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Abstract

Regression testing comprises techniques which are applied during software evolution to
uncover faults effectively and efficiently. While regression testing is widely studied for
functional tests, performance regression testing, e.g., with software microbenchmarks, is
hardly investigated. Applying test case prioritization (TCP), a regression testing technique,
to software microbenchmarks may help capturing large performance regressions sooner
upon new versions. This may especially be beneficial for microbenchmark suites, because
they take considerably longer to execute than unit test suites. However, it is unclear whether
traditional unit testing TCP techniques work equally well for software microbenchmarks.
In this paper, we empirically study coverage-based TCP techniques, employing total and
additional greedy strategies, applied to software microbenchmarks along multiple param-
eterization dimensions, leading to 54 unique technique instantiations. We find that TCP
techniques have a mean APFD-P (average percentage of fault-detection on performance)
effectiveness between 0.54 and 0.71 and are able to capture the three largest performance
changes after executing 29% to 66% of the whole microbenchmark suite. Our efficiency
analysis reveals that the runtime overhead of TCP varies considerably depending on the
exact parameterization. The most effective technique has an overhead of 11% of the total
microbenchmark suite execution time, making TCP a viable option for performance regres-
sion testing. The results demonstrate that the fotal strategy is superior to the additional
strategy. Finally, dynamic-coverage techniques should be favored over static-coverage tech-
niques due to their acceptable analysis overhead; however, in settings where the time for
prioritzation is limited, static-coverage techniques provide an attractive alternative.

Keywords performance testing - software microbenchmarking - test case prioritization -
regression testing - JMH
1 Introduction

Regression testing approaches assist developers to uncover faults in new software ver-
sions, compared to previous versions. One such approach is test case prioritization (TCP):
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it reorders tests to execute the most important ones firsts, to find faults sooner on average.
TCP has been extensively studied in unit testing research (Rothermel et al. 1999; Rother-
mel et al. 2001; Elbaum et al. 2001; 2002; Tonella et al. 2006; Zhang et al. 2009b; Mei
et al. 2012; Yoo and Harman 2012; Zhang et al. 2013; Hao et al. 2014; Henard et al. 2016;
Luo et al. 2016; Luo et al. 2018; Luo et al. 2019). The unit-testing-equivalent technique for
testing performance is software microbenchmarking. However, software microbenchmarks
take substantially longer to execute, often taking multiple hours or even days (Huang et al.
2014; Stefan et al. 2017; Laaber and Leitner 2018), which is a compelling reason to apply
TCP to capture important performance changes sooner. Unfortunately, compared to func-
tional regression testing, performance regression testing is not as intensively studied. So far,
the focus has been on predicting the performance impact of code changes on commits to
decide whether performance tests should be run at all (Huang et al. 2014; Sandoval Alco-
cer et al. 2016), on prioritizing microbenchmarks according to the expected performance
change size (Mostafa et al. 2017), or on selecting microbenchmarks that are most likely to
detect a performance regression (de Oliveira et al. 2017; Alshoaibi et al. 2019; Chen et al.
2020).

Applying traditional TCP techniques to software microbenchmarks could work well
due to their similarities to unit tests, i.e., a suite contains many microbenchmarks, they
are defined in code, they are self-contained and therefore rearrangeable, and they oper-
ate on a granularity-level of statements and methods. In addition, existing research builds
on the assumption that traditional TCP techniques can be used as baselines for TCP on
microbenchmarks (Mostafa et al. 2017). However, traditional TCP techniques might also
behave differently when used to prioritize microbenchmarks, for the following reasons:
(1) They rank their tests based on coverage information, under the assumption that a test
covering more statements, branches, or functions is more likely to find defects. However,
performance changes might not be associated with the number of covered elements, but
with the performance impact of each of these elements (e.g., a change to a loop vari-
able potentially has a bigger impact than one to multiple conditional statements (Jin et al.
2012)). (2) Where unit tests have a clearly defined binary outcome (pass or fail), software
microbenchmarks result in distributions of performance counters indicating probabilistic
results. (3) The reliability of software microbenchmark results and, consequently, of the
performance changes is dependent on how rigorous one conducts the measurement. Hence,
the effectiveness of TCP techniques could be compromised by performance measurement
inaccuracies.

To investigate whether these underlying differences of unit tests and software microbench-
marks lead to measurable differences in the usefulness of existing TCP techniques, we
empirically study traditional coverage-based prioritization techniques along multiple
dimensions: (1) greedy prioritization strategies that rank benchmarks either by their fotal
coverage or additional coverage that is not covered by already ranked benchmarks, (2)
benchmark granularity on either method or parameter level, (3) coverage information with
method granularity extracted either dynamically or statically, and (4) different coverage-
type-specific parameterizations. In total, our study compares 54 unique TCP technique
instantiations. Research has shown that the studied dimensions affect TCP effectiveness and
coverage precision (Rothermel et al. 2001; Elbaum et al. 2002; Hao et al. 2014; Henard
et al. 2016; Luo et al. 2016; Luo et al. 2019; Reif et al. 2016; Reif et al. 2019).

As study objects, we select 10 Java open-source software (OSS) projects with compre-
hensive Java Microbenchmark Harness (JMH) suites, having 1,829 unique microbench-
marks with 6,460 unique parameterizations across 161 versions, to which we apply all
prioritization techniques.
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As part of our study, we formulate and answer the three subsequent research questions:

An effective TCP technique should be able to rearrange the execution order of
microbenchmarks to detect larger performance changes sooner. We investigate whether this
is the case with our first research question:

RQ 1 How effective are TCP techniques in ranking software microbenchmarks to detect
large performance changes early?

Our evaluation relies on two effectiveness metrics: (1) the average percentage of fault-
detection on performance (APFD-P) that indicates how good a ranking is compared to an ideal
ranking, with values ranging from 0 (worst) to 1 (best); and (2) the percentage of bench-
marks in a suite that must be executed to find the 3 largest performance changes (Top-3).

We find that the best techniques achieve mean APFD-P values between 0.54 and 0.71
and mean Top-3 values between 29% and 66%, depending on the project. Techniques using
the fotal strategy outperform the ones with the additional strategy, and dynamic-coverage
enables more effective techniques compared to static-coverage. Although there is a minor
discrepancy in the ranking of the different techniques when considering either APFD-P
or Top-3, the overall best dynamic-coverage and static-coverage techniques are consistent.
We further find that all TCP techniques perform better than a random ranking. However,
“wrong” parameterization can have detrimental effects on their effectiveness, even render-
ing some techniques inferior to random for some projects. Hence, choosing good parameter
values is paramount for effectiveness.

With the second research question, we investigate the robustness of the effectiveness
measures from RQ 1 when considering different magnitudes of performance changes (i.e.,
the difference in execution time between two versions) as significant:

RQ 2 How robust are the TCP techniques’ effectiveness with respect to performance
change sizes?

We find that the size at which a performance change is considered significant impacts the
effectiveness of TCP techniques. Depending on the technique and the project, our results
show that APFD-P values differ between a median of 0.11 to 0.28, with a maximum of up
to 0.62. However, the ranking of techniques, i.e., which techniques perform better or worse,
is hardly impacted.

