
S0 ∈ {S} and

S0 ⊆ S, ∀S ∈ {S}. (2.14)

The mRPI set, described by

S0 =
∞⊕

i=0
AiW, (2.15)

is generally impossible to explicitly characterize, see [33]. While the explicit
characterization of S0 is only possible when A is nilpotent [34], one can use
invariant outer-approximations of the mRPI set, see [33], [35].

Definition 8 (Robust Control Invariant Set): Set C ⊆ X is a robust control
invariant (RCI) set for system (2.11) if

x ∈ C =⇒ ∃u ∈ U s.t. (Ax + Bu + w) ∈ C, ∀w ∈ W. (2.16)

Definition 9 (Maximal Robust Control Invariant Set): Consider {C} as
the set of all control invariant sets for system (2.11). Then, C∞ is the maximal
robust control invariant (MRCI) set for the system if C∞ ∈ {C} and

C ⊆ C∞, ∀C ∈ {C}. (2.17)

Set C∞ can be determined using Algorithm 11.5 in [26]. In general, MRCI
set may not be finitely determined, as described following Definition 4.

An important problem that arises in robust MPC is that common definition
of stability is not applicable to the states due to existence of a persistent
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unknown disturbance [17]. One alternative way of defining stability in this
case is exponential convergence of the state to an RPI set Z. This set may
be regarded as the origin of the uncertain system and stability can be proved
in this case using a Lyapunov function whose value is zero for all states in Z.
This notion of stability is used in a robust MPC framework that is described
next based on the results in [17].

Consider system (2.11) and a constant feedback gain K such that AK =
A + BK is stable. Also consider RPI set Z for the system under feedback
policy u(t) = Kx(t). The robust invariance of Z implies that

AKZ ⊕W ⊆ Z. (2.18)

Invariance of set Z can be used to bound the error between the known and
unknown parts of the dynamic as described next. Consider an unperturbed
pair of the system (2.11), defined as

x̄(t + 1) = Ax̄(t) + Bū(t). (2.19)

Considering a control input defined by

u(t) = ū(t) + K(x(t)− x̄(t)), (2.20)

and an initial condition that satisfies x(0) ∈ x̄(0) ⊕ Z, one can prove that
x(t) ∈ x̄(t) ⊕ Z for all t ≥ 0 using (2.18), see Proposition 1 in [17]. As a
result, a suboptimal MPC problem for the system (2.11) can be formulated
as

min
x̄(0),ū(0),...,ū(N−1)

N−1∑
i=0

q(x̄(i), ū(i)) + p(x̄(N)) (2.21a)

x̄(k + 1) = Ax̄(k) + Bū(k), ∀k ∈ {0, 1, . . . , N − 1} (2.21b)
x̄(k) ∈ X ⊖ Z, ∀k ∈ {0, 1, . . . , N − 1} (2.21c)
ū(k) ∈ U ⊖KZ, ∀k ∈ {0, 1, . . . , N − 1} (2.21d)

x̄(N) ∈ Xf , (2.21e)
x(0) ∈ x̄(0)⊕Z, (2.21f)

where the terminal set Xf satisfies

AKXf ⊂ Xf , Xf ⊂ X ⊖ Z, KXf ⊂ U ⊖KZ. (2.22)
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Inclusions in (2.22) are used to guarantee recursive feasibility of the opti-
mization problem (2.21). All points in Xf should also satisfy an additional
technical condition to ensure stability, see [17].

In the optimization problem (2.21), nominal state and input constraints
are tightened, i.e., X ⊖ Z and U ⊖ KZ instead of X and U . However, the
nominal system is not perturbed and its recursive feasibility is guaranteed
through the choice of the terminal set Xf . This results in robust satisfaction
of x(t) ∈ X based on the following argument. Control input (2.20), coupled
with the initial condition (2.21f), implies that x(t) ∈ x̄(t) ⊕ Z for all t ≥ 0.
This in turn implies that x(t) ∈ X for all t ≥, since x̄(t) ∈ X ⊖ Z and
(X ⊖ Z)⊕Z ⊆ X .

An innovating idea used in the optimization problem (2.21) is that the initial
nominal state x̄(0) is a free variable, which enables the proof of stability and
also eliminates some restrictions on the terminal set. Also note that state x(t)
is restricted to x̄(t)⊕Z, a tube of trajectories whose center, i.e., x̄(t), can be
controlled to a certain extent through the choice of x̄(0) at each iteration.

While the optimization problem (2.21) coupled with control input (2.20) can
be used to design a robust MPC that is recursively feasible, exact measurement
of the current state is assumed to be available at each time instant. To relax
this assumption, a robust MPC scheme is presented next, which is designed
based on perturbed output measurements.

Robust Output Feedback MPC

In this subsection, a robust output feedback MPC scheme is recalled, which
guarantees stability and recursive feasibility given perturbed output measure-
ments.

Consider the following system

x(t + 1) = Ax(t) + Bu(t) + w(t), ∀t ≥ 0 (2.23a)
y(t) = Cx(t) + v(t) (2.23b)
x(t) ∈ X , u(t) ∈ U , w(t) ∈ W, v(t) ∈ V, ∀t ≥ 0, (2.23c)

where v(t) and w(t) are unknown disturbances and sets X , U , W, and V are
bounded polyhedrons which include the origin within their interiors. Pairs
(A, B) and (A, C) are assumed to be controllable and observable, respectively.
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A simple Luenberger observer can be used to estimate the state as follows:

x̂(t + 1) = Ax̂ + Bu(t) + L(y(t)− ŷ(t)), ŷ(t) = Cx̂(t). (2.24)

Consider the state estimation error x̃(t) defined by x̃(t) := x(t)− x̂(t). Then,
the error dynamics can be described by

x̃(t + 1) = (A− LC)x̃(t) + (w(t)− Lv(t)). (2.25)

Assuming that all eigenvalues of (A−LC) are within the unitary circle, an RPI
set S̃ for system (2.25) exists that can be finitely determined. Consequently,
x̃(0) ∈ S̃ implies that x̃(t) ∈ S̃ for any v(t) ∈ V and w(t) ∈ W, for all t ≥ 0.
Stated differently, x̂(t)⊕S̃ represents a tube of trajectories which encapsulates
the state trajectory x(t). Consequently, one can guarantee x(t) ∈ X indirectly
by restricting x̂(t) to X ⊖ S̃, since

x(t) ∈ x̂(t)⊕ S̃ ⊆ (X ⊖ S̃)⊕ S̃ ⊆ X . (2.26)

Using the results from the previous subsection, one can formulate a robust
MPC such that x̂(t) ∈ X ⊖ S̃ and u(t) ∈ U in order to design a robust output
feedback MPC. Consider the nominal system (2.19) and nominal state error
e(t) = x̂(t) − x̄(t), i.e., the difference between the estimated state and the
nominal state. Then, one can design the control input as in (2.20), i.e.,

u(t) = ū(t) + Ke(t), (2.27)

where eigenvalues of (A + BK) are inside the unitary circle. The state esti-
mator dynamics can be represented by

x̂(t + 1) = Ax̂(t) + Bū(t) + BKe(t) + LCx̃(t) + Lv(t), (2.28)

with the nominal state error dynamics described by

e(t + 1) = (A + BK)e(t) + LCx̃(t) + Lv(t). (2.29)

Note that term LCx̃(t)+Lv(t) represents a bounded disturbance to the nom-
inal state error, since it is within the set LCS̃ ⊕LV. Since (A+BK) is stable,
an RPI set S̄ for system (2.29) exists that can be finitely determined. As a
result, x̂(0) ∈ x̄(0) ⊕ S̄ implies that x̂(t) ∈ x̄(t) ⊕ S̄ for all t ≥ 0. Therefore,
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a suboptimal output feedback MPC for the system (2.23) can be formulated
by solving

min
x̄(0),ū(0),...,ū(N−1)

N−1∑
i=0

q(x̄(i), ū(i)) + p(x̄(N)) (2.30a)

x̄(k + 1) = Ax̄(k) + Bū(k), ∀k ∈ {0, 1, . . . , N − 1} (2.30b)
x̄(k) ∈ X ⊖ (S̄ ⊕ S̃), ∀k ∈ {0, 1, . . . , N − 1} (2.30c)
ū(k) ∈ U ⊖KS̄, ∀k ∈ {0, 1, . . . , N − 1} (2.30d)

x̄(N) ∈ Xf , (2.30e)
x̂(0) ∈ x̄(0)⊕ S̄, (2.30f)

where x(0) ∈ x̃(0)⊕S̃ and Xf is a positive invariant set for the nominal system
which satisfies

AKXf ⊂ Xf , Xf ⊂ X ⊖ (S̄ ⊕ S̃), KXf ⊂ U ⊖KS̄. (2.31)

States in Xf should also satisfy an additional condition for stability of the
recalled scheme, see Theorem 1 in [18].

