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Abstract
In a sequential decision-making process, it is imperative to consider the po-
tential risks of taking incorrect decisions throughout the whole process as all
wrongdoings may not be possible to be remedied. This is particularly impor-
tant when there are potentially catastrophic consequences. In this work, we
develop robust decision-making processes, doing appropriate risk assessments
where needed, to be able to plan to avoid unacceptable consequences. In con-
trast to traditional techniques for decision-making under uncertainty that aim
to maximise performance in expectation, we choose to value other aspects out
of the distribution of outcomes. For instance, in an application such as au-
tonomous driving, the chance of causing an accident might be small yet fatal.
A risk-averse decision-maker may choose to modify the risk criterion to only
include consider e.g. the 25% worst-case outcomes to design a more robust
decision-making process. We propose frameworks for quantifying uncertainty
under the reinforcement learning framework and develop robust algorithms
and theory that allow for risk-sensitive decision-making under uncertainty.
Further, we study the interactions between multiple agents in autonomous
systems and ways to deploy decision-making processes to novel scenarios by
adaptation.

Keywords: Reinforcement learning, autonomous driving, risk-sensitive learn-
ing, uncertainty estimation.
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CHAPTER 1

Introduction

Designing an autonomous agent, that is, an agent that can act independently,
without external input, to be able to act in a real-world scenario is a chal-
lenging task. The agent must be able to interact safely with other beings,
agents and objects as well as adapt to newly learned experiences obtained
from exploring the environment.

The agent has to adhere to a sequential decision-making process, that is, it
iteratively chooses which actions to take, records how the actions affect the
world and based on this, modifies its action selection procedure.

Instead of directly deploying the agent in the real-world one may attempt
to create a closed-loop system with the agent inside of it, e.g., a system that
describes how the system changes without any need for external human inputs.
In this system, the agent can learn and interact with other agents without
putting other people in danger. In this work, we study sequential decision-
making problems in closed-loop systems. An obvious issue is the possible
mismatch between the simulator and the real world, however, we hope these
findings can help inform real-world decision-making processes.

The main framework of note studied in this thesis is the Reinforcement
Learning (RL) framework which involves unknown closed-loop systems, that
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Chapter 1 Introduction

is, the system itself has to be learned online. We note that sometimes these
systems will be used interchangeably with the terms model and environment.
Such a system includes the reward function or cost function which describes
the immediate reward for taking a particular action in a given state. In a
sense, this could be viewed as how ’good’ was it to take that action without
considering what might happen in the future. Another important part of
the system is the transition function. This function describes how the system
evolves with action inputs from the agent. Since both the reward function and
transition function are unknown a priori, this introduces a kind of uncertainty
about the system.

We begin by elaborating on the main setting of the sequential decision-
making problem studied in this thesis, that is Autonomous Driving (AD) and
how the mentioned uncertainty manifests and can be handled. Further, we
delve into the main framework, RL, and its different forms and how they can
be used to guide the design of a robust agent. Finally, we split the thesis into
the three main aspects we have looked at, that is, robustness during learning,
interaction and adaptation.

1.1 Autonomous Driving
In the autonomous driving setting, we aim to design an autonomous agent
capable of driving a vehicle without the assistance of a driver. In particular,
it should be able to reliably transport the vehicle from between two locations
while adhering to traffic rules and safety norms. There are multiple possible
definitions of the complete AD pipeline and the one presented here consists of
four modules: perception, prediction, planning and control. Perception, which
involves taking sensory inputs from e.g. camera images, LIDAR, etc. and
combining them into a set of outputs using sensor fusion. Conventionally,
the final output of this module may be for instance a set of bounding boxes
surrounding possible objects in a scenario. Given these object bounding boxes
the prediction module’s purpose is to determine possible road user trajectories,
i.e., how are other vehicles, pedestrians, etc. going to behave in the future.
This set of road user trajectories can then be fed into the planning module
used to construct a path for the autonomous vehicle, taking into account
where other road users may travel to. Finally, the proposed path is used by
the control module to control things like the steering and throttle and its goal
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1.2 Uncertainty in Autonomous Driving

is to ensure the vehicle follows the proposed path.

1.2 Uncertainty in Autonomous Driving
In most AD settings there needs to be explicit considerations of inherent and
extraneous uncertainties to design a robust agent. For instance, a vehicle can
be described using a physical model and this model could be used to make
inferences about how the vehicle will move. However, each vehicle may have its
associated physical model based on its properties such as weight, engine, etc.
From this, it would be reasonable to infer the optimal agent could be different
for each possible vehicle. Furthermore, the agent has to take in sensory inputs
from the scene such as camera images, LIDAR, GPS, map data, etc. These
inputs may also be imperfect and introduce additional uncertainties into the
setting. In addition to this, the vehicle needs to interact with other road
users where we have to make inferences about how they will act. All these
uncertainties compound and the decision-making process needs to take into
account that it might learn things about the scenario in the future to make
the correct decisions in the present.

1.3 Reinforcement Learning
The main framework of interest that can formulate decision-making problems
under uncertainty is the RL framework. This framework has seen great suc-
cess[1]–[3], and is something that has been studied extensively for the field of
AD as well [4], [5]. One of the main features of the RL framework is the con-
struction of a Markov Decision Process (MDP) [6], which is a model used to
describe how the process evolves under stimulus by a decision-maker. A rigor-
ous formalisation of the MDP will be given in Chapter 2. Typically, the true
underlying MDP is unknown and the agent has to estimate this MDP from
available data. This introduces a sort of uncertainty related to the knowledge
available to the agent, henceforth to be called epistemic uncertainty [7]–[10].
This exists in contrast to another kind of uncertainty, which is inherent to
the MDP and is termed aleatory uncertainty [11]. Aleatory uncertainty is
abundant in applications with high stochasticity, such as games of chance.
In applications such as autonomous driving, with mostly deterministic me-
chanics, this source of uncertainty might not be so great, given that world
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Chapter 1 Introduction

dynamics are known. These two kinds of uncertainties form the basis of this
thesis and the differences, applications and importance of them will be stressed
throughout this thesis.

1.4 Research Questions
The main overarching research question we set out to answer throughout this
work is How to Design Autonomous Agents that Drive Safely? This is
an important question to be able to answer for anyone who intends to deploy a
live agent into a traffic situation with other road users and objects that we need
to be considerate about. The question is very broad and can be decomposed
into more approachable research questions. One such research question that
has been the main focus to us is How to Learn Safely? Here, we are
concerned with safety throughout the learning process. Whenever an agent is
deployed into an unknown environment it may be tasked with learning new
things. We then wish to guarantee the agent does not create excessive risks for
himself and others. A similar albeit different research question we considered
is How to Interact Safely? In this case, we are studying the interactions
between the agent and other road users. Explicit care must be given to the
preferences and intentions of other road users to ensure safe driving. Finally,
we investigated How to Transfer Knowledge from Known Scenarios
to a Novel Scenario? In this case, we might have an agent that has learned
how to drive in Sweden and Germany. Now, we wish to deploy this agent
in India. We wish to extract as much knowledge as possible from the known
domains while being open to learning important aspects of the novel domain.
What considerations do we have to take? Can it be deployed without issue?

