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Statistical inference on interacting particle systems
with applications to cancer biology

Gustav Lindwall

Division of Mathematical Statistics
Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg

Abstract

Interacting particle systems is a mathematical framework which allows for
condensed modelling of complex phenomena undergoing both deterministic
and random dynamics. While there are several ways to formulate an inter-
acting particle system, this thesis focuses on modelling such dynamics using
stochastic differential equations (SDE:s). The SDE framework was constructed
in order to describe the in vitro population dynamics of cancer cells.

This thesis introduces the necessary mathematical and biological context, and
formulates a model that is subsequently studied in the appended research
papers. In the first of three papers, we introduce a novel method of inferring
the diffusive properties in such systems based on a higher order numerical ap-
proximation of the underlying stochastic differential equations. In the second
paper, we model the effect of cell-to-cell interactions, and conduct inference on
this model using microscopy data. The third and last paper concerns modelling
how the spatial distribution of the cell population affects the cell division rate,
and apply our theoretical results to microscopy data.

Put together, the three papers present a cohesive package for modelling and
parameter inference that can be applied to population data that is spatial and
time-resolved.

Keywords: interacting particle systems, mathematical biology, bayesian infer-
ence, stochastic differential equations, reaction-diffusion equations.
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1 Introduction

This is a thesis on the topic of inference methods in mathematical biology.
Although mathematical and statistical reasoning has long been the cornerstone
in all of the natural sciences, biology and medicine has until the 20th century
been thought of and taught without an agreed upon mathematical mode of
analysis. However, in the last couple of decades, there has been a burgeoning
surge of research into mathematical biology, establishing it as a field of its own.
Thus, biology in the 21st century has served as a driver for innovative research
in applied mathematics [1].

1.1 A brief history of mathematical biology

The history of mathematical biology is intertwined with the history of sci-
ence in general and goes back for centuries. However, the recent interest in
mathematical biology, and the mutually beneficial relationship it has had with
modern mathematics, is beyond parallel when compared to just a century ago.
Thus, as a framing device for this brief history of biomathematics, we will
begin by making a comparison to the development of physics, pointing out
similarities and contrasts.

Up until the Scientific Revolution of the 16th and 17th centuries, physics was a
largely qualitative field akin to traditional biology. This period was the advent
of modern astronomy, where Johannes Kepler formulated his laws of planetary
motion between 1609-1619. Inspired by the heliocentric model of Nicolaus
Copernicus and the observations of Tycho Brahe, he detailed the elliptical
trajectories of celestial bodies using the notions of geometry that was known to
him at this point in history, with remarkable accuracy. Kepler’s work in turn
inspired and was corroborated by Newtonian mechanics, laying the ground
for classical physics.

1



2 1. Introduction

Crucially, Isaac Newton’s systematic study of mechanics made him one of
the inventors of calculus, his contributions to the nascent field of mathematics
being motivated by a desire to formalize the rules governing the motion of
bodies. Ever since the publishing of Principia in 1687, physics has arguably
been the driving force stimulating research in applied mathematics, with new
scientific theories demanding new tools. This in turn has stimulated research in
pure mathematics, seeking to generalize and rigorously prove the relationships
conjectured by physicists. In the end, a feedback loop between physics and
mathematics has been the established order in basic science over the last half
millennia, with new mathematics facilitating the discovery of new physics - in
turn facilitating the need for new mathematics.

One can argue that the reason that biology has been, so to say, late to the
mathematical game is the inherent complexity of life. In [2], the authors lay out
how even the simplest biological phenomena is by necessity not amenable to
the elegant one size fits all formulations underpinning classical physics. As an
example, they argue that physics share a common element with mathematics in
that the foundational objects are generic - an electron remains interchangeable
with any other electron. Meanwhile, every object in the biological world is
unique with a unique history, be it on the scale of a single cell to a whole
ecosystem. Furthermore, the atomic unit in biology, i.e. a single cell, necessarily
adapts and changes in response to its environment, ensuring that biological
systems can never be at equilibrium. Thus, a mathematical model in biology
demands a lot from the mathematician constructing it, as accounting for the
full complexity of even a single cell leads to an intractable mess of interac-
tions. Knowing what you are interested in studying and the limitations of your
problem is more important in biomathematics than perhaps any other field.

1.1.1 Population dynamics and epidemiology

Interest in developing mathematical models to describe biological phenomena
has existed for a long time. An argument can be made that the Fibonacci
sequence, first formulated in the year 1202, is the first model of population dy-
namics [3], as it arises when considering the size of a hare population enjoying
unrestricted reproduction. The Fibonacci numbers grow exponentially, and to
this day the reasoning behind their construction linger in population dynamics
modelling.

Centuries later Leonhard Euler noted that exponential growth could feasi-
bly explain the rate at which populations increase; but he also realized that
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exponential growth was not indefinitely sustainable [3]. However, at this point
one cannot discuss population dynamics as a true field of science - the observa-
tions of Euler and his peers were more curious observations than anything else.
The agreed upon founder of population dynamics was the British demographer
Thomas Malthus, who in 1798 published the first systematic treaty of expo-
nential population growth. A few decades later, the Belgian mathematician
Pierre-François Verhulst introduced the logistic equation; a modification the
Mathusian model of growth that takes the phenomena noted by Euler into
account.

By the start of the 20th century, the field of population dynamics was in
full swing. Seminal models such as the Lotka-Volterra equations modelling
predator-prey dynamics was introduced, inspired by the law of mass action
from chemistry [4]. With x being the size of the prey population and y the
predator population, they are given as

ẋ = αx− βxy,

ẏ = γxy − δy.

Essentially, the Lotka-Volterra system describes a set of ’chemical reactions’
where an unlimited source of prey is available and is replenished at a per-capita
rate given by α. When predators comes into contact with the prey, the resulting
reaction is that β prey animals are consumed, resulting in γ additional preda-
tors. However, the predator population decays at a rate δ. This simple model
demonstrates two factors that are ubiquitous throughout mathematical biology
- the liberal use of external inspiration, and the need for extreme simplifications
to arrive at tractable models.

Parallel to the developments in population dynamics, mathematical modelling
of epidemics also began to take form. The early models in epidemiology are
similar in spirit to what we see in population dynamics, with the SIR-model
for the spread of infectious diseases being the key stone toy model in this
field. With S denoting the fraction of the population susceptible to infection, I
denoting the infected and R those who have recovered, it is stated as

Ṡ = −rSI,

İ = rSI − aI,

Ṙ = aI.

Once again, the analogy to chemical reactions remain, where mixing susceptible
and infected populations resolves into additional infected at a rate r, and the
infected population decay at a per capita rate a into the recovered state. To
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summarize, by the 1920s mathematicians were already employing several
techniques to model everything from epidemics to ecosystems, and this is
not taking the role of statistics in traditional biology into account. The Lotka-
Volterra and SIR models remain important learning tools within their respective
fields to this day.

1.1.2 Modern developments - pattern formations, genomics
and game theory

In the first half of the 20th century, mathematics underwent an explosive growth
spurt, in no small part stimulated by the formulation of modern physics. This
period also coincides with the rapid growth of mathematical biology, far too
expansive to feasible chronicle in this brief history. Of most importance to
this thesis is the study of reaction-diffusion systems, first introduced to study
spatial population dynamics in 1937 [5]. Systems of such equations were later
studied by Alan Turing, who in 1952 hypothesized that morphogenesis, how
organisms take their form, was the result of reaction and diffusion of mor-
phogenic chemical substances [6].

Coinciding with the publishing of Turing’s paper, DNA was discovered in
1953, and the systematic studying of the genome has since been a driver in
mathematical research. Efforts to describe the genome has led to advances
in algebra and graph theory [7], and the Human Genome Project started in
1990 demanded the development of new techniques in statistics and computer
science [8].

Game theory was established as a field of applied mathematics in 1928 by
John von Neumann, with much of the initial applications found in economics.
In 1974, the milestone paper The theory of games and the evolution of animal
conflicts by John Maynard Smith was published [9], establishing evolutionary
game theory as a field. Ever since, biology has joined economy in being the
spark generating research into game theory.

The emergence of computers has made it possible to study models that are
beyond the scope of the theories glanced through in this section. It should
come as no surprise then that two of the aforementioned mathematicians, Tur-
ing and Neumann, not only took interest in biology, but are also among the
founders of computer science. In the 1940s, Neumann was instrumental in
the construction of the first cellular automaton [10], simple lattice-based models
where the state of a lattice point evolves according to its neighbourhood. With
the emergence of computer graphics, such systems could be studied through
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simulation, including the seminal Game of Life constructed by John Conway
in 1970. Cellular automata and similar lattice-based models remain ubiqui-
tous in mathematical biology, and computer simulations remain the chief tool
employed by practioners in the field.

1.2 Mathematical oncology

Oncology is the branch of medicine that deal with the study, treatment, diagno-
sis and prevention of cancerous tumours. In the developed world, cancer is
among the leading causes of death, and a great impairment to the quality of
life of the patient [11]. As we have laid out throughout this chapter, biology
and medicine has benefited greatly from mathematical research over the last
century. This include oncologists, who have found use of mathematical models
in their understanding of cancer [12].

Cancer is an incredibly complex process, and the mathematical modelling
of its progression requires one to consider every aspect of mathematical biol-
ogy considered up to this point.

• At a coarse-grained scale, one frequently models tumours and their inter-
action the surrounding tissue using reaction-diffusion models. Reaction-
diffusion models are also used to model biochemical processes in the
body with which the cancer interacts.

• Cancer is a genetic disease, meaning that exploring the human genome
is vital in understanding the causes and behaviours of an individual
patient’s tumour.

• Cancer is an evolutionary process, and in evolution the genotype with the
better strategy survives. Such processes are studied using game theory.

• At the fine-grained scale, one can model tumours using agent based models.
Here, an individual cancer cell constitutes an agent. Cellular automata
are common ways to model interacting agents.

• Finally, the use of computer simulation to study hypothetical tumour
behaviour is vital to mathematical oncology. Computers are of equal
importance when it comes to analyzing experimental data.

