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1. Introduction and results

This paper presents an explicit analysis of certain quantum spin systems using classical 
tools from representation theory. In general, quantum spin systems are used to describe 
magnetic properties of materials, using the following formalism. For a large number n of 
particles, such as electrons in a lattice, the tensor product (Cr)⊗n represents a space of 
possible configurations, while a Hermitian linear map Hn : (Cr)⊗n → (Cr)⊗n describes 
both the interactions between particles and the possible energy levels of the system 
as a whole. More precisely, the specific form of Hn encodes the interactions, while its 
eigenvalues (which are real) are interpreted as energy levels. Hn is called the Hamiltonian
of the system. The parameter r ≥ 2 is fixed and is related to the ‘spin’ of the particles 
through S = (r − 1)/2.

Arguably the most famous quantum spin system is the Heisenberg model for ferro-
magnetism. When Werner Heisenberg introduced his model, in 1928, he described it in 
terms of an exchange interaction between neighbouring valence electrons (“Austausch 
von Elektronen”, [21, p. 621]). In modern notation, for the spin-1

2 system he was con-
sidering, this interaction can be written as Ti,j = 2(Si · Sj) + 1

2 , and the Hamiltonian 
as

Hn = −
∑

1≤i<j≤n

αi,jTi,j , αi,j ≥ 0, (1)

with the αi,j giving the interaction strength. Here Ti,j acts by transposing the i-th and 
j-th tensor factors while Si = (S(1)

i , S(2)
i , S(3)

i ) is the triple of spin-1
2 -matrices (generators 

for su(2)) acting on the i-th tensor factor. For higher spin (r > 2), two natural gener-
alisations suggest themselves: we can take the interaction to be the transposition Ti,j

acting on (Cr)⊗n, or to be Si ·Sj , where the S are now spin-S-matrices. For S > 1
2 , these 

choices are no longer equivalent; while both are natural generalisations, some authors 
reserve the name Heisenberg model for the model with interaction Si ·Sj . The model with 
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interaction Ti,j has been called the interchange model and is one of the main topics of 
this paper. Note that the interaction coefficients αi,j allow to encode basic assumptions 
about the structure of the lattice where the interacting particles are located, specifically 
this is the graph with vertex set {1, 2, . . . , n} and an edge between i and j when αi,j �= 0.

For the antiferromagnetic spin-1
2 Heisenberg model, with Hamiltonian being the neg-

ative of (1), Aizenman and Nachtergaele [2] discovered a similar representation based on 
the identity Pi,j = 1

2 − 2Si · Sj where Pi,j is (twice) the projection onto the singlet sub-
space of C2⊗C2 associated with the i-th and j-th tensor factors (meaning the eigenspace 
for the total spin operator with eigenvalue 0). On a bipartite graph, such as (a finite 
interval in) the line Z considered by Aizenman and Nachtergaele, the Hamiltonian with 
interactions Pi,j is unitarily equivalent to that with interactions Qi,j defined by

〈eα1 ⊗ eα2 |Qi,j |eα3 ⊗ eα4〉 = δα1,α2δα3,α4 , (2)

where the eα are an orthonormal basis for C2 and 〈· | ·〉 denotes the standard scalar 
product. The interaction Qi,j has a natural interpretation in terms of random loops, and 
plays a central role in the present work. The definition (2) generalises straightforwardly 
to higher spin.

If we take the underlying lattice to be the complete graph Kn, consisting of n vertices 
with an edge between each pair of distinct vertices, then the interchange model is a 
mean-field system with Hamiltonian

− 1
n

∑
1≤i<j≤n

Ti,j , acting on (Cr)⊗n, r ≥ 2. (3)

This model was studied in the papers of Björnberg [8,9], where the key step of the 
analysis was to note that the Hamiltonian (3) is a central element of the group algebra 
C[Sn] of the symmetric group, represented on the tensor space (Cr)⊗n. This means that 
the eigenspace decomposition for the Hamiltonian (3) coincides with the decomposition 
of (Cr)⊗n into irreducible Sn-modules, which is well-studied. Ryan [29] implemented a 
similar approach for the model with Hamiltonian

− 1
n

∑
1≤i<j≤n

(a Ti,j + bQi,j) acting on (Cr)⊗n, (4)

with a, b ∈ R and r ≥ 2, which can similarly be diagonalised using the irreducible 
representations of the Brauer algebra (defined below).

The unifying principle behind this approach to determining the eigenspace decom-
position of the Hamiltonian is a classical algebraic theory called Schur–Weyl duality. 
This term is used for specific instances of a general result in representation theory called 
the double centraliser theorem, which states the following [14, Theorem 4.54]. Let V
be a finite-dimensional vector space, and A ⊆ End(V ) a semi-simple algebra of linear 
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mappings (endomorphisms) V → V . Then the centraliser B of A, i.e. the algebra of endo-
morphisms commuting with all elements of A, is also semi-simple, and as a representation 
of A ⊗ B we have

V =
⊕
i

Ui ⊗ Vi, (5)

where the Ui (respectively Vi) are non-isomorphic irreducible representations of A (re-
spectively B). The most famous instances of this (and relevant in the present work) are 
obtained by letting V = (Cr)⊗n. If we let A consist of all invertible endomorphisms 
of Cr, acting diagonally on V , then B is generated by the permutations of the tensor 
factors of V : this gives the Schur–Weyl duality between the general linear group GLr(C)
and the symmetric group Sn (see (55) for details) which facilitates the analysis of the 
interchange model (3). If instead we take A to consist of orthogonal matrices, then B is 
the Brauer algebra used in the analysis of (4).

The name interchange model can be traced back to works by Harris [20], Powers 
[28], and Tóth [33], and is motivated by a probabilistic representation of the model. 
Powers [28] was first to notice that the ferromagnetic (spin-1

2 ) Heisenberg model can 
be represented in terms of a random walk on permutations generated by transpositions. 
The latter random walk was constructed on infinite lattices by Harris [20]. Tóth [33]
was first to use this representation to obtain an important result for the Heisenberg 
model: a bound on the free energy of the model on Z3 that was the best known for many 
years [12]. The underlying random walk on permutations has come to be known as the 
interchange process in the literature on mixing times of Markov chains [3]. The present 
paper does not use the probabilistic representation, however; indeed our methods apply 
also in cases where such a representation is not available.

Let us note that the present work follows a line of papers analysing the interchange 
process and Heisenberg model with algebraic methods (including the aforementioned [8], 
[9], [29]). Alon and Kozma [4] analysed the interchange process on a general graph, and 
estimated the number of k-cycles at a given time; Berestycki and Kozma [7] gave an 
exact formula for the same on the complete graph; Alon and Kozma [5] gave an exact 
formula for the magnetisation of the mean-field spin-1

2 Heisenberg model.
In this work we carry the methods described above further, to inhomogeneous mod-

els on the complete graph where the coupling constants between different vertices take 
finitely many different values. Our setting can be thought of as a mean-field approxima-
tion of a material which is formed by combining (e.g. welding together) several materials 
with different properties. The models for which our analysis goes the deepest are what 
we call two-block models, where coupling constants can take at most three values (one 
each for the interactions within each of the two blocks, and one for interactions between 
the two blocks). Our results on these models come in several parts. In Theorems 1.1
and 1.2 we explicitly compute the free energy. In Propositions 1.3 to 1.6, we give results 
on phase transitions, and, for certain restrictions on the parameters, we compute the 
critical temperature. In Theorems 1.7 and 1.8 we compute a magnetisation and limits 
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of certain correlation functions. Using the results mentioned above, in Section 1.4 we 
completely describe the ground-state phase diagram of the models; and in Section 1.5
we give heuristic descriptions of the extremal Gibbs states and phase diagrams at finite 
temperature. At the end of the paper, in Section 5, we give the free energy for what we 
call multi-block models, where coupling constants can take any finite number of values, 
and where we allow certain many-body interactions.

Two highlights of the new results in this paper are the following. Firstly, we give a 
formula for the critical temperature of the spin-1

2 quantum Heisenberg model on the 
complete bipartite graph; see Proposition 1.4 with a = b = 0. Secondly, a curious equal-
ity of the free energy of the model on the complete bipartite graph with interaction 
via transpositions Ti,j (3), and the model with interaction via the (scaled) spin-singlet 
projection Pi,j ; see Theorem 1.2, also with a = b = 0. We wonder whether this equality 
holds for arbitrary bipartite graphs.

Finally, Manai and Warzel [24] point out that for the interchange model on the com-
plete graph (3), the results of [8] on the free energy can be deduced from the results 
of Fannes, Spohn and Verbeure [15], which do not rely on representation theory. How-
ever, for the two-block setting considered here, or the model (4) considered by Ryan, the 
results of [15] do not seem to apply easily. It would be interesting to compare the two 
approaches in detail.

1.1. Free energy

For a, b, c ∈ R, and 1 ≤ m ≤ n, we define the ab-interchange-model, or ab-model for 
short, through its Hamiltonian

Hab

n = − 1
n

(
a

∑
1≤i<j≤m

Ti,j + b
∑

m+1≤i<j≤n

Ti,j + c
∑

1≤i≤m<j≤n

Ti,j

)
, (6)

acting on V = (Cr)⊗n. We call this a two-block model since we may think of it as 
a spin system on a graph with vertex set {1, 2, . . . , n} partitioned into the two blocks 
A = {1, . . . , m} and B = {m + 1, . . . , n}. The form of the Hamiltonian (6) means that 
spins at two vertices within A interact with coupling constant a, spins at two vertices 
within B interact with coupling constant b, and the spin at a vertex in A interacts with 
the spin at a vertex in B with coupling constant c. In the homogeneous case a = b = c

we obtain the interchange model on the complete graph (3), while if a = b = 0 and c �= 0
we obtain a model on the complete bipartite graph Km,n−m.

Given an r × r matrix U , we write Ui for the linear operator on (Cr)⊗n which acts 
as U on the i-th tensor factor and as the identity on the other factors. In particular, Ui

and Uj commute if i �= j. For any invertible U , we have that

UiUjTi,jU
−1
j U−1

i = Ti,j . (7)

The Hamiltonian (6) thus has the GL(r)-symmetry
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(∏n
i=1 Ui

)
Hab

n

(∏n
i=1 U

−1
i

)
= Hab

n , U ∈ GLr(C). (8)

For β > 0, introduce the partition function Zab

n (β) = tr
[
e−βHab

n

]
. The partition function 

can be written as a sum over the eigenvalues E of Hab

n :

Zab

n (β) =
∑
E

e−βEm(E), (9)

where m(E) is the multiplicity of the eigenvalue E. Roughly speaking, as n → ∞ we 
expect Zab

n (β) to grow exponentially in n, and to be dominated by the largest few terms 
in (9). For large β we may expect the dominant terms to correspond to small values 
of E, while for small β we expect the terms with large multiplicity m(E) to dominate. 
This balance between ‘energy’ (small E) and ‘entropy’ (large m) will in interesting cases 
lead to a phase transition, which can be identified by analysing the maximiser of the free 
energy limn→∞

1
n logZab

n (β). (Some authors refer to this quantity as the pressure, while 
the free energy would be given by multiplying with − 1

β .)
In our case we can compute the free energy explicitly. We write

F (x1, . . . , xr; y1, . . . , yr) =
∑r

i=1 f(xi, yi), (10)

where xi, yi ≥ 0 and

f(x, y) = −x log x− y log y + β
2
(
ax2 + by2 + 2cxy

)
. (11)

Theorem 1.1. Let a, b, c ∈ R be fixed. If n, m → ∞ such that m/n → ρ ∈ (0, 1), then the 
free energy of the model (6) satisfies

Φab

β (a, b, c) := lim
n→∞

1
n logZab

n (β) = max F (x1, . . . , xr; y1, . . . , yr) (12)

where the maximum is taken over x1, . . . , xr, y1, . . . , yr ≥ 0 subject to 
∑r

i=1 xi = 1 −∑r
i=1 yi = ρ.

Note that if (x1, . . . , xr; y1, . . . , yr) is a maximum point of F , and we order the x-
entries so that

x1 ≥ x2 ≥ · · · ≥ xr, (13)

then for c > 0 we necessarily have y1 ≥ · · · ≥ yr, while for c < 0 we necessarily have 
y1 ≤ · · · ≤ yr. Indeed, the only term in F which is dependent on the relative order of the 
entries is the term 

∑r
i=1 xiyi, which is indeed maximised when the orders are the same 

and minimised if they are reversed.
We next consider another two-block model but where the interaction “between” the 

blocks uses the operator Q defined in (2). We let
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Hwb

n = − 1
n

(
a

∑
1≤i<j≤m

Ti,j + b
∑

m+1≤i<j≤n

Ti,j + c
∑

1≤i≤m<j≤n

Qi,j

)
. (14)

The Hamiltonian Hwb

n satisfies a modified version of the GLr(C)-symmetry (8). To see 
this, one first checks that Qi,j commutes with any matrix of the form Ui(U−1

j )ᵀ, where 
U ∈ GLr(C) and the superscript ᵀ denotes transpose. Using also (7), it follows that(∏m

i=1 Ui

∏n
j=m+1(U

−1
j )ᵀ

)
Hwb

n

(∏m
i=1 U

−1
i

∏n
j=m+1 U

ᵀ
j

)
= Hwb

n . (15)

In particular, if U = (U−1)ᵀ we have the Or(C)-symmetry(∏n
i=1 Ui

)
Hwb

n

(∏n
i=1 U

−1
i

)
= Hwb

n , U ∈ Or(C). (16)

Also let Zwb

n (β) = tr[e−βHwb

n ]. Let us note here that for all r ≥ 2, this model is unitarily 
equivalent to the same model with each Qi,j replaced with Pi,j , the latter being (r times) 
the projection onto the singlet state:

〈eα1 ⊗ eα2 |Pi,j |eα3 ⊗ eα4〉 = (−1)α1−α3δα1,−α2δα3,−α4 . (17)

(Here we index the basis eα for Cr with α ∈ {−S, −S + 1, . . . , S} where S = (r− 1)/2.) 
Indeed, for the model with a = b = 0 and c > 0 the equivalence of partition functions 
was proved by Aizenman and Nachtergaele in [2]; we give an algebraic proof for general 
a, b, c ∈ R in Lemma B.1. We use the notation wb for this model as its analysis is based 
on the representation theory of the walled Brauer algebra, see Section 2.2. Interestingly, 
this model has the exact same free energy as the two-block interchange model:

Theorem 1.2. Let a, b, c ∈ R be fixed. If n, m → ∞ such that m/n → ρ ∈ (0, 1), then the 
free energy of the model (14) satisfies

Φwb

β (a, b, c) := lim
n→∞

1
n logZwb

n (β) = Φab

β (a, b, c), (18)

where Φab

β (a, b, c) is given in Theorem 1.1.

In the case r = 2, Theorem 1.2 can be deduced from Theorem 1.1 in the following 
elementary manner. For r = 2 we have [34, Section 7.1]

Ti,j = 2(Si · Sj) + 1
2 , Qi,j = 2(S(1)

i S
(1)
j − S

(2)
i S

(2)
j + S

(3)
i S

(3)
j ) + 1

2 . (19)

Letting W =
( 0 1
−1 0

)
we have that W−1

j Ti,jWj = −Qi,j +1, so conjugating Hab

n (a, b, −c)
with 

∏n
j=m+1 Wj gives Hwb

n (a, b, c) − cm(n −m)/n. Thus Φwb

β (a, b, c) = Φab

β (a, b, −c) +
cρ(1 − ρ). This is consistent with Theorem 1.2 since (indicating the dependence on c
with a subscript) Fc(x1, x2; y1, y2) −F−c(x1, x2; y2, y1) = c(x1 +x2)(y1 +y2) = cρ(1 −ρ), 
meaning that by Theorem 1.1 we have Φab

β (a, b, −c) + cρ(1 − ρ) = Φab

β (a, b, c). However, 
for general r the rank of Ti,j is r(r + 1)/2 while the rank of Qi,j is 1, so when r > 2, 
conjugating Ti,j cannot give a linear combination of Qi,j and the identity.
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1.2. Phase transition and critical temperature

Next we discuss phase transitions as β is varied, via the maximiser of the function 
F . Essentially, when a transition is present, we expect the maximiser of F to be fixed 
(at the ‘maximum entropy’ point ω0 (22)) for small β, and then at some critical βc to 
begin to move. This βc then corresponds to a point of phase transition in the model. For 
β = βc it can happen either that ω0 is unique or that there are other maximum points. 
We will see that the phase transition is also reflected in the behaviour of observables 
(Theorem 1.7) and the magnetisation (Theorem 1.8).

In Proposition 1.3, we characterise completely the values of a, b, c for which there 
exists such a phase transition. When it exists, finding explicit formulae for βc seems 
difficult in general; we can do it in two cases, firstly in Proposition 1.4 when r = 2 (that 
is, spin 1

2 ), and secondly in Proposition 1.5 when c ≥ 0, r ≥ 3 and

(a− c)ρ = (b− c)(1 − ρ) =: t. (20)

In the latter case, we further prove in Proposition 1.6 that for βc < β < βc + ε and ε > 0
small, there is a unique maximiser of F that satisfies (13).

In what follows, we write �x = (x1, . . . , xr), �y = (y1, . . . , yr), and

Ω =
{
(�x; �y) : x1, . . . , xr, y1, . . . , yr ≥ 0,

∑r
i=1 xi = 1 −

∑r
i=1 yi = ρ

}
. (21)

Elements of Ω will typically be denoted ω = (�x; �y). We write

ω0 =
(
ρ
r ,

ρ
r , . . . ,

ρ
r ; 1−ρ

r , 1−ρ
r , . . . , 1−ρ

r

)
∈ ∂Ω, (22)

and we write Q(x, y) = 1
2 (ax2 + by2 + 2cxy) for the quadratic form appearing in the 

function f(x, y).

Proposition 1.3. If Q is negative semidefinite, that is, if

a ≤ 0, b ≤ 0, and ab ≥ c2, (23)

then F assumes its maximum value at ω0 for all β > 0, and this maximum point is 
unique. Otherwise, there exists a number βc > 0 such that F assumes it maximum value 
at ω0 if and only if 0 < β ≤ βc, and this maximum is unique if 0 < β < βc.

Let us write βc(r) to highlight the dependence on r. The next proposition gives βc(2)
when it exists. For a simple interpretation of the value, see Lemma 3.2.

Proposition 1.4. Let r = 2 and assume that Q is not negative semidefinite, so that βc(2)
exists. Then
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βc(2) =

⎧⎪⎪⎨
⎪⎪⎩

ρa + (1 − ρ)b−
√

(ρa− (1 − ρ)b)2 + 4ρ(1 − ρ)c2
ρ(1 − ρ)(ab− c2) , ab �= c2,

2
aρ + b(1 − ρ) , ab = c2.

(24)

Moreover, for β = βc, ω0 is the unique maximum point.

In the homogeneous spin-1
2 ab-model, i.e. r = 2 and a = b = c = 1, we recover the 

critical point βc = 2 first identified by Tóth [32] and by Penrose [27]. In the bipartite 
case a = b = 0 we get the critical value βc = 2/

√
c2ρ(1 − ρ); this has, to the best of our 

knowledge, not appeared previously in the literature.
The next proposition gives βc(r), r ≥ 3 in the special case that c ≥ 0 and (20) holds.