When considering the practical usefulness of TCP techniques, it is crucial to not only
consider their effectiveness, but also how much overhead the required analysis adds to the
overall benchmarking time. We define this as the efficiency of a technique and investigate
this in our third research question:

RQ 3 How efficient are the TCP techniques?

We find that the runtime overhead of the studied techniques ranges between <1% and
59% of the total microbenchmark suite execution duration. Techniques with dynamic-
coverage add between 10% and 17%, and techniques with static-coverage often add less
than 4% overhead. However, similar to our effectiveness results, choosing the “wrong” pri-
oritization parameters for static-coverage techniques can result in excessive overheads even
beyond 55%. This indicates that if “good” parameters are chosen, applying TCP can be
highly worthwhile.

Recommendations In typical TCP scenarios, where the entire microbenchmark suite is
executed, we suggest employing dynamic TCP techniques due to the low overhead of 11%.
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However, if TCP is applied in settings with strict time limits, e.g., as part of a continuous
integration (CI) pipeline, the analysis overhead introduced by TCP might still exceed the
available time budget. In these cases, static TCP techniques can be a viable alternative if
the “right” parameters are selected. Finally, according to our results, the fotal strategy is
superior to the additional strategy, which may be surprising to readers accustomed to similar
research on unit testing, e.g., Luo et al. (2019).

Contributions The main contributions of our study are:

— A first large-scale empirical comparison of TCP techniques applied to software
microbenchmarks, which can serve as a reference point for future research to decide
which techniques and parameters to choose as baselines.

— Empirical evidence about the impact of performance change sizes and coverage-type-
specific parameters on TCP effectiveness and efficiency.

— A method to conduct studies about TCP for software microbenchmarks (and, poten-
tially, other types of performance tests).

— An extensive JMH microbenchmark result data set, executed in a controlled, bare-
metal environment, for 10 Java OSS projects having 1,829 distinct microbenchmarks
with 6,460 distinct parameterizations across 161 versions. The data set consists of
46,978,627,870 microbenchmark invocation measurements. The data set is available as
part of our replication package (Laaber et al. 2021b).

2 Software Microbenchmarking with JMUH

Software microbenchmarking is a performance testing technique that measures certain per-
formance metrics, such as execution time, throughput, or memory utilization, of small
code units. These small code units are usually individual methods or statements, which
makes software microbenchmarking comparable to unit tests in functional testing. In the
remainder of the paper, we use both benchmark and microbenchmark to refer to software
microbenchmarks.

In the Java world, JMH is the de facto standard framework for defining and executing
software benchmarks. Similarly to JUnit, a benchmark is defined as Java source code with
annotations. Listing 1 shows an example from RxJava. A benchmark is a public method
annotated with @Benchmark, here measuring the performance of a latched observer (lines
8-15). JMH supports parameterization of benchmarks, i.e., executing the same benchmark
method with multiple inputs. Parameters for benchmarks are instance variables annotated
with @Param (lines 19-20), defined in a state object (@State). This state object can either
be the benchmark class itself or, as in this case, a different class which is passed to the
benchmark method as a parameter. In this example, the values of parameter size are 1
and 1000, resulting in the benchmark to be executed twice, once for each value. If multiple
parameters are defined, the number of executions is the cross-product of their number of
values.

As performance is affected by multiple factors, such as the execution environment (e.g.,
bare-metal server, cloud, developer laptop) or the programming language (e.g., compiler
optimizations, caches), one has to execute benchmarks multiple times to get reliable results.

@ Springer



Empir Software Eng (2021) 26:133 Page 50f48 133

1 @Fork(3)

2 @Warmup (iterations = 10, time = 1, timeUnit = TimeUnit.SECONDS)
3 @Measurement (iterations = 20, time = 1, timeUnit = TimeUnit.SECONDS)
4 @BenchmarkMode (Mode . SampleTime)

5 @OutputTimeUnit (TimeUnit .NANOSECONDS)

6 public class ComputationSchedulerPerf {

7

8 @Benchmark

9 public void observeOn (Input input) {

10 LatchedObserver<Integer> o = input.newLatchedObserver() ;
11 input.observable

12 .observeOn (Schedulers.computation())

13 .subscribe (o) ;

14 o.latch.await () ;

15 }

16

17 @State (Scope.Thread)

18 public static class Input extends InputWithIncrementingInteger {
19 @Param({ "1", "1000" })

20 public int size;

21 }

2}

Listing 1 Modified JMH example from RxJava

JMH lets developers configure the execution repetitions (lines 1-3) as well as the mea-
sured performance metric (lines 4-5). Figure 1 visualizes how JMH executes benchmarks
(we refer to elements of the figure in “quotes”). A (parameterized) benchmark is repeatedly
invoked for a defined time period (e.g., 1s), called an iteration, and the performance metric
is reported. This performance metric can be the average execution time (AverageTime),
the throughput (Throughput) across all invocations, or a sample distribution of the invo-
cation values (SampleTime). JMH runs multiple iterations (line 2 and “warmup”) to bring
the system into a steady-state, which is required for reliable measurements, followed by
multiple measurement iterations (line 3 and “measurement”). To deal with non-determinism
of the Java Virtual Machine (JVM) (e.g., dynamic compilation), JMH supports forks (line 1
and “fork™) that execute the same benchmarks in fresh JVMs. The result of a benchmark is
then the distribution of results from all measurement iterations (“i”’) of all forks (“fork™).

3 Test Case Prioritization on Microbenchmarks
Test case prioritization (TCP) describes a set of techniques that make the regression testing

effort in software evolution, i.e., when new versions are submitted for testing, more effec-
tive. The idea is to reorder the execution sequence of individual test cases in a test suite, such

invocation samples

benchmark
fork,

warmup

occurrences

fork, | ... | fork,

Wiy [ W, | [ W

performance metric

Fig. 1 JMH execution

@ Springer



133  Page60of 48 Empir Software Eng (2021) 26:133

that tests that are executed earlier have a higher potential of exposing important faults than
tests that are executed later. TCP has been extensively studied for functional unit tests (Yoo
and Harman 2012), but there is only one work, to the best of our knowledge, which applies
TCP to performance tests, i.e., Mostafa et al. (2017).

As microbenchmarks are different from unit tests, TCP on them also requires some
adaptation. Figure 2 shows a simplified view on how we define TCP on microbenchmarks.

In this paper, we focus on the most traditional TCP techniques from unit testing
research (Rothermel et al. 1999), which rely on coverage information for prioritization.
Therefore, the first step upon a new version is to extract coverage information for each
benchmark. This information can be on different granularity levels, such as class, method,
or statement and can be extracted dynamically or statically. Note that in TCP for unit test-
ing, dynamic coverage is extracted during the regular test execution and the information of
the old version is used for prioritization of the new version. As extracting coverage dur-
ing the measurement phase of a benchmark would distort the measurement result, we need
to extract it in a separate phase. This phase is at the beginning of a new version, where
we invoke each benchmark once with the coverage extractor injected. The time required to
extract coverage information for all benchmarks is called “coverage time”.