In this thesis, we will focus on agent based modelling of tumours, formulate
models of in vitro cancer cell migration and use statistical tools to infer what
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parameters govern the behaviour detected in experimental data. Thus, we
will survey the field of cell migration, and give some suggestions on how to
formulate this process in mathematical terms.

1.3 Mechanics behind cancer cell migration

Cell migration is vital in the formation and perpetuation of life, whether we are
discussing single cell organisms such as bacteria seeking sustenance or human
skin cells migrating to close a wound. Understanding cell migration is essential
to understanding life. However, not all aspects of cell migration is benign – it
is also responsible for the occurrence of tumours, which is what we are to focus
on in this thesis.

From a mathematical modelling perspective, a tumour is at the macroscopic
level characterised by two main features; the proliferation rate and the cell
migration speed. Both of these features are emergent phenomena stemming
from complex dynamics at the cell level [13].

On a microscopic level, individual cells migrate throughout its local environ-
ment, whose non-cellular components is called the extra-cellular matrix (ECM)
and consists of water, proteins and polysaccharides. It acts like a scaffolding
for cells migration [14]. The mode of migration of a cell has bio-mechanical
explanations on the individual cell level that is a field of research in its own
[15, 16]. The process of cell migration starts with cell polarisation; a protrusion
is created in the direction that the migration will take place. This protrusion
then adheres to the ECM, acting like a cellular ’foot’. The cell then contracts
at its new site, resulting in a crawling-like movement. The direction of cell
migration in a homogeneous chemical environment is thought of as random,
and in mathematics we commonly model it using stochastic processes. The
ECM however affects this stochastic process in question. As an example, it has
been noted that glioblastoma multiforme cancer cells migrate more than twice
as fast in white brain matter as compared to gray [17].

In chemically heterogeneous environments, we observe phenomena such as
chemotaxis, where perceived changes in the concentration of chemicals around
the cell lead to a directed movement in the cell migration process [18]. This can
be both a movement towards an attractive chemical such as a source of suste-
nance, or away from chemicals toxic to the cell in question. Cells also have the
ability to communicate with one another by the means of signal substances [18].
Other taxi that influence cell migration is haptotaxis and durotaxis, governed by
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structure of the ECM. These taxis, along with the phenomena of cell adhesion,
makes it possible for cells to migrate en masse, as is seen in tumour growth.

1.4 My contribution to the field

The main concern of the journal articles on which this thesis is based is math-
ematical modelling of in vitro cancer cell migration, and statistical inference
on key parameters in these models using microscopy imaging data. The guid-
ing principle behind the research is that first principles models derived from
physical interactions can aid in the understanding of how cancer cells interact
with one another. Subsequent clinical applications of both the modelling and
inference presented here can for example be profiling of cells sampled from a
specific patient, aiding the physician in choice of clinical intervention.

Paper I: The first paper concerns estimating the diffusivity in a population of
identical cells migrating in vitro. It expands upon the standard methodology,
and derives a robust estimator applicable to any type of spatio-temporal data
where random walkers interact with one another.

Paper II: The second paper concerns methods for inferring the nature of local
interactions between cancer cells.

Paper III: The third paper introduces a model for how cancer cells up-regulate
the division rate of neighbouring cells. Statistical inference on said model is
also considered.

The main tools used throughout all three of these papers are stochastic dif-
ferential equations (SDE:s), used to formulate an agent based model for a cell
population. These in turn have an intimate connection to diffusion equations.
The outline is as follows; in Chapter 2-4 we introduce the basic theory behind
diffusion and SDE:s at a level suitable for the modestly mathematically mature.
In Chapter 5-6, we focus on the modelling of cell populations in particular.
Chapter 7 is a brief survey of statistical tools used in the papers.
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2 Continuum description of
diffusion

Diffusion describes the process by which physical media tends to spread from
areas of high density to areas of lower density over time. In modern science,
the first systematic study of diffusion was made by British chemist Thomas
Graham in the 1830’s. He noted the following;

"...gases of different nature, when brought into contact, do not
arrange themselves according to their density, the heaviest under-
most, and the lighter uppermost, but they spontaneously diffuse,
mutually and equally, through each other, and so remain in the
intimate state of mixture for any length of time." ([19])

Two decades later, physician Adolf Fick set out formulate a universal law of
diffusion, based on Grahams research. He drew inspiration from Fourier’s law
of heat conduction, formulated in 1822.

2.1 Origins: Fourier’s law and Fickian diffusion

The original, phenomenological basis for Fickian diffusion is based in the
theory of conservation laws, an already well studied concept in physics at
the time, and an assertion of how material flux relates to its local density. We
denote by J the flux, and by c(x, t) the concentration of a medium at location
x at time t. Fick then concluded that the flux is proportional to the gradient
of the concentration. Joseph Fourier drew the same conclusion regarding the
transfer of heat, and Fick conjectured that the same formalism is applicable to

9



10 2. Continuum description of diffusion

the diffusion of gases. In one dimension, we state this as

J = −D
∂

∂x
c(x, t)

where the proportionality constant D is called the diffusion coefficient, and the
negative sign indicates a flux from higher to lower concentrations. Fick then
formulated the following conservation law;

∂

∂t

∫ x1

x0

c(x, t)dx = J(x1, t)− J(x0, t) (2.1.1)

which intuitively can be understood in the following way: the time evolution
of the medium concentration in segment of space [x0, x1] equals the difference
of the flux at the segments boundaries. In higher dimensions, this result is
usually referred to as Gauss’ law. By setting x1 = x0 +Δ, taking the limit of
Δ → 0 and applying the fundamental theorem of calculus reduces (2.1.1) to the
following partial differential equation;

∂

∂t
c(x, t) = D

∂2

∂x2
c(x, t) (2.1.2)

which is commonly referred to as the diffusion equation or heat equation. Within
this chapter the independent variables will be suppressed in all future mentions
of diffusion-type equations for readability.

2.2 Fisher’s equation, reaction, diffusion and con-

vection

The diffusion equation is one of the fundamental building blocks in the field
of mathematical physics, and its application has indeed diffused into almost
every field of science [20]. In the 1930’s, the British statistician and biologist
Ronald Fisher applied diffusion to a new subject; biology. More precisely, in
his paper The Wave of Advance of Advantageous Genes [21], Fisher studied how a
certain variant of a gene, a so called allele, would spread throughout a uniform
population on a line, given that natural selection favored this new mutation.
The application in mind were simple lifeforms such as slugs living along a
shoreline. If we by c(x, t) denote the concentration of individuals that express
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the advantageous gene, Fisher’s equation in one dimension is given by

∂c

∂t
= D

∂2c

∂x2
+ rc

(
1− c

K

)
(2.2.1)

c(x, 0) = c0(x) (2.2.2)

where the new parameters r and K are known as the growth rate and the carry-
ing capacity. The lack of boundary conditions indicate that the diffusion takes
place on the entire real line R. Fisher’s equation has since its introduction
been the fundamental object in spatial ecology and related fields, but it is an
idealised equation to be used as a starting point, not applied directly to novel
problems and domains. In fact, Fisher himself was adamant about this upon
the equation’s introduction 1937.

Nevertheless, Fisher’s equation stands today as a powerful tool to express
spatial evolution of populations, and the way it succinctly summarizes com-
plex emergent behaviours using three macroscopic and measurable parameters
gives it an unparalleled place in the field of mathematical oncology, espe-
cially so in the development of brain tumours [22]. As a differential equation,
it belongs to the class of equations known as semi-linear reaction-diffusion
equations; generally such equations are expressed as

∂u

∂t
=

∂

∂x

(
D
∂u

∂x

)
+ f (2.2.3)

where f(u, x, t) is the reaction term, and D can now depend on u, x and t. With
the reaction term, we aim to encode how a solution u interacts with both the
environment and itself. In the original paper by Fisher, the shape of the reaction
term is inspired by the law of mass action, commonly employed in chemistry
to model chemical reactions in well-stirred mixtures. Today, the most common
interpretation of the reaction term is that it is analogous to logistic growth. The
logistic differential equation

u′ = ru
(
1− u

K

)
(2.2.4)

is commonly used to model population growth in the presence of some limiting
factor encoded by K, such as competition for resources. In the modelling of
tumours, this is the interpretation most commonly taken.

One of the most interesting aspects of solutions to (2.2.1) is their travelling
wave property; given an initial condition of compact support on R, the Fisher
equation is satisfied by a solution sporting a clear, sharp wave front that tra-
verses outward from the initial distribution, exemplified in Figure 2.2.1. This
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Figure 2.2.1: Solutions to (2.2.1)-(2.2.2) with D = 0.1, r = 1.25, K = 1 and u0(x) =
4
5
(1 + exp(30(x2 − 0.05)))−1 at three different times. Note the consistent wave front.

In the modelling of cancer, this wave front is interpreted as the edge of the tumour,
moving with some degree of infiltration (given by the slope of the wave front) towards
the surrounding tissue.

is in sharp contrast to classical diffusion; solutions to (2.1.2) tend to showcase
much wider ’tails’. However, the ’bulk’ of the solution to (2.1.2) explores space
at a very slow pace. Another important distinction is that solutions to the
diffusion equation conserve mass; solutions to Fisher’s equation do not.

An intuitive argument in favor of reaction-diffusion as the driver of biological
phenomena is provided in Chapter 11 of Murray’s excellent text book Math-
ematical Biology I [23]. Here, Murray argues that pure diffusion is simply too
slow to be an adequate model of biological phenomena, no matter what D is.
He finds that under similar circumstances, the reaction term in even a simple
model such as (2.2.1) works as a driving factor, increasing the transportation of
biological media by several orders of magnitude. Thus, a common approach
to this day in mathematical biology is to tweak the reaction term to suit the
circumstances of the phenomena that is being modeled. In addition to the reac-
tion term added to the basic diffusion in (2.2.3), one may also add a convection
term, resulting in a reaction-convection-diffusion equation

∂u

∂t
+

∂h

∂x
=

∂

∂x

(
D
∂u

∂x

)
+ f (2.2.5)

where h(u, x, t) is the convection term, and models a directed transport phe-
nomena with velocity h′. The non-linear toy example equation of this kind is
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the Burger’s equation, given by setting h = νu2/2;

∂u

∂t
− νu

∂u

∂x
= D

∂2u

∂x2
. (2.2.6)

This equation describes a self-propelling behaviour, where the convection
speed is proportional to the local concentration. This equation was originally
formulated to study shock waves in liquids, but found some use in biology
when studying cell cultures where volume exclusion is taken into account
[24]. Most importantly, these types of equations arise when considering the
diffusion scaling of transport equations of the Boltzmann kind [25], but that type
of equations lie beyond the scope of this thesis.
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3 Stochastic processes and dif-
fusion

We will now shift our focus away from the macroscopic perspective of tumours
that makes use of partial differential equations in favour of formulating models
based on single-cell modelling. The modelling of cancer cells using stochastic
processes is inspired by the field of statistical mechanics, and as such we find
it fitting to begin this treatise by its most fundamental construct, Brownian
motion.