Note that the optimization problem (2.30), coupled with the state estimator
(2.24), is recursively feasible and satisfaction of the state and input constraints
is guaranteed, i.e., x(t) ∈ X and u(t) ∈ U for all t ≥ 0.

Multi-step Robust Invariance
In NCSs, a system’s feedback-loop may not be closed at all time instants. In
such cases, one can still guarantee invariance, and therefore satisfaction of
the state and input constraints, through H-step invariant sets [36], defined as
follows.

Definition 10: Set S is an H-step RPI set for the system (2.11) if S ⊆ X ,

KS ⊆ U , and

(A + BK)iS ⊕
i−1⊕
j=0

AjW ⊆ S, ∀i ∈ {1, . . . , H}. (2.32)

Existence of an H-step RPI set for the system (2.11) implies that the feed-
back policy u(t) = Kx̄(t), with

x̄(t + 1) =
{

(A + BK)x̄(t), open-loop
x(t + 1), closed-loop

, (2.33)
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guarantees invariance of S, and therefore satisfaction of the state and input
constraints, assuming that x̄(0) = x(0) ∈ S and the feedback loop is closed at
least once during each H consecutive time instants for all t ≥ 0.

2.2 Scheduling
This section introduces two scheduling problems from the literature: the Pin-
wheel Problem (PP), and the Windows Scheduling Problem (WSP). These
specific scheduling problems serve as the foundation for communication sched-
ule design in this thesis.

Pinwheel Problem
The PP emerged from communication of satellites with a ground station [37].
The problem is formulated as follows.

Problem 1 (PP). Consider a set of positive integers I = {α1, . . . , αq}. Infi-
nite sequence (schedule) S of labels {1, . . . , q} is a feasible schedule for instance
I if

i ∈ {S(j), S(j + 1), . . . , S(j + αi − 1)}, ∀j ≥ 1, ∀i ∈ {1, 2, . . . , q}. (2.34)

Investigation of decidability of the PP in general appears to be intractable
due to the infinite length of the schedule. Fortunately, the decision can be
restricted to periodic schedules with a limited length due to the following
result.

Theorem 2 (Theorem 2.1 in [37]): If instance I = {α1, . . . , αq} is schedu-
lable, as specified by (2.34), then instance I has a cyclic schedule whose period
is no greater than

∏q
i=1 αi.

The above theorem suggests that the PP is decidable since exhaustive search
over periodic schedules can be performed to find a feasible schedule if it exists.
In order to categorize different instances of the PP, consider density function

ρ(I) =
q∑

i=1

1
αi

. (2.35)

Since each label i should appear at least once during each αi consecutive
elements of the schedule, 1

αi
represents the minimum portion of the schedule’s
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elements which has to be equal to i. As a result, any instance I with ρ(I) > 1
is not schedulable since more than 100% of the schedule should be allocated
to the labels {1, . . . , q}, see Theorem 2.3 in [37].

It is shown that all instances with ρ(I) ≤ 0.75 are schedulable and the upper
bound for schedulability is conjectured to be 5

6 [38]–[40]. There indeed exists
instances with 5

6 ≤ ρ(I) ≤ 1 that are schedulable and instances that are not
schedule, for example instance I1 = {2, 3, 6} is not schedulable while instance
I2 = {3, 3, 3} is schedulable.

Windows Scheduling Problem
The WSP is a generalized version of the PP, where mc number of communi-
cation channels are available instead of only one [41], [42]. One can formulate
the WSP as follows.

Problem 2. Consider a set of positive integers I = {α1, . . . , αq} and mc com-
munication channels. Infinite sequence (schedule) of ordered tuples C is a fea-
sible schedule for the problem instance {mc, I} if C(t) = (c1,t, c2,t, . . . , cmc,t)
is such that

∃j ∈ {1, . . . , mc}, ∃k ∈ {t, . . . , t + αi − 1} s.t. cj,k = i, (2.36)

for all i ∈ {1, . . . , q} and for all t ≥ 1.

Notice that the WSP reduces to the PP when one communication channel
is available, i.e., mc = 1. Some of the results regarding schedulability of the
PP can be extended to the WSP. For example, the necessary condition on the
density function for schedulability of an instance of the PP, i.e., ρ(I) ≤ 1, can
be extended to ρ(I) ≤ mc, which is the necessary condition for schedulability
of an instance of the WSP. A heuristic for finding a feasible schedule for an
instance of the WSP is to break instance I into mc instances I1, . . . , Imc such
that

∪mc
i=1Ii = I, ρ(Ii) ≤ 0.75, ∀i ∈ {1, . . . , mc}. (2.37)

Note that (2.37) describes a Bin Packing Problem (BPP), see [42], and if a
feasible solution for (2.37) exists, then one can find a feasible schedule for the
WSP as explained in the following. Consider Ii as an instance of the PP and
find a corresponding feasible schedule Si for that instance; then schedule C
with

C(t) = (S1(t), . . . , Smc(t)), (2.38)
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is a feasible schedule for the instance {mc, I} of the WSP.
Note that finding a feasible schedule for the WSP through the BPP results

in a so called perfect schedules. A perfect schedule, also known as a schedule
with no migration, is a schedule where each system i is only scheduled through
one of the communication channels. For example, in (2.37), all systems in
instance Ij are scheduled through channel j. One of the open problems stated
in [42] is whether migration is helpful? i.e., is there an instance of the WSP
for which a feasible schedule exists but a perfect schedule does not?

2.3 Discussion
In this chapter, various results from control theory for constrained perturbed
systems and a specific class of scheduling problems have been recalled. The
first section presents the available control design techniques for closed-loop
systems. In NCSs, the feedback loop is not always closed at all time instants,
necessitating scheduling techniques to ensure frequent execution of each sys-
tem’s feedback loop. Thus, the second section introduces two scheduling prob-
lems to guarantee the timely closure of each system’s feedback loop and avoid
violations of state and input constraints. The subsequent two chapters address
the utilization of these control and scheduling techniques in an NCS setup.
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CHAPTER 3

Scheduling Design for Networked Control Systems

This chapter encompasses the scheduling-related contributions of the thesis,
as proposed in Paper A, Paper B, Paper C, and Paper E. We introduce the
concept of the safe time interval, which specifies the communication demand
of a given system. The set of safe time intervals defines an instance of a
scheduling problem, dependent on the network’s topology, which we discuss
throughout this chapter. In Section 3.1, we present offline scheduling ap-
proaches for different network topologies and provide necessary and sufficient
conditions for schedulability. Furthermore, we demonstrate the design of on-
line schedules that enhance performance based on current state measurements
in Section 3.2.

3.1 Offline Scheduling

In this section we specify the communication demand for each system in
an NCS and discuss our offline scheduling results for various communication
topologies.
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Safe Time Interval
Consider a multi-agent NCS, whose systems are described by

xi(t + 1) = Aixi(t) + Biui(t) + wi(t), ∀t ≥ 0 (3.1a)
xi(t) ∈ Xi, ui(t) ∈ Ui, wi(t) ∈ Wi, ∀t ≥ 0, (3.1b)

where pair (Ai, Bi) are controllable, sets Xi, Ui, Wi are compact polytopes
which include zero in their interiors, and wi(t) is an unknown disturbance.

Suppose that these systems have to share a communication medium, and
only a subset of systems can transmit their state measurements to their cor-
responding controllers at each time instant. This implies that each system
may evolve open-loop, and ensuring the satisfaction of its state and input
constraints during the open-loop time intervals is not trivial.