Based on the extracted coverage information, the next step is to apply TCP to get an
execution order for the benchmark suite. A dedicated TCP strategy decides how to assign
each benchmark a rank based on its coverage information. The two strategies considered in
this paper are the total and additional strategies, which are both greedy heuristics. The total
strategy ranks benchmarks by their coverage set size in descending order. Benchmarks that
cover more elements, e.g., methods or statements, are executed earlier than ones that cover
fewer elements. The additional strategy iteratively selects benchmarks that have the largest
coverage sets that have not been covered by an already ranked benchmark. In addition,
our TCP techniques also consider the code change between the old and the new version.
They perform the ranking based on the coverage information and the strategy and then split
the ranked benchmarks into two sets, i.e., the ones that are affected and the ones that are
unaffected by the code change. The affected ones are executed before the unaffected ones
according to the ranking. Another change-aware strategy would be to only consider cover-
age information that has changed. However, in our experiments this did not lead to better
results and, hence, we do not report these results but leave it to future work to investigate
different change-aware approaches. The time required to produce the benchmark rank-
ing is called “prioritization time”, and the sum of coverage and prioritization time is the
“analysis time”.

~ : i
Old Version Performance |
Measurements '

R i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
Source Code
Changes
'New Version % i
,,,,,,,,,,,,,,,,,,,,,,,,,,,, . i
for each Benchmark for each Benchmark x {
: : L
C:E><tract Ar;’p!y Tﬁstfase . ) Performance Change i
overage : rioritization : xecute | Measurements - i
Information : Detection i
S L L L L L D e e L L L L L L L L L L L L L L L L L L L L L L L s T !
Coverage Time Prioritization Time Execution Time

Analysis Time

Fig.2 Test case prioritization (TCP) on software benchmarks approach
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Based on the benchmark ranking, each benchmark is then executed and their measure-
ments are compared to the measurements of the same benchmark in the old version. A
change detection procedure decides whether there has been a performance change, i.e.,
regression or improvement, and the developers are notified. The time required to execute
the full benchmark suite is called “execution time”.

The main goal of TCP is to capture important performance changes as early as possible.
In this paper, we consider the change size as the importance criterion, i.e., larger changes
are more important than smaller changes. Section 6.6 discusses this aspect in more detail.
To evaluate a certain TCP technique, we compare its ranking to an ideal ranking using stan-
dardized metrics and investigate whether the analysis time is reasonably small compared to
the execution time. Especially coverage extraction is known to be expensive. If the anal-
ysis time is too expensive, the benefits of earlier performance change detection might not
outweigh the temporal overhead compared to just running the benchmarks in random order.

4 Empirical Study

To investigate whether TCP techniques originating from unit testing research are applicable
to software microbenchmarks, we conduct a laboratory experiment (Stol and Fitzgerald 2018)
on open-source Java projects with JMH software microbenchmark suites. The study com-
pares the effectiveness and efficiency (i.e., dependent variables) of different TCP techniques,
exploring a wide variety of parameter combinations (i.e., independent variables).

4.1 Experiment Process

We use the research design depicted in Fig. 3. First, we select suitable projects in multiple
versions as study objects (see Section 4.2). Second, for all selected versions of all selected
projects, we apply the TCP techniques under study by retrieving coverage information of all
benchmarks that serve as input to the actual prioritization. The parameter space, i.e., inde-

pendent variables of our study ® (see Section 4.3), consists of the prioritization strategy,

@ TCP Techniques

s ~ =~ @ Benchmark

Strategy Granularity
3 P Y

Benchmark R h Questi
Coverage Coverage Prioritization | —|  Rankin esearch tuestions
" /-V Information )
Study Objects <> Effectiveness

. <> Robustness
Projects --<>- -
Effectiveness <> -
APFD-P iciency

~— Execute Performance Effectiveness

@ Study Variables

Top-N @ Independent

@ Dependent

Versions ™| Benchmarks Changes Calculation  [——p|

Efficiency Coverage

Time
Execute Cloud Technique :D)
> e =" Runtimes -
Techniques Instances Prioritization
ime

Fig.3 Experiment process overview

iap

@ Springer



133  Page8of48 Empir Software Eng (2021) 26:133

the benchmark granularity, the coverage type, and the coverage-type-specific parameters.
The result of the prioritization strategies is then an ordered list of benchmark with ranks, in

descending order. Third, we compare these rankings by their effectiveness o 0 and effi-

ciency 9 which are defined by the dependent variables of our study @ (see Section 4.4).
For effectiveness, we execute all benchmarks of all projects in all versions (see Section 4.5),
compute the performance changes between adjacent versions, and calculate their effective-
ness measures with the benchmark ranking and the performance changes (see Section 4.4.1).
Regarding efficiency, we execute all prioritization techniques for all projects and versions on
cloud instances to assess their runtime (see Section 4.5), which consists of the time required
for retrieving coverage information and prioritizing the benchmarks (see Section 4.4.2).

4.2 Study Objects

To study TCP for software microbenchmarks, we select 10 OSS Java libraries. Because of
the time-intensive nature of rigorously executing benchmarks, it is infeasible to conduct a
study as ours on, for example, all projects that have JMH suites. Therefore, we aim to select
a diverse set of projects from different domains, with varying benchmark suite sizes, and a
multitude of versions to apply TCP on. To this end, we perform purposive sampling (Baltes
and Ralph 2020) of Github projects based on a list of 1,545 projects with JMH suites from
Laaber et al. (2020).

First, we apply the following inclusion criteria to each project: (1) it is the main project
and not a fork, (2) the repository is available on GitHub, and (3) it has 30 benchmarks
or more in the newest version. After applying the inclusion criteria, the list contains 111
projects which we arrange in descending order by their number of GitHub stars, forks, and
watchers, as well as their benchmark suite size. The scripts to retrieve this list are part of
our replication package (Laaber et al. 2021b).

We then manually iterate through the project list from top to bottom, giving preference to
“more popular” projects with many benchmarks, and apply the following inclusion criteria
until we reach 10 projects: (1) either Maven or gradle is used as build tool, (2) 10 versions or
more are available as git tags, and (3) 10 versions or more can be compiled. Depending on
the number of available, compilable versions per project and the runtime of the benchmark
suites, we choose at least 10 versions covering a wide variety from multiple major, minor,
and patch versions.

Table 1 depicts the final set of projects used as study objects. Our data set consists of
161 versions (“Versions”) across the 10 projects, as well as 1,829 distinct and 17,464 total
benchmarks (“Benchmark Methods”) and 6,460 distinct and 59,164 total benchmark param-
eterizations (“Benchmark Parameterizations”) across all projects and versions. The distinct
number counts each benchmark or parameterization once for all versions, whereas the total
number counts these once for each occurrence in a version.

The difference between “Benchmark Methods” and “Benchmark Parameterizations” is
that the former considers methods annotated with @Benchmark, and the latter considers
each benchmark parameterization (see Section 2) as a distinct benchmark. For both, the table
reports the mean and standard deviation across a project’s versions. Note that the number of
benchmarks and benchmark parameterizations is not constant across the projects’ versions;
usually earlier version contain fewer benchmarks than later versions. This can be observed
by the standard deviations not being 0. The mean number of benchmarks ranges from 30.74
for Byte Buddy to 471.40 for Eclipse Collections, and the mean number of benchmark
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parameterizations is between 30.74 for Byte Buddy and 2,371.40 for Eclipse Collections.
If the number of parameterizations is equal to the number of benchmarks, the project does
not make use of benchmark parameterization, i.e., Byte Buddy, Jenetics, Xodus, and Zipkin.
Figure 4 depicts the number of distinct parameterizations per benchmark method. 74% of
the benchmark methods have a single parameterization (or do not make use of JMH param-
eters), another 22% have between 2 and 12 parameterizations. A few individual benchmarks
have extreme numbers of parameterizations, up to 512.