3.1 The simple random walk and Brownian motion

Definition 3.1.1 (Simple random walk). Consider a uniform lattice on R with
spacing Δx, and further consider a particle being located at x = 0 at time t = 0. In
every time step Δt, the particle jumps to either −Δx or Δx with equal probability,
and this process is repeated every time step.

The probability that a simple random walker reaches the lattice point m after n
time steps, where m ∈ Z, n ∈ N, is given by

p(m,n) =
1

2n
n!

a!(n− a)!
, a =

n+m

2
.

Now assume that n � 1, i.e the random walker has been jumping around for a
very long time. We find by using Stirling’s formula n! ∼ (2πn)1/2nne−n that
asymptotically,

p(m,n) ∼ ( 2

πn

)1/2
e−m2/(2n).

Now say that we are interested in the limit of an infinitely fine grid, i.e Δx → 0,

15
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Δt → 0, and declare the continuous variables mΔx := x and nΔt := t. The
probability of finding the particle in the small interval (x, x + 2Δx) is then
given by

u(x, t) :=
p( x

Δx ,
t
Δt )

2Δx
∼

( Δt

2πt(Δx)2

) 1
2

exp
(
− x2

2t

Δt

(Δx2)

)
.

Finally, by considering the limit where Δx and Δt approach zero so that

lim
Δx→0
Δt→0

(Δx)2

2Δt
= D > 0 (3.1.1)

we get the classical result

u(x, t) =
1√
4πDt

e−x2/(4Dt) (3.1.2)

where D is a diffusion coefficient and (3.1.1) is known as the diffusion limit.
Note that (3.1.2) is the distribution of a normal random variable with mean
0 and variance 2Dt. Denote by X(t) the random walker’s location at time t.
In the diffusion limit, we have that a random walker starting at X(0) = x0

satisfies the following

P(X(t) ∈ Ω | X(0) = x0) =

∫
Ω

1√
4πDt

e−(y−x0)
2/(4Dt)dy, Ω ⊂ R

and most importantly, we have that

X(t)− x0 ∼ N (0, 2Dt), (3.1.3)

i.e the continuous random walk has Gaussian increments. This property, along
with independence of increments and continuity of paths (not shown here)
are the defining properties of Brownian motion, also referred to as the Wiener
process, which is the essential building block in continuous time stochastic
processes. Note that this derivation of Brownian motion is quite informal, and
there exists a rich literature on the subject for readers interested in a more
rigorous treatment of its fundamentals, see for example [26]. The treatise given
here was mainly inspired by [23] and [27].
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3.2 Itô calculus and the Fokker-Planck equation

We will now head straight into the main application of Brownian motion,
namely stochastic calculus.

Definition 3.2.1 (Itô process on integral form). Let W (t) be a standard Brownian
motion, i.e a continuous stochastic process with independent Gaussian increments with
variance t. Furthermore, assume that

∫ t

0
|a(x, s)|ds < ∞ and

∫ t

0
b2(x, s)ds < ∞ for

all x ∈ R. An Itô-process X(t) is then given as

X(t) = X0 +

∫ t

0

a(X(s), s)ds+

∫ t

0

b(X(s), s)dW (s) (3.2.1)

where we can interpret both of these integrals in a Riemann-Stieltjes sense.

The first integral is referred to as the drift term, and models deterministic dynam-
ics driving the stochastic process X(t). The second integral is an Itô-integral,
where dW (s) is to be interpreted as a Gaussian increment of infinitesimal size.
If b = 0, we see that by differentiating (3.2.1) we get a general ordinary differ-
ential equation in X(t). With a slight abuse of notation, we can thus discuss
stochastic differential equations (SDE:s).

Definition 3.2.2 (Itô process on SDE form). Let W (t), a(x, t) and b(x, t) be as in
Definition 3.2.1. An Itô-process X(t) is expressed on SDE form as

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t), X(0) = X0. (3.2.2)

Stochastic calculus give rise to a multitude of interesting phenomena not
observed in deterministic calculus. Perhaps the most important result in all
of stochastic calculus is the stochastic analog to the chain rule, known as Itô’s
lemma.

Theorem 3.2.1 (Itô’s lemma). Let ϕ(x) ∈ C2
0 (R), and consider the stochastic

process ϕ(X(t)). The stochastic differential dϕ(X(t)) is given by

dϕ(X(t)) =
(
a
∂ϕ

∂x
+

b2

2

∂2ϕ

∂x2

)
dt+ b

∂ϕ

∂x
dW (t). (3.2.3)

Note that under the assumptions made on ϕ(x), we have that ϕ(X(t)) also
is an Itô process. The linear differential operators constituting the drift- and



18 3. Stochastic processes and diffusion

diffusion-term in (3.2.3) are commonly given the shorthand

L0 = a
∂

∂x
+

b2

2

∂2

∂x2
, (3.2.4)

L1 = b
∂

∂x
. (3.2.5)

An intrinsic property of Itô integrals is their martingale property,

Definition 3.2.3 (Martingale). Let X(t) be a stochastic process, and Fs be the
filtration of X(t) up to time s. We call X(t) a martingale if

E[X(t) | Fs] = X(s) (3.2.6)

for t > s. The Wiener process W (t) is an example of a martingale, and crucially we
have that for any reasonable function f(x),

E[

∫ t

0

f(X(s))dW (s)] = 0.

With this in mind, let us now take the expectation of the stochastic process
ϕ(X(t)) with respect to a probability measure generated by the stochastic
process (3.2.1). This measure is given by the probability density at a point x at
time t given an initial distribution p0(x), and we will call this measure p(x, t).
By considering (3.2.3) and using the martingale property, we get

Ep[ϕ(X(t))]

dt
= Ep

[
a
∂ϕ

∂x
+

b2

2

∂2ϕ

∂x2

]
=⇒

d

dt

∫
R

ϕpdx =

∫
R

[
a
∂ϕ

∂x
+

b2

2

∂2ϕ

∂x2

]
pdx =⇒

d

dt
〈ϕ, p〉 = 〈a∂ϕ

∂x
, p〉+ 〈b

2

2

∂2ϕ

∂x2
, p〉 (3.2.7)

where we have used that expectation with respect to a probability measure
p defines a linear operator Ep[·] = 〈·, p〉. We note that (3.2.7) is a differential
equation in p written in weak form. By integration by parts and using that ϕ is
of compact support, we can rewrite (3.2.7) as

〈ϕ, ∂p
∂t

〉 = −〈ϕ, ∂

∂x
[ap]〉+ 1

2
〈ϕ, ∂2

∂x2
[b2p]〉

which weakly defines a partial differential equation known as the Fokker-Planck
equation.
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Definition 3.2.4 (The Fokker-Planck equation). Consider an SDE of the form
given by Definition 3.2.2. The Fokker-Planck equation for this SDE is given by

∂

∂t
p(x, t) = − ∂

∂x
[a(x, t)p(x, t)] +

1

2

∂2

∂x2
[(b(x, t))2p(x, t)] (3.2.8)

p(x, 0) = p0(x).

This equation has the remarkable property that given some known initial
distribution p0(x), the solution to (3.2.8) gives the probability distribution
for where an Itô process (3.2.1) will be at time t. We also note that (3.2.8)
is a diffusion-style differential equation, indeed being a linear convection-
diffusion equation. The Fokker-Planck equation serves as a bridge from the
microscopic description of diffusion phenomena described by random walks
and the macroscopic description given by Fickian diffusion. As a final exercise,
we shall consider the Fokker-Planck equation for standard Brownian motion
with diffusion coefficient b =

√
2D and drift coefficient a = 0. The Fokker-

Planck equation in this case becomes

∂p

∂t
= D

∂2p

∂x2

which is the exact same equation as (2.1.2). Thus we have established that
Brownian motion is the microscopic equivalent of standard diffusion. We note
once again that the formality has been kept to a minimum in this chapter;
we have foregone to mention precise conditions on a and b for existence of
solutions and have been playing fast and loose with subtle measure theoretic
considerations when manipulating expectations. For a rigorous treatment of
Itô’s lemma, we once again refer to [26].

3.3 Itô-Taylor expansion and numerical schemes

Cases when an explicit solutions to a stochastic differential equation exists are
rare, and solutions to the Fokker-Planck equation are equally challenging to
find. Thus, numerical solutions to SDE:s are often what one has to resort to.
The theory for finding such solutions is similar to that of numerically solving
ordinary differential equations, and as such we will now provide a warm-up
example of how the Taylor-schemes for solving ODE:s can be found, a family of
explicit formulas for numerically solving ODE:s. Consider the first order ODE
given by

ẋ(t) = a(x(t), t). (3.3.1)
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A Taylor expansion of x(t) around t = t0 is given by

x(t) = x(t0) + (t− t0)ẋ(t0) +
(t− t0)

2

2
ẍ(t0) + . . .

Note that this Taylor expansion can be rewritten using (3.3.1);

x(t) = x(t0) + (t− t0)a(x(t0), t0) +
(t− t0)

2

2

d

dt

(
a(x(t), t)

)
+ . . .