1.5 Contributions
We decompose our contributions included in this thesis into three categories.
These are robustness during learning, where we study epistemic uncer-
tainty. In this case, this relates to model uncertainty where the model is
unknown. It can also be viewed as uncertainty due to the lack of data. This
field of study is particularly important when an agent is learning a novel
task. We may then want to be robust with respect to what we do not yet
know. The ultimate goal here is to design a robust learner that reduces risk
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(i.e., unacceptable consequences with high probability) and acts more safely.
In these works, we look at risk-sensitive reinforcement learning, model-based
reinforcement learning and distributional reinforcement learning.

The next field of study is robustness during interaction. When inter-
acting with other agents one may have to infer not only what the other agents
are doing but what they know. A robust agent can take into account how
other agents will adapt to your actions. For these lines of work, we mainly
consider the game setting. In particular, Bayesian games for studying uncer-
tainty about other agent’s behaviour and Minimax formulations of adversarial
games.

The last category is robustness during adaptation which deals with
adapting to novel tasks. This could for instance. In this case, we study
concepts such as multi-task reinforcement learning and transfer reinforcement
learning.

Robustness during learning. In Eriksson and Dimitrakakis [9] we develop
and introduce a risk-sensitive Bayesian RL framework for decision-making
under epistemic uncertainty for discrete and continuous state space RL prob-
lems. In addition to that, we propose two algorithms, one based on approxi-
mate dynamic programming and one based on the Bayesian policy gradient.

In the work Jorge et al. [12] we introduce a novel framework for Bayesian
distributional RL by appropriately marginalising out the variables in such a
way that three new approaches can be formulated. We propose one of them,
Bayesian Backwards Induction and demonstrate its performance in the paper.

Further, in Eriksson et al. [10] we propose a novel risk measure, termed
composite risk, which takes into account both aleatory and epistemic uncer-
tainty and appropriately weights them together. We prove superiority over
previous methods of joining the risk measures theoretically and propose an
ensemble-based algorithm that can quantify this new risk measure.

Lastly, in Buening et al. [13] we propose a novel framework of Minimax-
Bayes RL, whereby the decision-maker is searching for a policy that is robust
to changes in belief. We prove that under certain conditions, there exists a
minimax solution and we provide two alternative methods of obtaining it.

Robustness during interaction. In Eriksson et al. [14] we investigate epis-
temic uncertainty in the context of Bayesian games. This allows a set of agents

7



Chapter 1 Introduction

to be risk-sensitive with respect to what they believe other agents will do. We
provide a method of smoothly obtaining a joint set of policies for the agents
which results in risk-averse behaviours for all the agents.

Robustness during adaptation. In Eriksson et al. [15] we study the case of
knowledge transfer in RL. In it, we have access to existing knowledge relating
to a set of known MDPs. We wish to leverage this knowledge when making
decisions in a novel task. The proposed framework demonstrates superiority
compared to methods of learning from scratch. In it, we provide an algorithm
fulfilling this objective. Further, we provide theoretical bounds in terms of
model deviation for a few specific settings.

1.6 Thesis Outline
The thesis is initiated with a chapter covering the main ingredients the in-
cluded publications are based upon, in Chapter 2. These include the basics of
RL and the constructions which allow for risk-averse decision-making in RL.
In the next chapter, Chapter 3, we study decision-making during the learning
process and how one can be robust concerning what one does not yet know.
Here papers the [A, B, C, E] are discussed. In the next chapter, Chapter 4,
we discuss uncertainty in situations where one interacts with other agents.
In this chapter, the paper [D] is elaborated upon. Finally, in Chapter 5, we
consider situations where an agent must use its existing knowledge to adapt
its decision-making about a novel scenario. The paper [F ] studied here.
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CHAPTER 2

Background

In this chapter, we will cover the necessary prerequisites to understand the
complete list of works present in this thesis. The main bulk of the theory
involves studying the concept of MDPs, and how to construct and plan inside
them. This is available in Section 2.1. We also study the case when the MDP
itself is unknown in Section 2.2.

2.1 Dynamic Programming
In this section, we go over the fundamentals of using Dynamic Programming
(DP) to solve MDPs.

Definition 1 (Markov Decision Process): A Markov Decision Process µ is
a tuple µ = (S,A,R, T , γ), where S is the set of states, A, the permissible
action set, R : S × A → R is a reward function indicating the goodness of
taking an action a in a particular state s. T : S × A → ∆(S) is a transi-
tion kernel, describing the evolution of the process from a state s under the
influence of action a, resulting in a transition to state s′. Typically this pro-
cess is stochastic and induces a probability distribution of successor states.
Furthermore, γ is a discount factor determining the effective horizon of the

9



Chapter 2 Background

problem. Finally, the objective in an MDP is typically to maximise the return
(or utility) R =

∑∞
t=0 γtrt which is the sum of future discounted rewards.

In addition to the formalism surrounding the MDP itself, we need to intro-
duce a couple of important concepts involving planning in MDPs. The policy
π denotes the strategy of the agent. In principle, the policy π : S → ∆(A)
gives an action (or a probability measure over a set of actions in A) for every
state. These policies come in many forms, from deterministic Markov poli-
cies ΠMD, where there exist an action a ∈ A such that π(at = a | st) = 1,
to stochastic Markov policies ΠMS, where the policy returns a probability
measure over actions. The aforementioned policies are Markovian and only
depend on the current state. Another set of policies which we will hence-
forth refer to as adaptive policies are policies that are non-Markovian. Let
ht = (s0, a0, r0, s1, ..., st) be the history of states, actions and rewards ob-
served up until time t. Furthermore, let H be the set of all possible histories,
then, an adaptive policy π : H → ∆(A) is a policy outputting an action (or a
probability measure over actions) for every possible history.

One of the most important concepts studied in DP is the value functions.
Their purpose is to represent the expected return or expected utility for a
particular policy and MDP given either a state or a state-action pair. This
is important to a decision-maker as they can e.g., be used to compare the
quality of competing policies. The value functions come in two flavours, the
state value function and the state-action value function.

Definition 2 (State Value Function): The state value function V π
µ (s) de-

scribes the expected utility of being in state s, for MDP µ, following policy
π.

V π
µ (s) = Eπ

µ

[ ∞∑
t=0

γtrt | s0 = s
]
, (2.1)

where γ ∈ [0, 1) is the discount factor, determining the effective horizon of the
problem.

Definition 3 (State-action Value Function): The state-action value func-
tion Qπ

µ(s, a) describes the expected utility of being in state s, for MDP µ,
taking action a and then immediately following policy π.

Qπ
µ(s, a) = Eπ

µ

[ ∞∑
t=0

γtrt | s0 = s, a0 = a
]
, (2.2)

10



2.2 Reinforcement Learning

where γ ∈ [0, 1) is the discount factor, determining the effective horizon of the
problem.

A planner typically wants to identify the optimal policy π∗ ≜ arg max
π∈Π

V π
µ

or the optimal value function V ∗
µ ≜ max

π∈Π
V π

µ . As we delve into further topics
the underlying MDP µ may be unknown. In the case when it is known and
given certain assumptions on the MDP the maximum V ∗

µ and the maximiser
π∗ can easily be obtained.