Proposition 1.5. Suppose that c ≥ 0, r ≥ 3, that (20) holds and that Q is not negative 
semidefinite so that βc exists. Then

βc = βc(r) = 2(r − 1) log(r − 1)
(r − 2)(c + t) . (25)

Moreover, if β = βc there are exactly two maximum points satisfying (13), namely ω0 of 
(22) and ω1 = (�x; �y) given by

x1 = (r−1)ρ
r , x2 = · · · = xr = ρ

r(r−1) , (26a)

y1 = (r−1)(1−ρ)
r , y2 = · · · = yr = 1−ρ

r(r−1) . (26b)

For β > βc and under the conditions in Proposition 1.5 we can prove that the 
maximum point is unique (subject to (13)) for β close to the critical point (see also 
Proposition 3.5 for another special case).

Proposition 1.6. Under the assumptions of Proposition 1.5, there exists ε > 0 such that, 
if βc < β < βc + ε, there is a unique maximiser of F in Ω with entries ordered as in 
(13). Moreover as β ↘ βc, this maximiser tends to ω1 given in (26).

The fact that the maximiser jumps from ω0 to ω1 as one crosses the critical point 
suggests that this is a point of ‘first order’ phase transition. This will be confirmed 
below (see the discussion following Theorem 1.8) by showing that the magnetisation is 
discontinuous at this point. By contrast, in the setting of Proposition 1.4, the maximiser 
moves continuously away from ω0, indicating a second (or possibly higher) order phase 
transition.

1.3. Correlations and magnetisation

We next move on to results about correlations which extend [9, Theorem 2.3]. To 
state them, introduce the function
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R(w1, . . . , wr; z1, . . . , zr) = det
[
ewizj

]r
i,j=1

∏
1≤i<j≤r

j − i

(wi − wj)(zi − zj)
. (27)

For # ∈ {ab, wb}, we write

〈O〉#β,n =
trV
[
Oe−βH#

n

]
Z#
n (β)

(28)

for the usual equilibrium state expectation of a linear operator O on V .

Theorem 1.7. Let a, b, c ∈ R and β > 0 be such that F has a unique maximum point 
ω� = (�x�; �y�) satisfying (13). Let W be an r× r matrix with eigenvalues w1, . . . , wr ∈ C. 
As n, m → ∞ such that m/n → ρ ∈ (0, 1), we have that

lim
n→∞

〈
exp

{ 1
n

∑n
i=1 Wi

}〉
ab

β,n
= R(w1, . . . , wr; z�1 , . . . , z�r ),

lim
n→∞

〈
exp

{ 1
n

(∑m
i=1 Wi −

∑n
i=m+1 W

ᵀ
i

)}〉
wb

β,n
= R(w1, . . . , wr; z†1, . . . , z†r),

(29)

where the superscript ᵀ denotes transpose, and

z�j = x�
j + y�j , z†j = x�

j − y�j . (30)

It may be instructive to give a direct explanation of the fact that (29) only depends 
on the spectrum of W . Consider the case of the wb-model. Let U ∈ GLr(C) and replace 
the matrix W by UWU−1, U ∈ GLr(C). Then the operator

O = exp
{ 1

n

(∑m
i=1 Wi −

∑n
i=m+1 W

ᵀ
i

)}
is replaced by UOU−1, where

U =
m∏
i=1

Ui

n∏
i=m+1

(U−1
i )ᵀ.

As we saw in (15), U commutes with Hwb

n and can hence be cancelled from
tr(UOU−1e−βHwb

n ). This shows that 〈O〉wb

β,n only depends on the spectrum of W in 
the case that W is diagonalizable. The condition of diagonalizability can be removed by 
a continuity argument. The case of the ab-model is similar, using (8).

As a concrete example, for W = h diag(0, 1, 2, . . . , r − 1) we have

R(w1, . . . , wr; z1, . . . , zr) =
∏

1≤i<j≤r

ehzi − ehzj

h(zi − zj)
. (31)

The phase transition at βc is reflected in the fact that R ≡ 1 when ω� = (�x�; �y�) = ω0, 
while R is non-trivial if the entries of �z are non-constant. The latter occurs e.g. in the 
ab-model for β > βc.
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For a second concrete example, let c > 0. We will prove in Proposition 3.5 that any 
maximiser (�x�; �y�) of F satisfying (13) is then of the form

x�
1 ≥ x�

2 = · · · = x�
r , y�1 ≥ y�2 = · · · = y�r , (32)

in which case z� (30) will be of the same form. Letting W be an arbitrary rank 1 
projection, with eigenvalues 1, 0, . . . , 0, and writing u� = z�1 − z�2 , we have

lim
n→∞

〈
exp

{ 1
n

∑n
i=1 Wi

}〉
ab

β,n
= (2S)!

(hu�)2S e
h

2S+1 (1−u�)∑∞
j=2S

(hu�)j
j! . (33)

(The calculation of R is performed in [9, Section 6].)
Theorem 1.7 also shows that the ab- and wb-models are not equivalent, despite 

having the same free energy (for any anti-symmetric matrix W , the observables on the 
left in (29) are the same, while their limiting expectations are different). The result is 
also relevant for understanding extremal states, specifically non-triviality of R indicates 
phase-coexistence, see Section 1.5 for heuristics.

Finally we have the following result about the (thermodynamic) magnetisation. Let 
W be an r × r matrix with real eigenvalues w1 ≥ · · · ≥ wr, let h ∈ R, and write

Zab

n (β, h) = trV [exp
(
− βHab

n + h
∑

1≤i≤n Wi

)
], (34)

Zwb

n (β, h) = trV [exp
(
− βHwb

n + h
(∑

1≤i≤m Wi −
∑

m<i≤n W
ᵀ
i

))
]. (35)

In Theorem 2.4 we will obtain explicit expressions for the limits

Φ#(β, h) := lim
n→∞

1
n logZ#

n (β, h), (36)

where # ∈ {ab, wb} (as for (29), this depends on W only through its spectrum �w). The 
magnetisation is given by the left and right derivatives of this free energy with respect 
to h, at h = 0.

Theorem 1.8. Let Φ be defined by (36), either for the ab- or wb-model. Then

∂Φ
∂h

∣∣∣
h↓0

= max
(�x�;�y�)

r∑
i=1

ziwi,
∂Φ
∂h

∣∣∣
h↑0

= min
(�x�;�y�)

r∑
i=1

ziwr+1−i, (37)

where the maxima and minima are over all maximisers (�x�; �y�) ∈ Ω of F (�x; �y) such that 
x�

1 ≥ · · · ≥ x�
r. The vector �z is obtained by rearranging the entries in the vector x� ± y�

in decreasing order, where one should take the plus sign for the ab-model and the minus 
sign for the wb-model.

It is natural to take W to have trace zero. Then, from Proposition 1.3, for all β < βc
the only maximiser is ω0 (22) and we have
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∂Φ
∂h

∣∣
h↓0 = ∂Φ

∂h

∣∣
h↑0 = 0, (38)

for both ab- and wb-models and for both c > 0 and c < 0. This holds also for β = βc
when r = 2.

Let us discuss the case r ≥ 3 in Proposition 1.5 at β = βc. Recall that c ≥ 0 in this 
case. Calculations with the point ω1 (26) give the following:

• In the ab-case, at ω1 the values

z1 = r−1
r , z2 = · · · = zr = 1

r(r−1) (39)

are already decreasing. Still assuming that W has trace zero, it follows that

∂Φab

∂h

∣∣
h↓0 = r−2

r−1w1,
∂Φab

∂h

∣∣
h↑0 = r−2

r−1wr. (40)

For W with non-zero eigenvalues we have w1 > 0 > wr, thus the magnetisation is 
discontinuous at the point of phase transition.

• In the wb-case, at ω1 the ordering of the values xi − yi depends on ρ. If ρ > 1
2 we 

get

z1 = (2ρ− 1) r−1
r , z2 = · · · = zr = 2ρ−1

r(r−1) , (41)

and from there

∂Φwb

∂h

∣∣
h↓0 = (2ρ− 1) r−2

r−1w1

∂Φwb

∂h

∣∣
h↑0 = (2ρ− 1) r−2

r−1wr.
(42)

For W with non-zero eigenvalues, this gives a discontinuous magnetisation. In the 
case ρ < 1

2 , the magnetisation is obtained by exchanging w1 and wr in (42). For 
ρ = 1

2 , the magnetisation is continuous at the point of phase transition.

1.4. Ground-state phase diagrams

Recall from (9) that when β is large, the free energy is dominated by the lowest energies 
E of the Hamiltonian. The eigenspace of the lowest eigenvalue is referred to as the ground 
state of the model. For finite n, as β → ∞ the Gibbs factor 1

Z#
n (β)

e−βH#
n converges to the 

orthogonal projection onto the ground state. Most relevant is to characterise the ground 
state in the limit n → ∞. Here we instead consider the limits in the other order, that is 
n → ∞ first followed by β → ∞. While we do not provide full details, it is clear from 
our finite-n expressions (63), (65) and (87) that the limits may be swapped.

Thus, by analysing the location of the maximiser of the function F (given in (10)) 
in the limit as β → ∞, we can identify the ground-state phase diagram. We provide 
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Fig. 1. The ground state phase diagram for c > 0. The dashed line indicates where we have a closed formula 
for the critical temperature.

two diagrams, one of the (a, b) plane for c > 0 fixed and one for c < 0 fixed. Since the 
diagram is invariant under the scaling (a, b, c) → (αa, αb, αc) with α > 0, this will suffice 
to describe the whole diagram for c �= 0. The case c = 0 is just two uncoupled models on 
complete graphs with Ti,j transposition interaction; this is covered by the results of [8].

The c > 0 diagram is portrayed in Fig. 1. It displays four distinct regions, separated 
by the curve ab = c2 (a, b < 0) and the lines a = −cρ′/ρ and b = −cρ/ρ′. The dashed line 
(a − c)ρ = (b − c)(1 − ρ) is where we have a precise formula for the critical temperature, 
see Proposition 1.5. The upper right region F is called ferromagnetic; the c-interaction 
between the two blocks is ferromagnetic and the a- and b-interactions are either fer-
romagnetic, or not strong enough to make a difference. In this region, we obtain from 
Theorem 1.8 that the magnetisation is maximal. In finite volume n, as n gets large, the 
ground state includes the product states 

⊗n
i=1 v, v ∈ Cr (think of every spin aligned in 

the same direction).
The lower left region D we call disordered; it coincides with the range of parameters 

for which there is no phase transition at finite temperature, by Proposition 1.3. Here the 
a- or b-interactions overcome the c-interactions, and the model behaves like two copies 
of the antiferromagnet on the complete graph, which has no phase transition [8] (spins 
at neighbouring sites want to be anti-aligned, but this is made impossible (frustrated) 
by the complete graph being non-bipartite). The magnetisation in this case is 0.

There are also two intermediate regions denoted E1 and E2. Here, at least one of 
the a- or b-interactions is antiferromagnetic, and the model begins to feel this effect. In 
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Fig. 2. The ground state phase diagram for c < 0, in the case r = 3.

these regions the magnetisation interpolates between 0 and its maximal value. As |a| + |b|
becomes large, we approach the c = 0 limit of a ferromagnet on one subgraph and an 
antiferromagnet on the other.

When c < 0 and r = 2 the phase diagram looks identical to the case when c > 0, 
but we refer to the upper-right region as antiferromagnetic. As r ≥ 3, the diagram looks 
more complicated, with 2r − 1 intermediate regions between the antiferromagnetic and 
disordered regions. This is illustrated in Fig. 2 (for r = 3) and 8 (for r = 5), and described 
in detail in Proposition 4.2.

We can give a tentative interpretation of the diagram when r = 3, c < 0. Here, the c-
interaction is −(Si ·Sj)2 in the wb model, so spins in one block want to be orthogonal to 
those in the other, and is −[(Si ·Sj) +(Si ·Sj)2] in the ab model, so spins in one block want 
to be at 120◦ to those in the other. The a and b interactions are both (Si ·Sj) +(Si ·Sj)2, 
so spins want to be aligned.

One might interpret the diagram as follows. The region A is truly “anti”-ferromagnetic, 
in the sense that spins in A are all aligned, and spins in B are all aligned, in some direction 
orthogonal/at 120◦ to those in A. We write “anti” in quotation marks since the angle 
between the spins is not 180◦. There are two regions B1, B2, and three C1, C2, C3. In 
the B1 region, the spins in A are aligned, and the spins in B are disordered, but lie on 
the circle which is orthogonal/at 120◦ to the spins in A; and vice-versa for B2. As we 
decrease b into the region C1, the spins in B become more and more disordered, until 
they are completely decoupled from those in A, which remain aligned. Similar for the 
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C3 region. It is difficult to interpret the most interesting region, C2, in this way; there is 
some disorder in the spins in each block, but enough c-interaction to prevent them from 
completely decoupling.

1.5. Heuristics for extremal Gibbs states

By adding small perturbations to the Hamiltonian (which are sent to 0 after sending 
n → ∞), the thermal expectations (28) give rise to different so-called Gibbs states for 
the model. The set of Gibbs states is a convex set, whose extreme points represent 
physically ‘stable’ states. Typically, the set of Gibbs states is a singleton for β < βc

but non-trivial for β > βc. In the latter case it is of interest to identify and interpret 
the set of extremal Gibbs states. In the setting of classical spin systems, the theory of 
Gibbs states is accessibly described in [16, Chapter 6]. The quantum setting parallels 
the classical one, for details of the general theory we recommend [22] while for the case 
of the complete graph details may be found in [15].

In [9], for several models including the interchange model (3), the authors give a 
heuristic argument which points towards the structure of the set of extremal Gibbs 
states at inverse temperature β. The description given there is expected to hold in Zd

for d large enough, with d ≥ 3 perhaps being enough. Specifically, it is expected that for 
r × r matrices W ,

lim
n→∞

〈e h
n

∑
i Wi〉β,n = lim

Λ→Zd
〈e

h
|Λ|

∑
i Wi〉β,Λ, (43)

where the left hand side is the limit on complete graphs of size n, while the right hand 
side is the limit of successively larger subsets Λ ⊆ Zd (covering Zd in the sense of van 
Hove [16, Section 3.2.1]). Apart from (43), the heuristics in [9] rest on the expected 
equality

lim
Λ→Zd

〈e
h

|Λ|
∑

i Wi〉β,Λ =
∫
Ψβ

eh〈W0〉ψdμ(ψ), (44)

where 〈·〉ψ is the extremal Gibbs state indexed by ψ ∈ Ψβ , dμ is the measure on the 
index set Ψβ corresponding to the symmetric Gibbs state, and W0 is the operator W
at the lattice site 0. The left hand side of (43) is computed rigorously, and then, with 
the expected structure of Ψβ inserted, the right hand side of (44) is also computed, and 
the two are shown to be the same. This working is not a proof either of the expected 
equalities (43), (44) or of the expected structure of Ψβ, but it gives a consistency check 
for the three statements.

Using the results of the present paper, we can provide the same calculations and 
heuristics for the ab- and wb-models. Both models have symmetry under U(r) ⊆ GL(r), 
the group of unitary r × r matrices, see (8) and (15), and for c > 0, both models are 
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expected to have extremal Gibbs states labelled by CP r−1, i.e. rank 1 projections in Cr. 
This means that the expected identities (44) and (43) take the form

lim
n→∞

〈
e

1
n

∑n
i=1 Wi

〉
ab

β,n
=

∫
CPr−1

eρ〈W1〉ab

ψ +(1−ρ)〈W2〉ab

ψ dμ(ψ) (45)

and

lim
n→∞

〈
e

1
n (
∑

i∈A Wi−
∑

j∈B Wᵀ
j )〉wb

β,n
=

∫
CPr−1

eρ〈W1〉wb

ψ −(1−ρ)〈Wᵀ
2 〉wb

ψ dμ(ψ), (46)

where W1 and W2 represent W acting on arbitrary sites in the A- and B-parts of the 
graph. Using the U(r)-invariance and the Harish-Chandra–Itzykson–Zuber formula as in 
[9], this leads to the predictions

lim
n→∞

〈
e

1
n

∑n
i=1 Wi

〉
ab

β,n
= R(w1, . . . , wr;x1 + y1, . . . , xr + yr) (47)

and

lim
n→∞

〈
e

1
n (
∑

i∈A Wi−
∑

j∈B Wᵀ
j )〉wb

β,n
= R(w1, . . . , wr;x1 − y1, . . . , xr − yr), (48)

where xi = 〈P ei
1 〉e1 and yi = 〈P ei

2 〉e1 are the expectations of the projections P ei onto 
the subspace spanned by the i-th coordinate vector ei = (0, . . . , 0, 1, 0, . . . , 0) under the 
extremal state associated with ψ = e1. By U(r)-invariance, we expect x2 = x3 = · · · = xr

and y2 = y3 = · · · = yr, and it is further natural to assume that x1 ≥ x2 and y1 ≥ y2. 
Since this fits the picture given (rigorously) by Theorem 1.7 and Proposition 3.5, we are 
motivated to lend some credence to the stated heuristics.

We now turn to the case of the complete bipartite graph, given by a = b = 0. By our 
comments below (14), the wb-model with a = b = 0, c = 1, has Hamiltonian unitarily 
equivalent to

− 1
n

∑
1≤i≤m<j≤n

Pi,j , (49)

where Pi,j is (r times) the projection onto the singlet state, given by (17). For spin S = 1
(r = 3) we can interpret our results and heuristics to comment on the bilinear-biquadratic 
model, which has Hamiltonian

− 1
n

∑
1≤i≤m<j≤n

(
J1(Si · Sj) + J2(Si · Sj)2

)
, (50)

where Si · Sj =
∑3

k=1 S
(k)
i S

(k)
j , and J1, J2 ∈ R. Indeed, using the relations Si · Sj =

Ti,j − Pi,j and (Si · Sj)2 = Pi,j + 1 (see Lemma 7.1 from [34]) one can rewrite (50), up 
to addition of a constant, as
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− 1
n

∑
1≤i≤m<j≤n

(
J1Ti,j + (J2 − J1)Pi,j

)
. (51)

For our analysis to apply, we need one of the coefficients to vanish, i.e. either J1 = 0 or 
J1 = J2. Setting J1 = J2 = ±1 gives the ab model with a = b = 0, c = ±1, while setting 
J1 = 0, J2 = ±1 gives the wb model with a = b = 0, c = ±1, in the form (49). The case 
J1 = 0, J2 = 1 (i.e. our wb-model with a = b = 0, c = 1) is the biquadratic Heisenberg 
model. These two special cases are exactly those described by Ueltschi ([34], Section 7B) 
as having SU(3) invariance; in our language this is the GL(3)-invariance that we exploit 
in this paper. (Note that our method unfortunately does not allow us to treat the famous 
AKLT-model [31, Chapter 7], which is obtained for J1 = −1, J2 = −1

3 .)
The phase diagram of the bilinear-biquadratic Heisenberg model on Zd, d ≥ 3, is 

given in Ueltschi [34], and we expect that the model on the complete bipartite graph has 
the same diagram. (See also [35], but beware that some of the predictions using Gell-
Mann matrices there are inaccurate. The corresponding one-dimensional spin chain has 
a different phase diagram, exhibiting dimerization, see [1,10].) The biquadratic model 
(J1 = 0, J2 = 1) lies on the boundary of the nematic phase of that diagram, but actually 
belongs to a Néel-ordered (or antiferromagnetic) phase for bipartite graphs. Heuristically, 
we expect the spins in the A-part to be anti-aligned with those in the B-part. Note that 
for this model if we add a magnetisation term in the S(k) direction at every vertex 
(for any k = 1, 2, 3), then, at β = βc and for ρ > 1

2 , Theorem 1.8 tells us that the 
magnetisation is

∂Φwb

∂h

∣∣∣
h↓0

= ρ− 1
2 , (52)

(indeed, see Lemma B.2) which agrees with the picture of anti-aligned spins in the two 
blocks.
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2. Free energy and correlations

In this section we prove Theorems 1.1, 1.2, 1.7 and 1.8.
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2.1. Interchange model: proof of Theorem 1.1

As noted in the introduction, our method is to identify the eigenspaces of the Hamil-
tonian (6). This is facilitated by the classical theory of Schur–Weyl duality. We start 
by recalling a few basic definitions and facts. A partition λ � n of n is a non-increasing 
sequence of non-negative integers summing to n: λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ · · · ≥ 0
and 

∑
k≥1 λk = n. Its length �(λ) is the number of non-zero entries.