Truncating after the first order term and setting t = t0 +Δ := t1 gives us that

x(t1) ≈ x(t0) + Δa(x(t0), t0) (3.3.2)

which is the first iteration of the familiar Euler forward scheme, the simplest
numerical scheme for approximating solutions to ODE:s. Truncation at the
second order term gives us a more refined approximation of x(t1),

x(t1) ≈ x(t0) + Δa(x(t0), t0)

+
Δ2

2

(
∂ta(x(t0), t0) + [∂xa(x(t0), t0)]a(x(t0), t0)

)

where the chain rule has been used to calculate the second-order term. Re-
peated use of the chain-rule on higher order terms will give us more refined
explicit numerical schemes. This demonstrates that one can use the right-hand
side of an ODE such as (3.3.1) to express the Taylor expansion of its solution
x(t), which is the key idea in the construction of approximate solutions to
SDE:s. The solution to an SDE is not a function as in (3.3.1), but rather an Itô
process. Luckily, a stochastic analogue to the Taylor expansion from traditional
calculus exists, known as the Itô-Taylor expansion.

Now let X(t) be an Itô process given by the (3.2.2). For the sake of simplicity
we restrict ourselves to the case of autonomous SDE:s where the coefficient
functions a and b have no time-dependence. Remembering Itô’s lemma (3.2.3)
and the proper formulation of X(t) in (3.2.1), we have

X(t) = X(t0) +

∫ t

t0

a(X(s))ds+

∫ t

t0

b(X(s))dW (s), (3.3.3)

ϕ(X(t)) = ϕ(X(t0)) +

∫ t

t0

L0ϕ(X(s))ds+

∫ t

t0

L1ϕ(X(s))dW (s).
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Figure 3.3.1: Demonstration of the duality between an Itô-process and the Fokker-
Planck equation. Seven realisations of the SDE dX(t) = −0.5X(t)dt+ 0.225dW (t) has
been simulated using the Euler-Maruyama scheme (3.3.6), along with the solution to
the corresponding Fokker-Planck equation p(x, t). For any time t > 0, the state of the
SDE solution is a sample from a probability distribution given by p(x, t).

Now, by choosing ϕ(x) = a(x), and ϕ(x) = b(x) respectively, we get that

a(X(t)) = a(X(t0)) +

∫ t

t0

L0a(X(s))ds+

∫ t

t0

L1a(X(s))dW (s), (3.3.4)

b(X(t)) = b(X(t0)) +

∫ t

t0

L0b(X(s))ds+

∫ t

t0

L1b(X(s))dW (s). (3.3.5)

By substituting (3.3.4) and (3.3.5) into (3.3.3) and integrating up to t1 = t0 +Δ,
we get

X(t1) =x(t0) +

∫ t1

t0

[
a(X(t0)) +

∫ s

t0

L0a(X(u))du+

∫ s

t0

L1a(X(u))dW (u)
]
ds

+

∫ t1

t0

[
b(X(t0)) +

∫ s

t0

L0b(X(u))du+

∫ s

t0

L1b(X(u))dW (u)
]
dW (s)

and from this exercise, we are ready to piece together the Euler-Maruyama
scheme for approximating solutions to SDE:s.

Definition 3.3.1 (Euler-Maruyama scheme with remainder term). Let X(t) be an
Itô process, and let tk = kΔ for some grid size Δ > 0 and k = 0, 1, . . . . Furthermore
let Zk ∼ N (0, 1). Given an initial observation X(t0) = X0 that might be random or
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deterministic, an approximate sample X̂k of X(tk) is given by the numerical scheme

X̂k+1 = X̂k +Δa(X̂k) +
√
Δb(X̂k)Zk, (3.3.6)

X(tk)− X̂k ∼
∫ tk

t0

[ ∫ s

t0

L0

(
a(X(u)) + b(X(u))

)
du

+

∫ s

t0

L1

(
a(X(u)) + b(X(u))

)
dW (u)

]
dW (s). (3.3.7)

We refer to (3.3.6) as the Euler-Maruyama scheme for the SDE (3.2.2), with
remainder term given by (3.3.7). More exact numerical schemes can be derived
for stochastic differential equations by further application of Itô’s lemma to
aspects of the remainder; such techniques are studied in great detail in [28] and
will prove pivotal to the first paper in this thesis.



4 Counting processes and pop-
ulation dynamics

We have until this point chiefly discussed stochastic processes describing the
spatial-temporal evolution for a random walker, but this is not the only type
of stochastic process that will be useful when modelling cell populations that
vary in size over time. A stochastic process describing changes in the number
of individuals in a population is called a birth-death-process, which we will now
give a basic characterization of.

4.1 Birth-death process and survival analysis

Definition 4.1.1 (Birth-death process). Let Q(t) = 0, 1, 2, . . . be the number of
individuals in a population at time t. For times 0 ≤ t < s, we have a transition density
of the form

pm,n(s, t) = P (Q(s) = m | Q(t) = n), (4.1.1)

with support on the non-negative integers m = 0, 1, 2, . . . . Birth-death processes are
subclass of Markov processes, meaning that for u < t we have

P (Q(s) = m | Q(t) = nt, Q(u) = nu) = P (Q(s) = m | Q(t) = nt].

When modelling biological systems, the rate at which a population grows is
usually made to be a function of the population size at that particular time.
Thus, for long time horizons, i.e when s � t, an expression such as (4.1.1)
becomes intractable due to the multiple ways the population structure can
change over such a long duration. Thus some approximation is necessary in
order to formulate a workable equation that describes the dynamics of the
stochastic process Q(t). Our main focus will be on the expected population

23
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size at time t, i.e E[Q(t)] := N(t).

We constructed the Fokker-Planck equation, which forecasts the spatial distri-
bution of a random walker long into the future, by considering local dynamics
over an infinitesimal time scale. We can thus attempt a similar approach when
finding an evolution equation for Q(t). More precisely, we will see that the
logistic equation can be derived as the mean-value process of an individual-
based birth-death process.

Let’s start by assuming that some individual cell was born at time t = 0,
and the time it divides is given by a random variable β with support on [0,∞).
We refer to the probability density function for β using b(t) and the cumulative
probability function using B(t). We assume that β is Markovian, i.e that for
s > t > u > 0 we have

P (β > s | β > t, β > u) = P (β > s | β > t)

and by Bayes theorem we furthermore get that

P (β > s | β > t) =
P (β > t | β > s)P (β > s)

P (β > t)
=

P (β > s)

P (β > t)
. (4.1.2)

where we have used that P (β > t | β > s) = 1, since s > t. We refer to a
realization of the random variable β as the holding time until the cell divides.
To further characterize our holding time, we let s = t+Δ for some Δ > 0. By
utilizing the integration trick

∫ ∞

t+Δ

b(τ)dτ =

∫ ∞

t

b(τ)dτ −
∫ t+Δ

t

b(τ)dτ

=
[
1−B(t)

]− [
B(t+Δ)−B(t)

]
,

(4.1.2) then becomes

P (β > t+Δ)

P (β > t)
=

1−B(t+Δ)

1−B(t)

=

[
1−B(t)

]− [
B(t+Δ)−B(t)

]
1−B(t)

= 1− B(t+Δ)−B(t)

1−B(t)
:= H(t, t+Δ) (4.1.3)

where H(t, t+Δ) ∈ (0, 1) is a shorthand notation for this conditional probability.
We now rearrange the left and right hand side of (4.1.3) by moving all B-
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dependence to the right hand side, and divide both sides by Δ. We get

1−H(t, t+Δ)

Δ
=

B(t+Δ)−B(t)

Δ
· 1

1−B(t)
. (4.1.4)

Assuming that H(t, t+Δ) is continuous in Δ so that the limit

lim
Δ→0

1−H(t, t+Δ)

Δ
:= h(t) (4.1.5)

exists,(4.1.4) defines an ordinary differential equation as Δ → 0 that is com-
monly referred to as the survival equation. Note that this condition is not hard
to meet for the vast majority of probability distributions defined on the real
half-line; one can note that (4.1.5) can be stated as

lim
s→t+

H(t, t)−H(t, s)

s− t

so the only condition is that (4.1.3) is differentiable in s.

Definition 4.1.2 (The survival equation, general definition). Denote by B(t),
t ≥ 0 the probability that some event of interest has occurred at time t. Furthermore
denote by h(t) the hazard rate function, that describes the time-dependent accumulation
of probability for said event. The survival equation is given by the ODE

h(t) =
B′(t)

1−B(t)
, B(0) = 0. (4.1.6)

The initial condition means that a cell cannot divide at the same time it was
born. We can note that by setting h(t) = λ > 0, the solution to (4.1.6) will be

P (β < t) = B(t) = 1− e−λt,

meaning this choice of h(t) characterizes an exponentially distributed holding
time. Another example would be h(t) = bλtb−1, that gives us the solution

B(t) = 1− e−λtb .

This is the CDF for a Weibull(λ, b)-distributed random variable, where the
hazard rate for the event in question increases as time goes by for b > 1, and
decreases for 0 < b < 1. As stated before, the holding time must be dependent
on the current population structure in a biologically feasible model, and we
model this by making the hazard function depend on Q(t). Our proposed
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Figure 4.1.1: A demonstration of
how the logistic equation arises as
the mean of a counting process. In
light red, we have 100 realizations
of the stochastic process (4.1.8) with
R(N) given by (4.1.10), using the
parameters r = 0.7, K = 200, simu-
lated using Algorithm 1. In yellow,
the average of these 100 processes.
In black, the solution to (4.1.9).

equation that gives us the CDF of β is thus

R(Q(t)) =
B′(t)

1−B(t)
, B(0) = 0. (4.1.7)

where R is a positive bounded function. Let us now write an approximation of
the transition density (4.1.1) in terms of the survival equation formulation of
holding times, valid over short time spans. We restrict ourselves to the case of
a pure birth process for the time being.

Assume that at time t, there are n cells. Let β1, β2, . . . , βn be n IID copies
of β. For some future time t + Δ, the number of cells will be approximately
distributed as

(
Q(t+Δ) | Q(t) = n

) ∼ n+
n∑

i=1

(
1− I[βi > t+Δ | βi > t]

)
(4.1.8)

given that Δ is small enough to ensure that cells born in the interval [t, t+Δ]
will not divide before the time t+Δ. Now, we take the expected value of (4.1.8),
subtract Q(t) = n from both sides, divide both sides by Δ and consider the
limit Δ → 0;

lim
Δ→0

( 1

Δ
E[Q(t+Δ)−Q(t) | Q(t) = n]

)
= lim

Δ→0

1

Δ

n∑
i=1

(
1− P (β > t+Δ)

P (β > t)

)

= lim
Δ→0

n
1−H(t, t+Δ)

Δ︸ ︷︷ ︸
see (4.1.5)

= nR(n).