The mean runtime (“Runtime mean”) across the versions of our projects and the execu-
tion trials (see Section 4.5) varies from approximately 16 minutes (0.26h) for Byte Buddy
to 38.45 hours for Eclipse Collections for a single, full benchmark suite execution. A larger
standard deviation of the runtime (“Runtime stdev”) is due to earlier versions of the respec-
tive project containing fewer benchmarks, with more benchmarks being added over time.
Figure 5 shows the invocations times (x-axis), i.e., the time it takes to invoke the benchmark
method once, of all benchmark parameterizations (y-axis). We observe that the invocation
times are quite varied. 27% are below 1us, 48% are below 1ms, and still 14% are above 1s.

To the best of our knowledge, this is the largest data set of software microbenchmark
executions across multiple versions to date. Details, including the exact versions and commit
hashes used, can be found in our replication package (Laaber et al. 2021b).

4.3 Independent Variables

Our empirical study investigates four independent variables (see Table 2): (1) the prioritiza-
tion strategy, (2) the benchmark granularity, (3) the coverage type, and (4) coverage-type-
specific parameters. In total, our study involves 54 unique combinations of independent
variable values, thereafter simply called TCP techniques. Note that the independent vari-
ables are always concerned with how individual benchmarks are ranked, i.e., they are inde-
pendent variables of the TCP techniques. We never combine performance measurements of
different benchmarks or benchmark parameterizations.

14 I 1,362
2 4 122
3 1 o
4 4 8o
54 118
6 1 I17
74 W29
@ 9 4 113
S 109 9
w121 N2r
No13q 2
o 1549 |7
[0) 4
el
®
c 204 |6
o 214 |6
244 |2
364 |2
404 I15
804 |3
2384 1
2404 |4
5124 11
0% 20% 40% 60% 80%

Benchmarks

Fig.4 Number of parameterizations per benchmark method
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Fig.5 Benchmark parameterizations’ invocation times

Table 2 Independent variables and their values

Name Short Value Code
Name Name
Prioritization Strategy strategy total t
additional a
random r
Benchmark Granularity bench benchmark-method m
benchmark-parameter p
Coverage Type cov-type dynamic-coverage d

»

static-coverage
dynamic-coverage:
Benchmark Granularity dc-bench method m
parameter p
static-coverage:
Algorithm sc-algo RTA
OCFA
01CFA
Reflection Option sc-ro NONE
OFTCAGM!
FULL
MAXZ

zmoz <o o

@

Entry Points sc-ep single

multiple m

Variable values are listed top to bottom in increasing precision. Code names will be used as abbreviations in
figures

LOFTCAGM corresponds to WALA’s reflection option ONE_FLOW_TO_CASTS_APPLICATION_GET_METHOD

2MAX represents the “best” reflection option for a particular project where the execution was successful, i.e.,
OFTCAGM or FULL
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4.3.1 Prioritization Strategy

We study and evaluate the two most common and basic strategies from unit testing research,
i.e., the total and additional strategies (Rothermel et al. 1999). The fotal strategy orders
benchmarks based on the number of code elements covered by the individual benchmarks,
while the additional strategy ranks the benchmarks based on the number of code elements
that have not been covered by other, already ranked benchmarks. In addition, we compare
the two strategies to a baseline with random benchmark order, which corresponds to the
dependent variable’s mean across 100 random orderings.

4.3.2 Benchmark Granularity

Unit testing research often considers the test case granularity as an independent vari-
able (Hao et al. 2014), which is either on test class or test method level. Since JUnit 5 1
(released September 10, 2017) developers can specify parameterized test cases, which
arguably would be a third test granularity to consider. However, at the time of writing we
are not aware of any studies that investigate TCP with test parameter granularity. JMH
supports parameterized benchmarks since version 0 .43 (released February 19, 2014), and
many projects make extensive use of it (Laaber et al. 2020). Therefore, our study investi-
gates benchmark granularity on two levels: benchmark-method and benchmark-parameter.
As an example, let us assume a benchmark suite B contains three benchmark methods bl,
b?, and b3, all with two parameterizations p = 1 and p = 2. The benchmark suite to rank
is then B = {bl_,, b} _,, b2_, b2, b3 . b3 _,).

TCP with benchmark-parameter considers every parameterization of a benchmark
method as the unit to rank, i.e., it takes the coverage information of each benchmark param-
eterization as input for the ranking. In our example, the following ranking is possible:
<b,2;:27 b ;7:2, b}):l , bzzl, bf,:l , b2:2>~ Here, benchmark parameterizations are individually
ranked based on their coverage information, and an interleaved ranking of parameterizations
of different benchmark methods is possible.

TCP with benchmark-method considers a benchmark method with all its parameter
combinations as the unit to rank. That is, coverage information is acquired for a single
parameterization of this benchmark method, the TCP ranking is computed for all benchmark
methods, and parameterizations of a benchmark are ranked back to back (and not interleaved
with parameterizations of other benchmarks) in descending order of their parameter values.
The representative coverage information of the benchmark method is, in our case, the one
of the parameterization that is ordered first (according to the descending order), because
this is the one with the highest parameter values where coverage size is potentially highest.
In our example, the following ranking is possible: (bi:r bl%:l, blljzz, b;;:p bi:Z! b;zl).
Here, coverage information is retrieved for b!_, for b, 192=2 for b2, and b3=2 for b3.
Note that benchmark-method performs the ranking on benchmark methods but executes
all benchmark parameterizations; it never merges performance measurements of different
benchmarks or benchmark parameterizations.

Uhttps://junit.org/junit5
https://junit.org/junit5/docs/current/user- guide/#writing- tests- parameterized- tests
3https://hg.openjdk java.net/code-tools/jmh/rev/b45d214529fc
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4.3.3 Coverage Type

The TCP strategies studied, i.e., total and additional, rank the benchmarks based on
structural coverage information. This structural coverage can be obtained in two ways:
dynamic-coverage and static-coverage. We investigate both coverage types in our study.
Apart from the coverage type, the granularity it is extracted on may influence TCP effec-
tiveness and efficiency. Different coverage granularities have been studied for unit tests
such as on statement-level or method-level (Elbaum et al. 2002). In our study, we inves-
tigate method-level coverage granularity for two reasons: (1) method-level is available for
both dynamic and static types; and (2) dynamic-coverage on statement-level is known to
have high runtime overhead, which may render these techniques too expensive in high
code velocity environments or as part of CI (Elbaum et al. 2014; Liang et al. 2018).
static-coverage is retrieved by static call graph (CG) analyses with WALA, and dynamic-
coverage is retrieved by executing a single benchmark invocation using the JaCoCo
agent (see Section 3).

4.3.4 Coverage-Type-Specific Parameters

Previous research on TCP for unit tests investigated different prioritization strategies, cov-
erage types and granularities, and test case granularities (Elbaum et al. 2002; Zhang et al.
2009b; Mei et al. 2012; Yoo and Harman 2012; Luo et al. 2016; Luo et al. 2019), but to
the best of our knowledge, no study exists that shows the impact of different coverage-type-
specific parameters on TCP effectiveness and efficiency. Coverage-type-specific parameters
guide how coverage information is retrieved by their algorithms. Depending on whether
dynamic-coverage or static-coverage is used, different parameters are available.