We can now define a function operator, termed the Bellman operator, which
can be used to compute value functions.

Definition 4 (Bellman Operator): The Bellman operator, Pπ : V → V

is defined as,

PπV (s) ≜ Eπ
µ[R(s, a)] + Eπ

µ

[
T (s, a)V (s′)

]
. (2.3)

Iteratively applying Pπ for all states s ∈ S for a particular MDP µ can be
used to obtain the value function associated with the policy π, MDP µ and
state s. Another operator of interest is the Bellman optimality operator.

Definition 5 (Bellman Optimality Operator): The Bellman optimality op-
erator, P : V → V is defined as,

PV (s) ≜ max
a∈A

Eµ[R(s, a)] + Eµ

[
T (s, a)V (s′)

]
. (2.4)

These two operators are contraction mappings (cf. Bertsekas [16]) and thus,
repeated applications of them will result in convergence to its corresponding
value function, i.e., limt→∞ Pπ

(
. . . (PπV0)

t times

)
= V π

µ and limt→∞ P
(
. . . (PV0)

t times

)
=

V ∗
µ .

2.2 Reinforcement Learning
When the MDP is unknown we may want to estimate it. One such method is
Bayesian Reinforcement Learning (BRL) [17] whereby a belief is kept over the
set of plausible MDPs. In general, BRL approaches fall under the category
of model-based RL. We contrast this approach with model-free RL where we
forego the modelling of the underlying MDP and instead place the focus on
the value function.

11
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Bayesian Reinforcement Learning

In the BRL framework, we adopt a Bayesian approach to the RL problem.
That is, we have a subjective belief over the possible MDPs. This makes sense
in the model-based RL framework as the MDP is unknown and the decision-
maker has to estimate the MDP parameters or distribution over them from
interactions with the environment. The subjective belief over MDPs can come
in many forms, depending on the setting. For instance, there may be a finite
set of plausible MDPs and the subjective belief β could then represent a prob-
ability vector over those MDPs. In many cases, the set of plausible MDPs
is infinite. More formally, let (M,F , β) be a probability space over MDPs
with appropriate σ−algebra. Then, β(µ) ≜ P(µ) is a prior probability dis-
tribution over MDPs µ ∈ M. As the decision-maker acquires experiences
from interacting with the environment they would like to update their sub-
jective belief about the MDP. Let Dt denote the observed data up until time
t and let P(Dt |µ) denote the likelihood function, that is, the joint proba-
bility of Dt given the MDP µ. Then, the posterior probability distribution
β(µ | Dt) ≜ P(µ | Dt) is the conditional probability of the MDP µ given the
observed data Dt, this follows from Bayes’ rule.

P(µ | Dt)
Posterior

∝ P(Dt |µ)
Likelihood

× P(µ)
Prior

(2.5)

This framework has some helpful properties for a model-based decision-
maker. To start with, the agent can at all times sample an MDP from the
posterior and use the aforementioned techniques to arrive at a policy optimal
for the sample. An algorithm can be constructed this way and it is com-
monly termed Posterior Sampling for Reinforcement Learning (PSRL) [18]–
[20]. This algorithm exhibits numerous interesting qualities such as its sim-
plicity to deploy and its performance [21], [22] (in terms of Bayesian regret).
In this work, one of the main algorithms we benchmark against is in fact
PSRL.

Given that we now consider distributions over MDPs, the previous formal-
ism surrounding MDPs has to be extended to incorporate this. Let U(π, µ) ≜
Eπ

µ[R] be the expected utility for a particular MDP and policy. Then,

U(π, β) ≜
∫

M
U(π, µ)β(µ) dµ, (2.6)

12



2.2 Reinforcement Learning

is the expected utility marginalised over the subjective belief β. In BRL
our objective is typically to maximise Equation 2.6, also termed the Bayesian
Value Function. The maximising policy π∗ ∈ arg max

π

∫
M U(π, µ)β(µ) dµ is

called the Bayes-optimal policy and is for all but the most simple of scenarios,
very challenging to identify. In particular, the policy is adaptive. Optimising
for adaptive policies can be done in numerous ways, including using history-
dependent policies, count policies or tree policies, see Duff [23].

From Equation 2.6 one might also identify the role the belief plays to the
decision-maker. β induces a probability distribution over value functions (or
expected utility). In Strens [19] and Dearden et al. [24] the authors focus on
the distribution over the MDP itself but one may also choose to represent the
induced value function distribution [25]–[27]. These uncertainties about the
MDP or value function are as aforementioned termed epistemic uncertainty
and considerable focus is given to it throughout this work.

Some consideration has to be taken for which prior, likelihood and posterior
to select. If the underlying MDP is inadmissible under the prior β, then it
is likewise inadmissible under the posterior. Throughout this work, we will
mainly look at prior posteriors of the following three families, inverse-Normal-
Gamma priors [28] and Dirichlet priors for tabular MDPs and Bayesian linear
regression priors [29] for continuous settings.

Distributional Reinforcement Learning

Under the standard RL framework, the main objective is to maximise the
expected utility. In certain applications, it may be useful to be able to repre-
sent the full distribution. Here, we will denote the distribution of the return
or utility as the utility distribution and the distribution over value functions
as the value function distribution. Indeed, Bellemare et al. [30] and Hessel
et al. [31] demonstrated state-of-the-art performance in Atari games by ex-
plicitly modelling the return distribution using histograms. One might ask
oneself why learning the complete distribution would be helpful for a risk-
neutral decision-maker. Bellemare et al. [30] posits part of the reason for the
superior performance can be because in this case, there is a more stable learn-
ing target. Other approaches using utility distributions are e.g., Tang and
Agrawal [32] where the authors learn a Gaussian distribution of the return.
The aforementioned works rely on neural network estimators to construct
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the utility distributions. Historically, this line of work can be traced back
to Dearden et al. [33] and Morimura et al. [34], where the authors modelled
return distributions explicitly. In this work, we build upon the utility dis-
tribution framework set forth by Bellemare et al. [30]. Let Zθ(s, a) denote
the utility distribution at state s for action a with the network parameters
θ. Furthermore, let N denote the number of histograms and VMIN, VMAX the
lower and upper bounds of the histogram distribution respectively, with sup-
port {zi = VMIN + i∆z : 0 ≤ i < N}, ∆z := VMAX−VMIN

N−1 . Then, the probability
associated with the ith histogram is given by,

Zθ(s, a) = zi w.p. pi(s, a) := eθi(s,a)∑
j eθj(s,a) . (2.7)

This formulation allows for simple optimisation of the distribution parame-
ters and because of its discrete nature, easy computable distributional statis-
tics. However, it does come with some drawbacks. Notably, the lower and
upper bounds of the utility distribution need to be known a priori and its ex-
pressiveness is highly dependent on the number of histograms chosen to make
up the distribution.