Thus, we have now arrived at an ordinary differential equation that describes
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the evolution of E[Q(t)] = N(t), namely that

N ′(t) = N(t)R(N(t)). (4.1.9)

This equation is used widely within mathematical biology, where R(·) is said
to model the per capita reproduction rate of the population. The quintessential
form is given by the logistic equation, where

R(N) = r(1− N

K
). (4.1.10)

Here r > 0 is a baseline reproduction rate and K > 0 is the carrying capacity
of our population, governing the maximum number of individuals that our
ecosystem can sustain. Equation (4.1.10) is the simplest type of per-capita re-
production that captures the biological reality of resource scarcity, and we have
already by addressing the Fisher equation (2.2.1) demonstrated how logistic
growth permeates population dynamics modelling. A typical solution to the
logistic equation is visualized in Figure 4.1.1, along with simulations of the
process (4.1.8).

Remember that what we have treated in this section is a pure birth process,
but death can be added to the process quite easily. In the same way that each
cell is given a holding time distributed according to the random variable β, one
can add an independent random variable ω (and its IID copies ωi) that governs
the holding time until death. Furthermore, let the cumulative distribution O(t)
of ω satisfy the survival equation

M(Q(t)) =
O′(t)

1−O(t)
, O(0) = 0. (4.1.11)

If β and ω are taken to be independent, the transition density (4.1.8) can be
modified as

(
Q(t+Δ) | Q(t) = n

) ∼ n +
n∑

i=1

(
1− I[βi > t+Δ | βi > t]

)

−
n∑

i=1

(
1− I[ωi > t+Δ | ωi > t]

)

and we get a resulting equation for N(t) in

N ′(t) = N(t)
(
R(N(t))−M(N(t))

)
.
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4.2 Alternative frameworks for the birth-death pro-

cess

What we have presented here, formulating and simplifying the birth-death
process (4.1.1) in the context of survival analysis, is just one of many different
perspectives one can take on this problem. This particular framework lends
itself well to individual-based modelling, something that will be justified in
the following chapter. A different formulation would perhaps be to consider
the Kolmogorov equations for continuous-time Markov chains.

Definition 4.2.1 (Kolmogorov equations for birth-death processes). Let Q(t) be
a birth-death process, and set pn(t) = P (Q(t) = n). Furthermore, let βn be the rate
at which one individual is added to the population when Q(t) = n, and ωn be the rate
at which one individual is removed. pn(t) satisfies the differential equation

p′n(t) = −(βn + ωn)pn(t) + βn−1pn−1(t) + ωn+1pn+1(t).

One can arrive at (4.1.9) by considering the expected value of Q(t) given that
βn = R(n) and ωn = 0 [29]. Yet another, and far more technical approach,
would be to use the framework of Itô calculus for jump processes, a field
that lie beyond the scope of this thesis but that has interesting implications in
providing a rigorous derivation of the Fisher equation [30].

4.3 An algorithm for simulating birth-death pro-

cesses

We ended the chapter on Brownian motion and Itô processes with a brief
summary of numerical methods used for simulating such processes. One can
make a symmetry argument that we have arrived at the time to do the same for
birth-death processes. The simulation is pleasingly simple - as the time-varying
CDF B(t) is defined by an ordinary differential equation, one can quite easily
implement a birth-death process along with a simulation of an Itô process by
simply using some explicit ODE-solver to step up B(t) along with the Euler-
Maruyama scheme used to generate the Itô process for the cell positions. Such
an algorithm is exemplified in Algorithm 1. A simulation using this numerical
scheme is illustrated in Figure 4.1.1, where we also empirically demonstrate
that the logistic equation arises as the average of multiple runs of this stochastic
simulation.
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Algorithm 1 An algorithm for simulating a pure birth process

Require: N0 > 0  Initial population size
Require: r > 0  Base division rate
Require: K > 0  Carrying capacity
Require: Δ > 0  Time step in Euler scheme
Require: T > 1  Number of simulation steps

N ← N0

B ← zeros[N, 1]  Initiate Bi(0) for cell i = 1, 2, . . .
β ← rand[N, 1]  Uniform random numbers for simulating holding times
Nt ← N × ones[1, T ]
for t = 2 : T do

nt = zeros[N, 1]  Track if a cell divides this time step
for i = 1 : N do

B[i] ← B[i] + ΔR(N)(1−B[i])
if B[i, t] > β[i] then

nt[i] ← 1  Flag that this cell has divided
B[i, t] ← 0  Reset the division probability for this cell
β[i] ← rand  Give it a new holding time

end if
end for
ηt ←

∑N
i=1 nt[i]  Calculate the number of new cells

Bt ← zeros[ηt, 1]  Initiate division probability for new cells
βt ← rand[ηt, 1]  Give them holding times
B ← [B;Bt]  Add newcomers to population
β ← [β;βt]
N ← N + ηt
Nt[t] ← N

end for
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5 Microscopic model of cell
migration and proliferation

It can scarcely be denied that the
supreme goal of all theory is to
make the irreducible basic
elements as simple and as few as
possible without having to
surrender the adequate
representation of a single datum of
experience.

Albert Einstein, 1933

Now that we have the concept of stochastic differential equations, the Fokker-
Planck equation and birth-death processes freshly in our minds, we will move
on to the primary subject for this thesis, namely interacting particle systems as
models for cancer cell populations.

5.1 Kernel-based modelling of cell interactions

In a mathematical oncology setting, agent-based models are a fairly recent
development, but similar methods have a rich history in chemistry and physics.
There, agent-based models are the fundamental construct underpinning statis-
tical mechanics on the sub-microscopic level, and thus we will apply similar
SDE models to two-dimensional cell migration. In a system of N cells, we will
label each individual cell as i = 1, 2, . . . , N and let Xi(t) ∈ R2 be the location
of cell i at time t.
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Before moving on to an explicit formulation of an SDE system for Xi(t), we
have to acknowledge a limit in what SDE:s are capable of modelling. A random
walker occupies a point in space at a specific time, but since the scale of interest
here is microscopical, cells have a ’size’ that has to be accounted for. We will
model the physical presence of the cells using a radially symmetric interaction
kernel ϕd(r), dependent on a scaling parameter d. We assume that ϕ is smooth
and of compact support, i.e ϕ(r) ∈ C∞

0 (R+), and propose

ϕd(r) =
ϕ(r)

ϕ(d)
. (5.1.1)

In Figure 5.1.1, we see an example of how we have adjusted the kernel scaling
to be that of an average cell diameter. If we furthermore set the length scale
so that d = 1, we achieve a microscopic unit suitable for modelling individual
cells in a petri dish, while also simplifying our simulations. Note that for
longer-range interactions between cells, we might introduce additional kernels
with a scaling that differs from the d featured in (5.1.1).

The main purpose of introducing the kernels is to let the cells interact with one
another at a short length scale, by forming the basis in an interaction potential
U(r). In mathematical biology, interaction potentials are used to aggregate
mechanical effects that can be difficult to disentangle. Potentials can be either
repulsive, attractive or both. Every cancer cells i is assigned a potential, and it
is through this potential that the cell interact with its environment. If another
cell is at a distance r from cell i where ∇U(r) < 0, the cells repel one another.
If ∇U(r) > 0, they attract. See Figure 5.2.1 for an illustration. The mechanism
behind repulsion and attraction can be for any number of reasons, as the po-
tential in itself encode some type of average behaviour, and is not a model of
a specific biophysical phenomena. Example of phenomena which results in
attraction cell is adhesion, while volume exclusion is a source of repulsion.

A construct that will come of use later on in this chapter is the empirical measure
μt(x) generated by our population.
Definition 5.1.1 (The empirical measure). Assume that at time t we have observed
N cells centered at Xi(t) ∈ Ω ⊆ R2, i = 1, 2, . . . , N . The empirical measure
generated by this observation is given by

μt(x) =
1

N

N∑
i=1

δ(x−Xi(t)) (5.1.2)

where δ(x) is the Dirac delta distribution, with the property 〈f(x), δ(x− a)〉 = f(a).
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Figure 5.1.1: A demonstration of how kernels are necessary to model our cell population
using SDE:s. In the left panel, we see a representative microscopy image of glioblastoma
multiforme cancer cells. In the right panel, we focus on the marked area in the left panel,
adding kernels to the cells. The average diameter d̄ of the cells is calculated using the
radial distribution function for the cell population, and an exponential kernel with
scaling parameter d̄ (see (5.1.1)) has been placed at the center of a cell of choice. The
SDE system only models the dynamics of the center of the cells, but their interactions
and physical presence is accounted for by the kernel.
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The empirical measure is to be interpreted as the distribution that indicates
whether or not a cell is located at some particular x ∈ Ω. If we integrate μt(x)
over some domain A ⊆ Ω, we get the fraction of the total population that is
found within A. Thus, we can define a new distribution n(A, t) : Ω �→ [0, 1]

n(A, t) =

∫
Ω

1A(x)μt(x)dx = 〈1A, μt〉 (5.1.3)

which is visualized in the left panel of Figure 5.3.1. One can further define the
number density at a point x ∈ Ω by setting A = B(x, r), where B(x, r) is a ball
centered around x of radius r, and considering the limit

lim
r→0

N(A, t) = n(x, t) (5.1.4)

but this expression only makes sense as a distribution.