Consider the set Si,∞ as the MRPI set for the system (3.1) with ui(t) =
Kixi(t). Furthermore, consider the following feedback policy

ui(t) = Kix̂i(t), x̂i(t + 1) =
{

(Ai + BiKi) x̂i(t), if disconnected
xi(t + 1), if connected

, (3.2)

where x̂i(t) is the current state estimate, calculated in the controller, and
x̂i(0) = xi(0). The state estimate is updated with the real value of the state
at time instant t if system i gets access to the communication medium at this
time instant. Consequently, the system may evolve open-loop during some
time intervals. We define the safe time interval αi for the system as

αi = max{t : (Ai + BiKi)tSi,∞ ⊕
t−1⊕
j=0

Aj
iWi ⊆ Si,∞}, (3.3)

which is the longest time interval when system i can evolve in open-loop
while its state remains within its MRPI set Si,∞, assuming that the system’s
state belongs to this set initially. In another words, one can guarantee robust
invariance, and hence satisfaction of the state and input constraints, of system
i by guaranteeing that the system receives at least one state measurement
during each αi consecutive time instants.

Remark 1. Safe time interval αi defined in (3.3), also similarly defined in
papers A-C, is essentially the same as H, if maximized over the MRPI set
Si,∞, in (2.32). In Paper C through Paper G, the definition of αi may differ,
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3.1 Offline Scheduling

but the underlying concept remains consistent: it represents the longest time
interval for which system i can evolve in open-loop while its state remains
within a specified invariant set.

Single Channel
Consider a multi-agent networked control system, with q systems each of which
described by (3.1). Furthermore, consider a shared communication medium
with a single communication channel, i.e., only one system can communicate
at each time instant.

Theorem 3: [Theorem 1 in Paper A, rephrased] Consider I = {α1, . . . , αq}
as the set of safe time intervals for the systems. The communication schedul-
ing problem of the described NCS is equivalent to the PP with instance I.

Theorem 3 connects the scheduling for the described NCS to the PP. A
feasible schedule for instance I of the PP is such that each label i appears
at least once during any time interval with length αi. The same schedule
is feasible for the communication scheduling problem, since each system i

receives a state measurement at least once during each αi consecutive time
instants, i.e., the feedback loop for each system is closed frequently enough
and robust invariance is preserved.

Since we connected the scheduling problem for the described NCS to the PP,
we can use the available results [37]–[40], as recalled in the previous chapter,
to find a feasible communication schedule.

Multi-Channels
Consider the described multi-agent NCS, with a shared communication medium
which includes mc ≥ 1 communication channels. In this case, mc systems can
receive their state measurements at each time instant.

Theorem 4: [Theorem 3 in Paper C, rephrased] Consider I1 = {α1, . . . , αq}
as the set of safe time intervals for the systems. Communication scheduling
for the described NCS is equivalent to the WSP with instance I2 = {mc, I1}.

Theorem 4 connects the scheduling for the described NCS with the WSP
and one can use available results on the WSP to find a communication schedule
for the described NCS.

Next, we provide additional results on the WSP, which are proposed in
Paper C. Consider I1 = {mc, {α1, . . . , αq}} as an instance of the WSP.
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Theorem 5: [Theorem 4 in Paper C, rephrased] One can find a feasible
schedule for instance I1 of the WSP by finding a feasible schedule for instance
I2 = {mcα1, . . . , mcαq} of the PP.

Given feasible schedule CP for instance I2 of the PP, a feasible schedule for
instance I1 of the WSP can be constructed as follows:

C(t) = (cP(mct−mc + 1), . . . , cP(mct)), t ≥ 1. (3.4)

Note that Theorem 5 provides a sufficient condition, i.e., if no feasible sched-
ule for instance I2 of the PP exists, a feasible schedule for instance I1 of the
WSP may still exist.

Lemma 1: [Lemma 3 in Paper C, rephrased] A feasible perfect schedule
for instance I1 of the WSP exists only if a feasible schedule for instance I2 =
{mcα1, . . . , mcαq} of the PP exists.

Lemma 1 suggests that existence of an admissible solution for instance I2 of
the PP is a necessary condition for existence of a perfect schedule for instance
I1 of the WSP.

Remark 2. In order to find a feasible schedule for an instance of the WSP,
one can restrict the search space to perfect schedules and solve a BPP to break
down the WSP into mc number of PPs, see [42]. However, we advocate for
solving the WSP without limiting the search space to perfect schedules. To
achieve this, one can first find a feasible schedule for instance I2 of the PP and
then obtain an admissible schedule for the WSP using relation (3.4). Notably,
this approach requires solving only one instance of the PP.

Our proposed heuristic for finding a feasible schedule for the WSP performs
better than the one presented in [42] because our method will find a solution
if a perfect schedule exists for the WSP, as demonstrated in Lemma 1. A
material question, also mentioned as one of the open problems in [42], is
whether restricting the scheduling search to only perfect schedules is limiting.
If the answer to this question is affirmative, then does our proposed approach
identify feasible schedules for the WSP even when no perfect schedule exists?
These questions are addressed through the subsequent examples.

Example 1 (Example 4 from Paper C, rephrased). Consider an instance of
the WSP specified by

{mc, {αi}} = {2, {2, 3, 4, 5, 5, 5, 7, 14}}. (3.5)
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In order to find a perfect schedule, one can first compute all possible alloca-
tions of the labels into two channels and verify that this instance of the WSP
admits no perfect schedule. However, a schedule with the following cyclic part
is feasible for instance {mcαi} of the PP:

2, 3, 4, 1, 7, 6, 2, 1, 5, 3, 2, 1, 4, 3, 6, 1, 2, 5, 7, 1, 4, 3, 2, 1, 6, 8, 5, 1.

The above schedule can be used to construct an admissible schedule for the
WSP, as instructed in (3.4), with the following cyclic part:

Cr =(2, 3), (4, 1), (7, 6), (2, 1), (5, 3), (2, 1), (4, 3),
(6, 1), (2, 5), (7, 1), (4, 3), (2, 1), (6, 8), (5, 1). (3.6)

Example 1 illustrates that perfect scheduling is, indeed, restrictive. Sec-
ondly, it showcases that the proposed heuristic can identify a feasible sched-
ule, even if it is non-perfect, when such a schedule exists. Notice that labels
5 and 6 appear in both channels in (3.6). However, it is important to note
that the existence of a solution for the proposed heuristic is not a necessary
condition for the existence of a feasible schedule for an instance of the WSP,
as illustrated by the following example.

Example 2 (Example 3 from Paper C, rephrased). Consider an instance of
the WSP specified by

{mc, {αi}} = {2, {2, 3, 3, 4, 5, 5, 10}}. (3.7)

While there is no feasible schedule for instance {mcαi} of the PP, a schedule
with the cyclic part

Cr =(1, 2), (3, 4), (1, 6), (2, 5), (1, 3), (4, 7), (1, 2), (3, 6), (1, 5), (2, 4),
(1, 3), (2, 4), (1, 6), (3, 5), (1, 2), (4, 7), (1, 3), (2, 6), (1, 5), (3, 4) , (3.8)

is feasible for instance {2, {2, 3, 3, 4, 5, 5, 10}} of the WSP. Notice that (3.8) is
not a perfect schedule, see labels 2, 3, and 4.

Proposition 1 (Proposition 4 from Paper C, rephrased): Given an in-
stance I = {mc, {αi}} of the WSP, ρ(I) ≤ 0.75mc is a sufficient condition for
schedulability.

The aforementioned proposition relies on the observation that all instances
of the PP with ρ(I) ≤ 0.75 are schedulable. The proposed heuristic, in turn,
constructs a feasible schedule for the WSP based on a feasible schedule for
instance {mcαi} of the PP.
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Connection Patterns
Consider the described multi-agent NCS, wherein a shared communication
medium allows only a specific set of systems to communicate at each time
instant. These sets are termed connection patterns, and the set of all such
connection patterns is denoted by C. At each time t, the scheduler selects a
connection pattern C(t) ∈ C, implying that system i receives communication
through the network at time instant t if and only if i is part of C(t). A feasible
schedule for this NCS consists of an infinite sequence of connection patterns
such that each label i appears at least once in a connection pattern during
each consecutive set of αi connection patterns for all i.

Remark 3. Finding a feasible schedule for the described NCS is equivalent
to the PP when C = {{1}, . . . , {q}}. Likewise, finding a feasible schedule for
the described NCS is equivalent to the WSP when C is the set of all subsets
of {1, 2, . . . , q} with cardinality mc.