We consider the benchmark granularity (similar to benchmark granularity of the pri-
oritization strategy) of the coverage type, i.e., of the underlying CG type, gathering the
coverage information. For dynamic-coverage, we study method (dc-bench™) and parame-
ter (dc-bench?) granularity, whereas for static-coverage we only study method granularity,
as parameter granularity requires executing the benchmark or utilizing symbolic execution
techniques. dc-bench™ retrieves coverage information for a benchmark method by exe-
cuting a single parameterization, and dc-bench? extracts coverage information for each
benchmark parameterization.

The coverage type parameters for static-coverage are related to how WALA, a state-of-
the-art static analysis library, builds the static CGs: (1) the CG algorithm (sc-algo), (2)
the CG algorithm’s reflection option (sc-ro), and (3) the set of CG entry points for each
benchmark (sc-ep).

We investigate three of the four pre-defined CG algorithms in WALA, the context-
sensitive algorithms RTA (Bacon and Sweeney 1996) and OCFA (Shivers 1988) as well
as the context-insensitive algorithm 01CFA (Grove and Chambers 2001). We refrain from
using 1CFA (as an instance of nCFA), as it was shown to be inferior to both OCFA and
01CFA (Reif et al. 2019). We further exclude 01CFAContainer due to its long execution
times and heavy resource usage, which led to timeouts and failures during our experiments.

Regarding the CG algorithms’ reflection options (sc-ro), we study all CG algorithms with
no special handling of reflection (sc-ro™°"F) and the highest reflection option per project
that did not lead to timeouts or failures (sc-ro™°" or sc-ro°FTRM) We are able to exe-
cute Byte Buddy, Eclipse Collections, JCTools, Jenetics, Netty, Okio, and RxJava with the
highest available reflection option FULL; and Log4j 2, Xodus, and Zipkin with the second-
highest reflection option OFTCAGM. Table 2 also lists MAX which corresponds to either
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FULL or OFTCAGM, depending on the project. We use MAX throughout the paper whenever
we discuss a TCP technique using the highest reflection option across all projects.

Finally, CG algorithms rely on a defined set of entry points that inform the algorithm
which paths of a program are executed, which classes are instantiated, and, hence, which
subtypes are considered by points-to analyses. Employing different entry point sets results
in different CGs and, consequently, in potentially different prioritizations (Reif et al. 2016).
We construct entry point sets assuming closed-package usage, i.e., only methods that are
called by the benchmark itself (@Benchmark) and setup methods (@Setup) are con-
tained. Our study investigates two types of entry point sets: single (sc-ep®) and multiple
(sc-ep™). sc-ep® constructs a single entry point set for all benchmarks in a suite and, hence,
builds a single CG for all benchmarks. sc-ep™ constructs one entry point set per benchmark,
consisting only of the benchmark itself and its setup method(s).

4.4 Dependent Variables

Our study investigates three types of dependent variables, two measuring TCP effectiveness
and one assessing efficiency.

4.4.1 Effectiveness

For RQ 1 and RQ 2, we study two dependent variables, similar to the work by Mostafa
et al. (2017): (1) average percentage of fault-detection on performance (APFD-P) and (2)
Top-N percentile. These two metrics assess how effective the studied TCP techniques are in
ranking benchmarks. A more effective TCP technique ranks benchmarks that uncover larger
performance changes higher than benchmarks that find smaller or no performance changes.
Section 6.6 discusses this and alternative definitions of TCP effectiveness as well as what an
important performance change really is. We do not use nDCG as an effectiveness measure,
as Mostafa et al. (2017) did, because APFD-P and nDCG metrics are correlated in our study.

Performance Changes The performance changes detected by benchmarks between two
adjacent versions are integral to the calculation of the effectiveness measures. The change
size is defined as the runtime difference in percent between the previous version and the
new version of the same benchmark.

Rigorously assessing the change size is paramount to the internal validity of our study.
Mostafa et al. (2017) use the mean runtime difference of a benchmark between two versions,
i.e., an old and a new version. This, however, can be problematic as it neglects the distri-
bution of the performance measurements. Performance measurement results are known to
often be non-normally distributed (Curtsinger and Berger 2013) (e.g., long-tailed or multi-
modal), and best practice suggests using bootstrap confidence intervals instead of simple
average statistics, such as the mean (Kalibera and Jones 2012; Bulej et al. 2017; Bulej et al.
2019; Stefan et al. 2017; Wang et al. 2018; He et al. 2019; Laaber et al. 2019; Laaber et al.
2020). Consequently, we update Mostafa et al. (2017)’s definition of a performance change
to use bootstrap confidence intervals. We depict the procedure in Fig. 6, which creates a set
of bootstrap samples of ratios of mean performance changes between the old and the new
version. It then uses the bootstrap samples to estimate the confidence interval of the mean
performance change and deduces the change size from it.

First, we execute all benchmarks in all versions to retrieve the required measurements
for change detection. We configure the benchmark suites with 10 warmup iterations and 20
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Fig.6 Performance change detection procedure with bootstrap confidence intervals

measurement iterations of 1 second each. We export the invocation samples of each itera-
tion (using JMH’s benchmark mode SampleTime) and take a weighted sub-sample of at
most 1,000 from it. Depending on the individual benchmark invocation time, this invocation
sample might be lower. If the invocation time is below 1ms, the sub-sample will contain
1,000 invocations; otherwise the sub-sample will contain the number of invocations that
were executed within the 1s iteration. In the extreme case where the invocation time exceeds
1s, JMH executes the benchmark exactly once per iteration, and, hence, the invocation sam-
ple is 1. Section 4.2 provides an overview of our study’s benchmark invocation times. In
addition, we execute the full benchmark suites of each version for 3 trials at different points
in time. We decide against using the original configurations (as set by the projects’ devel-
opers) due to their extensive execution times. Already in our configuration set up, running
the benchmark suites of the projects in all versions requires 2,133.81h (89 days) for three
trials (see Table 1). In contrast, the configuration set by developers of the most recent ver-
sion (1. 3. 8) of RxJava takes about 124.5 hours when running a single trial, which would
render our study infeasible.

Second, to compute the confidence interval for the ratio of the mean, we employ a Monte-
Carlo technique described by Kalibera and Jones (2012) that relies on statistical simulation,
i.e., bootstrap (Davison and Hinkley 1997), with hierarchical random resampling (Ren et al.
2010) with replacement, 10,000 bootstrap iterations (Hesterberg 2015), and a confidence
level of 99%. Hierarchical resampling works as follows, and as depicted in the “Bootstrap”
block of Fig. 6 and Figure 2 in Kalibera and Jones (2012, p.27ff):

(1) randomly select one trial from the original benchmark execution;
(2) randomly select one iteration from this trial;
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(3) take a weighted invocation sample from this iteration;
(4) repeat (2) for as many iterations as the original trial contains; and
(5) repeat (1) for as many trials as the original benchmark execution contains.