For σ ∈ Sn a permutation of 1, 2, . . . , n, let Tσ be the linear operator on V = (Cr)⊗n

which permutes the tensor factors according to σ:

Tσ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(n). (53)

The mapping σ �→ Tσ is a representation of Sn and hence extends to a representation of 
the group algebra C[Sn] on V . We may also regard V as a module for the group GLr(C)
of invertible r × r matrices by the diagonal action

g(v1 ⊗ v2 ⊗ · · · ⊗ vn) = g(v1) ⊗ g(v2) ⊗ · · · ⊗ g(vn). (54)

Classical Schur–Weyl duality [14, Corollary 4.59] states that these actions of Sn and of 
GLr(C) are each other’s centralisers, so that V may be regarded as a representation of 
the direct product GLr(C) × Sn, and that V decomposes as a multiplicity-free direct 
sum of irreducible representations of GLr(C) × Sn. Specifically,

V =
⊕

λn, �(λ)≤r

Uλ ⊗ Vλ. (55)

Here Uλ is the irreducible GLr(C)-representation indexed by (its highest weight) λ, and 
Vλ is the irreducible Sn-representation (Specht module) indexed by λ. We use the same 
notation T for the representation of GLr(C) × Sn on V .

Recall our Hamiltonian Hab

n given in (6). We now write this as Hab

n = T (hab

n ) where

hab

n = − 1
n [(a− c)αA + (b− c)αB + c αAB ], (56)

and where αA, αB , αAB are the following elements of C[Sn]:

αA =
∑

1≤i<j≤m

(i, j), αB =
∑

m+1≤i<j≤n

(i, j), αAB =
∑

1≤i<j≤n

(i, j). (57)

We have that e−βHab

n = T (e−βhab

n ). Now let W be an r × r matrix over C. Then eW ∈
GLr(C) and we have that T (eW ) = exp

(∑n
i=1 Wi

)
. Thus we may write

exp
(∑n

i=1 Wi

)
e−βHab

n = T
(
eW e−βhab

n

)
, (58)

where eW e−βhab

n ∈ C[GLr(C) × Sn].
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Let us now consider how eW × e−βhab

n acts on the right-hand-side of (55), starting 
with how e−βhab

n acts on Vλ. The term αAB is the sum of all elements of a conjugacy 
class (the transpositions), hence it belongs to the centre of C[Sn]. By Schur’s Lemma, it 
therefore acts as a constant multiple of the identity on Vλ. The constant in question is 
well known [19, p. 52] to equal the content of the partition λ, defined by

ct(λ) =
∑
j≥1

(λj(λj + 1)
2 − jλj

)
. (59)

(This equals the sum of the contents of all boxes in the Young diagram of λ, where the 
content of a box in position (x, y) is y − x.) We have

αAB |Vλ
= ct(λ)IdVλ

. (60)

Now, to deal with the remaining two terms αA and αB , note that as a representation of 
Sm × Sn−m, the module Vλ splits as

Vλ =
⊕

μm, νn−m

cλμ,νVμ ⊗ Vν , (61)

where cλμ,ν are non-negative integers known as the Littlewood–Richardson coefficients. 
We give more details about these numbers later, for now we just note that cλμ,ν �= 0 only 
if �(μ), �(ν) ≤ �(λ). On each term of the sum in (61), αA acts as ct(μ)IdVμ

and αB acts 
as ct(ν)IdVν

, consequently hab

n acts on that term as

− 1
n [(a− c)ct(μ) + (b− c)ct(ν) + c ct(λ)]IdVμ⊗Vν

, (62)

and therefore e−βhab

n acts as

exp
(
β
n [(a− c)ct(μ) + (b− c)ct(ν) + c ct(λ)]

)
IdVμ⊗Vν

. (63)

As to the factor eW , we first note that the character of the module Uλ evaluated at 
g ∈ GLr(C) with eigenvalues x1, . . . , xr is the Schur polynomial:

χUλ
[g] = sλ(x1, . . . , xr) =

det[xλj+r−j
i ]ri,j=1∏

1≤i<j≤r(xi − xj)
. (64)

If W has eigenvalues w1, . . . , wr, then eW has eigenvalues ew1 , . . . , ewr . Writing dμ, dν
for the dimensions of Vμ, Vν , we may summarise these findings as follows:

Lemma 2.1. Suppose that W has eigenvalues w1, . . . , wr. Then

trV [exp
(∑n

i=1Wi

)
e−βHab

n ] =
∑
λ,μ,ν

sλ(ew1 , . . . , ewr)cλμ,νdμdν

· exp
(

β [(a− c)ct(μ) + (b− c)ct(ν) + c · ct(λ)]
)
,

(65)
n
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where the sum is over λ � n with �(λ) ≤ r, μ � m, and ν � n −m. In particular, setting 
W to be the zero matrix (so that eW = Id),

Zab

β,n =
∑
λ,μ,ν

sλ(1, . . . , 1)cλμ,νdμdν exp
(

β
n [(a− c)ct(μ) + (b− c)ct(ν) + c · ct(λ)]

)
. (66)

We will use that

sλ(1, . . . , 1) = dim(Uλ) =
∏

1≤i<j≤r

λi − i− λj + j

j − i
. (67)

As to dμ, a convenient formula is

dμ = dim(Vμ) = n!
m1! · · ·mr!

∏
1≤i<j≤r

(mi −mj) (68)

where mi = μi + r − i, see [19, (4.11)].
In Lemma 2.1 we have written the partition function as a sum of terms exponentially 

large in n, with relatively few summands. Such a sum is dominated by its largest term. 
To prove Theorem 1.1 we need to understand the asymptotic behaviour of each of the 
factors in (66), and since only terms with cλμ,ν �= 0 appear in the sum, we need a condition 
for cλμ,ν �= 0.

Proof of Theorem 1.1. First, from (67) we see that dim(Uλ) = sλ(1, . . . , 1) is positive 
whenever �(λ) ≤ r, and that dim(Uλ) = exp(o(n)) where the o(n) is uniform in λ. Now 
consider the coefficients cλμ,ν . These are known (see e.g. [17, Chapter 5, Proposition 3]) 
to equal the size of a certain subset of semi-standard tableaux with shape λ \ μ filled 
with ν1 1’s, ν2 2’s, etc. In particular, cλμ,ν > 0 only if μ is contained in λ, and then 
�(μ) ≤ �(λ) ≤ r. Since cλμ,ν = cλν,μ (see [17] again) we also need �(ν) ≤ r for cλμ,ν > 0. 
The combinatorial description also gives the upper bound cλμ,ν ≤ (n + 1)r2 = exp(o(n))
where the o(n) is uniform in λ, μ, ν.

We now turn to the remaining factors in (66). First, as one can see in (68), for fixed 
r we have that dμ is essentially a multinomial coefficient. Thus (see e.g. [8, pp. 14–15]
for details), we have

1
n log dμ = −

∑r
j=1

μj

n log μj

n + O( logn
n ). (69)

Next, from (59) we have that

ct(λ) = n2

2
∑r

j=1
(λj

n

)2 + O(n). (70)

Taken altogether, these facts mean that we can write (66) as
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Zab

β,n =
∑
λ,μ,ν

1{cλμ,ν > 0} exp
(
n
{
F̃ (μn ,

ν
n ,

λ
n ) + o(1)

})
, (71)

where λ � n, μ � m and ν � n −m, all having ≤ r rows, and where

F̃ (�x, �y, �z) = −
∑r

j=1 xj log xj −
∑r

j=1 yj log yj
+ β

2
[
(a− c)

∑r
j=1 x

2
j + (b− c)

∑r
j=1 y

2
j + c

∑r
j=1 z

2
j

]
.

(72)

There is a necessary and sufficient condition for cλμ,ν > 0 which is very useful for our 
purposes, known as Horn’s conjecture, proved by Knutson and Tao [23]. It is best stated 
for our purposes in terms of eigenvalues of Hermitian matrices, as follows: cλμ,ν > 0 if 
and only if there are Hermitian r × r matrices X and Y with eigenvalues μ1, . . . , μr

and ν1, . . . , νr, respectively, such that X +Y has eigenvalues λ1, . . . , λr. For information 
about this, see e.g. [18]. We thus have

cλμ,ν > 0 if and only if (μn ,
ν
n ,

λ
n ) ∈ Ω+

m/n (73)

where Ω+
ρ is the set of triples (�x, �y, �z) such that there exist positive semidefinite Hermitian 

matrices X, Y with tr(X) = 1 − tr(Y ) = ρ having eigenvalues x1, . . . , xr and y1, . . . , yr, 
respectively, such that Z = X + Y has eigenvalues z1, . . . , zr.

From (71) and the fact that F̃ is continuous in its arguments, we conclude that

1
n logZab

β,n → max
(�x,�y,�z)∈Ω+

ρ

F̃ (�x, �y, �z). (74)

See e.g. [8, Section 3] for a detailed argument in a similar setting. Now note that if 
X, Y, Z are as above, then

∑r
j=1 x

2
j = tr(X2),

∑r
j=1 y

2
j = tr(Y 2), (75)

and also

∑r
j=1 z

2
j = tr(Z2) = tr

(
(X + Y )2

)
= tr(X2) + tr(Y 2) + 2 tr(XY ). (76)

Thus

(a− c)
r∑

j=1
x2
j + (b− c)

r∑
j=1

y2
j + c

r∑
j=1

z2
j = tr

[
aX2 + bY 2 + 2cXY

]
. (77)

So for (�x, �y, �z) ∈ Ωρ, we have that

F̃ (�x, �y, �z) = φ(X,Y ) := S(X) + S(Y ) + β
2 tr
[
aX2 + bY 2 + 2cXY

]
, (78)

where S is the von Neumann entropy
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S(X) = −tr(X logX) = −
r∑

i=1
xi log xi. (79)

It follows that

1
n logZab

n (β) → max
X,Y

φ(X,Y ) (80)

where the maximum is over positive definite Hermitian matrices X, Y with tr(X) =
1 − tr(Y ) = ρ.

The final step is to use the fact that for positive semidefinite Hermitian matrices X, Y
with fixed spectra x1, . . . , xr and y1, . . . , yr, respectively, ordered so that x1 ≥ x2 ≥ · · · ≥
xr and y1 ≥ y2 ≥ · · · ≥ yr, we have the inequality

r∑
j=1

xjyr+1−j ≤ tr[XY ] ≤
r∑

j=1
xjyj , (81)

see e.g. [25, Prop. 9.H.1.g-h] (we discuss this result in Appendix A). In particular, both 
the maximum and the minimum of tr[XY ] are attained when X, Y are simultaneously 
diagonal. Since the other terms in F (�x, �y) are symmetric under permuting the xi or the 
yi, the result follows. �
2.2. Walled Brauer algebra: proof of Theorem 1.2

As noted above, our analysis of the model in (14) uses the walled Brauer algebra. We 
will now define this algebra, and collect some facts which allow us to approach a proof 
in a similar way to that of Theorem 1.1. An accessible introduction to the walled Brauer 
algebra is given in [26], and its Schur–Weyl duality is proved in [6], at least for the range 
r ≥ n. The extension to all r, n is a straightforward extension of the work in [6].

Let us first define the (usual) Brauer algebra. Fix n ∈ N, r ∈ C. Arrange two rows 
each of n labelled vertices, one above the other. We call a diagram a graph on these 2n
vertices, with each vertex having degree one. Let Bn be the set of such diagrams. The 
Brauer algebra Bn(r) is the formal complex span of Bn. Multiplication of two diagrams 
is defined as follows. Taking two diagrams g, h, identify the upper vertices of h with the 
lower of g. Then form a new diagram by concatenation and removing any closed loops, 
as in Fig. 3. The product gh is the concatenation, multiplied by r#loops, where #loops
is the number of loops removed.

The walled Brauer algebra is a subalgebra of Bn(r). Let m ≤ n. Returning to the 
2n labelled vertices, draw a line (a “wall”) separating the leftmost 2m vertices and the 
rightmost 2(n −m). Let Bn,m be the set of diagrams in Bn with the condition that any 
edge connecting two upper vertices or two lower vertices must cross the wall, and any 
edge connecting an upper vertex and a lower vertex must not cross the wall; see Fig. 4. 
The walled Brauer algebra Bn,m(r) is the span of Bn,m, with multiplication as in the 
Brauer algebra.
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h

g

r2

Fig. 3. Two diagrams g and h (left), and their product gh (right). The concatenation contains two loops, so 
we multiply the concatenation with middle vertices removed by r2.

Fig. 4. A diagram in the basis B8,3 of the walled Brauer algebra B8,3(r). Notice that all edges connecting 
two upper vertices (or two lower) cross the wall, and all edges connecting an upper vertex to a lower vertex 
do not.

(2, 3) ∈ B6,3

(3, 4) ∈ B6,3

Fig. 5. Examples of the elements (i, j) and the transpositions (i, j).

Some useful representation-theoretic facts follow. First, the group algebra C[Sm ×
Sn−m] is a subalgebra of Bn,m(r) whose basis Sm×Sn−m consists of those diagrams with 
no edges crossing the wall. As above, we let (i, j) denote the transposition exchanging i
and j. Note that in the walled Brauer algebra, we must have 1 ≤ i, j ≤ m or m +1 ≤ i, j ≤
n. For 1 ≤ i ≤ m < j ≤ n, let (i, j) denote the diagram with all edges vertical, except 
that the ith and jth upper vertices are connected, and the ith and jth lower vertices are 
connected; see Fig. 5. The elements (i, j) and (i, j) generate the walled Brauer algebra.

Next, the irreducible representations of Bn,m(r) are indexed by

{(λ, μ) | λ � m− t, μ � n−m− t, t = 0, . . . ,min{m,n−m} }, (82)

where λ and μ are partitions (see Proposition 2.4 of [13]). Henceforth, we will use the 
notation m̂ = min{m, n −m} so that the standing condition on t is that t ∈ {0, 1, . . . , m̂}. 
The element
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Fig. 6. The r-tuple ν = (3, 2, 0, −1, −2) illustrated in the style of a Young diagram, where negative entries 
are shown by boxes to the left of the main vertical line. Here r = 5. From the figure it is straightforward 
to see that ν = [λ, μ], where λ = (3, 2) and μ = (2, 1).

Jn,m =
∑

1≤i<j≤m
m<i<j<n

(i, j) −
∑

1≤i≤m<j≤n

(i, j) (83)

is central in Bn,m(r), and acts as the scalar ct(λ) + ct(μ) − rt on the irreducible repre-
sentation (λ, μ), where λ � m − t, μ � n −m − t and ct(·) denotes the content defined in 
(59) (a consequence of, for example, Lemma 4.1 of [13]).

The walled Brauer algebra, like the symmetric group algebra, has a Schur–Weyl 
duality with the general linear group. To describe this, let us first recall some facts 
about representations of the general linear group GLr(C). The irreducible rational
representations of GLr(C) are indexed by their highest weights, which are r-tuples 
ν = (ν1 ≥ · · · ≥ νr) ∈ Zr. Such a tuple can be equivalently written as a pair ν = [λ, μ] of 
partitions λ, μ with �(λ) + �(μ) ≤ r, by letting νi = [λ, μ]i = λi −μr−i+1 for i = 1, . . . , r. 
Note that at most one of the terms λi or μr−i+1 is non-zero for each i, due to the con-
straint �(λ) +�(μ) ≤ r, thus ν uniquely determines λ and μ. See Fig. 6 for an illustration.

We write U[λ,μ] for the corresponding irreducible GLr(C)-module. These rational rep-
resentations are closely related to the polynomial representations Uλ appearing in (55); 
the polynomial representations are the rational representations with non-negative r-tuple 
ν. One can also relate the rational and polynomial representations by the Pieri-rule [30]. 
Indeed, writing det(·) for the determinant representation of GLr(C), which has highest 
weight (1, 1, . . . , 1) and character x1x2 · · ·xr, we have that det⊗k ⊗Uν = Uν+k where 
k = (k, k, . . . , k). For k = μ1 we have that U[λ,μ]+μ1 is a polynomial representation. It 
follows from this and (64) that the character of U[λ,μ] is

χU[λ,μ] [g] =
s[λ,μ]+μ1(x1, . . . , xr)

(x1x2 · · ·xr)μ1
=

det[x[λ,μ]j+r−j
i ]ri,j=1∏

1≤i<j≤r(xi − xj)
, (84)

where x1, . . . , xr are the eigenvalues of g.
We can now state the Schur-Weyl duality for the walled Brauer algebra and the 

general linear group. Let GLr(C) act on V = (Cr)⊗n = (Cr)⊗m ⊗ (Cr)⊗(n−m) as m
tensor powers of its defining representation, and n −m tensor powers of the dual of its 
defining representation (multiplication by the inverse transpose):

g(v1 ⊗ · · · ⊗ vm ⊗ vm+1 ⊗ · · · ⊗ vn) = g(v1) ⊗ · · · ⊗ g(vm) ⊗ g−ᵀ(vm+1) ⊗ · · · ⊗ g−ᵀ(vn).
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Let Bn,m(r) act on V by sending (i, j) to the transposition operator Ti,j, and (i, j) to 
Qi,j (2). Then, as a representation of C[GLr(C)] ⊗ Bn,m(r),

V =
m̂⊕
t=0

⊕
λm−t

μn−m−t
�(λ)+�(μ)≤r

U[λ,μ] ⊗ V(λ,μ), (85)

with V(λ,μ) irreducible Bn,m(r)-representations as above (as noted above, this is a 
straightforward extension of the work in [6]).