While finding a feasible infinite schedule is not tractable in general, one can
find a feasible cyclic schedule for the described NCS when a feasible schedule
exists, see Corollary 1 in Paper C. In order to find a feasible schedule for
the described NCS, one can solve the following optimization problem, which
searches for a feasible periodic schedule among all schedules of period Tr.

min
C(1),...,C(Tr),Tr

Tr (3.9a)

s.t. C(1), . . . , C(Tr) ∈ C, (3.9b)

Tr ≤
q∏

i=1
αi, Tr ∈ N, (3.9c)

t+αi−1∑
k=t

ηi(k) ≥ 1, ∀i ∈ {1, . . . , q}, ∀t ∈ {1, . . . , Tr}, (3.9d)

ηi(k) =
{

1 if i ∈ C(k mod Tr),
0 otherwise.

(3.9e)

Equation (3.9b) constrains the schedule elements to the given set of connection
patterns, (3.9c) limits the length of the schedule’s period, (3.9d) ensures that
each system i is included in any αi consecutive elements the schedule, and
(3.9e) indicates which of the selected connection patterns C(k) include label
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i. Any feasible solution to the optimization problem (3.9) provides the periodic
part of a feasible schedule for the described NCS, and the optimizer yields the
periodic part of a feasible schedule with the shortest period. It is important
to note that if (3.9) has no feasible solutions, there exists no feasible schedule
for the NCS.

Regrettably, employing (3.9) to find a feasible schedule is generally imprac-
tical, given the combinatorial nature of the problem in relation to the number
of systems and connection patterns. To tackle this issue, we propose a heuris-
tic to find a feasible schedule based on the following optimization problem:

min
ρ̂j , ηi,j

l∑
j=1

ρ̂j (3.10a)

s.t. ρ̂j ≥
1
αi

ηi,j , ∀j ∈ {1, . . . , l}, ∀i ∈ Cj , (3.10b)∑
j:i∈Cj

ηi,j ≥ 1, ∀i ∈ {1, . . . , q}, (3.10c)

ηi,j ∈ {0, 1}, ∀i ∈ {1, . . . , q}, ∀j ∈ {1, . . . , l}, (3.10d)

where l is the number of connection patterns. Optimization problem (3.10)
associates density ρ̂j with each connection pattern Cj , effectively transforming
the scheduling problem into the Pinwheel Problem (PP), as explained next.
Consider

α̂j := 1
ρ̂⋆

j

, ∀j ∈ {1, . . . , l}, ρ̂⋆
j > 0, (3.11)

as safe time intervals of the connection patterns where ρ̂⋆
j is the optimizer of

(3.10).
Theorem 6: [Theorem 2 in Paper C, rephrased] If instance I = {α̂j} of

the PP admits a feasible schedule, then the optimization problem (3.9) has a
feasible solution.

In order to find a feasible solution for the optimization problem (3.9), one
can solve the optimization problem (3.10), find a feasible periodic schedule for
instance I = {α̂j} of the PP, and reconstruct the solution as follows:

C(t) = CS(t), ∀t ∈ {1, . . . , Tr}, (3.12)

where S = S(1), S(2), . . . is the feasible schedule for the described PP and Tr

is the period length of S.
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Remark 4. Note that the proposed heuristic is a sufficient condition for feasi-
bility of the optimization problem (3.9), as outlined in Theorem 6. Therefore,
the optimization problem (3.9) may still be feasible when the described PP
does not admit a feasible schedule.

In summary, the proposed heuristic involves the following steps: first, select
a subset of connection patterns with density ρ̂⋆

j > 0; next, assign a safe time
interval to each of the selected connection patterns, denoted as α̂j ; and finally,
determine which of the selected connection patterns should be utilized at each
time instant by finding a feasible schedule for the PP, using the set of assigned
safe time intervals as its instance.

3.2 Online Scheduling
In the previous section, we utilized the safe time intervals of the systems and
the communication topology to determine feasible communication schedules
for a given NCS. The safe time interval for each system indicates the longest
period during which the system’s feedback loop must close at least once to
ensure invariance and, consequently, satisfaction of the state and input con-
straints. In other words, there exists an initial condition and a sequence of
disturbances for each system i such that xi exits the invariant set if the feed-
back loop remains open for the following αi time instants. However, when the
initial condition or disturbance sequence is arbitrarily chosen, the state may
still remain within the invariant set for longer periods with an open-loop feed-
back. Therefore, it is possible to compute a less conservative communication
deadline for each system based on the current state measurements. This leads
us to propose several online scheduling schemes, which are explained in this
section.

Optimal Scheduling
In this subsection, we introduce online scheduling that relies on a set of fea-
sible offline schedules. To achieve this, let’s consider system (3.1), where the
feedback loop was closed at time t0, and its state is measured at time t. The
scheduler has knowledge of t but the controller does not. Define communica-
tion update deadline

γx
i (t) := max{τ : xi(τ) ∈ Si,∞, ∀wi(j) ∈ Wi, ∀j}, (3.13)
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where xi(τ, xi(t)) is the state at time t + τ and defined as

xi(τ, xi(t)) := Aτ
i xi(t) +

τ−1∑
j=0

Aj
i (Biui(t + τ − j − 1, xi(t0)) + wi(j)) . (3.14)

Note that ui is a function of xi(t0) and not xi(t), since the latter has not been
transmitted to the controller. The communication update deadline γx

i (t) is
greater than, or equal to, (t0 +αi− t) by construction, i.e., the online deadline
is lower bounded by the offline one. Given a feasible offline schedule Co, we
define the safety residual

ri(t, Co) := γx
i (t)− γCo

i (t), (3.15)

where γCo
i (t) is the waiting time for system i based on the offline schedule

Co, specified by

γCo
i (t) := min{τ : i ∈ Co(t + τ), ∀τ ≥ 0}. (3.16)

By construction, any feasible schedule ensures that ri(t, Co) ≥ 0 for all i ∈
{1, . . . , q} and t ≥ 1. In other words, if ri(t, Co) < 0 for some i and t, it
implies that system i does not receive its subsequent measurement update on
time, which may cause its state to leave its corresponding invariant set and,
subsequently, violate a state constraint. Additionally, non-negative safety
residuals at time instant t imply that the schedule Co is a feasible schedule
for the NCS from time t onwards, see Proposition 5 in Paper C. We use the
safety residuals next to find feasible online schedules for the described NCS.

Consider Co as a periodic feasible offline schedule whose periodic part is
defined as

Cr := C(1), . . . , C(Tr), (3.17)

where Tr is the period length of Cr. Let us define rotations of Co as follows

R(Cr, j) := C(j), . . . , C(Tr), Cr, Cr, . . . , (3.18)

for j ∈ {1, . . . , Tr}. Note that each schedule R(Cr, j) is a feasible offline
schedule for the NCS since each αi time interval in R(Cr, j) corresponds to
an equivalent time interval in Co for all i. This enables us to formulate an
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online optimal scheduling as

min
j(t)

J (t, R(Cr, j(t))) (3.19a)

s.t. ri (t, R(Cr, j(t))) ≥ 0, ∀i ∈ {1, . . . , q}, (3.19b)
j(t) ∈ {1, 2, . . . , Tr}, (3.19c)

where J (t, R(Cr, j(t))) is a selected cost function. Our proposal for online
scheduling involves solving the optimization problem (3.19) at each time in-
stant t and selecting the first connection pattern in schedule R(Cr, j⋆(t)) as
the optimal choice at time t, where j⋆(t) represents the optimizer of (3.19).

Remark 5. The optimization problem (3.19) is recursively feasible as R(Cr, j⋆(t))
represents a feasible offline schedule for the NCS starting from the current time
and moving forward.

Remark 6. In the optimization problem (3.19), it is important to observe
that we have constrained the set of feasible schedules to R(Cr, j), as defined
in (3.18). However, the proposed online scheduling method is applicable to
any finite set of feasible offline schedules.

The cost function J(t, R(Cr, j(t)) is defined as

J (t, R(Cr, j(t))) := max
i
{−ri(t, R(Cr, j(t))}, (3.20)

in Paper B and Paper C, which maximizes the minimum safety residual at
each time instant. Moreover, in Paper E, J(t, R(Cr, j(t))) is chosen as a
quadratic cost of nominal states, enabling an optimal online communication
schedule and control co-design.

Packet Loss Compensation
In this subsection, we use the proposed online scheduling framework to guar-
antee robust invariance in presence of a lossy communication channel. We
provide necessary and sufficient conditions for existence of a feasible schedule
in presence of packet loss under certain assumptions.