Note that the procedure uses sampling with replacement, that is the same trial and itera-
tion can occur multiple times in the bootstrap sample. The set of bootstrap samples is then
defined as R” in Eq. (1), where the set elements correspond to the blocks of “ratio bi” in
Fig. 6.
b bi mean(Sfew)
RY == ()
mean(S,,;)
b corresponds to the benchmark the set was acquired for, with bi = 10,000 bootstrap iter-
ations. S,f o 18 @ bootstrap sample for benchmark b in the new version, and Sfl 4 asample
for the previous (old) version of the same benchmark. Each bootstrap sample S” consists of
at least 60 individual measurements (3 trials x 20 measurement iterations x 1 invocation)
and up to 60,000 individual measurements (3 trials x 20 measurement iterations x 1,000
invocations) in our study. mean is the arithmetic mean.
The confidence interval bounds of R? are then defined as r” for the upper and rlbow or

upper

for the lower bound in Egs. (2) and (3), respectively.
r,fppe, = quantilelf% (R?) )
r,bowe, = quantile%cz (R) 3)

quantile returns the n'™ quantile, and ¢/ defines the confidence interval’s confidence level.
In our study, we employ ¢/ = 0.99 for a 99% confidence level.

Third, we define a performance change based on R” and its confidence interval bounds
r,fpp o and rlbuw or- The “Change Detection” block of Fig. 6 shows the three possible change
scenarios:

improvement The benchmark in the new version has a statistically significant lower run-
time performance as in the old version. This can be detected if the upper bound of the
confidence interval is below 1.

no change The benchmark in the new version has statistically the same runtime perfor-
mance as in the old version. This can be detected if the confidence interval straddles
1.

regression (slowdown) The benchmark in the new version has statistically significant
higher runtime performance as in the old version. This can be detected if the lower bound
of the confidence interval is above 1.

Equation (4) formally defines this change definition and the corresponding change size as
the function change(b).

(11— r,fpper) x 100 <«— r,fpper <1
change(b) = 10 — b <1Ar > 1 @)
rl o — D x100 < r

lower upper

b
lower ~ 1

Both change cases are multiplied by 100 reflecting a change in percent, e.g., 10%. Note
that going forward, we do not distinguish between improvement and regression but are only
concerned with performance changes in general, similar to Mostafa et al. (2017).

Compared to Mostafa et al. (2017)’s definition of a change, ours takes the measurement
variability of the benchmarks into account. It is a conservative change definition that ensures
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that if the experiment is repeated 100 times, the mean performance change would be at least
of the size reported by change(b) in 99 cases.

Chen and Shang (2017) showed that benchmarks commonly indicate many small per-
formance changes between version pairs, which might partially be caused by measurement
inaccuracy or bias (Mytkowicz et al. 2009; Curtsinger and Berger 2013; de Oliveira et al.
2013). Many of these changes are likely to be unimportant, hence distorting effectiveness
measures. In RQ 1, we only consider performance changes of 3% or larger as significant,
similar to Georges et al. (2007). All changes below that threshold are discarded, i.e., set
to 0. In RQ 2, we explicitly investigate the effectiveness robustness, i.e., the impact the
performance change size has on the studied effectiveness measures, by performing a sensi-
tivity analysis on this threshold value. Our study investigates thresholds ¢ from 0% (i.e., all
changes) to 100%, where ¢t € {0, 1,2, 3,4,5,6,7,8,9, 10, 15, 20, 25, 50, 100}.

APFD-P The effectiveness measure APFD-P is adapted from the standard TCP measure
average percentage of fault-detection (APFD), which was first introduced by Rothermel
et al. (1999) and has since been widely used in unit testing research (Rothermel et al. 2001;
Elbaum et al. 2002; Mei et al. 2012; Zhang et al. 2009a; Hao et al. 2014; Luo et al. 2016; Luo
et al. 2018). APFD is a metric to assess the fault-detection capabilities of a TCP technique.
It assigns a value between 0 and 1 to a benchmark ranking, where rankings with higher
APFD values detect more faults sooner than rankings with lower APFD values.

As unit tests have a binary outcome (i.e., they either pass or fail), and benchmarks have
a continuous result (e.g., 10% or 50% slowdown), Mostafa et al. (2017) adapted APFD for
performance tests and benchmarks to incorporate different performance fault severities (i.e.,
performance change sizes). APFD-P is defined in Eq. (5).

N
Z detected(x)
T

APFD-p="=1___ 5)
N

N is the benchmark suite size, T is the total sum of all performance changes, and detected(x)
returns the cumulative performance change of the first x benchmarks (see Eq. (6)).
X
detected(x) = Z change(i) (6)
i=1

change(i) is the performance change of the i®" benchmark in a TCP ranking, according to
our adapted version from Eq. (4).

Top-N This dependent variable provides a better intuition regarding the advantages devel-
opers have from prioritizing their benchmarks. It represents the number of benchmarks in a
suite that have to be executed, based on a TCP technique’s ranking, to capture the N largest
performance changes. Following Mostafa et al. (2017), we choose N = 3 in our study. This
captures how large a fraction of the benchmark suite must be executed to detect the 3 largest
performance changes.

4.4.2 Efficiency
Effectiveness of TCP techniques captures only one part of their quality and applicability.

Techniques that rely on precise analyses might produce effective results, but may be unre-
alistic to perform in practice due to their long runtimes. Hence, our efficiency analysis (for
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RQ 3) complements the effectiveness analysis by studying the runtimes of the different TCP
techniques.

The efficiency dependent variable can be split into two parts, i.e., (1) coverage time
and (2) prioritization time, which together form the analysis time of a TCP technique
(see Section 3). Depending on the TCP technique’s independent variable values, these two
times are expected to contribute in different proportions to the analysis time. The prioriti-
zation time’s computational complexity is O (mn) for the fotal strategy and O(m?n) for the
additional strategy, where m is the number of benchmarks and » the number of called pro-
duction methods (Rothermel et al. 2001). In our efficiency analysis, we are interested in the
actual overhead for the studied projects, with respect to the duration of executing the entire
benchmark suite.

4.5 Execution Setup

As our empirical study relies on measuring performance, i.e., (1) the performance changes
of the benchmarks for each version, which are required for the effectiveness metrics (RQ 1
and RQ 2); and (2) the efficiency analysis of RQ 3, a rigorous methodology is required to
reduce validity concerns and enable replicability.

4.5.1 Performance Changes

Measuring benchmark performance requires careful experiment planning because of widely
reported measurement uncertainties (Georges et al. 2007; Mytkowicz et al. 2009; Curtsinger
and Berger 2013; de Oliveira et al. 2013). A sloppy measurement methodology results in
unreliable benchmark results, which in turn might distort the results of our experiment. To
mitigate these sources of uncertainty, we apply the following steps:

(1)  We manually patch the build scripts of all projects and versions with the same JMH
version (i.e., 1.21), compile the JMH fat Java Archives (JARs), and execute the
benchmarks with Java Development Kit (JDK) version 1.8.0.181-b13 employ-
ing Java HotSpot 64-Bit Server VM (build 25.181-b13). This way we ensure that
a benchmark performance change does not stem from a JDK-related or JMH-related
improvement or regression.

(2) As performance engineering best practice suggests utilizing controlled environ-
ments, we use a non-virtualized (“bare-metal”) server hosted at the first author’s
university. This server has a 12-core Intel Xeon X5670@2.93GHz central pro-
cessing unit (CPU) with 70 GB memory, runs ArchLinux with a kernel version
5.2.9-archl-1-ARCH, and uses a Samsung SSD 860 PRO SATA III disk.