Notice now that our Hamiltonian (14) can be rewritten as

Hwb

n = − 1
n

(
(a + c)

∑
1≤i<j≤m

Ti,j + (b + c)
∑

m+1≤i<j≤n

Ti,j − cJn,m

)
, (86)

where Jn,m is the central element given in (83). Now in an identical way to how we 
developed equation (66), we have

trV [e−βHwb

n ] =
∑
πm

τn−m

m̂∑
t=0

∑
λm−t

μn−m−t
�(λ)+�(μ)≤r

dim(U[λ,μ])bn,m,r
(λ,μ),(π,τ)dπdτ

· exp
(
β
n

[
(c + a)ct(π) + (c + b)ct(τ) − c(ct(λ) + ct(μ) − rt)

])
,

(87)

where bn,m,r
(λ,μ),(π,τ) is the branching coefficient from C[Sm × Sn−m] to Bn,m(r), i.e. the 

multiplicity of the C[Sm × Sn−m]-module Vπ ⊗ Vτ in V(λ,μ) when the latter is regarded 
as a C[Sm × Sn−m]-module. These branching coefficients play the same role as the 
Littlewood–Richardson coefficient did in the ab-model. Our next step is to determine 
when bn,m,r

(λ,μ),(π,τ) is strictly positive.

Lemma 2.2. The branching coefficient bn,m,r
(λ,μ),(π,τ) is strictly positive if and only if there 

exist r × r Hermitian matrices X, Y, Z with respective spectra π, τ, [λ, μ], such that X −
Y = Z.

Note that the parameter t is encoded the branching coefficient, in the sense that 
bn,m,r
(λ,μ),(π,τ) > 0 implies that λ � m − t = |π| − t and μ � n − m − t = |τ | − t for some 

0 ≤ t ≤ m̂. To see how t appears from the Hermitian matrices, assume for the sake of 
argument that X and Y commute. Then, for each i, [λ, μ]i = πj − τk, for some j, k. 
Fig. 7 then illustrates via an example how it follows that λ � m − t = |π| − t and 
μ � n −m − t = |τ | − t for some 0 ≤ t ≤ m̂.

The first step to prove Lemma 2.2 is another lemma, analogous to the well known 
fact that the Littlewood–Richardson coefficients are both the branching coefficients from 
C[Sm ×Sn−m] to C[Sn], and the coefficients of the decomposition of the tensor product 
of two irreducible polynomial representations of GLr(C).
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Fig. 7. The spectra π = (3, 0, 1, 2, 4) and τ = (2, 1, 3, 2, 1), respectively of X and Y (simultaneously diag-
onalised), displayed in the style of Young diagrams, either side of the main vertical line. The spectrum of 
Z = X−Y is (1, −1, −2, 0, 3) (and so when ordered becomes [λ, μ] = (3, 1, 0, −1, −2)). The yellow boxes are 
those eliminated in the subtraction. Naturally there are the same number either side of the main vertical; 
this is the parameter 0 ≤ t ≤ min |π|, |τ |. In this example, t = 6. (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

Lemma 2.3. Let π, τ, λ, μ denote partitions with at most r parts, with �(λ) + �(μ) ≤ r, 
and Uπ, U[∅,τ ], U[λ,μ] denote irreducible rational representations of GLr(C). Let

Uπ ⊗ U[∅,τ ] =
⊕
λ,μ

�(λ)+�(μ)≤r

b̂n,m,r
[λ,μ],(π,τ)U[λ,μ]. (88)

Then b̂n,m,r
[λ,μ],(π,τ) = bn,m,r

(λ,μ),(π,τ).

Proof. This is proved using Schur–Weyl duality. We restrict (85) to C[GLr(C)] ⊗C[Sm×
Sn−m] to see that

V =
m̂⊕
t=0

⊕
λm−t

μn−m−t
�(λ)+�(μ)≤r

⊕
πm

τn−m
�(π),�(τ)≤r

bn,m,r
(λ,μ),(π,τ)U[λ,μ] ⊗ (Vπ ⊗ Vτ ). (89)

On the other hand, the Schur–Weyl duality between GLr(C) ×GLr(C) and C[Sm×Sn−m]
is

V =
⊕
πm

τn−m
�(π),�(τ)≤r

(Uπ ⊗ U[∅,τ ]) ⊗ (Vπ ⊗ Vτ ). (90)

Expanding Uπ ⊗U[∅,τ ] as in (88) and equating coefficients from the two equations above 
gives the result. �
Proof of Lemma 2.2. We take equation (88) and modify it using the Pieri rule:

Uπ ⊗ U[∅,τ ]+τ1 =
⊕
λ,μ

�(λ)+�(μ)≤r

b̂n,m,r
[λ,μ],(π,τ)U[λ,μ]+τ1 . (91)

Now the highest weights appearing on both sides have no negative parts, so by Lemma 2.3
and the Littlewood–Richardson Rule,
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bn,m,r
(λ,μ),(π,τ) = b̂n,m,r

[λ,μ],(π,τ) = c
[λ,μ]+τ1
π,[∅,τ ]+τ1

. (92)

We know from Horn’s inequalities that c[λ,μ]+τ1
π,[∅,τ ]+τ1

> 0 if and only if there exist r × r

Hermitian X̄, Ȳ , Z̄ with respective spectra π, [∅, τ ] +τ1 and [λ, μ] +τ1 such that X̄+ Ȳ =
Z̄. Now it is straightforward to show that such matrices exist if and only if there exist 
r × r Hermitian X, Y, Z with respective spectra π, τ and [λ, μ] such that X − Y = Z. 
Indeed, let X = X̄, Y = −Ȳ + τ1Id, and Z = Z̄ − τ1Id for the first implication, and 
similarly for the reverse implication. �

We can now return to equation (87). Using similar workings as in Section 2.1, we let 
m, n → ∞ such that m/n → ρ ∈ (0, 1), π/n → �x, τ/n → �y and [λ, μ]/n → �z. Note that 
�z can now have negative entries, and that from (59)

ct(λ) + ct(μ) − rt

n2 =
r∑

i=1

(
(λi

n )2 + (−μi

n )2
)

+ o(1) =
r∑

i=1

( [λ,μ]i
n

)2 + o(1). (93)

We find that

Zwb

n (β) =
∑
πm

τn−m

∑
λ,μ

(π/n,τ/n,[λ,μ]/n)∈Ω−
m/n

exp
(
n
{
G̃(πn ,

τ
n ,

[λ,μ]
n ) + o(1)

})
, (94)

where Ω−
ρ is the set of triples of r-tuples �x, �y, �z such that x1, . . . , xr ≥ 0, y1, . . . , yr ≥ 0, ∑r

i=1 xi = ρ = 1 −
∑r

i=1 yi, and there exist r × r Hermitian matrices X, Y, Z with 
respective spectra �x, �y, �z such that X − Y = Z, and where

G̃(�x, �y, �z) =
r∑

i=1

[
β
2 ((a + c)x2

i + (b + c)y2
i − cz2

i ) − xi log xi − yi log yi
]
. (95)

Notice that the sum over t appearing in (87) is hidden in (94), as it is implicit in the 
definition of Ω−

ρ , due to our remark after the statement of Lemma 2.2. Therefore

Φwb

β (a, b, c) := lim
n→∞

1
n

logZwb

n (β) = max
(�x,�y,�z)∈Ω−

ρ

G̃(�x, �y, �z). (96)

As in (78) and (80), we can rewrite this in terms of the matrices X and Y :

ΦWB
β (a, b, c) = max

X,Y

[
S(X) + S(Y ) + β

2
(
a tr[X2] + b tr[Y 2] + 2c tr[XY ]

)]
, (97)

where now the maximum is only over r × r Hermitian matrices X, Y with respective 
spectra �x, �y as above. This is the same as (80), and this completes the proof of Theo-
rem 1.2. �
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2.3. Correlation functions: proof of Theorem 1.7

Let us prove the result for the ab-model first. We use (65) and the argument leading 
up to (71) to get that, as n → ∞,

〈
exp

{ 1
n

∑n
i=1Wi

}〉
ab

β,n
=∑

λ,μ,ν 1{cλμ,ν > 0} sλ(ew1/n,...,ewr/n)
sλ(1,...,1) exp

(
n
{
F̃ (μn ,

ν
n ,

λ
n ) + o(1)

})
∑

λ,μ,ν 1{cλμ,ν > 0} exp
(
n
{
F̃ (μn ,

ν
n ,

λ
n ) + o(1)

}) ,
(98)

where F̃ is as in (72). Both sums on the right-hand-side are over λ � n, μ � m and 
ν � n − m, all having at most r parts, and in the numerator we have multiplied and 
divided by dim(Uλ) = sλ(1, . . . , 1) in order that the o(1) terms in the exponents are 
exactly equal. Then the arguments of [9, Section 6] apply, meaning that

lim
n→∞

〈
exp

{ 1
n

∑n
i=1Wi

}〉
ab

β,n
= lim

λ/n→�z�

sλ(ew1/n, . . . , ewr/n)
sλ(1, . . . , 1) , (99)

where �z� = (z�1 , . . . , z�r ) lists the eigenvalues of X + Y where X, Y are the Hermitian 
matrices which maximise the right-hand-side of (80). But we know from (81) that the 
maximum is attained when X, Y are simultaneously diagonal, with ordering of eigenval-
ues decreasing for both X and Y if c > 0, respectively decreasing for X and increasing 
for Y if c < 0. Then clearly the eigenvalues of Z = X+Y are the sums of the eigenvalues 
of X and of Y , ordered appropriately, giving z� as in (30).

Turning to the wb-model, very similarly to equation (98) we have

〈
exp

{ 1
n

(∑m
i=1 Wi −

∑n
i=m+1W

ᵀ
i

)}〉
wb

β,n

=

∑
λ,μ,π,τ 1{b

n,m,r
[λ,μ],(π,τ) > 0}

χU[λ,μ] (e
W/n)

dim(U[λ,μ]) exp
(
n
{
G̃(πn ,

τ
n ,

[λ,μ]
n ) + o(1)

})
∑

λ,μ,π,τ 1{b
n,m,r
[λ,μ],(π,τ) > 0} exp

(
n
{
G̃(πn ,

τ
n ,

[λ,μ]
n ) + o(1)

})
,

(100)

where once again the o(1) terms in the exponents are exactly equal and G̃ is given in 
(95). The arguments of [9, Section 6] apply once again, meaning that by (84) the limit 
equals

lim
[λ,μ]/n→z†

χU[λ,μ](eW/n)
dim(U[λ,μ])

, (101)

where this time, (�x�, �y�, �z†) maximises G̃(�x, �y, �z), with the conditions that xi, yi ≥ 0, ∑r
i=1 xi = ρ = 1 −

∑r
i=1 yi, and that there exist Hermitian matrices X, Y, Z with 

respective spectra x, y, z with X − Y = Z. Following equation (97), we can rewrite 
G̃ as the function of the matrices X and Y being maximised in (97). If the entries of �x
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are ordered decreasingly, then as before the trace-inequality (81) implies that for c > 0
the entries of �y should also be ordered decreasingly, while for c < 0 they should be 
ordered increasingly. This gives the form of �z† stated in (30).

It remains only to show that

lim
[λ,μ]/n→z

χU[λ,μ](eW/n)
dim(U[λ,μ])

= R(w1, . . . , wr; z1, . . . , zr), (102)

where R is given by (31). This is proved almost identically to Lemma 6.1 from [9]. Indeed, 
using (84) we get

χU[λ,μ](eW/n)
dim(U[λ,μ])

= det[ewi[λ,μ]j/n+wi(r−j)/n]·

·
∏

1≤i<j≤r

j − i

(ewi/n − ewj/n)([λ, μ]i − [λ, μ]j + j − i)
,

(103)

which, noting all the products (including in the determinant) are finite, tends to 
R(w1, . . . , wr; z1, . . . , zr) as [λ, μ]/n → z. �
2.4. Magnetisation term: proof of Theorem 1.8

We start by giving expressions for the free energy with a magnetisation term, and then 
afterwards we will take the appropriate derivatives. We will need the following notation:

• Δ+ will denote the set of vectors �z = (z1, z2, . . . , zr) that can arise as spectra of 
X + Y where X and Y are positive semidefinite Hermitian matrices with tr[X] =
1 − tr[Y ] = ρ, ordered so that z1 ≥ · · · ≥ zr. In fact, Δ+ consists of all �z satisfying 
z1 ≥ · · · ≥ zr ≥ 0 and 

∑r
i=1 zi = 1. Given �z ∈ Δ+, we write H+

ρ (�z) for the set of 
pairs (X, Y ) of such matrices with X + Y having spectrum �z.

• Δ−
ρ will denote the set of vectors �z = (z1, z2, . . . , zr) that can arise as spectra of 

X − Y where X and Y are as above, again ordered so that z1 ≥ · · · ≥ zr. Now Δ−
ρ

consists of all �z satisfying ρ ≥ z1 ≥ · · · ≥ zr ≥ −(1 − ρ) and 
∑r

i=1 zi = 2ρ − 1. Given 
�z ∈ Δ−

ρ , we write H−
ρ (�z) for the set of pairs (X, Y ) of such matrices with X − Y

having spectrum �z.

Let Φ#(β, h) = Φ#
β,h(a, b, c, �w) be as in (36) and recall from (78) that

φ(X,Y ) = S(X) + S(Y ) + β
2 tr
[
aX2 + bY 2 + 2cXY

]
.

Theorem 2.4. Let a, b, c ∈ R and w1 ≥ · · · ≥ wr be fixed. If n, m → ∞ such that 
m/n → ρ ∈ (0, 1), then the free energy of the models (34) and (35) satisfy:
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Φab(β, h) = max
�z∈Δ+

(
max

(X,Y )∈H+
ρ (�z)

φ(X,Y ) +
{

h
∑r

i=1 ziwi, if h > 0,
h
∑r

i=1 ziwr+1−i, if h < 0,

)

Φwb(β, h) = max
�z∈Δ−

ρ

(
max

(X,Y )∈H−
ρ (�z)

φ(X,Y ) +
{

h
∑r

i=1 ziwi, if h > 0,
h
∑r

i=1 ziwr+1−i, if h < 0,

)
.

(104)

Proof. Let us start with the ab case. Using the expression (65) and arguing similarly to 
(71) we have

Zab

n,h =
∑
μ,ν,λ

sλ(ehw1 , . . . , ehwr )

· cλμ,νdμdν exp
(

β
n [(a− c)ct(μ) + (b− c)ct(ν) + c · ct(λ)]

)
=

∑
(μ/n,ν/n,λ/n)∈Ω+

m/n

sλ(ehw1 , . . . , ehwr ) exp
(
n
{
F̃ (μn ,

ν
n ,

λ
n ) + o(1)

})
,

(105)

where F̃ is given in (72) and Ω+
ρ in (73). Recall that [17, Section 2.2]

sλ(ehw1 , . . . , ehwr ) =
∑
T

r∏
i=1

ehmiwi =
∑
T

e
∑r

i=1 hmiwi , (106)

where the sum is over all semistandard Young tableaux T with shape λ and entries in 
{1, . . . , r}, and where for each i, mi is the number of times the number i appears in T . 
The tableau with each box in the ith row labelled i appears in the sum, and in fact, for 
h > 0, it maximises the sum in the exponent:

e
∑r

i=1 hmiwi ≤ e
∑r

i=1 hλiwi , (107)

for each valid T . Indeed, note that in a semistandard tableau, the entries of row i must 
be at least i. Then, taking any semistandard T , shape λ, changing an entry j ≥ i in 
row i to i changes the sum in the exponent by h(wi −wj), which is non-negative by our 
ordering of �w as w1 ≥ · · · ≥ wr. Hence for h > 0,

e
∑r

i=1 hλiwi ≤ sλ(ehw1 , . . . , ehwr ) ≤ dim(Uλ)e
∑r

i=1 hλiwi . (108)

Recalling that 1
n log dim(Uλ) → 0 we get, for h > 0,

Zab

n,h =
∑

(μ/n,ν/n,λ/n)∈Ω+
m/n

exp
(
n
{
F̃ (μn ,

ν
n ,

λ
n ) + h

∑r
i=1

λi

n wi + o(1)
})

. (109)

In the case h < 0, the sum in the exponent in (106) is maximised when mi = λr+1−i for 
each i; indeed, let h′ = −h, and w′

i = −wr+1−i, and apply the same reasoning as above. 
So, for h < 0, we have
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e
∑r

i=1 hλr+1−iwi ≤ sλ(ehw1 , . . . , ehwr ) ≤ dim(Uλ)e
∑r

i=1 hλr+1−iwi , (110)

and consequently

Zab

n,h =
∑

(μ/n,ν/n,λ/n)∈Ω+
m/n

exp
(
n
{
F̃ (μn ,

ν
n ,

λ
n ) + h

∑r
i=1

λi

n wr+1−i + o(1)
})

. (111)

The result for the ab-case then follows by arguing as in (74) and [8, Lemma 3.4].
For the wb-case, a very similar argument as for (105) gives

Zwb

n (β, h) =
∑

(π/n,τ/n,[λ,μ]/n)∈Ω−
m/n

χU[λ,μ](e
hw1 , . . . , ehwr ) exp

(
n
{
G̃(μn ,

ν
n ,

λ
n ) + o(1)

})
,

(112)
where G̃ is given in (95), Ω−

ρ is defined just above (95), and χU[λ,μ] is given in (84). 
In particular, from (84), we see that upper and lower bounds from (108) and (110)
extend to this case. The result for the wb-case then follows by arguing as in (97) and [8, 
Lemma 3.4] again. �
Proof of Theorem 1.8. The proof closely follows that of Theorem 4.1 from [8]. We start 
from the expressions (104) where, for ease of notation, we drop the superscript. We give 
details only in the ab-case with h > 0 as the other cases are very similar.

Let Fmax = Φ(β, 0) = max�z∈Δ+
(
max(X,Y )∈H+

ρ (�z) φ(X, Y )
)

and let

K =
{
�z ∈ Δ+ : max

(X,Y )∈H+
ρ (�z)

φ(X,Y ) = Fmax

}
(113)

denote the set of maximisers. Note that K is compact. Clearly,

Φ(β, h) − Φ(β, 0)
h

= max
�z∈Δ+

[ r∑
i=1

ziwi +
max(X,Y )∈H+

ρ (�z) φ(X,Y ) − Fmax

h

]

≥ max
�z∈K

r∑
i=1

ziwi.

(114)

We want to prove that the left-hand side of (114) tends to the right-hand side as h → 0. 
For a contradiction, assume that there is a sequence hn → 0 such that the corresponding 
limit exists and is strictly larger than the right-hand side. For each hn, pick an element 
�z(hn) ∈ Δ+ that achieves the first maximum in (114). Since Δ+ is compact, we can 
assume after passing to a subsequence if necessary that �z(hn) → �z� as hn → 0. We claim 
that �z� ∈ K. Otherwise, max(X,Y )∈H+

ρ (�z�) φ(X, Y ) < Fmax, which would mean that the 
left-hand side of (114) tends to −∞ as h = hn → 0, contradicting the lower bound on 
the right. It follows that
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Φ(β, hn) − Φ(β, 0)
hn

=
r∑

i=1
zi(hn)wi +

max(X,Y )∈H+
ρ (�z(hn)) φ(X,Y ) − Fmax

hn

≤
r∑

i=1
zi(hn)wi →

r∑
i=1

z�i wi ≤ max
�z∈K

r∑
i=1

z�i wi,

(115)

as required.
In the wb-case, we follow the same reasoning but with Δ+ replaced by Δ−

ρ , with H+
ρ

replaced by H−
ρ , and the maxima in (114) replaced by minima (as well as wi ↔ wr+1−i).