We will now instead consider the distribution over the value functions them-
selves. As previously mentioned, this uncertainty may arise when the under-
lying MDP is unknown. Every MDP µ together with a policy π and starting
state s has an associated value function with it, Eπ

µ[R]. A decision-maker may
want to quantify this uncertainty explicitly as in the case of utility distri-
butions, either to allow for risk-sensitive decision-making [7], [10], [35], [36],
optimism in the face of uncertainty [25], [26] or perhaps because it is ex-
pected to yield more robust estimators as in the case of utility distributions.
Throughout this work, we will focus on two procedures. Firstly, the Bayesian
perspective, i.e., a prior-posterior procedure over MDPs is created and the
induced value function distribution is computed by sampling models from the
prior, evaluating them using the current policy and constructing the distribu-
tion. Secondly, a procedure where a neural network, a set of neural networks
or a statistical model is used to learn the value function distribution explic-
itly. In Jorge et al. [12] and O’Donoghue et al. [26] the uncertainty about the
value function itself is modelled. This captures the epistemic uncertainty in
a model-free way and allows for efficient exploration by ignoring the aleatory
uncertainty.
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Risk-Sensitive Reinforcement Learning
The general RL setting is concerned with maximising performance in expec-
tation, i.e. π∗ ∈ arg max

π
Eπ

µ[R]. However, in applications such as autonomous
driving, it may be more interesting to consider a modified objective. For in-
stance, the naive objective may be minimise travel time between A and B
but the decision-maker may also want to limit the probability of accidents
occurring. One may do so by adding a high penalty on near-accidents or
one could define a surrogate objective. For instance, maximise performance
in the p% worst-case of outcomes. This is the approach of [10], [37], [38]
where a conditional value-at-risk (CVaR) [39] objective is optimised for in-
stead of the expected return. One field of research tasked with this is the
Risk-Sensitive Reinforcement Learning (RSRL) field. In particular, in our
research, we mainly focus on the RSRL setting studying epistemic risk. Epis-
temic RSRL is concerned with the uncertainty that arises due to the lack of
knowledge of the MDP or the data. This has several connections with the BRL
setting as the uncertainty about the MDP induces a probability distribution
over value functions. This is studied in e.g., [9], [10], [40], [41].

Multi-Task Reinforcement Learning
Sometimes there may not be a unique underlying MDP but a distribution
of possible MDPs. An agent may wish to optimise performance given this
distribution. This fits neatly into the BRL framework and the maximiser
of Equation 2.6 maximises the performance for the MDPs in M given the
probability distribution β.

In some cases, one may have access to a simulator [42] and want to ab-
stract from it to a novel task. This problem setting is commonly referred
to as the transfer reinforcement learning setting. Here, one may choose to
transfer knowledge about the policy [43], value function [44] or as in the case
of Eriksson et al. [15], via model transfer. In this case, we have a set of source
MDPs Ms ≜ {µi}m

i=1 and a target MDP µ∗. The objective is to identify a
policy maximising performance in the target task while making use of existing
knowledge about Ms.
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CHAPTER 3

Robustness During Learning

The risk I took was calculated, but man, am I bad at math.
—Mincing Mockingbird, 2011

In this chapter, we investigate robustness during learning. That is, there
exists a learning problem. For instance, we aim to deploy an autonomous
vehicle in a novel environment. The vehicle needs to be able to interact with
other agents in the environment, both static and dynamic, collect experiences
and update its driving behaviour while minimising excessive risks to itself,
other agents in the environment and the environment itself. This is a difficult
task as the agent does not know what it does not know! As such, it needs
to balance a trade-off between exploration, that is, trying out new actions,
visiting new locations, etc., and doing what it currently knows is the best
to do, also known as exploitation. So, we set out to answer the following
question, How can we ensure safety during learning?

To answer this question, we set out to investigate topics concerned with
epistemic uncertainty, model uncertainty and the uncertainty due to the lack
of data. The ultimate goal of a robust learner is to learn safely, that is, learn
without taking excessive risk. Such a learner may choose to explore more
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conservatively to avoid catastrophic events during learning. One significant
drawback of this framework is, however, as we limit the rate of exploration we
may in certain cases, increase the time it takes to learn the optimal behaviour.
Further, in some specific cases, this limitation may be so strong that it never
can identify the optimal way of acting.

Our contributions to this field of study are the following.
Value Function Distributional RL. We constructed a novel framework

able to handle the value function distribution induced by the model uncer-
tainty. We make a key insight that the value function and model can not be
decoupled without significant assumptions. In this work, my contributions lie
with the construction of the experimental code base, the prior, part of the
algorithm in the continuous case and writing.

Epistemic Risk-Sensitive RL. We developed a framework allowing for
risk-sensitive decision-making in the face of epistemic uncertainty. My contri-
butions are with the theory, code base and writing.

Unifying Aleatory and Composite Risk. We developed a framework
able to unify aleatory and composite risk into a single risk measure. We
demonstrate it inherits properties from the two risk measures. My contribu-
tions lie in construction of the framework, code base and writing.

Minimax Bayesian RL. We developed a framework able to consider
worst-case distributions over MDPs for agents. We construct a game between
the agent, who selects strategies and the environment, who selects distribu-
tions over MDPs. The design admits for the agent to obtain a policy with
worst-case Bayesian regret guarantees. My contributions to this work lie in
experimental and algorithm design of the infinite MDP setting.

Altogether, our contributions aid the design of agents conscious of epistemic
uncertainty. This is by allowing for uncertainty quantification, theoretical jus-
tifications, worst-case analysis and decision-making using estimators consid-
ering epistemic uncertainty. We will now delve into individual contributions.

3.1 Induced Value Function Distributions
Here we are interested in the induced uncertainty about the value functions
induced by the uncertainty about the MDPs. This is of interest since it has
been shown in previous chapters that modelling the full distribution rather
than just the expectation may lead to a more robust learning process as well as
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in some cases, superior performance. Furthermore, modelling the full distribu-
tion admits us to use of optimism in the face of uncertainty and risk-sensitive
decision-making. However, the main focus of this work is with respect to
risk-neutral performance.

As mentioned in Section 2.2, introducing a probability space (M,F , β) over
MDPs µ ∈M will lead to a distribution over value functions, with each MDP
being associated with its value function. In general, we have the following
dependency on the value function distribution on the belief β, policy π and
the data D,

Pπ
β(V | D) =

∫
M

Pπ
µ(V ) dβ(µ | D). (3.1)

To get a feel of what Equation 3.1 says. The inner term Pπ
µ)(V ) is the prior

over value functions, conditioned on µ and π. It is known that for a given MDP
and policy pair it uniquely defines a value function. The term we marginalise
over, β(µ | D), is the posterior over µ given the data D. These together give
us the complete value function distribution conditioned on the data. As we
can see from this equation, the value function distribution depends on the
posterior and the policy.

Now that the distribution has been defined a decision-maker can choose
whether it wants to update its policy in the direction that maximises the
expectation of this quantity or whether it wants to design an optimistic or
risk-sensitive agent by optimising instead for the tail expectation or similar of
this distribution.