Let us consider a stochastic binary variable ν(t) ∈ {0, 1}, where ν(t) = 1
indicates that the packet transmitted at time t is lost. We assume that net-
work’s protocol is acknowledge-based and all transmissions are lost at time
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t in case of multi-channel scenarios. Relaxation of the latter assumption is
straightforward and omitted for simplicity. In addition, we make an assump-
tion that only a limited number of packets may be lost during a given time
interval, as this is necessary to ensure robust invariance.

Assumption 1. No more than nl,i packets are lost in any αi consecutive
time instants, i.e.,

t+αi−1∑
j=t

ν(j) ≤ nl,i, ∀ i ∈ {1, . . . , q}, ∀ t ≥ 0. (3.21)

We define a feasible schedule as a sequence of connection patterns C(t)
such that every node i is connected at least once every αi time instants in the
presence of packet losses described by Assumption 1. Given a feasible baseline
schedule C for a set of safe time intervals, we define the shifted schedule C̄ by

C̄(t) := C
(

t−
t−1∑
j=0

ν(j)
)

, (3.22)

which is used to compensate the packet losses. The shifted schedule selects the
previous connection pattern when a packet is lost. We define the maximum
time between two successive connections of node i, under baseline schedule C
as

Ti := max {t2 − t1 : i ∈ C(t2), i ∈ C(t1), i /∈ C(t), ∀t ∈ (t1, t2)} . (3.23)

Note that inequality Ti ≤ αi holds for all i due to feasibility of the baseline
schedule C.

Theorem 1 (Theorem 2 in Paper B, rephrased). Shifted schedule C̄ defined
by (3.22) is admissible under Assumption 1 if and only if

αi − Ti ≥ nl,i,∀i. (3.24)

The proof of the aforementioned theorem is grounded on the observation
that each system i might encounter disconnection during its scheduled waiting
time Ti, along with any retransmissions required due to packet losses within
that time interval. Note that Theorem 1 solely confirms the feasibility of the
shifted version of a given baseline schedule in the presence of packet losses.
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However, it does not tackle the question of the existence of a feasible schedule.
This matter will be addressed in the following.

Next we provide necessary and sufficient conditions for the existence of a
baseline schedule which is robust against packet losses. To that end, consider
a new set of safe time intervals specified by

βi := αi − nl,i, (3.25)

and instance I = {C, {αi}, {nl,i}} which describes the communication schedul-
ing problem in presence of packet losses.

Theorem 7 (Theorem 5 in Paper C, rephrased): A feasible schedule for
instance I1 = {C, {αi}, {nl,i}} exists if and only if a feasible schedule for
instance I2 = {C, {βi}}} exists.

The transformation introduced in Theorem 7 converts the scheduling design
for a lossy network into a scheduling design for a non-lossy network. In essence,
one can discover a feasible offline schedule for instance I2, which can then serve
as a baseline schedule for instance I1 of the lossy network. Note that the
existence of a feasible schedule for instance I2 is both necessary and sufficient
for the existence of a feasible schedule for instance I1.

The feasible schedules explored in this subsection are essentially shifted
versions of offline schedules. However, these shifted schedules can serve as
a baseline schedule for designing optimal online schedules, as discussed in
the previous subsection. Interested reader is referred to Proposition 7 and
Algorithm 3 in Paper C.
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CHAPTER 4

Control Design for Networked Control Systems

In the preceding chapter, various techniques and findings related to commu-
nication scheduling were introduced. The scheduling design was established
based on a set of safe time intervals, where systems with higher safe time in-
tervals require fewer communication resources. Thus, in this chapter, we delve
into optimal control design schemes aimed at maximizing the safe time inter-
val for each system under different scenarios. The results presented in this
chapter are derived from Paper D, Paper E, Paper F, and Paper G. The chap-
ter is organized into four sections, which explore the safe time interval, state
feedback design, output feedback design, and control design in the presence
of coupled constraints.

4.1 Safe Time Interval

In this section we study definition of the safe time interval and its relation
with the selected invariant set.
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Consider the following system

x(t + 1) = Ax(t) + Bu(t) + Ev(t), (4.1a)
x ∈ X , u ∈ U , v ∈ V, (4.1b)

with

X := {x ∈ Rn : Axx ≤ bx}, (4.2a)
U := {u ∈ Rm : Auu ≤ bu}, (4.2b)
V := {v ∈ Rp : Avv ≤ bv}, (4.2c)

where x, u, and v are the system’s state, input, and disturbance. The safe
time interval for system 4.1 can be defined as follows.

Definition 11 (Safe Time Interval): The safe time interval α is defined as

α := max
t
{t : ∀x(0) ∈ O, ∃u ∈ U s.t. F (t, x(0), u, v) ∈ O, ∀v ∈ V}, (4.3)

where

F (t, x(0), u, v) := Atx(0) +
t−1∑
i=0

At−i−1 (Bu(i) + Ev(i)) (4.4)

and O is an RPI or RCI set for system 4.1.
Next, we provide a conservative upper bound for the safe time interval α

as defined in (4.3).
Lemma 2 (Lemma 4 in Paper D, rephrased): Consider the safe time in-

terval α as defined in (4.3) and assume that the admissible sets X , U , V,
defined in (4.2), are symmetric w.r.t. the origin. Then, ᾱ ≥ α holds where

ᾱ := max
t

{
α :

t−1⊕
i=0

At−1−iEV ⊆ X

}
. (4.5)

The proof of Lemma 2 relies on the observation that any invariant set for
the system is a subset of X . Additionally, when the disturbance causes the
state to leave the admissible set, the state also exits the invariant set.

We conjecture that

O1 ⊆ O2 =⇒ α(O1) ≤ α(O2), (4.6)

where O1 and O2 are arbitrary robust invariant sets and α(Oi) is the safe
time interval α when O = Oi. While relation (4.6) may not hold in general,
we demonstrate its validity under specific conditions.
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Lemma 3 (Lemma 5 in Paper D, rephrased): Inequality α(O1) ≤ α(O2)
holds if

O2 = γO1, U2 = γU1, γ ≥ 1, (4.7)

where Oi is a robust invariant set for the system and Ui is the admissible set
for the input used in α(Oi).

Lemma 4 (Lemma 6 in Paper D, rephrased): Assume that ∆O and ∆U
are compact sets which contain the origin in their interiors and

x ∈ ∆O =⇒ ∃u ∈ ∆U s.t. Ax + Bu ∈ ∆O. (4.8)

Then, inequality α(O1) ≤ α(O2) holds when

O2 = O1 ⊕∆O, U2 = U1 ⊕∆U (4.9)

where Oi is a robust invariant set for the system and Ui is the admissible set
for the input used in α(Oi).

Due to the above results, we use O := S∞, i.e., the MRPI set, when the
feedback policy is given and O := C∞, i.e., the MRCI set, when no feedback
policy is specified. Note that S∞ ⊆ C∞ and we expect that α(S∞) ≤ α(C∞),
which can be observed in the numerical examples in Paper D.

4.2 State Feedback
In this section, we delve into the optimal control design for constrained NCSs,
assuming accurate state measurements. Initially, we examine control design
with a constant feedback gain and subsequently explore MPC techniques to
maximize the safe time interval for a given system.

Constant Feedback Gain
In this subsection, we seek a constant feedback gain that maximizes the safe
time interval.

Consider the predicted state

x̂(t + 1) =
{

Ax̂(t) + Bu(t), i /∈ C(t)
x(t + 1), i ∈ C(t)

, (4.10)
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with x̂(0) = x(0) as the initial condition and u(t) = −Kx̂(t) with a constant
feedback gain K. Next we study how to design K such that α(K) for the
system (4.1) is maximized.

Given the control policy is already defined, we utilize O = S∞(K) as the
invariant set in (4.5). As α depends on set S∞(K), we proceed to specify
this set. Given the feedback gain K, the admissible set for the state can be
written as

A := {x ∈ Rn : Hx ≤ g} , H :=
[

Ax

−AuK

]
, g :=

[
bx

bu

]
, (4.11)

and the MRPI set can be described by

S∞(K) =
{

x : HAk
c x ≤ gk, 0 ≤ k ≤ n∗} , (4.12)

where Ac := A−BK, g0 := g and

gk := g −max
v

H

k∑
j=1

Aj−1
c Ev(j)

 s.t. v(j) ∈ V, (4.13)

for k > 0, where the maximization is done component-wise and n∗ is a positive
integer such that

S∞(K) ⊆ {x : HAn
c x ≤ gn}, ∀n ≥ n∗. (4.14)

Since n∗ is not known a priori, one can use a large positive number instead
to make sure (4.14) holds for each n. Also note that (4.13) is a parametric
optimization problem since K is unknown.