5.2 SDE model for the microscopic dynamics

We are now ready to introduce the system of stochastic differential equations
that form the cornerstone of the entire thesis. The model choice is meant to
be as simple as possible, but not simpler, and thus we adapt ourselves to the
setting of our main data source, in vitro migration of single cell populations.
Denote by Ω ⊆ R2 the domain on which our cell migration takes place. We
assume the time evolution of Xi(t) ∈ Ω can be described by an SDE

dXi(t) = Vi(Xi(t))dt+
√
2DdW (t) (5.2.1)

Vi(y) = −∇y

∑
j �=i

U(‖y −Xj(t)‖), (5.2.2)

U(r) = De

[
1− (ϕd(r))

a
]2

−De, (5.2.3)

where σ :=
√
2DI is a diagonal matrix corresponding to an isotropic Brownian

motion. The environment in which the cell migration takes place is in all our
applications homogeneous and rich in nutrients and oxygen, thus making the
isotropic diffusion a plausible assumption. We have chosen this formulation
of the interaction potential due to the wide array of attractive-repulsive be-
haviours one can extract from it depending on ones choice of kernel ϕ(r). In
Figure 5.2.1, we have formulated the Morse potential by setting ϕ(r) = e−r,
and one can formulate the Lennard-Jones potential by setting ϕ(r) = r−α, i.e
letting the attraction-repulsion follow an inverse power law.
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Figure 5.2.1: An example of an interaction potential frequently employed in cancer cell
population modelling, the Morse potential. It is acquired by using the kernel ϕ(r) = e−r

in (5.2.3), and sports an attractive-repulsive behaviour. Let X1 be the position of cell 1,
and set that as the origin. The "force" with which it acts upon a neighbouring cell located
at X2 depends on their distance, being repulsive at close ranges and attractive outside of
this range. The amount of attraction or repulsion is proportional to the gradient of the
potential, meaning that very little interaction takes place at distances longer than a few
cell diameters. Parameters used: De = 2.1 · 10−4, a = 3.5 and d = 1.

Given this SDE system, we are now interested in what the solution to the
corresponding Fokker-Planck equation might look like. The transition density
from a known population distribution to a possible future distribution is of
crucial importance in the inference problem this thesis is centered around.

Denote by PN (�x, t) the joint probability distribution for our population, where
�x = [x1 x2 . . . xN ]T . Here, we interpret xi ∈ Ω as the variable for the space
where the probability density for cell i is considered. We get an equation for
PN (�x, t) by deriving the Fokker-Planck equation for the system (5.2.1), given
as

∂tPN (�x, t) = ∇�x ·
[
D∇�xPN (�x, t) +

N∑
i=1

Vi(xi)PN (�x, t)
]
. (5.2.4)

Vi(xi) = −∇xi

∑
j �=i

U(‖xi − xj‖) (5.2.5)

However, this equation is unwieldy, difficult to solve and of spatial dimension
2N . One needs to approximate P (�x, t) using a simpler set of objects, something
we will now explore.
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5.3 Deriving the marginal distributions

The traditional way to deal with such massive joint probability distributions
is to derive the marginal distribution for each individual cell, and then ap-
proximate the joint distribution using the marginals. The cells are assumed to
be identical in this model, making their labels i = 1, 2, . . . , N interchangeable.
Thus, we will consider the marginal distribution for cell 1, knowing that the
same procedure can be used to find the marginal distribution for any cell i. The
marginal for cell 1 is given by

P1(x1, t) =

∫
ΩN−1

PN (�x, t)dx2 · · · dxN . (5.3.1)

As we will come to see in a little bit, finding the marginal distribution for just a
single cell will not be enough. We will also need the pairwise marginal densities,
given by

P2(x1,x2, t) =

∫
ΩN−2

PN (�x, t)dx3 · · · dxN (5.3.2)

for the cell-pair 1 and 2; the marginalization was performed with respect to
these two labels to simplify the notation. Note that due to the invariance
under labelling, one can interpret (5.3.1) as the probability of finding any cell
at location x1 ∈ Ω at time t. Likewise, a valid interpretation of (5.3.2) is the
probability that at time t, one cell is centered at x1 ∈ Ω and another at x2 ∈ Ω.

We will now attempt to apply the marginalization procedure (5.3.1) to (5.2.4),
hopefully giving us an equation from which we can find P1(x1, t) without too
much trouble. For the sake of simplicity, we will assume that Ω = R2 for the
remainder of this section; i.e the domain on which the cell migration takes place
is very large compared to the area covered by the cell population. Integrating
with respect to x2, . . . ,xn on both sides of (5.2.4), we have

∫
ΩN−1

∂tPNdx2 . . . dxN =

∫
ΩN−1

∇�x ·
[
D∇�xPN +

N∑
i=1

ViPN

]
dx2 . . . dxN ⇒

∂tP1 = D∇2
x1
P1 +

∫
ΩN−1

∇x1
·
[
V1PN

]
dx2 . . . dxN (5.3.3)

+

N∑
i=2

∫
ΩN−1

D∇2
xi
PN +∇xi

[
ViPN

]
dx2 . . . dxN

(5.3.4)
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where all independent variables have been suppressed for readability. Let us
begin by dealing with (5.3.4). Our domain of integration is the product space
of N − 1 copies of R2. Let us say that xi is our variable of interest; we can then
approximate our domain as

Πi = Ω× Ω× . . .× (
[−ξ, ξ]× [−ξ, ξ]

)
︸ ︷︷ ︸

the i:th term

×Ω . . .

and consider the limit ξ → ∞. Let n̂i be the normal vector pointing outwards
from the ξ-dependent square, which we will call Ξ. Setting i = 2 and using
Green’s theorem, the first half of the integral in (5.3.4) thus becomes

lim
ξ→∞

∫
Π2

D∇2
x2
PNdx2 . . . dxN = lim

ξ→∞
D

∫
ΩN−2

[ ∫
∂Ξ

∇x2
PN · n̂2ds2

]
dx3 . . . dxN

= 0

as the probability flux ∇xi
P must vanish as ξ → ∞. Likewise, we perform the

same integration trick for the second half of the integrand, and arrive at

lim
ξ→∞

∫
Π2

∇x2

[
V2PN

]
dx2 . . . dxN = 0.

The same results hold for any other choice of i, meaning that (5.3.4) equals zero.
Thus, what remains a potential issue is the integral term in (5.3.3), so let us
handle it with some extra care. We have that∫

ΩN−1

∇x1
·
[
V1PN

]
dx2 . . . dxN =

−
∫
ΩN−1

∇x1 ·
[
∇x1

N∑
j=2

U(‖x1 − xj‖)PN (�x, t)
]
dx2 . . . dxN

can be split up into the sum of N−1 identical integrals owing the independence
of cell labels;∫

ΩN−1

∇x1
·
[
∇x1

U(‖x1 − x2‖)PN (�x, t)
]
dx2 . . . dxN =∫

ΩN−1

∇x1
·
[
∇x1

U(‖x1 − xj‖)PN (�x, t)
]
dx2 . . . dxN , j �= 2.
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For the cell pair 1 and 2, we have that
∫
ΩN−1

∇x1
·
[
∇x1

U(‖x1 − x2‖)PN (�x, t)
]
dx2 . . . dxN = (5.3.5)

∇x1 ·
∫
Ω

[
∇x1U(‖x1 − x2‖)P2(x1,x2, t)

]
dx2. (5.3.6)

Renaming the spatial variables as the general x1 := x, x2 := x′, this procedure
gives us the closest possible explicit equation for the one particle density that
is available,

∂tP1(x, t) = DΔxP1(x, t)− (N − 1)∇x ·
∫
Ω

[
∇xU(‖x− x′‖)P2(x,x

′, t)
]
dx′.

(5.3.7)
As is usually the case in the mathematics of bridging stochastic models with
their deterministic counterparts, there are multiple ways to formulate the pro-
cess covered in this section. One alternative way is to apply Itô’s lemma to the
expected value of (5.1.2); in [31], the authors demonstrate that (5.3.7) can be
derived using that method. Thus, one can have the perspective on (5.3.7) that
rather than describing the marginal distribution for one particular cell, it rather
describes the time evolution of the empirical measure. This is visualized in the
right panel of Figure 5.3.1, where P1(x, T ) for some T > 0 has been approx-
imated using an empirical measure as initial condition, i.e P1(x, 0) = μ0(x).
Furthermore, this interpretation of P1(x, t) will be important when cell division
is introduced into the model.

The equation for the 2-particle density can likewise be recovered by applying
Itô’s lemma to the expected value of

νt(x,x
′) =

1

N(N − 1)

N∑
i=1

∑
j �=i

δ(x−Xi(t))δ(x
′ −Xj(t)),

which is to be interpreted as an indicator of whether or not the statement "given
a cell is located at x′, there is a cell at x" is true. Note that the calculations
performed in this section can be adapted to a compact subset Ω of R2 by
imposing a no-flux boundary condition on Ω, but performing these calculations
would yield little further insight.
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Figure 5.3.1: An example of how the number density for a small population of 30
"cells" is calculated on the domain Ω = [0, 20]× [0, 20], at two different times. At t = 0,
we know where all cells are and the domain A contains six cell centers, marked by
black dots, and thus (5.1.3) gives us n(A, 0) = 1/5. The red circles indicate the cell
diameters. At some time t = T in the future, the cells have diffused throughout Ω,
and the probability of finding a cell centered at a certain location x is given by the the
probability distribution P1(x, t), given by (5.3.7). We now have n(A, T ) ≈ 0.1417, as
n(x, T ) is the solution to (5.3.7) at time T using (5.1.2) as initial condition.

5.4 Closure methods for N-particle systems

We note that (5.3.7), the single cell marginal density, turned out to be dependent
on the pairwise density. In turn, the equation for the pairwise density depends
on the three-particle density, demonstrating that there is a hierarchical structure
to the equations giving us the marginals, called the BBGKY hierarchy [32].
In fact, if one were to perform the marginalisation done in (5.3.1) and (5.3.2)
N times, one would end up with a system of N PDE:s, with (5.2.4) being the
equation at the top of the hierarchy! Thus, one has to close the hierarchy at some
low level, by approximating the k-particle density Pk using P1, P2, . . .Pk−1.
This is usually done at the two or three particle level, and we will now briefly
cover two such methods for closure at the pairwise density, and how one goes
about reconstructing P (�x, t) using these closure methods.