It remains to show that the zi may be expressed as in the statement of the Theorem. 
Indeed, we know from (81) that φ(X, Y ) is maximised when X and Y are simultaneously 
diagonal, with entries x1, . . . , xr and y1, . . . , yr, respectively, ordered as follows:

• if c > 0, if x1 ≥ · · · ≥ xr ≥ 0 then y1 ≥ · · · ≥ yr ≥ 0;
• if c < 0, if x1 ≥ · · · ≥ xr ≥ 0 then 0 ≤ y1 ≤ · · · ≤ yr.

This gives the result. �
3. The phase transition

In this section we prove Propositions 1.3, 1.4, 1.5 and 1.6. Let us start by recalling 
the basic quantities of interest: we wish to maximise the function

F (ω) = F (�x; �y) =
∑r

i=1 f(xi, yi), (116)

over the domain

Ω =
{
ω = (�x; �y) : x1, . . . , xr, y1, . . . , yr ≥ 0,

∑r
i=1 xi = 1 −

∑r
i=1 yi = ρ

}
. (117)

Here

f(x, y) = −x log x− y log y + β
2
(
ax2 + by2 + 2cxy

)
, (118)

and we write Q(x, y) = 1
2
(
ax2 + by2 +2cxy

)
for the quadratic form appearing in f(x, y). 

We will write ρ′ = 1 − ρ to lighten the notation.
We are particularly interested in whether the maximum of F is attained at the point

ω0 =
(
ρ
r ,

ρ
r , . . . ,

ρ
r ; ρ′

r ,
ρ′

r , . . . ,
ρ′

r

)
, (119)

or at some other point in Ω.

3.1. Existence of a phase transition: proof of Proposition 1.3

We are now ready to prove our result on the existence of a critical point. Recall that 
we want to prove that βc exists (is positive and finite) if and only if Q is not negative 
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semidefinite, where βc is the maximum of the β for which ω0 is a maximiser of F . We 
will need the following elementary identity.

Lemma 3.1. If Q is a quadratic form of two variables, then

r
r∑

j=1
Q(xj , yj) = Q(x1 + · · · + xr, y1 + · · · + yr) +

∑
1≤i<j≤r

Q(xi − xj , yi − yj). (120)

Proof. When Q(x, y) = xy we need to prove that

r
r∑

j=1
xjyj = (x1 + · · · + xr)(y1 + · · · + yr) +

∑
1≤i<j≤r

(xi − xj)(yi − yj). (121)

This is easy to see by comparing the coefficient of each monomial on the two sides. 
Specializing xj = yj proves the result for Q(x, y) = x2 and Q(x, y) = y2, and the general 
case then follows by linearity. �
Proof of Proposition 1.3. We will write

F (ω) − F (ω0) = βE(ω) + H(ω), (122)

where

E(�x; �y) =
r∑

j=1
Q(xj , yj) − rQ

(
ρ
r ,

ρ′

r

)
, (123)

and

H(�x; �y) =
r∑

j=1
(−xj log xj − yj log yj) + ρ log ρ

r + ρ′ log ρ′

r . (124)

The term E is in some sense an energy term, and H an entropy term. Note that F is 
maximised at ω0 if and only if βE(ω) + H(ω) ≤ 0 on Ω.

On Ω, we can write

1
rH(�x; �y) = −h

(
x1 + · · · + xr

r

)
+ h(x1) + · · · + h(xr)

r

− h

(
y1 + · · · + yr

r

)
+ h(y1) + · · · + h(yr)

r
,

where h(x) = −x log x. Since h is strictly concave, H(ω) ≤ 0 with equality only at the 
point ω0. Moreover, by Lemma 3.1,
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E(�x; �y) = 1
r

∑
1≤i<j≤r

Q(xi − xj , yi − yj). (125)

Thus, if Q is negative semidefinite, we have E(ω) ≤ 0 and consequently ω0 is the unique 
maximum point of F .

Assume now that Q is not negative semidefinite. We claim that E assumes strictly 
positive values in Ω. To see this, it suffices to consider the case when x2 = · · · = xr, 
y2 = · · · = yr. Then

E(�x; �y) = r − 1
r

Q(ξ, η), (126)

where ξ = x1−x2 and η = y1−y2. Here (ξ, η) can take any value in 
[
− ρ

r−1 , ρ
]
×
[
− ρ′

r−1 , ρ
′]. 

By assumption, Q takes on positive values in parts of this rectangle. Then it is clear that 
E takes positive values, hence that H(ω) + βE(ω) assumes positive values for β large 
enough, and that the set of β > 0 for which this is true is an interval β > βc. To see 
that ω0 is the unique maximiser for β < βc, take ω ∈ Ω \ {ω0}. Then either E(ω) > 0, 
in which case H(ω) + βE(ω) < H(ω) + βcE(ω) ≤ 0 = H(ω0) + βE(ω0), or E(ω) ≤ 0, in 
which case H(ω) + βE(ω) ≤ H(ω) < 0 = H(ω0) + βE(ω0).

It remains to show that βc �= 0, that is, that F assumes its maximum value at ω0 for 
β close to zero. We will show that this is in fact true if we maximise F over the larger 
set

U =
{
(�x; �y) : 0 ≤ xj ≤ ρ, 0 ≤ yj ≤ ρ′, j = 1, . . . , r

}
. (127)

To do this we will show that the Hessian H(F ) is negative definite in U for β close to 0, 
meaning that F is concave in U for such β and that ω0 is a global maximum in U . The 
Hessian H(F ) is a direct sum of the Hessians

H(f) =
(
fxx fxy
fxy fyy

)
=
(
βa− 1

x βc
βc βb− 1

y

)
, (128)

which is negative definite if and only if

(
βa− 1

x

)(
βb− 1

y

)
> β2c2, 1

x > βa, 1
y > βb. (129)

By monotonicity, when x ≤ ρ and y ≤ ρ′ the inequalities (129) are implied by

(
βa− 1

ρ

)(
βb− 1

ρ′

)
> β2c2, 1

ρ > βa, 1
ρ′ > βb. (130)

But (130) holds for β = 0, hence by continuity also for small positive β, as required. �
From the proof above we note that β ≤ βc if and only if H(ω) + βE(ω) ≤ 0 for all 

ω ∈ Ω, and also that we have the expression
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βc = inf
ω∈Ω+

(
− H(ω)

E(ω)

)
, where Ω+ =

{
ω ∈ Ω : E(ω) > 0

}
. (131)

3.2. Formulas for βc: proofs of Propositions 1.4 and 1.5

We now turn to the proofs of our formulas for βc, Proposition 1.4 for the case r = 2
and Proposition 1.5 for the case r ≥ 3, c ≥ 0 and (a − c)ρ = (b − c)ρ′ =: t.

Our strategy is to obtain general lower and upper bounds on βc(r), given in Propo-
sitions 3.3 and 3.4 respectively, which are tight in the two cases that we consider. Both 
bounds are given in terms of the critical temperature βh

c (r) of the homogeneous case 
a = b = c = 1 (the superscript h is for “homogeneous”). In [8, Theorem 4.2], it was 
found that

βh
c (r) =

⎧⎨
⎩

2, r = 2,
2(r − 1) log(r − 1)

r − 2 , r ≥ 3.
(132)

Note that this agrees with our Proposition 1.5; the corresponding form Q(x, y) = 1
2 (x +

y)2 is not negative semidefinite and (20) holds with t = 0.
To get a better understanding of Proposition 1.5, we note that (20) implies the explicit 

diagonalization

Q(x, y) = tρρ′

2

(
x

ρ
− y

ρ′

)2

+ c + t

2 (x + y)2. (133)

That Q is not negative semidefinite means that at least one of t and c + t are positive. 
Since we assume that c ≥ 0 this means that c + t > 0. In particular, the expression for 
βc(r) in Proposition 1.5 is always positive.

Let us now obtain a lower bound for βc. We deduce from (131) and [8, Theorem 4.2]
with ρ = 1 that −H(�x; �0) ≥ βh

c (r)E(�x; �0). This inequality takes the form

r∑
j=1

xj log xj − log 1
r ≥ βh

c (r)
2r

∑
1≤i<j≤r

(xj − xi)2, where
∑r

j=1 xj = 1. (134)

Replacing each xj by xj/ρ gives

r∑
j=1

xj log xj − ρ log ρ
r ≥ βh

c (r)
2ρr

∑
1≤i<j≤r

(xj − xi)2, where
∑r

j=1 xj = ρ. (135)

As was observed in [8], equality in (135) holds both at the point x1 = · · · = xr = ρ/r

and at (26a). (They are the same point if r = 2.)
We will temporarily write γ for the explicit expression (24) (we aim to show that 

βc(2) = γ). We will need the following description of γ.
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Lemma 3.2. Assume that Q(x, y) = 1
2 (ax2 + by2 + 2cxy) is not negative semidefinite and 

that β, ρ, ρ′ > 0. Then, the form

βQ(x, y) − x2

ρ
− y2

ρ′
(136)

is negative semidefinite if and only if β ≤ γ, and negative definite if and only if β < γ.

Proof. By assumption, the first term in (136) can assume positive values, and the second 
term is always non-positive. It follows that the range of β for which (136) is negative 
semidefinite is of the form β ≤ β0 and that it is negative definite if and only if β < β0. 
The precise conditions for (136) to be negative semidefinite are

(
βa− 1

2ρ

)(
βb− 1

2ρ′

)
≥ β2c2, βa ≤ 1

2ρ , βb ≤ 1
2ρ′ . (137)

By continuity,

(
β0a− 1

2ρ

)(
β0b−

1
2ρ′

)
= β2

0c
2.

If ab = c2, this is a linear equation with the solution β0 = 2/(aρ + bρ′) = γ. Otherwise, 
it has two solutions

β± =
ρa + (1 − ρ)b±

√
(ρa− (1 − ρ)b)2 + 4ρ(1 − ρ)c2

ρ(1 − ρ)(ab− c2) , (138)

which satisfy (ab − c2)β+β− = 1/4ρρ′ > 0. If ab > c2, both solutions are positive and β0
equals the smallest solution β− = γ. If ab < c2 the solutions have opposite sign. In this 
case β0 is the largest solution, which is again β− = γ. �
Proposition 3.3. Assume that Q is not negative semidefinite, so that βc exists. Then,

βc ≥ 1
2β

h
c (r)γ. (139)

Proof. Using the estimate (135) in (124) gives

−H(ω) ≥ βh
c (r)
2r

∑
1≤i<j≤r

(
(xi − xj)2

ρ
+ (yi − yj)2

ρ′

)
. (140)

It follows that

H(ω) + βE(ω) ≤ 1
r

∑
Q̃(xj − xi, yj − yi), (141)
1≤i<j≤r
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where

Q̃(x, y) = βQ(x, y) − βh
c (r)
2
(
x2

ρ + y2

ρ′

)
. (142)

By Lemma 3.2, Q̃ is negative semidefinite if and only if β ≤ 1
2β

h
c (r)γ. For β in this range 

it follows that H(ω) + βE(ω) ≤ 0 on Ω. This gives the desired bound on βc. �
Let us now move to upper bounds for βc. We need to find a value of β such that 

F (ω) > F (ω0) for some points ω ∈ Ω. We want to find upper bounds that in some cases 
equal the lower bound in Proposition 3.3. We can only expect this to work if we used 
the inequality (135) in cases when it holds with equality. By the results of [8] mentioned 
above, it is natural to take ω either close to ω0, or to ω1 as in (26). This leads to the 
following two upper bounds.

Proposition 3.4. Assume that Q is not negative semidefinite, so that βc exists. Then,

βc ≤ 1
2rγ. (143)

If, in addition, Q(ρ, ρ′) > 0 and r ≥ 3, then

βc ≤
βh

c (r)
2Q(ρ, ρ′) . (144)

In fact, (144) holds also when r = 2, but in that case it is weaker than (143).

Proof. We first consider the behaviour of F near ω0. More precisely, consider the points

ωt,u = ω0 + (t,−t, 0, . . . , 0;u,−u, 0, . . . , 0), (145)

which belong to Ω for t, u close to 0. We have the Taylor expansion

F (ωt,u) − F (ω0) = f
(
ρ
r + t, ρ′

r + u
)

+ f
(
ρ
r − t, ρ′

r − u
)
− 2f

(
ρ
r ,

ρ′

r

)
=
(
t2fxx + u2fyy + 2tufxy

)(
ρ
r ,

ρ′

r

)
+ O((t2 + u2)3/2).

By (128), the quadratic term is

2βQ(t, u) − r
(
t2

ρ + u2

ρ′

)
. (146)

By Lemma 3.2, if β > rγ/2, this form is not negative semidefinite. It follows that ω0 is 
not a local maximum of F . This gives the first result.

Next, we consider the point ω1 from (26) and assume r ≥ 3. By a straightforward 
computation,

H(ω1) = − r−2 log(r − 1) (147)
r
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and, by (126),

E(ω1) = r−1
r Q

(ρ(r−2)
r−1 , ρ′(r−2)

r−1
)

= (r−2)2
r(r−1) Q(ρ, ρ′). (148)

The second upper bound now follows from (131). �
We can now put our upper and lower bounds together to prove Propositions 1.4 and 

1.5.

Proof of Proposition 1.4. When r = 2, (139) and (143) reduce to γ ≤ βc ≤ γ, that is, 
βc(2) = γ. For the statement about uniqueness of the maximiser, note that if β = βc(2)
and ω = (�x; �y) is a maximiser, then the left-hand-side of (141) equals zero. Then also the 
right-hand-side of (141) equals zero, since Q̃ ≤ 0 for β ≤ 1

2β
h
c (2)γ = βc(2) by the proof of 

Proposition 3.3. Hence (140) holds with equality and therefore (135) holds with equality, 
as does the corresponding statement for �y. But it follows from the proof of Theorem 4.2 
in [8] that (for r = 2) equality in (135) holds only at the point ω0. �
Proof of Proposition 1.5. Note that the lower bound in (139) and the upper bound in 
(144) are equal if γ = Q(ρ, ρ′)−1. Assuming (20), we can parametrise

a = c + t
ρ , b = c + t

ρ′ . (149)

It is then straight-forward to check that

(ρa− ρ′b)2 + 4ρρ′c2 = c2, and ab− c2 = t(c + t)
ρρ′

, (150)

which gives

γ = 2t + c−
√
c2

t(c + t) = 2
c + t

, c ≥ 0. (151)

By (133),

Q(ρ, ρ′) = c + t

2 . (152)

This shows that, under the conditions of Proposition 1.5, the upper and lower bound for 
βc agree and hence βc = βh

c (r)/(c + t).
To see that the point ω1 in (26) gives another maximiser at β = βc, take β = βc(r) =

βh
c (r)/2Q(ρ, ρ′) to see from (147) and (148) that H(ω1) + βE(ω1) = 0 which is also the 

maximum value of H(ω) + βE(ω). To see that ω1 is the only other maximiser we argue 
as at the end of the proof of Proposition 1.4. Namely, for β = βc(r) = 1

2β
h
c (r)γ, we 

have that (135) holds with equality, as does the corresponding statement for �y. From [8], 
equality in (135) holds only at the points ω0 and ω1 (assuming (13)). �
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We can now complete the final proof of this section, that of Proposition 1.6, that the 
maximiser is unique for β > βc close to βc under the conditions in Proposition 1.5.

Proof of Proposition 1.6. We first show that F is strictly concave in neighbourhoods of 
ω0 and ω1 in Ω. More generally, consider F (�x+�t; �y+�u), where (�x; �y) ∈ Ω is a point with 
x2 = · · · = xr and y2 = · · · = yr and (�t; �u) a small perturbation with

r∑
j=1

tj =
r∑

j=1
uj = 0. (153)

By (128), the quadratic term in the Taylor expansion of F is

Q1(t1, u1) +
r∑

j=2
Q2(tj , uj), (154)

where

Qk(t, u) = βQ(t, u) − t2

2xk
− u2

2yk
.

At the point ω0, we have

Q1(t, u) = Q2(t, u) = βQ(t, u) −
(rt2

2ρ + ru2

2ρ′
)
.

It follows from Lemma 3.2 that this is negative definite if β < β0 = rγ/2. By continuity, 
it follows that F is strictly concave near ω0. Since ω0 is a stationary point it must then 
be a local maximum, that is, F (�x; �y) ≤ F (ω0) for (�x; �y) near ω0 and β < β0. Using that

βc = (r − 1) log(r − 1)
r − 2 γ,

it is easy to check that βc < β0 = rγ/2, so this applies in particular to β near βc.
The point ω1 cannot be handled as easily since Q1 is then not negative definite. 

Instead, we use Lemma 3.1 and (153) to write

(r − 1)
r∑

j=2
Q2(tj , uj) = Q2(t1, u1) +

∑
2≤i<j≤r

Q2(ti − tj , ui − uj).

It follows that (154) equals

Q1(t1, u1) + 1
r − 1 Q2(t1, u1) + 1

r − 1
∑

2≤i<j≤r

Q2(ti − tj , ui − uj).

We compute
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Q1(t, u) + 1
r − 1 Q2(t, u) = r

r − 1

(
βQ(t, u) −

(rt2
2ρ + ru2

2ρ′
))

.

As before, this is negative definite for β < β0. Moreover,

Q2(t, u) = βQ(t, u) − r(r − 1)t2

2ρ − r(r − 1)u2

2ρ′

is negative definite for β < (r − 1)β0, which is a weaker condition. We conclude that F
is strictly concave for β < β0 and (�x; �y) near ω1. We note that from (122),

F (ω1) − F (ω0) = H(ω1) + βcE(ω1) + (β − βc)E(ω1),

where the sum of the first two terms on the right hand side vanishes and the last term 
is computed by (148) and (152). This gives

F (ω1) − F (ω0) = (β − βc)
(r − 2)2(c + t)

2r(r − 1) ,

which is clearly positive for β > βc.
For each β > βc, let ω(β) be a maximiser of F in Ω. Permute the coordinates so 

that (13) holds. We claim that then ω(β) → ω1 as β ↘ βc. Otherwise, there exists a 
sequence ω(βn), βn ↘ βc, that avoids a neighbourhood of ω1. Since Ω is compact we 
may assume that this sequence converges. It must then converge to a maximiser of F for 
β = βc that satisfies (13). There are only two such points, ω0 and ω1, by Proposition 1.5. 
However, we have seen that for βc < β < β0 we have F (�x; �y) ≤ F (ω0) for (�x; �y) near ω0
whereas F (ω1) > F (ω0). Thus, a sequence of global maximisers cannot converge to ω0. 
This is a contradiction, and we conclude that ω(β) → ω1. These points must then enter 
a region where F is strictly concave and hence maximisers are unique. This completes 
the proof. �
3.3. Form of the maximiser of F for c > 0

In this section we will prove that, for c > 0, any maximiser of F (10) is of the form 
(155). This is useful for the heuristic discussion of Gibbs states in Section 1.5 and for 
the results on ground state phase diagrams in Section 4.