Next is the formulation to maximize α with respect to K, see (D.17),

max
K

α (4.15a)

s.t. S∞(K) ⊆
α⋂

j=1
Sj(K), (4.15b)

where α ∈ N, K ∈ Rm×n, and

Sj(K) := {x : HAk+j
c x ≤ gk − g̃k,j , 0 ≤ k ≤ n∗}, (4.16)

g̃k,j = max
v

(
HAk

c

j−1∑
i=0

AiEv(i)
)

s.t. v(i) ∈ V. (4.17)
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Similar to (4.13), (4.17) consists of elementwise parametric maximizations
since K is unknown.

Remark 7. Maximizing α with respect to K poses a challenging problem due
to its mixed-integer nature, nonlinear inequalities, and parametric optimiza-
tions. However, employing an evolutionary optimization scheme proves advan-
tageous for solving this problem. The benefit of using evolutionary schemes
lies in evaluating α(K) at different points of K, which avoids the need for
parametric optimization. Nevertheless, a drawback is that evaluating α(K) is
computationally intensive, and evolutionary schemes rely on assessing α(K)
at multiple points.

Model Predictive Control
In this subsection we use MPC for maximization of the safe time interval.

Since the control policy is not given in this case, we use O = C∞ as the
invariant set in (4.3). Note that unlike set S∞(K) described in the previous
subsection, set C∞ does not depend on the control policy. Hence, the maxi-
mum achievable α can be computed before designing the control policy, see
Algorithm 1 from Paper D for more details. An MPC formulation can be used
for designing a control policy which corresponds to the maximum α as follows

min
x̄,u

α−1∑
k=0

(
x̄⊤

k Qx̄k + u⊤
k Ruk

)
+ x̄⊤

α Pf x̄α (4.18a)

s.t. x̄0 = x0 ∈ C∞, (4.18b)
x̄k+1 = Ax̄k + Buk, (4.18c)
uk ∈ U , (4.18d)
x̄α ∈ X̄f , (4.18e)

where Q, R, and Pf are positive definite matrices with appropriate sizes and
terminal set X̄f := C∞ ⊖

(⊕α−1
i=0 AiEV

)
. The optimization problem (4.18)

is solved every time the system receives a new measurement update, and
the resulting optimal control inputs are successively applied to the system
until the next measurement update is received. The proposed MPC scheme is
recursively feasible, given a feasible communication schedule, and it guarantees
the robust invariance, see Algorithm 2 and Lemma 3 from Paper D.
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Unlike using a constant feedback gain, maximizing the safe time interval
in the MPC case is straightforward to solve, and it leads to a greater, or
equal, safe time interval, as conjectured and demonstrated through numerical
examples in Paper D. It is important to note that formulation (4.18) exhibits
significant differences from the common robust MPC scheme, as depicted in
(2.21). For example, our objective is to design MPC in a manner that preserves
invariance for the longest time horizon, whereas in (2.21), the aim is to design
the controller such that the state converges exponentially to the mRPI set or
an invariant outer approximation of it.

4.3 Output Feedback
In this subsection, we devise an output feedback scheme for a given system to
maximize the safe time interval. We employ a Luenberger observer to estimate
the state based on perturbed output measurements. The estimated states are
then utilized to design a constant feedback gain, followed by designing an
MPC scheme to maximize the safe time interval.

Observer Design
In this subsection, we design a Luenberger observer and establish a bound for
the state-estimation error, which is used in the following subsections.

Consider the following system

x(t + 1) = Ax(t) + Bu(t) + Fw(t), ∀t ≥ 0 (4.19a)
y(t) = Cx(t) + Ev(t) (4.19b)
x(t) ∈ X , u(t) ∈ U , w(t) ∈ W, v(t) ∈ V, ∀t ≥ 0, (4.19c)

as described in (2.23), an stabilizing observer gain L, and estimated state x̄

described by

x̄(t + 1) = Ax̄(t) + Bu(t) + L(y(t)− ȳ(t)), (4.20a)
ȳ(t) = Cx̄(t). (4.20b)

The state-estimation error e(t) := x(t)− x̄(t) can be described by

e(t + 1) = (A− LC)e(t) + Ev(t)− LFw(t). (4.21)
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Since (A − LC) is assumed to be stable and perturbation (Ev(t) − LFw(t))
is within a compact polytope which includes the origin, the mRPI set E0 for
system 4.21 exists. This in turn implies that if e(0) ∈ E0 then e(t) ∈ E0 for
all t ≥ 0, see Lemma 1 in Paper F. The invariance of the estimation error can
then be used to guarantee satisfaction of the state constraints as described
next.

The actual state is not accessible and satisfaction of the state constraints
can only be achieved indirectly, i.e., through the estimated state in this case.
In order to guarantee satisfaction of the state constraints, i.e., x(t) ∈ X for all
t > 0, we use the sufficient condition x̄(t) ∈ X ⊖E0 for all t > 0. This indirect
approach guarantees satisfaction of the state constraints since

x(t) = x̄(t) + e(t), e(t) ∈ E0 =⇒ x(t) ∈ (X ⊖ E0)⊕ E0 ⊆ X , (4.22)

assuming that X ⊖ E0 is not empty.
Note that while in some cases it may not be possible to specify the mRPI

set explicitly, one can use outer approximations of the set that are invariant,
see (2.15) and the following descriptions.

Constant Feedback Gain
In this subsection, we design a feedback policy to maximize the safe time
interval using constant feedback gain.

Consider the following predicted state

x̂(t) :=
{

x̄(t), connected
Ax̂(t− 1) + Bu(t− 1), not connected

, (4.23)

with initial condition x̂(0) = x̄(0), where the predicted state is updated by
the estimated state whenever the corresponding state estimate is transmitted.
Furthermore, consider a linear feedback policy with a constant feedback gain
as u(t) = −Kx̂(t). Then, the t-step reachable set for the estimated state can
be described by

X̄ t := {(A−BK)tx̄(0)} ⊕
t−1⊕
j=0

AjLCE0, (4.24)

Given the reachable set for the estimated state x̄(t), the safe time interval can
be defined as

α := max
τ

{
τ : X̄ τ ⊆ S∞

}
, (4.25)
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where S∞ is the MRPI set for the estimated stat, described by

x̄(t + 1) = Ax̄(t) + Bu(t) + LCe(t), (4.26a)
x̄(t) ∈ X ⊖ E0, u(t) ∈ U , e(t) ∈ E0, t ≥ 0. (4.26b)

The safe time interval α defined in (4.25) is the longest time interval dur-
ing which one can guarantee satisfaction of the state constraints, given the
feedback and observer gains K and L.

Next we discuss maximization of the safe time interval. In the described
framework, the safe time interval is affected by

• the observer gain L,

• the RPI set E0 for the state estimation error,

• the feedback gain K,

• the RPI set S∞ for the estimated state.

Given the observer gain L and the RPI set E0, the maximization of the safe
time interval can be specified similarly to the previous section, i.e., the MRPI
set S∞ is used as the RPI set for the estimated state and K can be specified
by solving an optimization problem similar to (4.15). Furthermore, set E0
represents bounds of the state estimation error e(t) as specified in (4.26) and
hence, the use of the mRPI set E0 yields the largest safe time interval. Since
providing an explicit expression for α(K, L) is highly challenging, one can
employ evolutionary schemes to discover optimal gains K and L, albeit at the
cost of increased computational burden, see Algorithm 3 in Paper F.

Model Predictive Control
In this subsection we maximize the safe time interval of the system using MPC
and a Luenberger observer.