4.5.2 Efficiency Analysis

For the efficiency analysis, the environment used to measure the coverage and prioritiza-
tion times is hosted in the private cloud of the first author’s institution. We select private
cloud instances and refrain from using a bare-metal machine for two reasons: (1) the run-
time of the individually measured times, i.e., coverage and prioritization, is longer than the
individual benchmarks’ runtimes. They are likely in the order of seconds to minutes. There-
fore, small measurement errors are not expected to have an impact on the overall result of
RQ 3; and (2) the time to run the efficiency analysis would take about 77 days for a single
measurement, for all TCP techniques, projects, and versions. (1) Considering performance
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engineering best practice and running the measurements repeatedly (e.g., 10 trials), the total
duration would exceed a sensible time frame. Hence, we measure coverage and prioritiza-
tion times once on multiple private cloud instances with the same configuration to make use
of experiment parallelization. All instances have the same specification:

(1) The cloud instance types have 16 virtual CPUs and 62 GB memory. The CPUs’ model
is Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS) with 2.5 GHz and a 4 MB cache.

(2) The instances are provisioned with Ubuntu 18.04 LTS and run a Linux kernel
version 4.15.0-23-generic.

(3) Identical to the performance change execution setup, we execute the measurements
with JDK version 1.8.0.181-b13 employing Java HotSpot 64-Bit Server VM
(build 25.181-b13).

4.6 Tooling, Analysis Scripts, and Data

The tools, scripts, and data required to run (and replicate) our study consists of three parts:
(1) the benchmark analysis and prioritization tool bencher (Laaber 2020a), (2) the per-
formance change analysis tool pa (Laaber 2020b), and (3) an openly-available replication
package (Laaber et al. 2021b).

bencher is written in Kotlin 1.3 . 72. It parses the byte code of JMH projects for their
benchmarks with ASM* 7 . 2, retrieves static coverage information with WALA® 1.5 . 0 and
dynamic coverage information with JaCoCo® 0. 8 .5, and applies the TCP techniques.

pa is written in Go and implements efficient, multi-threaded performance change anal-
ysis of benchmark results, as required for Section 4.4.1 and introduced by Kalibera and
Jones (2012). It computes bootstrap confidence intervals and confidence interval ratios
of a specified statistic (e.g., the arithmetic mean), with hierarchical random resampling
with replacement, user-defined bootstrap iterations and confidence levels, and sampling of
invocations.

The replication package contains all scripts that perform data preparation and cleaning,
invocation of the aforementioned tools, data analyses, and data representations, as well as
all input, intermediate, and output data.

4.7 Threats to Validity and Limitations

Construct Validity We rely on APFD-P and Top-3 as measures for TCP effective-
ness (Mostafa et al. 2017). APFD-P is adapted from APFD, which, although widely used,
has been discussed to have limitations (Rothermel et al. 1999). We address this threat by
also investigating Top-3. Choosing N = 3, as opposed to for example 1 or 5, is based on
previous research (Mostafa et al. 2017), and we manually confirmed that a larger N would
always result in effectiveness values of close to 100% (that is, the whole benchmark suite
has to be executed for capturing the top N performance changes). We further adapt the
performance change definition from Mostafa et al. (2017) to be more robust against perfor-
mance measurement variabilities. Our definition uses either the lower or upper bound of the
mean performance change’s confidence interval, for slowdowns or improvements, respec-
tively. This is a conservative definition, i.e., it reflects the smallest possible change and not,

“https://asm.ow2.io
Shttps://github.com/wala/WALA
Shttps://www.jacoco.org
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for example, the largest one, according to the estimated confidence interval. However, it
also provides statistical guarantees that the performance change is at least of the detected
size. This improves construct validity that our effectiveness metrics are computed correctly.
Nonetheless, different effectiveness metrics or performance change definitions might lead
to different effectiveness results and, consequently, to different conclusions. Finally, we
combine the effectiveness findings (RQ 1, RQ 2) with an efficiency analysis (RQ 3) in our
discussion to provide a more holistic evaluation of TCP.

Internal Validity Valid performance changes are paramount to the study’s internal validity.
Measurement uncertainty is common (Mytkowicz et al. 2009; Curtsinger and Berger 2013;
de Oliveira et al. 2013) and could threaten our effectiveness (i.e., validity of APFD-P) and
efficiency results. For the performance measurements of all versions, we follow a rigorous
methodology based on state-of-the-art best practice (Georges et al. 2007) utilizing a bare-
metal environment. However, measurement uncertainty can never be excluded entirely. The
execution configuration contributes to the reliability of the measurements, i.e., more mea-
surements lead to more stable results. We execute each benchmark for 3 trials consisting
of 20 iterations of 1s duration. This configuration is in line with other recent performance
engineering works, e.g., Blackburn et al. (2016), Chen et al. (2020), and Miihlbauer et al.
(2020). Nonetheless, it does not ensure that the measurements are stable, i.e., measurement
variability is low. Our statistical technique for detecting performance changes (i.e., bootstrap
confidence intervals) considers the measurement distributions and should, therefore, be rea-
sonably robust. Also running more trials, which would decrease variability and increase
measurement reliability, is infeasible as executing our projects in all version already took
89 days to finish. However, due to this variability, the detected performance changes have a
tendency to underestimate the real change, which can have an impact on our study’s results
and conclusions. In our replication package (Laaber et al. 2021b), we show that the error
rate, i.e., the difference between the detected and an artificially injected change, is low, on
average 1.2% for a 100% change.

We rely on statistical simulation, i.e., bootstrap confidence interval of the ratios of the
mean (Kalibera and Jones 2012), to decide whether a benchmark’s result has changed
between two adjacent versions. Bootstrap is a randomized algorithm to approximate a
benchmark’s result population from a measured sample. Consequently, the detected perfor-
mance change size might suffer from Monte-Carlo noise. We mitigate this by following
statistical best practice and using 10,000 bootstrap iterations (Hesterberg 2015).

The efficiency measurements are executed in cloud environments which might interfere
with the measurement. However, because the times we measure, i.e., coverage and prioriti-
zation, are in the order of minutes (or even longer), and we compare them to the total runtime
of the suites, which are between 16 minutes and 38 hours, small measurement inaccuracies
are not expected to change our overall conclusions for RQ 3.

Further threats to internal validity concern potential functional (RQ 1, RQ 2) and perfor-
mance (RQ 3) bugs of our tool chain. We dedicated extensive effort in unit testing our tool
chain and performance benchmarking core functionality. To address validity threats regard-
ing WALA usage and configuration, we rely on results and best practice of current research
in static analysis (Reif et al. 2016; Reif et al. 2019).

External Validity Generalizability of our study is mostly concerned with the choice of our
projects and versions. We selected 10 Java OSS projects in 161 versions and with 6,460 dis-
tinct JMH benchmark parameterizations. Although we can not generalize our findings to all
Java/JMH projects, the data set created for this study is, to the best of our knowledge, the
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most extensive microbenchmarking data set to date. More projects would have rendered our
study infeasible because of the time-intensive nature of running rigorous performance exper-
iments. We picked Java because benchmark suites written in it are long-running (Laaber and
Leitner 2018; Laaber et al. 2020) and, hence, would benefit from TCP. Regarding the bench-
mark framework, JMH is the de facto standard for Java at the time of study (Stefan et al.
2017; Leitner and Bezemer 2017). We selected projects that are large, well-known, popu-
lar projects from different domains to investigate high-quality software projects. However,
the results might not generalize to closed-source or industrial software, other programming
languages, or even other software written in Java.