We assume throughout this section that �x is ordered as in (13), that is x1 ≥ x2 ≥
· · · ≥ xr. Recall from the discussion after (13) that, for c > 0, F is maximised when the 
orders of �x and �y match, that is when also y1 ≥ · · · ≥ yr. We will adapt the arguments 
in [8] and in the appendix of [9] to show the following.

Proposition 3.5. For c > 0, any maximiser (�x�; �y�) of F in the set Ω (21) is of the form

x�
1 ≥ x�

2 = · · · = x�
r ,

y� ≥ y� = · · · = y�.
(155)
1 2 r
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Moreover for the special case a = b = 0, c > 0, ρ = 1/2, and β �= βc we have that the 
maximiser is unique, and x�

i = y�i for all i = 1, . . . , r.

The proof of this proposition is divided into several steps. We first prove that a 
maximum point (�x; �y) only has positive coordinates, and that xj = xk if and only if 
yj = yk (this holds also for c < 0). Then we prove that, when c > 0, the entries xi

(and therefore yi) can take at most two distinct values. This reduces the number of 
variables we need to consider, leading to (155) and the uniqueness statement via direct 
calculations.

Lemma 3.6. For any a, b, c ∈ R with c �= 0, if (�x; �y) is a maximum point of F in Ω, then

(1) all xj and yj are strictly positive,
(2) xj = xk if and only if yj = yk.

Proof. In this proof we write ej for the unit vector with a 1 in the xj-coordinate and 
remaining entries equal to 0. For the first part, suppose that ω = (�x; �y) ∈ Ω is a maximum 
point such that xj = 0 for some j, and that j is the smallest index with this property. 
Then, ω(t) = ω + t(ej − ej−1) ∈ Ω for small enough t > 0 (recall that xj−1 ≥ xj by 
(13)). By a direct computation, F (ω(t)) − F (ω) = −t log t + O(t) as t → 0. It follows 
that F (ω(t)) > F (ω) for small t, which contradicts ω being a maximum point. The same 
argument works for the variables yj .

For the second part, suppose that xj = xk and yj �= yk. If necessary, redefine j
and k so that {l : xl = xk} = {j, j + 1, . . . , k}. We still have yj �= yk. Then ω(t) :=
(�x; �y) + t(ej −ek) ∈ Ω for small enough t > 0. (Here we use the first part of the lemma in 
the case k = r.) We have that ∂

∂tF (ω(t))|t=0 = c(yj − yk) > 0. This contradicts ω being 
a maximum point. The same argument proves the reverse implication. �

Lemma 3.6 shows that at a maximum point there is a composition r = k1 + · · ·+ km
so that

(x�
1, . . . , x

�
r) = (ξ1, . . . , ξ1︸ ︷︷ ︸

k1

, . . . , ξm, . . . , ξm︸ ︷︷ ︸
km

), (156a)

(y�1 , . . . , y�r ) = (η1, . . . , η1︸ ︷︷ ︸
k1

, . . . , ηm, . . . , ηm︸ ︷︷ ︸
km

), (156b)

where ξj �= ξk and ηj �= ηk for j �= k. This leads to the problem of maximizing

F̄ (ξ; η) = k1f(ξ1, η1) + · · · + kmf(ξm, ηm) (157)

over the set Ω(m) defined by

ξ1 > ξ2 > · · · > ξm > 0, k1ξ1 + · · · + kmξm = ρ, (158a)
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η1 > η2 > · · · > ηm > 0, k1η1 + · · · + kmηm = 1 − ρ. (158b)

For m ≥ 2, the set Ω(m) is open, so we may find local extreme points by using Lagrange 
multipliers. At any such point we have

∇F̄ (ξ; η) = λ∇(k1ξ1 + · · · + kmξm) + μ∇(k1η1 + · · · + kmηm), (159)

for some λ, μ ∈ R. Equivalently

∂f
∂ξ (ξi, ηi) = λ, ∂f

∂η (ξi, ηi) = μ, 1 ≤ i ≤ m. (160)

The system (160) can in turn be rewritten in the form

ηi = φλ(ξi), ξi = ψμ(ηi), 1 ≤ i ≤ m, (161)

where

φλ(x) = λ + 1 + log(x) − ax

c
, ψμ(y) = μ + 1 + log(y) − by

c
. (162)

If we let Pλ,μ denote the intersection of the graphs y = φλ(x) and x = ψμ(y), we can 
summarise these findings as follows: the maximum of F in Ω is attained either at the 
point ω0 (22), or at a point of the form (156), where 2 ≤ m ≤ r, (ξ, η) ∈ Ω(m) and 
(ξi, ηi) ∈ Pλ,μ for 1 ≤ i ≤ m. Note that φ′′

λ(x) = −1/cx2, ψ′′
μ(y) = −1/cy2, so for c > 0

the graphs are concave. We can now prove that for c > 0, a maximiser of F can have at 
most two distinct entries xi (and therefore the same for yi). Henceforth we suppress the 
indices λ, μ from φ, ψ.

Proposition 3.7. If c > 0 then the m of (156) satisfies m ≤ 2.

Proof. Suppose first that b < 0. Then, ψ is increasing and concave, so ψ−1 is increasing 
and convex. The graph of ψ−1 can intersect the graph of the concave function φ in at 
most two points. If a < 0 the same argument works with φ and ψ interchanged.

This leaves the case when a > 0 and b > 0. In the region

R = {(x, y) : 0 < x < 1/a, 0 < y < 1/b}, (163)

φ is increasing and concave whereas the local inverse ψ−1 is increasing and convex. 
Thus, there are at most two crossing points in R. If there are zero or two crossing points 
in R, then an elementary convexity argument shows that there are no crossing points 
outside R.

In all the cases considered so far there are at most two crossing points, which implies 
m ≤ 2. In the remaining case, when there is exactly one crossing point in R, there can 
be several crossing points outside R. They can be ordered as a sequence (xj, yj) with xj
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decreasing and yj increasing. We are only interested in subsequences of crossing points 
with xj and yj decreasing. The maximum length of such a subsequence is 2, where we 
may pick the unique crossing point in R and an arbitrary crossing point outside R. This 
proves that m ≤ 2 also in this case. �

We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5. We absorb β in a, b, c, effectively setting β = 1. It will be 
convenient to use ξ = x1 − xr and η = y1 − yr as parameters. By Proposition 3.7 (using 
k in place of m) we can write �x and �y as

x1 = · · · = xk = ρ + (r − k)ξ
r

, xk+1 = · · · = xr = ρ− kξ

r
,

y1 = · · · = yk = ρ′ + (r − k)η
r

, yk+1 = · · · = yr = ρ′ − kη

r
,

(164)

where ρ′ = 1 − ρ. The function (10) can then be written

F (ξ, η, k) = kf
(

ρ+(r−k)ξ
r , ρ′+(r−k)η

r

)
+ (r − k)f

(
ρ−kξ

r , ρ′−kη
r

)
.

We need to show that the maximum of F over ξ ∈ [ρ, k], η ∈ [ρ′, k] and k ∈ {0, 1, . . . , r}
is achieved at k = 1. Note that k = 0, which corresponds to the point ω0 (22), is included 
in that case as k = 1, ξ = η = 0. The idea is now to consider k as continuous. We will 
show the stronger statement that the maximum of F on the domain

0 ≤ ξ ≤ ρ

k
, 0 ≤ η ≤ ρ′

k
, 1 ≤ k ≤ r (165)

is achieved at k = 1.
We first show that F does not have any stationary points in the interior. By a straight-

forward computation,

∂F

∂ξ
= k(r−k)

r

(
aξ + cη − log ρ+(r−k)ξ

ρ−kξ

)
,

∂F

∂η
= k(r−k)

r

(
cξ + bη − log ρ′+(r−k)η

ρ′−kη

)
,

∂F

∂k
= ξ + η + r−2k

r Q(ξ, η)

− ρ+(r−2k)ξ
r log ρ+(r−k)ξ

ρ−kξ − ρ′+(r−2k)η
r log ρ′+(r−k)η

ρ′−kη .

By the first two equations, at any stationary point we have

log ρ+(r−k)ξ = aξ + cη, log ρ′+(r−k)η
′ = cξ + bη. (166)
ρ−kξ ρ −kη
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Inserting this in the third equation and using

Q(ξ, η) = 1
2 (ξ(aξ + cη) + η(cξ + bη))

gives

∂F

∂k
= ξ + η − 2ρ+(r−2k)ξ

2r (aξ + cη) − 2ρ′+(r−2k)η
2r (cξ + bη).

We now observe that (166) implies

coth aξ + cη

2 = 2ρ + (r − 2k)ξ
ξr

, coth cξ + bη

2 = 2ρ′ + (r − 2k)η
ηr

,

which in turn gives

∂F

∂k
= ξ

(
1 − aξ+cη

2 coth aξ+cη
2

)
+ η

(
1 − cξ+bη

2 coth cξ+bη
2

)
. (167)

Note that 1 − (x/2) coth(x/2) ≤ 0 for all x, with equality only if x = 0. So a stationary 
point must satisfy ξ(aξ + cη) = η(cξ + bη) = 0. However, if aξ + cη = 0 then (166) gives 
ξ = 0 and similarly if cξ + bη = 0 then η = 0. Thus, F has no stationary points in the 
interior of (165).

It remains to study F on the boundary of (165). At the boundary component ξ = 0, 
all x-variables are equal. By Lemma 3.6, at any such maximum point also the y-variables 
are equal, so it must be the point ω0. Similarly, any maximum point with η = 0 is ω0. If 
ξ = ρ/k then xr = 0, but we know from Lemma 3.6 that F is not maximised at such a 
point. Similarly, we exclude the case η = ρ′/k. The case k = r again corresponds to ω0. 
The only remaining boundary component is k = 1. This shows that any maximiser of F
has the form (155).

To finish the proof of Proposition 3.5, it remains to show that in the case a = b = 0, 
c > 0, ρ = 1

2 , and β �= βc, the maximiser is unique and satisfies xi = yi for all i = 1, . . . , r. 
Without loss of generality we can let c = 1. Using the fact that the maximiser must be 
of the form (155), and setting x1 = x, y1 = y, we can write

F (�x; �y) = F0(x, y) :=β
(
xy + ( 1

2−x)( 1
2−y)

r−1

)
− x log x− y log y

−
( 1

2 − x
)
log

1
2−x

r−1 −
( 1

2 − y
)
log

1
2−y

r−1 .

(168)

We are maximising F0 in the box [ 1
2r , 

1
2 ]2. Calculations yield that when x > y, ∂F0

∂x < ∂F0
∂y , 

and vice-versa, so that the maximum points of F0 must satisfy x = y or lie on the 
boundary. Lemma 3.6 shows that they cannot lie on the boundary unless (�x; �y) = ω0. 
So, substituting x = y, and reparametrising with z = 2x, we have

F0
(
z , z

)
= β

(
z2 + (1−z)2 )− z log z − (1 − z) log 1−z + log 2. (169)
2 2 4 r−1 r−1
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Now, apart from the constant log 2, this is precisely the function maximised in [8, The-
orem 1.1], with β in that paper replaced with β/2 here, and �x in that paper of the 
form x1 ≥ x2 = · · · = xr. By the working in that paper and the Appendix of [9], the 
maximiser is unique for all β �= βc = 4(r−1) log(r−1)

r−2 from (25). This concludes the proof 
of Proposition 3.5. �

It would be interesting to determine the structure of the maximisers also for c < 0, 
but that seems more difficult than the case c > 0 considered above. It is still true that 
any maximiser has the form (156), where the points (ξi, ηi) solve a system of the form 
(161). However, it is no longer true that all maximisers satisfy m = 2 or k1 = 1. In 
fact, in Proposition 4.2 we will see that more complicated maximisers exist even in the 
zero-temperature limit β → ∞.

4. The ground-state phase diagram

In this section we justify the ground-state phase diagrams given in Figs. 1 and 2 of the 
introduction. In the zero temperature limit β → ∞, the logarithmic terms in the function 
F (�x; �y) of (10) become negligible, and the maximisation problem in Theorem 1.1 and 
1.2 reduces to maximising the function

G(�x; �y) =
r∑

i=1
Q(xi, yi) =

r∑
i=1

1
2
(
ax2

i + by2
i + 2cxiyi

)
(170)

on the domain Ω defined in (21). We will determine all maximisers of G for c �= 0, starting 
with the easier case c > 0. As has been mentioned, the case c = 0 can be reduced to 
results of [8].

4.1. Diagram for c > 0

We first introduce some notation. For fixed c, we split the ab-plane into five disjoint 
regions, defined by

D =
{
a, b < 0, ab > c2

}
, ∂D =

{
a, b < 0, ab = c2

}
,

E1 =
{
b ≤ −cρ

ρ′
, ab < c2

}
, E2 =

{
a ≤ −cρ′

ρ
, ab < c2

}
,

F =
{
a >

−cρ′

ρ
, b >

−cρ

ρ′

}
.

We refer to D as the disordered and F as the ferromagnetic region. The regions E1 and 
E2 are intermediate between D and F . This is illustrated in Fig. 1.
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We also introduce the following points in Rr ×Rr:

ωD =
(
ρ

r
, . . . ,

ρ

r
; ρ

′

r
, . . . ,

ρ′

r

)
,

ωE1 =
(
ρ, 0, . . . , 0; bρ

′ − (r − 1)cρ
br

,
bρ′ + cρ

br
, . . . ,

bρ′ + cρ

br

)
,

ωE2 =
(
aρ− (r − 1)cρ′

ar
,
aρ + cρ′

ar
, . . . ,

aρ + cρ′

ar
; ρ′, 0, . . . , 0

)
,

ωF = (ρ, 0, . . . , 0; ρ′, 0, . . . , 0) .

(Above, we used the notation ωD = ω0.)
The following result completely describes the maximisers of G

∣∣
Ω. As before, we may 

restrict attention to maximisers (�x�; �y�) such that x�
i and y�i are decreasing.

Proposition 4.1. Assume that c > 0 and let ω� = (�x�; �y�) be a maximiser of G
∣∣
Ω with x�

i

and y�i decreasing. If (a, b) ∈ X, where X is one of D, E1, E2 and F , then ω� is unique 
and equals ωX . In the remaining case (a, b) ∈ ∂D there are infinitely many maximisers. 
Explicitly, they are given by all points (x�; y�) ∈ Ω such that

√
−a

(
x�
i −

ρ

r

)
=

√
−b

(
y�i − ρ′

r

)
, 1 ≤ i ≤ r. (171)

Proof. We first consider the case when Q is negative semidefinite, that is, (a, b) ∈ D̄. 
Recall the identity (125), which can be written

G(�x; �y) = G(ωD) + 1
r

∑
1≤i<j≤r

Q(xi − xj , yi − yj). (172)

As we already saw in the proof of Proposition 1.3, this immediately implies that ωD is 
the unique maximiser in case D. If (a, b) ∈ ∂D, then

Q(x, y) = −1
2(

√
−ax−

√
−by)2. (173)

Then, (172) implies that G is maximised at all points such that 
√
−a xi−

√
−b yi is inde-

pendent of i. Summing over i gives r(
√
−a xi −

√
−b yi) =

√
−a ρ −

√
−b ρ′, which leads 

to (171). Note that if (x�
1, . . . , x

�
r) is any decreasing sequence of non-negative numbers 

summing to ρ and we solve (171) for y�i , then (x�; y�) ∈ Ω provided that

x∗
r ≥ ρ

r
−
√

b

a

ρ′

r
. (174)

Since the right-hand-side is < ρ/r, this shows that the number of maximisers is indeed 
infinite in this case.
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From now on we assume that Q is not negative semidefinite. Let k and l denote the 
number of non-zero entries in x� and y�, respectively. Suppose first that k ≤ l. Then, ω�

is a maximiser of

H(�x; �y) =
k∑

j=1
Q(xj , yj) +

l∑
j=k+1

Q(0, yj)

on the set

U =
{

(�x; �y); x1, . . . , xk, y1, . . . , yl > 0,
∑k

j=1 xj = ρ,
∑l

j=1 yj = ρ′
}
.

There must then exist Lagrange multipliers λ and μ such that

∂H

∂xj
(ω�) = ax�

j + cy�j = λ, 1 ≤ j ≤ k, (175a)

∂H

∂yj
(ω�) = cx�

j + by�j = μ, 1 ≤ j ≤ k, (175b)

∂H

∂yj
(ω�) = by�j = μ, k + 1 ≤ j ≤ l. (175c)

If ab �= c2, the system (175a)–(175b) has a unique solution, so x�
1 = · · · = x�

k and 
y�1 = · · · = y�k. This also holds if ab = c2, where a, b > 0. In that case, (175a) gives 
a(x�

1 − x�
j ) + c(y�1 − y�j ) = 0 for j ≤ k. Since a > 0 and c > 0, we can still conclude that 

x�
1 = x�

j and y�1 = y�j .
If b �= 0, (175c) gives y�k+1 = · · · = y�l . Again, this also holds for b = 0. Indeed, in that 

case, if k < l, then (175b) gives cx�
k = μ and (175c) gives 0 = μ. This is impossible since 

c and x�
k are both assumed positive. Thus, k = l and the equalities y�k+1 = · · · = y�l are 

trivially valid.
The above arguments show that, under the assumption k ≤ l,

ω� = (x�
1, . . . , x

�
1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
r−k

; y�1 , . . . , y�1︸ ︷︷ ︸
k

, y�l , . . . , y
�
l︸ ︷︷ ︸

l−k

, 0, . . . , 0︸ ︷︷ ︸
r−l

).

Next, we prove that either l = k or l = r. To see this, assume that k < l < r. On 
the one hand, (175b) and (175c) give μ = cx�

1 + by�1 = by�l . This implies b(y�l − y�1) =
cx�

1 > 0 and hence b < 0. On the other hand, if t is a small positive number, then 
(�x�; �y� + t(el+1 − el)) ∈ U and hence G(�x�; �y�) ≥ G(�x�; �y� + t(el+1 − el)), where ej are 
unit vectors. It follows that

0 ≥ ∂H
∂yl+1

(ω�) − ∂H
∂yl

(ω�) = c(x�
l+1 − x�

l ) + b(y�l+1 − y�l ) = −by�l ,

which contradicts b < 0. After a change of variables, we conclude that
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ω� = (x�
1, . . . , x

�
1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
r−k

; y�1 , . . . , y�1︸ ︷︷ ︸
k

, y�2 , . . . , y
�
2︸ ︷︷ ︸

r−k

), (176)

where the previous cases l = k and l = r correspond to y�2 = 0 and y�2 �= 0, respectively.
If k > 1 in (176) then

G(�x� + t(e1 − ek); �y� + u(e1 − ek)) −G(ω�)

= Q(x1 + t, y1 + u) + Q(x1 − t, y1 − u) − 2Q(x1, y1) = 2Q(t, u). (177)

Since we assume that Q is not negative semidefinite, it assumes positive values in any 
neighbourhood of (0, 0). This contradicts that ω� is a maximiser. It follows that k = 1, 
that is,

ω� = (ρ, 0, . . . , 0; y�1 , y�2 , . . . , y�2). (178)

If (178) holds with y�2 = 0 then y�1 = ρ′, that is, ω� = ωF . If y�2 �= 0, then the variables 
y�j can be determined from

y�1 + (r − 1)y�2 = ρ′, cρ + by�1 = by�2 ,

where the second equation follows from (175b) and (175c). Solving these equations, we 
find that ω� = ωE1 .