Given an observer gain L, the reachable set for the estimated state x̄(t),
specified in (4.26), is

X̄ t = {Atx̄(0) +
t−1∑
j=0

At−1−jBu(j)} ⊕
t−1⊕
j=0

AjLCE0. (4.27)
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The t-step open-loop reachable set X̄ t can be used to define the safe time
interval α as

α := max
t

{
t : ∃u(0), . . . , u(t− 1) ∈ U | X̃ t ⊆ C∞

}
, (4.28)

where set C∞ is the MRCI set for system 4.26.
Given the safe time interval α, one can use an MPC formulation to find a

corresponding feedback policy as follows

min
x̂,u

α−1∑
k=0

(
x̂(k)⊤Qx̂(k) + u(k)⊤Ru(k)

)
+ x̂(α)⊤Pf x̂(α) (4.29a)

s.t. x̂(0) = x̄(0), (4.29b)
x̂(k + 1) = Ax̂(k) + Bu(k), (4.29c)
u(k) ∈ U , (4.29d)
x̂(α) ∈ Xf , (4.29e)

where x̄(0) ∈ C∞ is the latest received state estimate, x̂(k) is the predicted
state at time k, Q, R, and Pf are positive definite matrices with appropriate
sizes, and Xf = C∞ ⊖

(⊕t−1
j=0 AjLCE0

)
is the terminal set. We note that the

described control policy is recursively feasible and it guarantees satisfaction
of the state and input constraints, given the Luenberger observer (4.26) and
a feasible communication schedule, see Lemma 2.

In the described framework, the safe time interval is affected by

• the observer gain L,

• the RPI set E0 for the state estimation error,

• the RCI set C∞.

As discussed in the previous subsections, mRPI and MRCI sets are the best
choices for the state estimation error and the estimated state invariant sets,
respectively. Note that in this case the control design does not affect the safe
time interval. The only remaining factor to consider for maximization of α

is the observer gain L. Given the difficulty of explicitly specifying function
α(L), we propose to determine the optimal observer gain using evolutionary
optimization schemes, see Algorithm 3 in Paper F.
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4.4 Coupled Constraints
In this section we consider maximization of the safe time intervals in presence
of coupled state constraints. To that end, we formulate an optimal constraint
decoupling problem and design a decentralized control policy for each system
using MPC.

Consider a set of q systems described by

xi(t + 1) = Aixi(t) + Biui(t) + Fiwi(t) (4.30a)
xi(t) ∈ Xi ⊂ Rni , ui(t) ∈ Ui, wi(t) ∈ Wi (4.30b)

where Xi and Ui are admissible sets for state and input, and Wi is an ad-
missible set for the unknown disturbance. Pair (Ai, Bi) is assumed to be
controllable and admissible sets Xi, Ui and Wi are convex polytopes which
include zero in their interiors. Additionally, (4.30) is subject to

q∑
i=1

Gixi ≤ h, (4.31)

where Gi ∈ RN×ni and h ∈ RN
>0.

We have introduced a framework for control and communication scheduling
design for systems (4.30) in absence of coupled constraints (4.31) in Section 4.2
and Chapter 3. Since we consider a decentralized control framework, i.e., no
information exchange between the controllers, the coupled constraints should
be decoupled. Consider a set of decoupled constraints as

Gixi ≤ hi,

q∑
i=1

hi ≤ h, hi ≥ 0, (4.32)

where hi is a vector and the inequalities are element-wise. Given vectors hi

for all i, one can describe the admissible set for the state of each system i by

X u
i (hi) := {xi ∈ Xi : Gixi ≤ hi}. (4.33)

Using (4.33), the constraints are decoupled and control and scheduling design
can be performed as discussed before. The remaining question is how to select
vectors hi such that the safe time intervals are optimal.

The primary aim of maximizing the safe time intervals is to enhance schedu-
lability. So far, the control policy has been designed for each system, and the
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maximization of the safe time interval for each system has been pursued in-
dividually. However, in the presence of coupled constraints, maximizing the
safe time interval for one system through the selection of hi may lead to a
lower safe time interval for another system. As discussed in previous sections,
the safe time interval has a positive relation with the size of the corresponding
invariant set. Moreover, the size of the maximal invariant set depends on the
size of the state admissible set. Thus, a greater value of hi can potentially
increase the size of X u

i (hi), resulting in a larger invariant set and safe time
interval.

In order to choose hi in a way that ensures schedulability for the resulting
set of safe time intervals, we formulate an optimal constraint decoupling that
explicitly considers schedulability as follows

min
C(1),...,C(Tr),Tr,h1,...,hq

Tr (4.34a)

s.t. C(t) ∈ C, Tr ∈ N, (4.34b)

Tr ≤
q∏

i=1
αi(hi), (4.34c)

t+αi(hi)−1∑
k=t

ηi(k) ≥ 1, ∀i ∈ {1, . . . , q}, ∀t ∈ {1, . . . , Tr}, (4.34d)

ηi(k) =
{

1 if i ∈ C(k mod Tr)
0 if i /∈ C(k mod Tr)

, (4.34e)

q∑
i=1

hi ≤ h, , (4.34f)

hi ≥ 0, (4.34g)

where C(0) := C(Tr). The solution to the optimization problem (4.34) yields
an optimal constraint decoupling through hi and also the periodic part of a
feasible schedule through C(t). We have selected the period length as the cost
in order to find a feasible schedule with the shorted period; however, one can
consider other costs such as the density function. Note that this optimization
problem is mixed integer and it may be hard to explicitly describe the relation
between αi and hi.

Next we substitute the optimization problem (4.34) with a more tractable
optimization problem in order to enable schedulability. The new formulation
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maximizes the minimum safe time intervals lexicographically as follows

lex max
h1,...,hq

(
min

i∈{1,...,q}
αi(hi)

)
(4.35a)

s.t.
q∑

i=1
hi ≤ h, hi ≥ 0. (4.35b)

The above formulation does not include any integer variables; however, it
does not explicitly incorporate schedulability as a constraint. Instead, it indi-
rectly enables schedulability by focusing on the maximization of the safe time
intervals.

As the optimization problem (4.35) becomes challenging to solve due to
the intricate relationship between αi and hi, we have presented a heuristic
approach in G to find a suboptimal solution. Refer to Algorithm 1 in Paper G
for more details. This algorithm relies on the conjecture that αi(hi) is an
increasing function and can be outlined by the following steps:

• start from an initial guess hi and compute αi(hi),

• set α to the minimum αi,

• find the minimal hi such that αi(hi) = α for all systems,

• increase α by one step and find hi such that αi(hi) = α,

• find minimal hi such that αi(hi) = α,

• if a feasible set of hi for achieving αi(hi) = α does not exist, select one
or several of the systems whose hi is fixed such that αi(hi) = α− 1,

• repeat increasing α for the remaining systems.

See the numerical example in Paper G for illustration of the above steps.
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CHAPTER 5

Summary of Included Papers

This chapter provides a summary of the included papers.

5.1 Paper A
Alessandro Colombo, Masoud Bahraini, Paolo Falcone
Measurement scheduling for control invariance in networked control sys-
tems
Published in 2018 IEEE 57st Conference on Decision and Control (CDC),
pp. 3361–3366, Dec. 2018.
©2018 IEEE DOI: 10.1109/CDC.2018.8619008 .

This paper examines the measurement schedulability of a specific class of
multi-agent networked control systems sharing a communication medium.
Reachability analysis is employed to determine a positive integer for each
system, representing a time period required for the system to receive a mea-
surement update via the communication link. This ensures robust satisfaction
of the state and input constraints.
The paper assumes that each system is discrete, linear time-invariant, affected
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by an unknown but bounded disturbance, and subject to state and input con-
straints. Additionally, stabilizing feedback gain is provided for each system,
and all states are accurately measured. Furthermore, the systems share a com-
munication medium with a single channel, implying only one system’s state
measurements can be transmitted through the medium at each time instant.
The scheduling problem is transformed into the Pinwheel Problem from the
scheduling literature. The paper provides necessary and sufficient conditions
for the existence of a feasible offline schedule and recalls available techniques
to find a schedule when it exists.
The author of the thesis contributed to the problem formulation, simulation
results, and writing of the paper.

5.2 Paper B
Masoud Bahraini, Mario Zanon, Alessandro Colombo, Paolo Falcone
Receding-horizon robust online communication scheduling for constrained
networked control systems
Published in 2019 18th European Control Conference (ECC),
pp. 2969-2974, Jun. 2019.
©2019 IEEE DOI: 10.23919/ECC.2019.8795822 .