3.2 Risk-Sensitive Reinforcement Learning with
Exponential Utilities

In this case, we focus on the design of a risk-sensitive agent in the face of epis-
temic uncertainty during learning. This is of particular interest for risk-averse
decision-makers since if an agent is to be deployed in an unknown environment
it needs to learn safely. This is also challenging as if the agent is too conser-
vative, it may not explore nearly enough to identify the optimal behaviour.
Crucially, an epistemic risk-sensitive agent will, with perfect knowledge of the
underlying MDP, converge to the optimal behaviour of the risk-neutral agent.
This is because in that case, there is no epistemic uncertainty. In certain
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scenarios, such as for multi-task settings, there may still exist epistemic un-
certainty even with perfect knowledge of the underlying MDPs, as there is
a distribution over MDPs. We begin by deciding on an appropriate utility
function for this problem.

Let the utility function be U(x) = 1
α logE

[
exp αx

]
, motivated initially

by Mihatsch and Neuneier [11]. In this case, α ∈ R is a parameter controlling
the risk-sensitiveness of the utility function. Let R =

∑∞
t=0 γtrt and (M,F , β)

be a probability space over MDPs. Then, this yields the following objective,

∇θU(π, β) = ∇θ
1
α

log
∫

M
eαEπ

µ[R] dβ(µ) (3.2)

=
∫

M∇θeαEπ
µ[R] dβ(µ)

α
∫

M eαEπ
µ[R] dβ(µ)

(3.3)

=
α

∫
M eαEπ

µ[R]∇θEπ
µ[R] dβ(µ)

α
∫

M eαEπ
µ[R] dβ(µ)

(3.4)

=
∫

M eαEπ
µ[R]∇θEπ

µ[R] dβ(µ)∫
M eαEπ

µ[R] dβ(µ)
. (3.5)

Estimates for Eπ
µ[R] can be obtained by using rollouts in MDP µ using

policy π. When doing this, it is pertinent to use different rollouts for the
three estimated quantities. The objective in Equation 3.2 is quite similar to
existing works [45], [46], although they are taking the integral over actions
instead of models.

An algorithm optimising for this objective can be seen in Algorithm 1.
We also provide an algorithm based on approximate dynamic programming,

following the work of Dimitrakakis [47], in Algorithm 2. We leave the experi-
mental results section to the paper in Eriksson and Dimitrakakis [9].

3.3 Decision-Making under Composite Risk
Measures

There is a breadth of existing works studying aleatory risk [7], [11], [48], [49],
epistemic risk [7], [9], [35] and joint risk [35], [50]. In this work, we also aimed
to unify the two risks into a joint risk measure. Furthermore, we wanted to do
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Algorithm 1 Epistemic Risk Sensitive Policy Gradient (ERSPG)
Input: Policy parametrisation θt, βt (current posterior).
repeat

Simulate to get θt+1
for i = 1 to N do

µ(1), µ(2) ∼ βt

for j = 1 to M do
τ

(1)
µ(1) , τ

(2)
µ(1) ∼ πθ, µ(1)

τ
(3)
µ(2) ∼ πθ, µ(2)

end for
end for
θt+1 ← θt−

[ ∑N
i=0 exp

(
ατµi

(1)
)

τµi
(2)∇θ log πθ(a|s)]/[

∑N
i=0 exp

(
ατµi

(3)
)]

Deploy πθt+1 and obtain τ ∼ µ, πθt+1

ξt+1 ← βt, τ
until convergence

it in a rigorous manner using risk measures. We accomplish this by composing
the two risk measures. We also show that for the final risk measure to exhibit
similar properties as its two constituents, it needs to be of special construction.
For instance, other works such as [35], [50] will not work as the variance is
not a coherent risk measure.

A risk measure U : X → R is a function from a probability distribution
to a scalar. This construction allows decision-makers to compare risks under
different distributions and choose what best adheres to their risk profile. One
class of risk measures that has garnered a lot of interest recently is the coherent
risk measures, given by Artzner et al. [51]. According to the definition, a
coherent risk measure U : X → R has to satisfy four axioms:

Axiom 1 (Monotonicity): If X ≤ Y almost surely, U(X) ≤ U(Y ).
Axiom 2 (Positive homogeneity): For any c ≥ 0, U(cX) = cU(X).
Axiom 3 (Translation invariance): For any constant a ∈ R, U(X + a) =

U(X) + a.
Axiom 4 (Subadditivity): For X, Y ∈ X , U(X + Y ) ≤ U(X) + U(Y ).
In the work Eriksson et al. [10] our focus is on risk measures of this kind.

21



Chapter 3 Robustness During Learning

Algorithm 2 Epistemic Risk Sensitive Backwards Induction (ERSBI)
Input: M (set of MDPs), β (current posterior)
repeat

for µ ∈M s ∈ S, a ∈ A do
Qµ(s, a) = Rµ(s, a) + γ

∑
s′ T ss′

µ Vµ(s′)
end for
for s ∈ S, a ∈ A do
Qβ(s, a) =

∑
µ ξ(µ)U [(Qµ(s, a)]

end for
π(s) = arg maxaQβ(s, a).
for µ ∈M do

Vµ(s) = Qµ(s, π(s)).
end for

until convergence
return π

Quantifying Composite Risk Measures

Following Eriksson et al. [10] we define the risk measures of interest. To start
with, we define the risk of the random variable Z under the distorted utility
function Uα in three different ways for clarity.

RiskUα
(Z) ≜

∫
Z

Z d(Uα ◦ P )

=
∫

Z
Uα(1− FZ(z)) dz =

∫ 1

0
Uα(t) dq(1− t). (3.6)

Moving on with the risk measure associated with aleatory uncertainty, that
is the uncertainty that arises due to the inherent stochasticity of the MDP µ

and policy π, we chose the following definition.
Aleatory Risk. Given a coherent risk measure with distorted utility func-

tion UA
α , the aleatory risk is quantified as the deviation of the total risk of
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individual models from the risk of the average model.

A(UA
α , β) ≜

∫
Θ

∫
Z

Z d(UA
α ◦ P)(Z|θ) dβ(θ)

−
∫

Θ

∫
Z

Ẑ d(UA
α ◦ P)(Ẑ)

Epistemic Risk. Given a coherent risk measure with distorted utility
function UE

α , the epistemic risk quantifies the uncertainty invoked by not
knowing the true model. Thus, the risk can be computed over any statistics
of the models, such as the expectation.

E(UE
α , β) ≜

∫
Θ

∫
Z

Z dP(Z|θ) d(UE
α ◦ β)(θ)

Composite Risk under Model and Inherent Uncertainty. Finally,
in [10] a joint risk measure termed composite risk is defined that takes into
account both the uncertainty that arises due to the true MDP µ being un-
known, as well as the MDPs are inherently stochastic. The total uncertainty
is then a combination of both these sources of uncertainty and in order to
quantify the total uncertainty, we proposed composite risk.