The simplest closure available is called the mean field closure, where we as-
sume that the marginal distributions are independent of one another, and thus
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PN (�x, t) can be factorized as

PN (�x, t) =
N∏
i=1

P1(xi, t) ⇒

P2(x,x
′, t) = P1(x, t)P1(x

′, t) (5.4.1)

Under this closure, (5.3.7) becomes

∂tP1(x, t) = DΔxP1(x, t)− (N − 1)∇x ·
[
P1(x, t)(∇xU ∗ P1)(x, t)

]
(5.4.2)

where ∇xU ∗ P1(x, t) =
∫
Ω
∇xU(‖x − x′‖)P1(x

′, t)dx′. However, there is a
glaring issue with this closure method, demonstrated with Figure 5.4.1. In the
exact pairwise density, one should have that P2(y,y, t) = 0 for y ∈ Ω, as two
particles of non-zero size should not be able to occupy the same place at the
same time. However, the single particle marginal densities does not take such
spatial structures into account, resulting in a joint distribution that peaks for the
region where x ≈ x′. One can remedy this by the method of matched asymptotic
expansion [33], where one can find an approximate formula for P2(x,x

′, t) in

P2(x,x
′, t) ≈ P1(x, t)P1(x

′, t)e−U(‖x−x′‖). (5.4.3)

This expression takes the repulsion into account (see panel (c) in Figure 5.4.1)
and thus provides an adequate approximation of the pair density at the small
price of some added complexity. We arrive at a PDE for the single particle
density in

∂tP1(x, t) = DΔxP1(x, t)−(N−1)∇x ·
[
P1(x, t)(∇xU ∗(P1e

−U ))(x, t)
]
. (5.4.4)

5.5 Introducing cell division to the particle system

The model would not be complete without a brief discussion on how to intro-
duce new cells to the population. We will do this in the context of a survival
analysis formulation of the cell division probability, but unlike the model out-
lined in Chapter 3, we will make the hazard function for cell i depend on the
local cell density around i, and not the total population size as in (4.1.7).

Let ϕb(r) be a kernel as in (5.1.1), but now with a different scaling b than
the one used for cell-to-cell interactions. The different scaling stems from that
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Figure 5.4.1: A demonstration of how the mean field and matched asymptotic expan-
sion closure operates. In panel (a), we have the pairwise density for a system of five
interacting cells diffusing along the line segment Ω = [0, 20], recovered by Monte Carlo
simulations. In panel (b), we demonstrate how mean field approximation (5.4.1) fails to
take the spatial anti-correlation along the diagonal into account. In panel (c), we observe
how the correction term included in the matched asymptotic expansion-derived closure
remedies this issue.

cells might influence the division rates of one another at longer ranges than the
mechanical interactions modelled by U , something called autocrine signalling
[34]. We can then compute the local density ρi(t) around cell i at time t as

ρi(t) =
1

C

∑
j �=i

ϕb(‖Xi(t)−Xj(t)‖) = 1

C
ϕb ∗

(
μt(x)− δ(x−Xi(t))

)
(5.5.1)

where C is a normalizing constant, and δ(x−Xi(t)) is subtracted as cell i does
not contribute to its own local density. The idea is now to assign a birth process
Bi(t) to cell i. Assuming that cell i was born at time t = 0, we formulate it as

R(ρi(t)) =
B′

i(t)

1−Bi(t)
, Bi(0) = 0. (5.5.2)

The algorithm for adding new agents to an interacting particle system is essen-
tially the same as Algorithm 1, and allows us to dynamically add new cells to
our population with ease. The exact method is covered in greater detail in the
third paper included in this thesis.

With cell division accounted for and an interpretation of P1(x, t) as the evolu-
tion of the empirical measure for our population, one can follow the procedure
laid out in [30] and derive a PDE that describes the mean field evolution of the
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number density n(x, t), as defined by (5.1.4). Without delving into too much
detail, we find that

∂tn = DΔxn− (N − 1)∇x ·
[
n(∇xU ∗ n)

]
+ n[R(n)−M(n)] (5.5.3)

where R(n) and M(n) are the reproduction and mortality rates as laid out in
(4.1.7) and (4.1.11), respectively. We have then come full circle; by assuming no
cell interactions and setting R(n) = r(1− n/K) and M(n) = 0, (5.5.3) becomes
the Fisher equation, giving us the microscopic derivation of it hinted at in the
end of Chapter 3.



6 Model expansions and fu-
ture considerations

While the model presented in the previous chapter is capable of modelling
a wide array of different cell migration behaviours, we would be remiss not
to mention some extensions that could be considered in future work on this
problem. This includes further modification of the system of diffusion equa-
tions (5.2.1)-(5.2.3), as well as more advanced variants that take cell velocity
into account.

6.1 Models for heterogeneous media

The cell cultures that have laid the foundation of the data sets in this thesis
have been kept under quite optimal conditions; their access to nutrients and
oxygen has been unhindered, and the medium through which the cell migrates
is homogeneous. This is not the case when one models tumour growth in real
tissue, however. Thus, we will now introduce a few constructs that must be
accounted for when modelling cell migration in vivo, first one out being what
is summarily called the extracellular matrix, or ECM.

The ECM is a complex and dynamic network of molecules that surrounds
the cells in a multicellular organisms, composed of proteins, glycoproteins,
polysaccharides, and more. The ECM acts as a scaffold for cells, offering
mechanical stability and transmitting mechanical cues that influence cell be-
haviour [35]. When modelling cell migration, the ECM can for example regulate
the diffusion coefficient in (5.2.1), representing that denser tissue is more dif-
ficult for cells to migrate through. It can also provide an additional term to
the drift part of (5.2.1), through the processes of durotaxis and heptotaxis [36].
However, ECM modelling is most commonly found in the literature as part in
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reaction-diffusion models [37, 38], although agent-based approaches have been
studied as well [39, 40].

Next up, one can introduce the influence of chemical compounds and oxygen
levels to the model, referred to as chemotaxis. Here, one typically model the
molecules of the chemicals in mind as diffusive, a consequence of that a single
agent (i.e a molecule) in the chemical solution is much smaller than an agent
(i.e a cell) in the tumour [41]. Common approaches is that chemorepellants,
representing toxins, steer the cells away and chemoattractants, for example
nutrients, have an attractive effect, feeding into the drift term of (5.2.1) as a flow
along the gradient of the chemical concentration. Oxygen levels in the tissue
is known to have a crucial effect on cell division rate [42], and the common
approach is to model the oxygen as diffusing from blood vessels around the tu-
mour. Detailed in vivo models of tumour evolution shall thus take angiogenesis
into account, the process in which the tumour facilitates the generation of new
blood vessels around itself to keep itself alive [43].

6.2 Velocity-driven equations

Though diffusion models are ubiquitous in mathematical biology, the fun-
damental assumption they rest on is physically impossible. Remember that
diffusion is derived as a limit for the simple random walk, which is based on
discrete, instantaneous jumps in the position of our random walker. As such,
these models are referred to as position jump models or kangaroo processes. A
more physically grounded view point is to instead formulate a Newtonian
mechanics-based model for the position of our cells.

It has been long noted that certain microbiological organisms, famously the
bacteria E. coli, displays a persistence in its migratory behaviour [44, 23]. These
bacteria tend to express a ’run-and-tumble’ pattern in its migration whereas it
swims in a straight line for some time, stops, and then picks a new direction,
perhaps stimulated by some chemotactic factor. This behaviour has also been
observed in several types of cancer [45]. The ’run-and-tumble’ migration be-
haviour is not possible to model using the SDE model (5.2.1)-(5.2.3), but several
models have been suggested by the literature. We will now briefly discuss
those, for cells migrating in R2.

Assume that the cell or bacteria maintains a constant speed during the runs,
and a run lasts for a random holding time τ > 0. After this, a new direction for
the run is picked according to a probability distribution corresponding to the
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boundary of the unit circle (i.e the interval [0, 2π]), and the run begins anew in
this new direction. In [46], one can find a pleasant review article laying out the
basics of this paradigm.

A second variant of a similar idea can be proposed, this time rooted in SDE
modelling, making it more readily applicable to the work laid out in this thesis.
Note that the drift term in (5.2.1) corresponds to a velocity derived from the
potential field U acting on the cell position Xi(t). Thus, we add a term Vi(t)
to the drift part, corresponding to cell i:s velocity, something not taken into
account in a kangaroo process. We will now let the randomness in the system
act upon the velocity of the particle instead. This type of equation is known in
statistical mechanics as a Langevin equation and is formulated as

dXi(t) = Vi(t)dt, (6.2.1)

dVi(t) = −[
μVi(t) +

1

m
Fi(Xi(t))

]
dt+ σdW (t). (6.2.2)

In this equation, μ is analogous to mechanical friction, m is the mass of a cell
and Fi(Xi) is a force acting on cell i, that may include both external sources
and cell-to-cell interactions. Thus, (6.2.1)-(6.2.2) can be viewed as Newton’s
equations of motion as seen in classical mechanics, but with a noise term added
to the acceleration. This model is studied in detail in [47].

The drawback with this much more physically realistic model is the added
complexity. Not only does it contain more parameters, but now each cell i
correspond to a point in the phase space R2 ×R2 associated with it; the velocity
is considered to be a point in R2. Alas, this has doubled the dimension of
our previous problem, but non-the-less a Fokker-Planck equation can still be
derived. Under the assumption that Fi involves no cell-to-cell interactions, the
marginal distribution for a single particle is given by Itô’s lemma, and is given
by [47]

∂

∂t
p+ v · ∇xp+∇v · ((−μv +

F

m
)p
)
=

σ2

2
∇v · (∇vp) (6.2.3)

where p := p(x,v, t) is the probability of finding a cell located at x, with velocity
v, at time t. The index has been dropped for F as all cells follow the same
dynamics in this case. If one were to include cell-to-cell interactions into this
equation, this would serve as a derivation of a Boltzmann-like equation [47, 14],
who are famously difficult to handle in even the simplest cases [48].
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7 Elements of computational
statistics

The goal of this thesis is two-fold. On one hand, we aim to evaluate methods of
modelling cancer migration by using stochastic differential equations. On the
other, we wish to conduct inference on these interacting particle systems based
on real data. For this purpose, we will present a short discussion of relevant
topics in statistical inference. In this chapter, we will stick to nomenclature
common within Bayesian inference; most importantly we will refer to systems
of SDE:s such as (5.2.1) as stochastic dynamical systems.