This paper investigates online scheduling for a specific class of multi-agent
networked control systems sharing a lossy communication medium. The ap-
proach utilizes available state measurements to update the communication
deadline for each system at each time instant. These communication dead-
lines, along with feasible offline schedules, are then employed to devise an
online schedule that is recursively feasible.
The paper assumes that each system is discrete, linear time-invariant, im-
pacted by an unknown but bounded disturbance, and subject to state and
input constraints. Moreover, it assumes that a stabilizing feedback gain is
given for each system, and all states are accurately measured. Additionally,
the systems share a lossy communication medium with a single channel, al-
lowing only one system’s state measurements to be transmitted through the
medium at each time instant. It is assumed that the number of lost packets
may not exceed a given threshold during a specific time interval.
The paper leverages the periodic nature of offline schedules to propose a re-
cursively feasible online schedule that enhances performance and addresses
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packet loss.
The author of the thesis contributed to the problem formulation, theoretical
and simulation results, and the writing of the paper.

5.3 Paper C
Masoud Bahraini, Mario Zanon, Paolo Falcone, Alessandro Colombo
Scheduling and Robust Invariance in Networked Control Systems
Published in 2021 IEEE Transactions on Automatic Control,
vol. 67, no. 6, pp. 3361–3366, Jul. 2021.
©2021 IEEE DOI: 10.1109/TAC.2021.3096917 .

This paper investigates both offline and online scheduling for a specific class
of multi-agent networked control systems sharing a potentially lossy commu-
nication medium.
The paper assumes that each system is discrete, linear time-invariant, sub-
ject to an unknown but bounded disturbance, and adheres to state and input
constraints. Additionally, it is assumed that a stabilizing feedback gain is
given for each system, and all states are accurately measured. Moreover, the
systems share a lossy communication medium with a generalized topology,
allowing state measurements of a set of systems to be transmitted through
the medium at each time instant.
To address offline scheduling in networks with multiple communication chan-
nels, the paper utilizes the Windows Scheduling Problem from the literature.
Furthermore, it proposes an optimization problem for offline scheduling in
networks where a set of states can be transmitted through the medium at any
given time instant. Additionally, the paper provides a necessary and sufficient
condition for the existence of online schedules in the presence of packet losses.
The author of the thesis contributed to the problem formulation, theoretical
and simulation results, and the writing of the paper.

5.4 Paper D
Masoud Bahraini, Mario Zanon, Alessandro Colombo, Paolo Falcone
Optimal Control Design for Perturbed Constrained Networked Control
Systems
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Published in 2021 IEEE Control Systems Letters,
vol. 5, no. 2, pp. 553 - 558, Apr. 2021.
©2021 IEEE DOI: 10.1109/LCSYS.2020.3004204 .

This paper examines the control design for a specific class of multi-agent
networked control systems sharing a common communication medium.
The paper assumes that each system is discrete, linear time-invariant, and
influenced by an unknown but bounded disturbance while adhering to state
and input constraints. Additionally, it assumes accurate state measurements.
The paper investigates the impact of selected invariant sets and control policies
on the communication demand of each system. To minimize the communica-
tion demand, the paper proposes optimal control designs within the scenarios
of constant feedback gain and model predictive control.
The author of the thesis contributed to the problem formulation, theoretical
and simulation results, and the writing of the paper.

5.5 Paper E
Masoud Bahraini, Mario Zanon, Alessandro Colombo, Paolo Falcone
Optimal scheduling and control for constrained multi-agent networked
control systems
Published in 2022 Wiley Optimal Control Applications and Methods,
vol. 43, no. 1, pp. 23–43, Jan. 2022.
©2022 Wiley DOI: 10.1002/oca.2777 .

This paper explores the co-design of optimal control and scheduling for a
specific class of multi-agent networked control systems that share a common
communication medium.
The paper assumes that each system is discrete, linear time-invariant, and
influenced by an unknown but bounded disturbance while adhering to state
and input constraints. Additionally, it assumes accurate state measurements.
The paper delves into the optimal joint design of offline/online communica-
tion schedules and tube-based model predictive control with the objective of
minimizing an infinite horizon quadratic cost. It presents a heuristic approach
for the optimal joint design based on a given set of feasible schedules.
The author of the thesis contributed to the problem formulation, theoretical
and simulation results, and the writing of the paper.

50



5.6 Paper F

5.6 Paper F
Masoud Bahraini, Alessandro Colombo, Mario Zanon, Paolo Falcone
Robust Control Invariance for Networked Control Systems with Output
Feedback
Published in 2022 IEEE 61st Conference on Decision and Control (CDC),
pp. 7676-7681, Dec. 2022.
©2022 IEEE DOI: 10.1109/CDC51059.2022.9992732 .

This paper investigates optimal control design for a specific class of multi-
agent networked control systems that share a common communication medium.
The paper assumes that each system is discrete, linear time-invariant, and in-
fluenced by an unknown but bounded disturbance while adhering to state and
input constraints. Additionally, it assumes that only perturbed outputs are
available through measurements.
The paper delves into optimal output feedback design for each system with
the goal of minimizing the corresponding communication demand. The de-
sign incorporates a Luenberger observer to estimate the states and is combined
with a feedback policy based on either a constant feedback gain or tube-based
model predictive control.
The author of the thesis contributed to the problem formulation, theoretical
and simulation results, and the writing of the paper.

5.7 Paper G
Masoud Bahraini, Mario Zanon, Alessandro Colombo, Paolo Falcone
Communication Demand Minimization for Perturbed Networked Con-
trol Systems with Coupled Constraints
Accepted for publication in 2023 IEEE 62st Conference on Decision and
Control (CDC),
Dec. 2023.
©2023 IEEE DOI: .

This paper examines optimal control design for a specific class of multi-
agent networked control systems sharing a common communication medium.
The paper assumes that each system is discrete, linear time-invariant, and
affected by an unknown but bounded disturbance while adhering to coupled
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state and input constraints. Additionally, it assumes accurate state measure-
ments.
The paper focuses on optimal constraint decoupling to minimize communica-
tion demands and facilitate schedulability. It formulates an optimal constraint
decoupling problem and proposes a heuristic method to address it.
The author of the thesis contributed to the problem formulation, theoretical
and simulation results, and the writing of the paper.
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CHAPTER 6

Concluding Remarks and Future Works

In this chapter, we will first provide a summary of how the thesis addresses
the research question proposed in Chapter 1. Subsequently, we will suggest
potential directions for future research based on the findings presented in this
thesis.

6.1 Conclusion Remarks
The central research question of this thesis revolves around the co-design
of communication schedules and control strategies for perturbed multi-agent
NCSs with a shared, and potentially lossy, communication medium. The
main question is further divided into six subquestions, each addressing specific
aspects of the co-design problem.

The first three subquestions (Q1, Q2, and Q3) pertain to the scheduling
aspects of the design, assuming given control policies. These questions are
thoroughly investigated in Paper A, Paper B, and Paper C. The papers lever-
age existing scheduling techniques such as the Pinwheel Problem (PP) and
the Windows Scheduling Problem (WSP), while also proposing a generalized
framework and introducing novel results related to the scheduling techniques.
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The next two subquestions (Q4 and Q5) focus on the control design as-
pects of the problem and their impact on schedulability. These questions are
addressed in Paper D, Paper E, Paper F, and Paper G. The papers introduce
optimal control policies for various scenarios, including state feedback, output
feedback, and the existence of coupled state constraints. The control strate-
gies are designed to minimize the communication demand for each system,
thereby facilitating schedulability.

Finally, the last subquestion (Q6) inquires about jointly designing the com-
munication schedule and control strategies. This question is answered in Pa-
per E, where we utilize offline scheduling and control designs within a recursive
optimization framework.

6.2 Future Works
Although the proposed framework is mainly based on linear time-invariant
systems, a potential research direction is to consider linear time-varying or
linear parameter-varying systems. The implications of such changes could be
explored to recreate the existing results and potentially unveil new findings.

In Paper F, state estimation is achieved using a Luenberger observer. To
extend the results, one could consider receding horizon and set-based observers
and explore their implications on the communication demand for each system.

The framework presented in Paper G addresses coupling between the states’
constraints. An interesting extension would be to investigate systems with
coupling in both states’ constraints and dynamics, potentially leading to new
insights and control strategies.

Finally, the application and implementation of the proposed framework in
real-world scenarios are crucial tasks. While challenging, the potential appli-
cations could lead to new research topics that are more relevant to society,
making the effort rewarding and impactful.

In conclusion, the thesis lays the groundwork for tackling important chal-
lenges in co-designing communication schedules and control strategies for
multi-agent NCSs. Future research in the suggested directions can further
enhance our understanding and contribute to the advancement of this inter-
disciplinary field.
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