So far we have assumed that k ≤ l. The complementary case follows by interchanging 
the roles of the x- and y-variables. It leads to the additional possibility ω� = ωE2 . That 
is, if (a, b) ∈ E1 ∪ E2 ∪ F , then the maximum is achieved at one of the points ωE1 , ωE2

and ωF .
It is easy to check that, at the point ωE1 , the conditions y�1 ≥ y�2 ≥ 0 are equivalent to 

b ≤ −cρ/ρ′. Likewise, ωE2 is only an admissible point if a ≤ −cρ′/ρ. In region F , neither 
of these conditions hold and the only possibility is ω� = ωF . In region E1, we have 
ruled out ωE2 , so we only need to compare the values at ωE1 and ωF . By an elementary 
computation,

G(ωF ) −G(ωE1) = (r − 1)(cρ + bρ′)2

2br ≤ 0

since b < 0 in this case. Equality holds only at the boundary with region F , where 
ωE1 = ωF . This proves the result in case E1 and case E2 follows by symmetry. �

To give an example of how the model behaves in the different regions, we compute 
the magnetisation (see Theorem 1.8)

M = ∂Φab

∂h

∣∣∣
h↓0

=
r∑

(x�
i + y�i )wi.
i=1
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We will assume that (a, b) /∈ ∂D and that w1 + · · · + wr = 0. Since x�
2 = · · · = x�

r and 
y�2 = · · · = y�r we obtain

M = (x�
1 + y�1 − x�

2 − y�2)w1.

Inserting the explicit expressions from Proposition 4.1 gives

M =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, (a, b) ∈ D,(
1 − c

b

)
ρw1, (a, b) ∈ E1,(

1 − c
a

)
ρ′w1, (a, b) ∈ E2,

w1, (a, b) ∈ F.

We see that M has a discontinuity across the curve ∂D. At the half-lines separating 
region F from E1 and E2, it is continuous but not differentiable.

4.2. Diagram for c < 0

We now turn to the case c < 0. As before, we view c as fixed and describe the phase 
diagram in the ab-plane; see Fig. 8. There is then an anti-ferromagnetic phase

A = {a, b > 0}, (179)

and a disordered phase

D = {a, b < 0, ab > c2}, (180)

which agrees with the case c > 0. There are also a number of intermediate phases. To 
describe them geometrically, we introduce the points

Pk =
(

kρ′c

(r − k)ρ ,
(r − k − 1)ρc

(k + 1)ρ′

)
, k = 1, 2, . . . , r − 2, (181)

which are all in the region {a, b < 0, ab < c2}, and

Qk =
(

kρ′c

(r − k)ρ ,
(r − k)ρc

kρ′

)
, k = 1, 2, . . . , r − 1 (182)

which are on ∂D = {a, b < 0, ab = c2}. We draw r − 2 line segments connecting 
the origin a = b = 0 to the points Pj . We also draw a zig-zag line, consisting of the 
horizontal half-line to the right of Q1, a vertical line segment from Q1 to P1, a horizontal 
segment from P1 to Q2, a vertical segment from Q2 to P2, continuing in this way and 
ending with the vertical half-line above Qr−1. Together with the boundaries of A and D, 
these line segments divide the plane into 2r − 1 additional open regions. We will write 
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B1, . . . , Br−1 for the regions above and C1, . . . , Cr for those below the zig-zag line, in 
both cases numbered from southeast to northwest. More explicitly,

B1 =
{
a >

ρ′c

(r − 1)ρ ,
(r − 1)ρc

ρ′
< b < 0, ρ2(r − 1)(r − 2)a > 2(ρ′)2b

}
,

Bk =
{
a >

kρ′c

(r − k)ρ , b >
(r − k)ρc

kρ′
,

(r − k)(r − k − 1)ρ2a > k(k + 1)(ρ′)2b,

(r − k + 1)(r − k)ρ2a < (k − 1)k(ρ′)2b
}
, 2 ≤ k ≤ r − 2,

Br−1 =
{

(r − 1)ρ′c
ρ

< a < 0, b > ρc

(r − 1)ρ′ , 2ρ2a < (ρ′)2(r − 1)(r − 2)b
}
,

(183)

and

C1 =
{
b <

(r − 1)ρc
ρ′

, ab < c2
}
,

Ck =
{
a <

(k − 1)ρ′c
(r − k + 1)ρ, b <

(r − k)ρc
kρ′

, ab < c2
}
, 2 ≤ k ≤ r − 1,

Cr =
{
a <

(r − 1)ρ′c
ρ

, ab < c2
}
.

(184)

As before, we write

ωD =
(
ρ

r
, . . . ,

ρ

r
; ρ

′

r
, . . . ,

ρ′

r

)
.

The maximiser in the anti-ferromagnetic phase is

ωA = (ρ, 0, . . . , 0; 0, . . . , 0, ρ′) .

We will see that the intermediate regions correspond to the maximisers

ωBk
=
( ρ

k
, . . . ,

ρ

k︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
r−k

; 0, . . . , 0︸ ︷︷ ︸
k

,
ρ′

r − k
, . . . ,

ρ′

r − k︸ ︷︷ ︸
r−k

)
(185)

and

ωCk
=
(
x1, . . . , x1︸ ︷︷ ︸

k−1

, x2, 0, . . . , 0︸ ︷︷ ︸
r−k

; 0, . . . , 0︸ ︷︷ ︸
k−1

, y1, y2, . . . , y2︸ ︷︷ ︸
r−k

)
,

where
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Fig. 8. The ground state phase diagram for c < 0, in the case r = 5, with the points Pk (181) and Qk (182)
as well as the regions A (179), Bk (183), Ck (184) and D (180) indicated.

x1 = (r + 1 − k)ρab + ρ′bc− (r − k)ρc2

k(r + 1 − k)ab− (k − 1)(r − k)c2 , (186a)

x2 = (r + 1 − k)ρab− (k − 1)ρ′bc
k(r + 1 − k)ab− (k − 1)(r − k)c2 , (186b)

y1 = kρ′ab− (r − k)ρac
k(r + 1 − k)ab− (k − 1)(r − k)c2 , (186c)

y2 = kρ′ab + ρac− (k − 1)ρ′c2

k(r + 1 − k)ab− (k − 1)(r − k)c2 . (186d)

The complete description of the ground state phase diagram for c < 0 is then as 
follows.

Proposition 4.2. Assume that c < 0, r ≥ 3 and let ω� = (�x�; �y�) be a maximiser of G
∣∣
Ω

with x�
i decreasing and y�i increasing. If (a, b) ∈ X, where X is one of A, Bk, Ck or D, 

then ω� is unique and equal to ωX . If (a, b) is in the interior of the line segment separating 
Bk from Ck, then ω� is also unique and given by ω� = ωBk

= ωCk
. Likewise, if (a, b)

is in the interior of the line segment separating Bk from Ck+1 then ω� = ωBk
= ωCk+1 . 

If (a, b) is in the interior of the line segment separating Bk from Bk+1, then there are 
exactly two maximisers, namely, ωBk

and ωBk+1 . If (a, b) = Pk (the corner between Bk, 
Bk+1 and Ck+1) then there are infinitely many maximisers, which form the line segment 
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tωBk
+ (1 − t)ωBk+1 for 0 ≤ t ≤ 1. In the remaining cases, (a, b) ∈ ∂A or (a, b) ∈ ∂D

there are also infinitely many maximisers. In the case ∂D they are determined by the 
conditions

√
−a

(
x�
i −

ρ

r

)
+
√
−b

(
y�i − ρ′

r

)
= 0, 1 ≤ i ≤ r, (187)

in the case a > 0, b = 0 by the conditions

x�
1 = ρ, x�

2 = · · · = x�
r = y�1 = 0, (188a)

in the case a = 0, b > 0 by the conditions

x�
r = y�1 = · · · = y�r−1 = 0, y�r = ρ′ (188b)

and, finally, for a = b = 0 by

x�
1y

�
1 = · · · = x�

ry
�
r = 0. (188c)

For convenience, we formulated Proposition 4.2 only for r ≥ 3. In the case r = 2 the 
same statement is correct, except for the fact that the equations (188) have the unique 
solution ω = ωA. In this case ωB1 = ωA, so ∂A and B1 should be considered as parts of 
the anti-ferromagnetic phase. Note also that there are no points Pk, and only one region 
Bk. This leads to exactly the same diagram as for c > 0. We already know this from the 
discussion after Theorem 1.2.

The proof of Proposition 4.2 follows the same strategy as that of Proposition 4.1. 
Since the details are more involved, we divide it into a series of lemmas.

Lemma 4.3. Proposition 4.2 holds if (a, b) ∈ Ā or (a, b) ∈ D̄.

Proof. The case (a, b) ∈ D follows immediately from (172). If (a, b) ∈ ∂D, (173) is 
replaced by

Q(x, y) = −1
2(

√
−ax +

√
−by)2.

This leads to the sign change in (187) compared to (171). Moreover the condition (174)
is replaced by

x�
1 ≤ ρ

r
+
√

b

a

ρ′

r
,

which shows that the number of maximisers is indeed infinite.
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If (a, b) ∈ Ā, that is, a, b ≥ 0, we can estimate

Q(�x; �y) =
r∑

j=1

(
a

2 x2
j + cxjyj + b

2 y2
j

)

≤ a

2 (x1 + · · · + xr)2 + b

2(y1 + · · · + yr)2 = aρ2 + b(ρ′)2

2 ,

where we deleted the non-positive terms cxjyj and added the non-negative terms axixj

and byiyj for i < j. Equality holds if and only if all those terms vanish. If a > 0 and 
b > 0 this can only happen if ω = ωA. It is also clear that if (a, b) ∈ ∂A it happens under 
the conditions (188). �
Lemma 4.4. Assume that (a, b) /∈ Ā ∪ D̄. Then the maximiser ω� in Proposition 4.2 is 
equal to one of the points ωBk

, ωCk
or tωBk

+ (1 − t)ωBk+1 for 0 ≤ t ≤ 1. The last case 
can only happen if (a, b) = Pk.

Proof. Let k and l be the number of non-zero entries in x� and y�, respectively. Then, 
ω� is a maximiser of

min(k,r−l)∑
j=1

Q(xj , 0) +
k∑

j=r−l+1

Q(xj , yj) +
r∑

j=max(k+1,r−l+1)

Q(0, yj),

where the middle sum is empty if k+ l ≤ r. This gives the Lagrange multiplier equations

ax�
j = λ, 1 ≤ j ≤ min(k, r − l), (189a)

ax�
j + cy�j = λ, r − l + 1 ≤ j ≤ k, (189b)

cx�
j + by�j = μ, r − l + 1 ≤ j ≤ k, (189c)

by�j = μ, max(k + 1, r − l + 1) ≤ j ≤ r. (189d)

We will first show that the variables x�
j and y�j involved in each group of equations 

(189a), (189b)–(189c) and (189d) are independent of j. This is obvious if, respectively, 
a �= 0, ab �= c2 (which holds by assumption) and b �= 0. By symmetry, it remains to 
consider the case a = 0, when we must show that x�

1 = · · · = x�
min(k,r−l). If l = r there 

is nothing to prove. If l < r and k + l > r then (189a) and (189b) give λ = ax�
1 = 0 and 

λ = ax�
k + cy�k = cy�k, which is impossible. Finally, suppose k + l ≤ r. Note that b < 0

since (a, b) /∈ ∂A. It then follows from (189d) that y�j = ρ′/l for j ≥ r− l + 1. This gives

G(ω�) =
k∑

j=1
Q(x�

j , 0) + lQ
(
0, ρ′

l

)
= 0 + b(ρ′)2

l
,

which is maximised when l = r − 1 and hence k = 1, so the condition we want to prove 
holds automatically.
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So far we have proved that, if k + l ≤ r,

ω� =
( ρ

k
, . . . ,

ρ

k︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
r−k

; 0, . . . , 0︸ ︷︷ ︸
r−l

,
ρ′

l
, . . . ,

ρ′

l︸ ︷︷ ︸
l

)
, (190)

and if k + l > r (after a change of variables)

ω� =
(
x1, . . . , x1︸ ︷︷ ︸

r−l

, x2, . . . , x2︸ ︷︷ ︸
k+l−r

, 0, . . . , 0︸ ︷︷ ︸
r−k

; 0, . . . , 0︸ ︷︷ ︸
r−l

, y1, . . . , y1︸ ︷︷ ︸
k+l−r

, y2, . . . , y2︸ ︷︷ ︸
r−k

)
. (191)

In the case (190) we have

G(ω�) = kQ(ρ/k, 0) + lQ(0, ρ′/l) = aρ2

2k + b(ρ′)2

2l .

Since we assume that at least one of a and b is negative, this can only be a global 
maximum if k + l = r, that is, ω� = ωBk

(see (185)).
In the case (191), we claim that k + l = r + 1. Indeed, if k + l ≥ r + 2 we find as in 

(177) that

G(�x� + t(er−l+1 − er−l+2); �y� + u(er−l+1 − er−l+2)) = G(ω�) + 2Q(t, u),

which shows that ω� is not a local maximum. We now know that

ω� =
(
x1, . . . , x1︸ ︷︷ ︸

k−1

, x2, 0, . . . , 0︸ ︷︷ ︸
r−k

; 0, . . . , 0︸ ︷︷ ︸
k−1

, y1, y2, . . . , y2︸ ︷︷ ︸
r−k

)
,

where 1 ≤ k ≤ r. Suppose first that 2 ≤ k ≤ r − 1. Then, the Lagrange equations (189)
give

ax1 = ax2 + cy1, cx2 + by1 = by2.

Inserting x2 = ρ − (k − 1)x1 and y1 = ρ′ − (r − k)y2 gives

kax1 + (r − k)cy2 = aρ + cρ′, (192a)

(k − 1)cx1 + (r − k + 1)by2 = cρ + bρ′. (192b)

If the determinant k(r+1 −k)ab −(k−1)(r−k)c2 �= 0, we can solve this system and find 
that ω� = ωCk

. If k = 1, there is no x1 and we must have x2 = ρ. We can still determine 
y2 from (192b) and obtain ω� = ωC1 . Similarly, the case k = r gives ω� = ωCr

.
It remains to consider solutions of (192) when

k(r + 1 − k)ab = (k − 1)(r − k)c2 (193)
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with 2 ≤ k ≤ r − 2. For solutions to exist we must have (from (192))

(k − 1)c(aρ + cρ′) = ka(cρ + bρ′),

(r − k + 1)b(aρ + cρ′) = (r − k)c(cρ + bρ′).

It is easy to solve this for (a, b), and obtain that either (a, b) = (−cρ′/ρ, −cρ/ρ′) or 
(a, b) = Pk−1. The first solution does not satisfy (193) and can be discarded. At the 
point Pk−1, (192) reduces to

k(k − 1)ρ′x1 + (r − k)(r − k + 1)ρy2 = rρρ′. (194)

The conditions x1 ≥ x2 ≥ 0 and 0 ≤ y1 ≤ y2 mean that (x1, y2) is in the rectangle 
[ρ/k, ρ/(k − 1)] × [ρ′/(r − k + 1), ρ′/(r − k)]. The line (194) passes through the corners 
(ρ/k, ρ′/(r−k)), (ρ/(k−1), ρ′/(r−k+1)) which correspond to the points ωBk

and ωBk−1 . 
Thus, there are potential maximisers at the line segment between these points. �

It remains to pair up the maximisers with the correct region.

Lemma 4.5. In the context of Lemma 4.4, if ω� = ωCk
, then either (a, b) ∈ C̄k or (a, b)

is on the extensions of the line segments separating Ck from Bk and Bk−1. In the latter 
case, ωCk

= ωBk
and ωCk

= ωBk−1 , respectively.

Proof. Since (a, b) /∈ Ā, at least one of a and b is negative. Suppose that a < 0. We 
compute

G(ωCk
) −G(ωBk

) = −a(kρ′b− (r − k)ρc)2

2k(r − k)Δk
, (195)

where Δk = k(r+1 −k)ab − (k−1)(r−k)c2. If ωCk
is a global maximiser, it follows that 

either Δk > 0 or kρ′b = (r− k)ρc. The second case is the extensions of the line segment 
separating Ck from Bk. It is easy to verify that in that case ωCk

= ωBk
. If Δk > 0 then 

both a and b are negative. It is then clear from (186) that the conditions x2, y1 ≥ 0 give 
(a, b) ∈ C̄k.

The case when b < 0 follows in the same way, using instead

G(ωCk
) −G(ωBk−1) = −b((r + 1 − k)ρa− (k − 1)ρ′c)2

2(k − 1)(r + 1 − k)Δk
. � (196)

Lemma 4.6. In the context of Lemma 4.4, if ω� = ωBk
, then (a, b) ∈ B̄k.

Proof. For 2 ≤ k ≤ r − 1, we compute

G(ωBk
) −G(ωBk−1) = k(k − 1)(ρ′)2a− (r − k)(r + 1 − k)ρ2b

.
2k(r − k)(k − 1)(r + 1 − k)
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It follows that, if ωBk
is a global maximiser, then (a, b) is above or on the line separating 

Bk from Bk−1. Replacing k by k + 1 we see that, if 1 ≤ k ≤ r − 2 then (a, b) is below 
or on the line separating Bk from Bk+1. This means that either (a, b) ∈ B̄k, (a, b) ∈ Ck

or (a, b) ∈ Ck+1. However, if (a, b) ∈ Ck then the expression (195) is strictly positive, so 
ωBk

is not a maximiser. Similarly, the case (a, b) ∈ Ck+1 is excluded by (196). �
We can now complete the proof of Proposition 4.2. The case (a, b) ∈ Ā∪ D̄ is handled 

by Lemma 4.3. In all other cases except at the points Pk it follows from Lemma 4.4 that 
ω� = ωBj

or ω� = ωCj
for some j. We can then use Lemma 4.5 and Lemma 4.6 to exclude 

all possibilities for ω� except those mentioned in Proposition 4.2. In most cases this leaves 
a unique possibility. At the boundary between Bk and Bk+1 there are two possibilities, 
but it is easy to verify (and clear from continuity arguments) that G(ωBk

) = G(ωBk+1)
in this case. At the points Pk there are infinitely many possibilities, but it is again easy 
to verify (and clear from the Lagrange equations) that they are all maximisers.

5. Multi-block models

In this section we generalise the free energy calculation of Theorem 1.1 to a class of 
models with p ≥ 1 blocks rather than just the two blocks A and B, and with certain 
many-body interactions.