7.1 Transition probabilities in dynamical systems

and construction of likelihood functions

With our recent discussion of the Fokker-Planck equation, we have illustrated
that the state of stochastic dynamical system described by an SDE can be
sampled directly from the solution to its corresponding PDE (5.2.4), illustrated
by Figure 3.3.1 for a simple one-dimensional case. Given this, assume that
we have observed a particle system undergoing stochastic dynamics on Ω
at times t0, t1, . . . tK , and refer to these observations as Xk, k = 0, . . . ,K.
Let P k

1 (x, t) be the solution to the Fokker-Planck equation (5.3.7) on the time
interval [tk, tk+1) using the initial condition

P k
1 (x, tk) =

1

N

N∑
i=1

δ(x−Xik). (7.1.1)

Here Xik is the k:th observation of the i:th particle. The interpretation of this
is that given an observation, we are certain where cells are, thus the Dirac
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δ-spikes at their centers. As the cells are allowed to diffuse, we become more
uncertain of where the cells are, and the probability of finding cells in a certain
region A ∈ Ω at time t is given by

∫
A
P k
1 (x, t)dx. This is neatly illustrated by

Figure 5.3.1, where the observed configuration at time t = 0 in the left panel
has been smeared out at time t = T in the right panel due to diffusion.

To ease up the notation, the remainder of this chapter will illustrate parameter
inference for the case of a one-dimensional SDE such as the one given by (3.2.2).
The principles remain the same when applying these methods to more complex
models.

Assume that the drift coefficient a or the diffusion coefficient b in (3.2.2) have
some parameters θ for which we wish to conduct statistical inference given the
observations X0:K , where 0 : K is used to refer to a collection of observations.
Since the transition density will depend on these parameters, we will use the
notation pk(x, t; θ), where pk is the solution to (3.2.8) with initial condition
p(x, tk) = Xk. We are now ready to construct a transition probability from Xk

to Xk+1 in the following manner;

π(Xk+1|Xk, θ) := pk(Xk+1, tk+1; θ). (7.1.2)

We get the likelihood for our entire sequence of observations in

π(X0:K |θ) =
K−1∏
k=0

π(Xk+1|Xk, θ). (7.1.3)

One can then use the likelihood (7.1.3) to evaluate how likely a sequence of
observations X0:K are given a parameter set θ. The theory presented in this
segment is nothing that cannot be found in an ordinary text book on Bayesian in-
ference or machine learning, see Bishops textbook [49] for an excellent overview
of many related topics.

7.2 Simulation of SDE:s and Monte Carlo methods

Before diving into the problem of maximizing the likelihood (7.1.3), we should
discuss how to approximate the solution to a Fokker-Planck equation using
Monte Carlo methods. Given an observed state X0 and setting it as our initial
condition in (3.2.8), we wish to find an approximation of p(x, T ) for some T > 0.
We find this by iterating the Euler-Maruyama scheme (3.3.6) on a partitioning
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of K grid points on the interval [0, T ];

X̂k+1 = X̂k +
T

K
a(X̂k) +

√
T

K
b(X̂k)Zk for k = 0, . . . ,K − 1

X̂0 = x0.

Running this numerical scheme once gives us X̂K as an approximate sample
from pk(x, T ), as the Euler-Maruyama scheme deviates from the underlying
distribution by the error term (3.3.7). One sample is not enough to say some-
thing about the distribution of pk(x, T ), however. We thus repeat this procedure
many times; by performing S independent iterations of (3.3.6) we get the weak
convergence

lim
S→∞

1

S

S∑
s=1

ϕ(X̂s
K)

w−→
∫
R

ϕ(x)pk(x, T )dx (7.2.1)

where ϕ is a test function and X̂s
K corresponds to the s:th sample run of the

Euler-Maruyama scheme. This is known as the Monte Carlo approach to
finding a transition density, and a lot more on this subject can be found in
the monolithic text book on the subject by Kloeden and Platen [28]. Through
Monte Carlo simulation, we can now look back at Figure 3.3.1 and note a
duality. When introduced, we viewed Figure 3.3.1 as an example of how one
can obtain the probability distribution for a stochastic dynamical system at time
T by solving the PDE (3.2.8) up until that time. Now however, we can see it
the other way; how one can approximate a solution to (3.2.8) using simulation
by (3.3.6).

7.3 Bootstrap particle filter for likelihood approxi-

mation

In theory, the likelihood expression (7.1.3) is readily available to us when per-
forming parameter inference on (5.2.1) by repeatedly solving the PDE (5.2.4) K
times, using the observations as initial conditions. But as stated at the begin-
ning of Chapter 5, solutions to (5.2.4) are notoriously difficult to find in most
cases. When dealing with interacting particle systems, one usually resolves
to solving such equations by simulating the underlying system [50], and then
reconstructing P (�x, t) using the mean field closure (5.4.1). Performing fast and
accurate Monte Carlo simulations of a complex model can be tricky, and special
methods are needed to make it computationally feasible. One method is to use
particle filters, which we will demonstrate the usage of in the case of a simple



50 7. Elements of computational statistics

one dimensional SDE. This description is more or less based on [51].

Particle filtering is a Sequential Monte Carlo method used to sample from hidden
states of our dynamical system. In our application, a hidden state would be
any configuration the particle system takes at times t �= tk. Intuitively, one
can understand that a hidden state "close to tk+1" contains more information
about the likelihood structure of at time tk+1 than the observed state at tk. The
question is then how to access this hidden state, and the answer to that question
is to use the Euler-Maruyama scheme as an importance sampler. By letting Yk

be a hidden state on the interval (tk, tk+1), we can rewrite the left-hand side of
(7.1.2) as

π(Xk+1|Xk, θ) =

∫
Ω

π(Xk+1|Yk, θ)π(Yk|Xk, θ)dYk (7.3.1)

using Bayes theorem. We can then make an analogy to (7.2.1), with the transi-
tion probability π(Xk+1|Yk, θ) in (7.3.1) takes the role of the test function. We
then compute the integral in (7.2.1) using Monte Carlo simulation of the hidden
state. With S samples from the hidden state, this gives us

π(Xk+1|Xk, θ) ≈ 1

S

S∑
s=1

π(Xk+1|Y s
k , θ). (7.3.2)

For improved accuracy, one can inject multiple hidden states between each
observation, and apply variance reduction techniques; see for example [52] for
a review article on such techniques.

7.3.1 Numerical example

We finish with a simple numerical example, visualized using Figure 7.3.1. The
two first in a sequence of K observations at times t1 and t2 of some SDE

dX(t) = −μX(t)dt+ σdW (t) (7.3.3)

are marked with red dots, with t2 − t1 = Δ. We simulate the process starting
from X1 = X(t1) a total of S = 3 times for some parameters θ̂ = (μ̂, σ̂), over a
coarse grid of K = 10 steps between the observations. If we believe that μ̂ = μ
and σ̂ = σ, this should give us three samples from a hidden state,

Ys ∼ X
(
t1 +

K − 1

K
Δ
)
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Figure 7.3.1: An example of how to use particle filters and the Euler-Maruyama scheme
to get an approximate transition distribution for an Itô process. In black, we have a
realization of the SDE (7.3.3). In red, we have the observations at t1 = 1.5 and t2 = 3.
Three samples Ys from a hidden state are shown, achieved through simulation using a
proposed set of parameters μ̂, σ̂.

where s = 1, 2, 3. Our goal now is to evaluate how well θ̂ agrees with the
unknown parameters in (7.3.3). The Euler-Maruyama scheme gives us an
approximation of X2 = X(t2) given Ys,

X2 | Ys ∼ N (Ys(1−Δμ̂),Δσ̂2).

This in turn lets us approximate of the transition density (7.1.2) using (7.3.2),

π(Xk+1 | Xk, θ̂) ≈ 1

S

S∑
s=1

1√
2πΔσ2

e−
(Xk+1−Ys(1−Δμ))2

2Δσ2 (7.3.4)

for k = 1. This expression is tractable, so with a sequence 0 : K of obser-
vations we can inject (7.3.4) into (7.1.3) and employ tools from mathematical
optimization to maximize (7.1.3) with respect to θ̂.
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8 Summary of papers

Paper I. The first paper tackles the problem of estimating the diffusivity of
Brownian particles undergoing frequent, short-range interactions. The magni-
tude of random motion is often quantified using mean squared displacement,
which provides a simple estimate of the diffusion coefficient. However, this
method often fails when data is sparse or interactions between agents frequent.
In order to address this, we derive a conjugate relationship in the diffusion term
for large interacting particle systems undergoing isotropic diffusion, giving us
an efficient inference method. The method accurately accounts for emerging
effects such as anomalous diffusion stemming from mechanical interactions.
We apply our method to an agent-based model with a large number of in-
teracting particles, and the results are contrasted with a naive mean square
displacement-based approach. We find a significant improvement in perfor-
mance when using the higher-order method over the naive approach. This
method can be applied to any system where agents undergo Brownian motion
and will lead to improved estimates of diffusion coefficients compared to exist-
ing methods.

Paper II. In this paper, we introduce a stochastic interacting particle system as
a model of in vitro glioblastoma migration, along with a maximum likelihood-
algorithm designed for inference using microscopy imaging data. The inference
method is evaluated on in silico simulation of cancer cell migration, and then
applied to a real data set. We find that the inference method performs with
a high degree of accuracy on the in silico data, and achieve promising results
given the in vitro data set.

Paper III. The Allee effect in biology describes the phenomenon that the per
capita reproduction rate increases along with the population density at low
densities. Allee effects have been observed at all scales, including in micro-
scopic environments where individual cells are taken into account. This is great
interest to cancer research, as understanding critical tumour density thresholds
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can inform treatment plans for patients. In this paper, we introduce a simple
model for cell division in the case where the cancer cell population is modelled
as an interacting particle system. The rate of the cell division is dependent on
the local cell density, introducing an Allee effect. We perform parameter infer-
ence of the key model parameters through Markov Chain Monte Carlo, and
apply our procedure to two image sequences from a patient-derived cervical
cancer cell line. The inference method is verified on in silico data to accurately
identify the key parameters, and results on the in vitro data strongly suggest an
Allee effect.
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