Definition 6 (Composite Risk): For two coherent risk measures with dis-
torted utility functions UA

α1
and UE

α2
, belief distribution β on model parameters

θ ∈ Θ, and a random variable Z ∈ Z, the composite risk of epistemic and
aleatory uncertainties is defined as

F C(UA
α1

, UE
α2

, β) ≜ RiskUE
α2

(RiskUA
α1

(Z|θ)|β)

=
∫

Θ

∫
Z

Z d(UA
α1
◦ P)(Z|θ) d(UE

α2
◦ β)(θ)

=
∫ 1

0

∫ 1

0
UE

α2
(v)UA

α1
(u) dqZ|θ(1− u) dqβ(1− v) (3.7)

The inclusion of a composite risk measure allows for a more accurate rep-
resentation of the total uncertainty compared to existing works optimising
jointly over both risks, such as in [7], [35].

Theorem 5 (Coherence): If UA
α1

and UE
α2

are distorted utilities for two
coherent risk measures, the composite risk measure F C(UA

α1
, UE

α2
, β) is also

coherent.
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The theorem Theorem 5 is important so as to retain coherency after com-
posing the risk measures.

Theorem 6: We are given two sources of aleatory and epistemic uncer-
tainties ξ1 and ξ2. If UA

α1
and UE

α2
are distortion measures for two coher-

ent risk measures quantifying aleatory and epistemic risks respectively, then,
i) F A(UA

α1
, β) = F C(UA

α1
, I, β), where I is the identity function, and ii)

F C(UA
α1

, UE
α2

, β) ≥ F A(UA
α1

, β), if α2 ̸= 1.
This theorem is used in the work Eriksson et al. [10] to demonstrate the su-

periority of the composed risk measure approach to an additive risk approach
to jointly optimising for both risks. The proofs of the theorems Theorem 5
and Theorem 6 are left for the interested reader in the paper Eriksson et al.
[10].

In our work, we propose an algorithm for optimising composite risk mea-
sures as defined in Eq. 3.7. The full algorithm is available in Algorithm 3.

3.4 Minimax Robustness in the Face of Model
Uncertainty

If one were to deploy an agent into an environment and wanted it to act safely,
one method would be to identify what would be the worst-case environment
and then find the best-performing policy in that case. This would give us
a guaranteed worst-case performance, as in all other environments it would
perform at least as good or better. In this work, we are interested in the
case where the MDP is unknown. This line of thinking has spurred numerous
works, such as Mannor et al. [52] and Wiesemann et al. [53], where they
construct uncertainty sets around the MDP parameters and identify policies
with worst-case performance w.r.t. those uncertainty sets. Our approach here
is to construct a robust policy using a minimax formulation. In it, a policy
is optimised against an adversary selecting for the worst-case environment or
distribution over environments. Our approach here is the latter.

Bayesian Minimax Theorems
In Buening et al. [13] we instead chose to study minimax theorems for distri-
butions over MDPs. Let R(π, µ) ≜ U(π∗, µ)−U(π, µ) be the regret associated
with a policy π for a particular MDP µ. The regret measures how far off the
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Algorithm 3 SENTINEL-K with Composite Risk
1: Input: Initial state s0, action set A, distortion measures UA

α1
, UE

α2
, hy-

perparameter λ, target networks [θ−
1 , ..., θ−

K ], value networks [θ1, ..., θK ],
update schedule Γ1, Γ2.

2: for t = 1, 2, . . . do
3: //* Update K-value and target networks for estimating return distri-

butions *//
4: for t′ ∈ Γ1 ∪ Γ2 do
5: Generate {D1, ..., DK} ← DataMask(Dt′)
6: for i = 1, . . . , K do
7: Sample mini batch τ ∼ Di

8: F C(Z(st, a)|UA
α1

, UE
α2

, β) using τ and K-target networks {θ−
i }K

i=1.
9: Get a∗ = arg maxa F C(Z(st, a)|UA

α1
, UE

α2
, β)

10: Update value network θi using τ, a∗

11: Update target network θ−
i using τ, a∗ if t′ ∈ Γ1

12: end for
13: end for
14: //* Estimate the composite risk of each action using the estimated

return distributions *//
15: for a ∈ A do
16: Compute weights w = w1, ..., wK .
17: for i in K do
18: Compute aleatory risks QA

i (st, a) from
∫

Z Z d(UA
α1
◦ P)(Z|θi)

19: end for
20: Compute composite risk over weighted aleatory estimates QC(st, a) =

RiskUE
α2

({wiQ
A
i (st, a)}K

i=1)
21: end for
22: //* Action selection *//
23: Take action at = arg maxa QC(st, a)
24: Observe st and update the dataset Dt ← Dt−1 ∪ {st, at−1, st−1, rt−1}
25: end for

optimal policy π∗ the current policy π is. We further introduce the notion
of Bayesian regret, L(π, β) ≜

∫
M R(π, µ) dβ(µ) which is the average regret of

the policy π, marginalised over the belief µ. In particular, in Buening et al.
[13] we show that using the Bayesian regret as the objective for the zero-sum
game, under some conditions, has a value,
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Chapter 3 Robustness During Learning

min
π∈Π

max
β

L(π, β) = max
β

min
π∈Π

L(π, β). (3.8)

This allows us to construct two algorithms that can be used to identify the
minimax policy and maximin prior. The minimax theorem in Equation 3.8
only holds in certain cases. For instance, if max

π∈Π
L(π, β) is convex with respect

to β and differentiable everywhere. In practice, this limits the theory to
simple settings such as the finite MDP setting. Nevertheless, in our work, we
also demonstrate similar aspects in settings beyond what the theory requires.
Next, we describe a procedure based on gradient descent ascent that can be
used to obtain the solution.

Computing Minimax Bayesian Regret Gradients

Let U(τ) ≜
∑

(st,at,rt)∼τt
γtrt be the utility associated with a rollout τ , then,

the utility of a policy evaluated on an MDP can be estimated by U(π, µ) =
Eτ∼π,µ

[
U(τ)

]
. This gives us a method of computing the necessarily utilities

for the policy gradient procedure. Let us first investigate the case of the
update of the agent’s policy parameters.

∇πL(π, β) = ∇π

∫
M

R(π, µ) dβ(µ) (3.9)

= ∇π

∫
M

[
U(π∗, µ)− U(π, µ)

]
dβ(µ) (3.10)

= ∇π

∫
M

U(π∗, µ) dβ(µ)−∇π

∫
M

U(π, µ) dβ(µ) (3.11)

= −∇π

∫
M

U(π, µ) dβ(µ) (3.12)

= −
∫

M
∇π Eτ∼π,µ

[
U(τ)

]
dβ(µ). (3.13)

Thus, for the policy, optimisation is quite simple. In the case of the prior,
it becomes slightly more contrived.
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∇βL(π, β) = ∇β

∫
M

R(π, µ) dβ(µ) (3.14)

= ∇β

∫
M

[
U(π∗, µ)− U(π, µ)

]
dβ(µ) (3.15)

=
∫

M
∇β

[
Eτ∼π∗,µ

[
U(τ)

]
− Eτ∼π,µ

[
U(τ)

]]
dβ(µ) (3.16)

=
∫

M

[
∇β Eτ∼π∗,µ

[
U(τ)

]
−∇β Eτ∼π,µ

[
U(τ)

]]
dβ(µ). (3.17)

In this case, we clearly have a dependence not only on trajectories obtained
from the agent’s policy but also from the optimal policy. In practice, this
means one would have to do separate rollouts using the optimal policy and
the agent’s policy in order to estimate the utility.