We first need some notation. Let γ be a partition with all parts > 1, that is γ =
(γ1, . . . , γ�) is a sequence of integers γ1 ≥ γ2 ≥ · · · ≥ γ� ≥ 2. We say that a permutation 
σ ∈ Sn has cycle-type γ if its non-trivial cycles, ordered from longest to shortest, have 
lengths γ1, . . . , γ�. Then |γ| := γ1 + · · · + γ� ≤ n. Let Cγ

n be the set of permutations 
in Sn with cycle-type γ; this is a conjugacy-class of Sn. For example, if γ = (2) then 
Cγ

n = C
(2)
n is the set of transpositions in Sn, and if γ = (3) then Cγ

n = C
(3)
n is the set of 

three-cycles in Sn. Similarly, for A ⊆ {1, 2, . . . , n}, let Cγ
A denote the set of permutations 

of the elements of A with cycle-type γ.
Let A1, . . . , Ap form a partition of {1, . . . , n} with |Ak| = mk. Fix a finite set Γ of 

partitions γ with all parts > 1. We assume that n and all mk are large enough that 
Cγ

n �= ∅ and Cγ
Ak

�= ∅ for all γ ∈ Γ. For aγ1 , . . . , aγp , cγ ∈ R, consider the Hamiltonian

Hmb

n = −n
∑
γ∈Γ

( p∑
k=1

aγ
k

|Cγ
Ak

|

∑
σ∈Cγ

Ak

Tσ + cγ

|Cγ
n|

∑
σ∈Cγ

n

Tσ

)
, (197)

and the partition function Zmb

n (β) = trV [e−βHmb

n ]. Note that we have the scaling factor 
n in front of (197) rather than 1

n as in (6). This is because the sizes of the conjugacy 

classes Cγ
A depend on n, for example for transpositions we have |C(2)

n | =
(
n
2
)
.

The form of the Hamiltonian (197) means that spins at vertices in each block Ak

interact with each other through the many-body interaction Tσ (as opposed to the pair-
interaction Ti,j = T(i,j) before), with strength constants aγk dependent on the cycle type 
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γ of σ; as well as this, spins in all blocks together interact with each other similarly, this 
time with strength constants cγ .

The operators Tσ appearing in (197) may all be written in terms of spin-matrices. 
Indeed, for transpositions σ = (i, j) this was discussed above, and for general σ we may 
write Tσ as a product of Ti,j’s. However, we do not pursue an explicit formula for Tσ in 
terms of spin-matrices.

Our result about the free energy of this model is most compactly expressed in terms of 
positive semidefinite Hermitian r× r matrices X. For such a matrix, having eigenvalues 
x1, . . . , xr ≥ 0, we use the von Neuman entropy (79). We have the following:

Theorem 5.1. Let p ≥ 1 be fixed, and suppose that for all k = 1, . . . , p we have that 
mk/n → ρk ∈ (0, 1) as n → ∞. For the Hamiltonian (197), we have that the free energy 
is given by

lim
n→∞

1
n logZmb

n (β) = max φβ(X1, . . . , Xp), (198)

where the maximum is taken over all positive semidefinite Hermitian r × r matrices 
X1, . . . , Xp with tr[Xk] = ρk, and where

φβ(X1, . . . , Xp) =
p∑

k=1

S(Xk)

+ β
∑
γ∈Γ

( p∑
k=1

aγk

∏
j≥1

tr[Xγj

k ] + cγ
∏
j≥1

tr[(X1 + · · · + Xp)γj ]
)
.

(199)

Before proving Theorem 5.1 we discuss a few special cases. If we set p = 2, Γ = {(2)}
and a(2)

1 = (a − c)/2, a(2)
2 = (b − c)/2 and c(2) = c/2, then

φβ(X1, X2) = S(X1) + S(X2) + β
2 tr
[
aX2

1 + bX2
2 + 2cX1X2

]
. (200)

In fact, in this case we recover Theorem 1.1, i.e. we have max φβ(X1, X2) = Φab

β (a, b, c). 
For details, see the discussion around (81).

If instead we set p = 1 and all aγk = 0 then (197) becomes

Hmb

n = −n
∑
γ∈Γ

cγ

|Cγ
n|

∑
σ∈Cγ

n

Tσ. (201)

We thus obtain a homogeneous model of many-body interaction on the complete graph 
Kn. (In fact, (201) is the image of a general central element of C[Sn] under the repre-
sentation T .) In this case we get that

1
n logZmb

β,n → max
(
−

r∑
xi log xi + β

∑
cγpγ(x1, . . . , xr)

)
, (202)
i=1 γ∈Γ
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where the maximum is over all x1, . . . , xr satisfying xi ≥ 0 and 
∑r

i=1 xi = 1, and where 
pγ(x1, . . . , xr) denotes the power-sum symmetric polynomial

pγ(x1, . . . , xr) =
�∏

j=1
(xγj

1 + · · · + xγj
r ). (203)

It seems likely that Theorems 1.7 and 1.8 can be extended to multi-block cases, though 
we do not pursue such extensions here.

We now turn to the proof of Theorem 5.1, which follows a similar pattern to that of 
Theorem 1.1. We start by writing

Hmb

n = −nT
(∑

γ∈Γ

[ p∑
k=1

aγkα
γ
Ak

+ cγαγ
n

])
= −n

∑
γ∈Γ

[ p∑
k=1

aγkT (αγ
Ak

) + cγT (αγ
n)
])

, (204)

where T is the representation of C[Sn] on V given in (53), and

αγ
Ak

= 1
|Cγ

Ak
|
∑

σ∈Cγ
Ak

σ ∈ C[SAk
], αγ

n = 1
|Cγ

n |
∑
σ∈Cγ

n

σ ∈ C[Sn]. (205)

As in (55) we have a decomposition

V ∼=
⊕

λn,�(λ)≤r

dim(Uλ)Vλ. (206)

Here we consider V as an C[Sn]-module only (we do not need the GLr(C)-part since we 
consider only the free energy and not correlations). As a C[Sm1 × · · ·×Smp

]-module, we 
have the decomposition

Vλ
∼=

⊕
μ(1),...,μ(p)

cλμ(1),...,μ(p)Vμ(1) ⊗ · · · ⊗ Vμ(p), (207)

which generalises (61). Here μ(k) � mk for each k and the multiplicities cλμ(1),...,μ(p) are 

analogs of the Littlewood–Richardson coefficients cλμ,ν and have many similar properties. 
In particular, a full analog of Horn’s inequalities holds: cλμ(1),...,μ(p) > 0 if and only 
if there are Hermitian matrices M(1), . . . , M(p) with spectra μ(1), . . . , μ(p) such that 
M(1) + · · · + M(p) has spectrum λ (see Theorem 17 of [18]).

Let us next see how T (αγ
Ak

) and T (αγ
n) act on these subspaces Vμ(k). For m ≤ n and 

C = Cγ
m the conjugacy class of γ in Sm, consider α = 1

|C|
∑

σ∈C σ ∈ C[Sm]. For μ � m, 
since α is central in C[Sm], it acts on the irreducible Vμ as a scalar, and in fact we have

α|Vμ
= χμ(α)

IdVμ
= χμ(γ)

IdVμ
, (208)
dμ dμ
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Fig. 9. Left: A skew tableau with shape ν formed from the three partitions μ(1) = (2, 1), μ(2) = (2) and 
μ(3) = (1, 1, 1). Right: its rectification.

where χμ(γ) is the character of Vμ evaluated at any permutation of cycle-type γ. This 
leads to the following expression analogous to (66):

Zmb

n =
∑

λn,�(λ)≤r

dim(Uλ)
∑

μ(1),...,μ(p)

cλμ(1),...,μ(p)dμ(1) · · · dμ(p)

· exp
(
nβ
∑
γ∈Γ

[ p∑
k=1

aγk
χμ(k)(γ)
dμ(k)

+ cγ χλ(γ)
dλ

])
.

(209)

As before, the relevant scaling for the limit limn→∞
1
n logZmb

n is given by letting λ/n →
�z and μ(k)/n → �x(k) for all k. Also as before, dim(Uλ) is negligible on the relevant scale, 
and the dμ(k) obey the asymptotics of (69). Below, we prove that cλμ(1),...,μ(p) ≤ (n +1)pr2

which is also too small to contribute to the limit.
What remains is to identify the limits of the expressions of the form χμ(γ)

dμ
. The 

latter limits are well-known in the asymptotic representation theory of the symmetric 
group: Thoma’s Theorem and the Vershik–Kerov Theorem (see e.g. [11, Corollary 4.2 
and Theorem 6.16]) imply that if μ/n → �x = (x1, . . . , xr), then

χμ(γ)
dμ

→ pγ(x1, . . . , xr), (210)

where pγ is the power-sum symmetric polynomial given in (203). Writing �x(k) =
limn→∞ μ(k)/n and �z = limn→∞ λ/n, we conclude that the contributing �x(k) and �z
are spectra of Hermitian matrices X1, . . . , Xp and Z = X1 + · · ·+Xp, respectively, where 
tr[Xk] = ρk. Re-writing the free energy in terms of these matrices, as in (80) and (97), 
we obtain the claim (199).

It remains to verify the bound cλμ(1),...,μ(p) ≤ (n + 1)pr2 . We use the following com-
binatorial description of cλμ1,...,μp

which is mentioned just after Proposition 13 of [18]. 
Form a skew shape ν by stacking μ(1), . . . , μ(p) from bottom left to top right, such that 
the lower left corner of μ(k) just touches the upper right corner of μ(k− 1) as in Fig. 9. 
Fix any semistandard tableau τλ of shape λ, to be concrete let us say that the first row 
of τλ consists of λ1 1’s, the second row of λ2 2’s etc. Then cλμ(1),...,μ(p) is the number 
of semistandard tableaux σν of skew shape ν whose rectification equals τλ. For a full 
description of the rectification, see [17, Section 1.2], but in brief terms the rectification 
is obtained by ‘sliding’ the numbered boxes of σν until a non-skew shape is obtained. To 
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see the claimed bound, note that in order to obtain the tableau τλ, the number of boxes 
labelled 1 in ν must equal the number of boxes labelled 1 in λ, and similarly for labels 
2, 3, etc. Thus, for each row of ν we have at most

(λ1 + 1)(λ2 + 1) · · · (λr + 1) ≤ (n + 1)r

choices of entries (from 0 to λ1 1’s, from 0 to λ2 2’s etc). Since ν has at most pr rows, 
the total number of choices is ≤ [(n + 1)r]pr, as claimed. �
Appendix A. The trace-inequality (81)

The inequality (81) appears e.g. in [25, Prop. 9.H.1.g-h], but we give here an almost 
self-contained proof based on Birkhoff’s theorem, adapted from the discussion in [36]. 
The problem is to maximise (respectively, minimise) tr[XY ] subject to the condition 
that X, Y are nonnegative definite Hermitian matrices with fixed spectra x1 ≥ x2 ≥
· · · ≥ xr ≥ 0 and y1 ≥ y2 ≥ · · · ≥ yr ≥ 0. Equivalently, since there are unitary matrices 
U and V such that U∗XU = Dx = diag(x1, . . . , xr) and V ∗Y V = Dy = diag(y1, . . . , yr), 
the goal is to extremise

tr[UDxU
∗V DyV

∗] = tr[DxU
∗V DyV

∗U ] (211)

over unitaries U, V . Writing W = U∗V we may equivalently extremise over the unitary 
W ,

tr[DxWDyW
∗] =

r∑
i,j=1

xiwi,jyjw
∗
j,i =

r∑
i,j=1

xiyj |wi,j |2. (212)

Define the matrix P = (pi,j)ri,j=1 where pi,j = |wi,j |2. Since W is unitary, P is doubly 
stochastic (rows and columns sum to 1). We have by the above

max
W

tr[DxWDyW
∗] ≤ max

P

r∑
i,j=1

xiyjpi,j , (213)

where the second max is over doubly-stochastic matrices P (and similarly for the min). 
The function to be maximised on the right-hand-side is linear in P and the set of doubly-
stochastic matrices is convex and compact. Thus the maximum (as well as the minimum) 
is attained at an extreme point of the set of doubly-stochastic matrices. By Birkhoff’s 
theorem [25, Theorem 2.A.2], the extreme points are the permutation matrices Π. Since 
permutation matrices are real orthogonal (hence unitary) it follows that

max tr[DxWDyW
∗] = max tr[DxΠDyΠ∗] (214)
W Π
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and similarly for the minimum. Thus, we must only find the permutation π which max-
imises or minimises the function

r∑
j=1

xjyπ(j). (215)

The maximum is obtained for the identity permutation and the minimum for the reversal 
of 12 . . . r. �
Appendix B. Equivalence of Qi,j and Pi,j in the wb-model

In this second appendix we study two representations of the walled Brauer algebra 
Bn,m(r). We will prove in Lemma B.1 that they are isomorphic for all r ≥ 2. This will 
in particular give the equivalence of our wb-model with the same model, but with each 
Qi,j replaced with Pi,j . More generally Lemma B.1 gives the same statement on general 
graphs. To be precise, if G = A ∪ B is any graph (with A ∩ B = ∅), with EA the set 
of edges between two vertices in A, EB similar, and EAB those between a vertex of A
and a vertex of B, then for all a, b, c ∈ R, the following two Hamiltonians are unitarily 
equivalent:

H = −
∑

{i,j}∈EA

aTi,j −
∑

{i,j}∈EB

bTi,j −
∑

{i,j}∈EAB

cPi,j

H ′ = −
∑

{i,j}∈EA

aTi,j −
∑

{i,j}∈EB

bTi,j −
∑

{i,j}∈EAB

cQi,j .
(216)

This in particular shows that the models with interactions Pi,j and Qi,j are equivalent 
on any bipartite graph; the equivalence of partition functions was proved by Aizenman 
and Nachtergaele in [2]. The same statement (and in fact slightly stronger) holds on 
non-bipartite graphs, but only for r odd. Indeed, (216) is very similar to a statement on 
the model (4): for any graph G with edge set E, for any L1, L2 ∈ R, the following two 
Hamiltonians are unitarily equivalent for r odd:

H = −
∑

{i,j}∈E

L1Ti,j + L2Pi,j

H ′ = −
∑

{i,j}∈E

L1Ti,j + L2Qi,j .
(217)

This is proved with Lemma B.1 of [29], which is the equivalent of our Lemma B.1 below, 
but for the full Brauer algebra.

The representations we consider are defined as follows. First, we let |a〉 denote the 
standard basis for Cr, indexed using a ∈ {−S, −S + 1, . . . , S} where S = (r− 1)/2, and 
recall that V = (Cr)⊗n. Let T : Bn,m(r) → End(V ) satisfy
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T (i, j) = Qi,j , T (i, j) = Ti,j , (218)

where we recall that Ti,j is the transposition operator, and 〈ai, aj |Qi,j |bi, bj〉 =
δai,aj

δbi,bj . Similarly, define T̃ : Bn,m(r) → End(V ) by

T̃ (i, j) = Pi,j , T̃ (i, j) = Ti,j , (219)

where we recall that 〈ai, aj |Pi,j |bi, bj〉 = (−1)ai−biδai,−aj
δbi,−bj .

Lemma B.1. For all r ≥ 2, and all n, the representations T and T̃ of Bn,m(r) are 
isomorphic via a unitary transformation.

Proof. The proof follows closely that of Lemma B.1 of [29]. For r odd, the lemma actually 
follows from that result by restricting the two representations there to the walled Brauer 
algebra. So let r be even. The elements (i, j) and (i, j) generate the algebra Bn,m(r), so 
we aim to find an invertible linear function A : V → V such that

A−1Ti,jA = Ti,j , (220)

for all 1 ≤ i < j ≤ m and m < i < j ≤ n, and

A−1Qi,jA = Pi,j , (221)

for all 1 ≤ i ≤ m < j ≤ n. By the Schur–Weyl duality for the general linear and 
symmetric groups (55), the first condition holds if and only if A = α⊗m⊗γ⊗n−m for some 
α, γ ∈ GLr(C). Then the second condition also holds if and only if (α⊗γ)−1Qi,j(α⊗γ) =
Pi,j for all 1 ≤ i ≤ m < j ≤ n, which holds if and only if:

(−1)ai−biδai,−aj
δbi,−bj =

∑
ci,cj ,di,dj

(α−1)ai,ci(γ−1)aj ,cjδci,cjδdi,dj
αdi,biγdj ,bj

=
∑
c,d

(α−1)ai,c(γ−1)aj ,cαd,biγd,bj

= (α−1γ−ᵀ)ai,aj
(αᵀγ)bi,bj .

(222)

Now recall that we assumed r to be even, meaning that S and all the indices ai, aj , bi, bj
are odd multiples of 1

2 . Thus (−1)ai = −(−1)−ai and (222) holds if

αᵀγ = −(γᵀα)−1 =

⎡
⎢⎢⎢⎢⎣

(−1)−S

(−1)1−S

...
(−1)S−1

S

⎤
⎥⎥⎥⎥⎦ . (223)
(−1)
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The matrix on the right in (223) is an involution whose transpose is its negative, so 
it suffices to check this for αᵀγ. Further, the matrix consists of the block matrices 
(−1)r/2

[ 0 i
−i 0

]
aligned along the antidiagonal, where i =

√
−1.

Such a pair α, γ exists: for example let

g1 = 1√
2

[
i i
−1 1

]
, g2 = 1√

2

[
−1 1
−i −i

]
,

take α to be block-antidiagonal with blocks g1, and take γ to be block-diagonal with 
blocks (−1)r/2g2. Since gᵀ1g2 =

[ 0 i
−i 0

]
, αᵀγ is as required. Further, since both α and γ

are unitary, so is A. �
We can further prove the following statement, that in the S = 1 (r = 3) case, 

under a certain choice of the isomorphism of representations, the spin matrices are anti-
symmetric. This verifies that we can use Theorems 1.8 and 1.7 on the S = 1 (r = 3) 
nematic model with magnetisation term given by a spin matrix S(k), k = 1, 2, 3, at each 
vertex, as noted at the end of Section 1.5.

Lemma B.2. For all k = 1, 2, 3, there exists a (unitary) isomorphism ψn = ψ⊗n of the 
representations T and T̃ of Bn,m(3) (with ψ−1

n T̃ (b)ψn = T (b) for all b ∈ Bn,m(3)), such 
that ψ−1

n S(k)ψn is anti-symmetric (its transpose is its negative).

Proof. In Lemma B.1, we showed that representations T and T̃ of Bn,m(3) are isomor-
phic. In particular, since r = 3 odd, we used the Lemma B.1 of [29]. In that Lemma, one 
found that a valid isomorphism ψn was given by ψn = ψ⊗n, where ψ is a 3 × 3 (unitary) 
matrix

ψ =

⎡
⎣ 1√

2 0 i√
2

0 1 0
−1√

2 0 i√
2

⎤
⎦ , (224)

where i =
√
−1. One then can verify the required identities directly, using the explicit 

spin matrices

S(1) = 1√
2

[0 1 0
1 0 1
0 1 0

]
, S(2) = 1

i
√

2

[ 0 1 0
−1 0 1
0 −1 0

]
, S(3) =

[1 0 0
0 0 0
0 0 −1

]
. � (225)
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