There are several well-known variations of estimating the utility gradient.
For instance, one may simply use the sum of rewards, add a baseline or use
the reward-to-go formulation [54]. For a rigorous overview, see Schulman et
al. [55]. In our work, we use a reward-to-go formulation akin to REINFORCE
in order to reduce the variance. Further, we subtract a baseline to improve it
even further.

Having computed the gradients, we can iteratively update the parameters
of our policy and prior,

πt+1 ← πt − ηπ∇πL(π, β) (3.18)
βt+1 ← βt + ηβ∇βL(π, β). (3.19)

In the general case, the obtained solution after iterating this procedure will
only be approximately minimax. If, however, L(π, β) is convex with respect
to β and differentiable everywhere, then an exact minimax solution can be
found.
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CHAPTER 4

Robustness During Interaction

The best way to predict the future is to invent it.
—Alan Kay, 1971

In this chapter, we sought to identify ways to ensure safety when interacting
with other agents. In particular, we are considering interactions with learning
or adaptive agents, that is, agents that may update their behaviour over time.
It is well-known that if there are a finite number of agents and the other
agents are non-adaptive, the final problem can be reduced to a standard RL
problem. Special care needs to be given to problems of this kind as they exist
in the intersection between RL and game theory. Here, we may choose to
study agents of different types. For instance, agents may cooperate towards a
common goal, they might be selfish and only attempt to fulfil their own goals
or they may sabotage each other. Our objective was to set out to design a
framework that can handle all of these, as well as risk-sensitive formulations
of them.

Our contributions to this field of study are the following.
Risk-Sensitive Bayesian Games. We constructed a novel framework

being able to handle risk-sensitiveness in the Bayesian Games setting, be-

29



Chapter 4 Robustness During Interaction

ing able to trade off risks due to player-type uncertainty. In this work, my
contributions are with the design, theory, code base and writing.

4.1 Interaction with Stationary Agents

In the case where all the other agents are non-adaptive, the objective is to
find the optimal policy first agent, keeping all other policies fixed. This can
be modelled as a multi-task RL problem where each set of combinations of
policies determines a MDP and the probability of that MDP is the joint prob-
ability of all the policies. Thus, this setting can be solved using traditional
RL techniques, such as BRL, by constructing a set of possible MDPs and
marginalising over them.

4.2 Interaction with Learning Agents

In this setting, we follow the work of Eriksson et al. [14]. We start by intro-
ducing the concept of a Bayesian game, let G = (N, K,S,AN ,RN×K , T , β, γ)
be a game with N players and K possible types. Each distinct player and
type combination has its own utility function Rj

i and T : S × AN → ∆(S)
is the transition distribution associated with the game. Finally, let β be a
common prior over types and γ a common discount factor.

In the definition of the game G there are KN different policy combinations.
We can evaluate the utility of the game by keeping all the policies fixed. For
simplicity, assume there are two players and player 1 has type j and player 2
has type k, then, the utility of the first player is,

U j,k
1 (G) ≜ Eπj

1,πk
2

G
[ ∞∑

t=0
γtrj

1,t | s0 = s
]
. (4.1)

Next, we wish to define the expected utility of a game taking the common
prior into account.

Definition 7 (Expected Utility of a game G): The expected utility marginalised
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over the prior β for a given game G is

U1, U2 ≜ Eβ

[
U j,k

1 (G), U j,k
2 (G

]
=

K∑
j=1

K∑
k=1

β(τ1 = j, τ2 = k)(U j,k
1 (G), U j,k

2 (G)),

where τ indicates the type of the player.
We now have a way of computing the utility associated with each player.

Next, we introduce the concept of risk in Bayesian games as the uncertainty
about types. That is, β, combined with the utility of each of the individual
players for that particular type configuration. U .,.

1 and U .,.
2 are thus discrete

probability distributions with mass equal to ξ(τ1 = j, τ2 = k) and values
U j,k

1 and U j,k
2 . By considering all possible combinations of types we get the

following probability mass function,

pU1(U) =


U1,1

1 , ξ(τ1 = 1, τ2 = 1)
U1,2

1 , ξ(τ1 = 1, τ2 = 2)
...

UK,K
1 , ξ(τ1 = K, τ2 = K),

(4.2)

and similarly for the other agent, pU2(U). We wish to construct agents that
take the uncertainty about types into account. In particular, the agents should
be able to be risk-sensitive w.r.t. this uncertainty. One such objective that
admits a lot of flexibility and interpretability is the CVaR objective, focusing
on the α% worst-case outcomes of the distribution. CVaR can be defined as
follows, CV aRα(U) ≜ E[U |U ≤ να ∧ P(U ≥ νa) = 1− α].

Finally, we investigate three possible techniques to be used to update the
policies. The first is Iterated Best Response (IBR) [56]. In this case, all the
policies are iterated over, one by one, keeping all other policies fixed. Since
only a subset of the full parameter set is updated at every step it may result in
cycles. The next technique is called Fictitious Play (FP) [57]. Here, the agents
are still updated iteratively, one by one, however, now they are evaluated
using rolling averages of each others’ policies. In this case, we will only have
smooth policy updates after every full iteration. Lastly, the technique of
main focus is a Dual Ascent Policy Gradient (DAPG) method, updating all
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Algorithm 4 Risk-Sensitive Iterated Best Response/Fictitious Play (RS-
IBR/FP)

1: input : Game G, learning rates η1, η2, risk measure ρα

2: for i = 0 . . . convergence do
3: for t = 0 . . . convergence do
4: θt+1

1,i = θt
1,i + η1∇θ1

[
ρα(U1) | G, θt

1,i, θ2,i

]
5: end for
6: θ1,i+1 = θt

1,i

7: for t = 0 . . . convergence do
8: if IBR then
9: θt+1

2,i = θt
2,i + η2∇θ2

[
ρα(U2) | G, θ1,i+1, θt

2,i

]
10: end if
11: if FP then
12: θt+1

2,i = θt
2,i + η2∇θ2

[
ρα(U2) | G, θ̄1,i+1, θt

2,i

]
13: end if
14: end for
15: θ2,i+1 = θt

2,i

16: end for

Algorithm 5 Risk-Sensitive Dual Ascent Policy Gradient (RS-DAPG)
1: input : Game G, learning rates η1, η2, risk measure ρα

2: for i = 0 . . . convergence do
3: for j = 1 . . . K do
4: θj

1,i+1 = θj
1,i + η1∇θj

1

([
ρα(U1) | G, θi

]
+

[
ρα(U2) | G, θi

])
5: θj

2,i+1 = θj
2,i + η2∇θj

2

([
ρα(U1) | G, θi

]
+

[
ρα(U2) | G, θi

])
6: end for
7: end for

policies simultaneously. The three techniques can be seen in Algorithm 4 and
Algorithm 5.
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Robustness During Adaptation

All models are wrong, some are useful.
—George Box, 1976

In many instances, one may want to leverage existing knowledge when faced
with a novel task. For such scenarios, one may choose to adopt the transfer
reinforcement learning framework. This allows an agent to take experience
with similar tasks into account when deployed in a new environment. For
instance, given access to a simulator, one may wish to deploy an agent with-
out having to learn from scratch. This may result in the agent being able
to utilize a baseline policy with ’good enough’ performance or result in more
quickly identifying the optimal policy. In Langley [58] and Lazaric [59] the
authors describe three main objectives the transfer RL aims to tackle over tra-
ditional RL. These are, (i) learning speed improvement, i.e., decreasing
the amount of data required to learn the solution, (ii) asymptotic improve-
ment, where the solution results in better asymptotic performance and (iii)
jumpstart improvement, where the initial policy results in a better starting
solution than the one utilising no previous knowledge.

Our contributions to this field of study are the following.
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Model-Based Transfer Reinforcement Learning. We constructed a
novel framework being able to handle model transfer to novel domains of
the transition function. Earlier works mainly focus on the transfer of reward
function, value function or policy. In this work, my contributions are with the
design, theory, code base and writing.

5.1 Model-Based Transfer Reinforcement Learning
In Eriksson et al. [15] we investigate model-based transfer reinforcement learn-
ing, whereby a set of existing source MDPsMs ≜ {µi}m

i=1 are used to inform
decisions in a target MDP µ∗. From here, we can further categorise this into
three problem settings. The first is when µ∗ ∈ Ms. We call this the I. Fi-
nite and Realisable Plausible Models setting. In this case, identification of the
maximum likelihood model is straightforward,

µ̂ ∈ arg max
µ′∈Ms

logP(Dt |µ′), Dt ∼ µ∗, (5.1)

where µ̂ is the maximum likelihood estimator of µ∗. In general, the novel
task is not part of the existing set of source models. Consider for example
a scenario where an agent has access to m distinct simulators and wants to
deploy the agent in the real world. If the real world does not perfectly align
with one of the simulators, then we are in the following two settings, the
next of which we call the II. Infinite and Realisable Plausible Models setting.
In this case, we begin by defining the convex set of source MDPs C(Ms) ≜
{µ1w1 + . . . + µmwm |µi ∈ Ms, wi ≥ 0, i = 1, . . . , m,

∑m
i=1 wi = 1}. The

corresponding optimisation problem is now to find the maximum likelihood
model in the mixture of the source MDPs,

µ̂ ∈ arg max
µ′∈C(Ms)

logP(Dt |µ′), Dt ∼ µ∗. (5.2)

This procedure allows us to not only find the maximum likelihood source
MDP as in setting I, but if the target MDP µ∗ can be written as a convex
combination of the source MDPs, then it is part of the admissible set of MDPs.
While we have increased the set of admissible MDPs, this comes at the cost of
making the optimisation problem slightly more challenging. Nevertheless, if
the number of source MDPs is small then the identification of the maximum
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5.1 Model-Based Transfer Reinforcement Learning

likelihood MDP is rather quick.
Finally, if µ∗ /∈ C(Ms) the procedure in II has no chance of identifying the

true MDP. This setting, we call the III. Infinite and Non-realisable Plausible
Models setting. In it, it may be possible to find a good proxy model, given
µ∗ is not too dissimilar from the maximum likelihood estimator µ̂. In our
work, we show how the total model deviation depends on the realisability gap,
which is precisely the gap between the best proxy model µ ∈ C(Ms) and
the true model µ∗, as given by ϵRealise ≜ minµ∈C(Ms) ∥µ∗ − µ∥1. Further, let
ϵEstim∥µ− µ̂∥1. We can now introduce the first theorem of the paper [15],

Theorem 7 (Performance Gap for Non-Realisable Models): Let µ∗ =
(S,A,R, T ∗, γ) be the true underlying MDP. Further, let µ = (S,A,R, T , γ)
be the maximum likelihood µ ∈ arg minµ′∈C(Ms) P(D∞ |µ′), D∞ ∼ µ∗ and
µ̂ = (S,A,R, T̂ , γ) be a maximum likelihood estimator of µ. In addition,
let π∗, π, π̂ be the optimal policies for the respective MDPs. Then, if R is a
bounded reward function ∀(s,a) r(s, a) ∈ [0, 1] and with ϵEstim being the esti-
mation error and ϵRealise ≜ minµ∈C(Ms) ∥µ∗−µ∥1 the realisability gap. Then,
the performance gap is given by,

||V ∗
µ∗ − V π̂

µ∗ ||∞ ≤
3(ϵEstim + ϵRealise)

(1− γ)2 . (5.3)

This theorem shows a connection between the total model deviation and
the realisability gap. If the true MDP is similar to the source MDPs then we
can expect a not too large of a performance loss using this framework. We
can further bound the model estimation error ϵEstim given that we are in the
II setting, where the novel task is part of the convex set of source tasks,

Remark 1 (Bound on L1 Norm Difference in the Realisable Setting): It is
known [60]–[62] that in the realisable setting, it is possible to bound the model
estimation error term ϵEstim via the following argument. Let µ∗ be the true
underlying MDP, and µ̂ be an MLE estimate of µ∗, as defined in Theorem 7.
If R is a bounded reward function, i.e. r(s, a) ∈ [0, 1],∀(s, a), and ϵEstim is
upper bound on the L1 norm between T ∗ and T̂ . If ns,a be the number of
times (s, a) occur together, then with probability 1− SAδ,

||T ∗ − T̂ ||1 ≤ ϵEstim ≤
∑
s∈S

∑
a∈A

√
2 log

(
(2S − 2)/δ)

)
ns,a

.
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Algorithm 6 Maximum Likelihood Estimation for Model-based Transfer Re-
inforcement Learning (MLEMTRL)

1: Input: weights w0, m source MDPs Ms, data D0, discount factor γ,
iterations T .

2: for t = 0, . . . , T do
3: // Stage 1: Model Estimation //
4: wt+1 ← Optimiser(logP(Dt |Σm

i=1wiµi), wt)
5: Estimate the MDP: µt+1 =

∑m
i=1 wiµi

6: // Stage 2: Model-based Planning //
7: Compute the policy: πt+1 ∈ arg max

π
V π

µt+1

8: // Control //
9: Observe st+1, rt+1 ∼ µ∗(st, at), at ∼ πt+1(st)

10: Update the dataset Dt+1 = Dt ∪ {st, at, st+1, rt+1}
11: end for
12: return An estimated MDP model µT and a policy πT

From this, it can be said that the total L1 norm then scales on the order of
O(SA

√
S + log(1/δ)/

√
T ).

This result is specific to tabular MDPs. In tabular MDPs, the maximum
likelihood estimate coincides with the empirical mean model. This result
shows that in some cases, the model estimation error will shrink as more
experience is collected. Finally, a trivial remark can be noted for the realisable
setting (setting II),

Remark 2 (Performance Gap in the Realisable Setting): A trivial worst-
case bound for the realisable case (setting II) can be obtained by setting ϵRealise =
0 because by definition of the realisable case µ∗ ∈ C(Ms).

The theorem and the two remarks together show us a story of how the
total model deviation depends on which setting we are studying through the
realisability gap and how the gap may shrink with access to more data in the
II setting.

The overall procedure using this framework is available in Algorithm 6.
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