We studied a specific type of performance test, i.e., software microbenchmarks. They
typically measure execution runtime of small software components, such as methods or
statements. Therefore, our results may not generalize to regression testing for other perfor-
mance test types, e.g., load tests or system benchmarks, or other performance metrics, e.g.,
memory, input/output (I/0).

Finally, depending on which static CG library is employed for coverage extraction, effec-
tiveness and efficiency results are likely to change. We chose WALA because it works well
for software libraries such as our projects, performs reasonably well in the presence of
reflection, and has been used in previous testing research (Reif et al. 2019; Luo et al. 2016).

Limitations We limited the implementation of the static CG (“S”) and dynamic coverage
(“D”) extractors, which occasionally causes empty coverage sets for affected benchmarks.
(1) “S” and “D”: We only consider calls to study-object-internal methods as relevant for
the coverage, because we are primarily interested in ranking benchmarks higher that find
performance changes in the production code of the projects. Some benchmarks test JDK
collections, JDK concurrency features, or atomic data types, which serve as baselines for
the benchmarks of custom functionality. We consider such benchmarks not interesting for
regression testing. (2) “S”: If a benchmark implementation (annotated with @Benchmark)
is located in a super-class and its parameterization (@Param) is defined in the sub-class,
the static CG coverage detector is not able to capture this benchmark. (3) “D”: If a JMH
parameter value contains a comma “,”, our tooling is not able to execute this benchmark
through the JMH command line interface, because JMH 1 .21 exits with a parsing error.
In our study five benchmarks of RxJava’ and one benchmark of Netry® are affected by this
limitation.

5 Results and Analyses

This section presents our results and analyses along the three research questions. We elab-
orate on the impact of different independent variable value combinations on the dependent
variables, i.e., effectiveness (APFD-P and Top-3) and efficiency.

The result analyses and interpretations in this section are supported by Table 3, which
provides statistics about the extracted static and dynamic coverage information. Every
row corresponds to a unique combination of the coverage independent variable values,
i.e., coverage type (“Coverage Type”) and coverage-type-specific parameters (“Coverage

7all defined in rx . operators .RedoPerf

8io.netty.handler.codec.DateFormatter2Benchmark.parsthtpHeaderDate
FormatterNew

@ Springer



(2021) 26:133

Empir Software Eng

133  Page220f48

(19p10 s1y} ut) da-28 pue ‘04-2s ‘03In-os e s1jowered ZLINA0D 28D.12402-01DIS Y], “Youaq-op s1 1)wered 95BIOA0D 23D.42400-D1UDULP Y],

%81 %61 %TT %81 B1YF %6¢ 60°878°6F T€°500°€ o[Surs HNON YId
%61 %0¢ %ET B1T B1YF %6¢ 6€°L8S'8F ¥9°'8¥T°1 ordnmnu HNON Y14
%81 %L1 %0¢ %L1 BSYF %bLE €T8SEEETF [ANYS R J[3urs XYW Y14
%81 %BLL %0C %L1 BbSYF PBLE 16°2€S9CF LY'L6V'L srdnnu XYW Y14
%ST LT %9¢ %6C B1vF %ST LOVET TF £6'€9¢ S[3urs HNON Y4D0
%9¢ %9¢ %8¢ %0¢ BT+ %ST LL6ILF LLS91 srdnmnuw HNON Y4D0
%YC %St %St %8¢ B1YF %9¢ SSSLETTF 691799 o[3urs XYW Y420
%YC %ET %9¢ %6¢ B1YF %9¢ CELBLF Yo'vLI ordnnu XYW Y420
%LT %6T %ble %EE BSYF+ %0¢ 6L°S00°1F 142944 o[Surs HNON Y4210
%LT %8¢ %blE %8¢ BbSYF+ %0¢ LY €09F ¥8°C01 ordnpnu HNON Y4ADTO
LT %0¢ %blE %bYe BSYF+ %blE LT'6L6F S6'CSY o[3urs XY Y4ADTO
%9¢C %8¢ %TE %8¢ BbSYF B1E 9¢"S09F 62901 srdnnu XYW Y4DTO 28D12402-01DIS
T Bl Bb1> %B1> BbSEF BlE SETSEF S81IC poyiowr
B1> B1> B1> B1> BIEF %LE 60°€TTF soel Iojowered 280.42402-011UDUSDP
pi€ pal sl v AJPIS ugaw APIS ugaw
719G 95e1on0)) A)dwg deproaQ 25e1000) SPOYIQIA PRISA0D) sIojoueIeg 98LIA0D) ad£], 9Se1000)

s19)owered aFLISA00 PAIPNIS AY) JO SINSHRIS AFLIA0)) € 3|qeL

pringer

A's



Empir Software Eng (2021) 26:133 Page 23 of 48 133

Parameters™). These results support and explain phenomena observed throughout this
section. Column “Covered Methods” depicts the number of called methods from each of
the 59,164 benchmark parameterizations across all versions. Column “Coverage Overlap”
shows the overlap of covered methods with another benchmark parameterization (of the
same project and version). For example, the benchmarks call on average 130.524223.09
methods (directly or indirectly) of which 37%=31% are also covered by another bench-
marks, if we retrieve dynamic-coverage with the parameter dc-bench?. The other columns
“Empty Coverage Set” show the percentage of benchmarks for which no coverage infor-
mation can be extracted. Column “all” depicts the percentage of all benchmarks, whereas
«pstr «ond» nq «31d” shows it for the top 3 benchmarks.

The interested reader can find more detailed results, figures, and tables for each project
in our replication package (Laaber et al. 2021b).

5.1 RQ 1: Effectiveness

This section presents and discusses the effectiveness measures, i.e., APFD-P and Top-3, for
each project and across all projects. For this, we follow a rigorous, three-step approach for
the statistical analyses, as described below:

(1) We calculate the effectiveness values as described in Section 4.4.1 for every combina-
tion of the projects, their versions, and the 54 TCP techniques (i.e., unique combination
of the independent variable values of our study). This results in a single effective-
ness value, i.e., either APFD-P or Top-3, for each combination. Recall that we use the
performance change size threshold r = 3.

(2) We then apply the Scott-Knott effect size difference (ESD) v2 test (Tantithamthavorn
et al. 2019) for every project, which clusters the TCP techniques into statistically dif-
ferent groups iff the Cohen’s d (Cohen 1992) effect size estimate is non-negligible,
i.e., d > 0.2 at significance level « = 0.05. Techniques in the same cluster only have
a negligible effect size difference among each other and, hence, perform statistically
comparably. Colloquially, better techniques receive lower ranks than worse techniques,
e.g., techniques with rank 1 are better than techniques with rank 2, and so on.

(3) Finally, we apply the Scott-Knott test again —the double Scott-Knott test (Tan-
tithamthavorn et al. 2019)— this time on the ranks from the previous step across all
projects. By that, we can draw general conclusions on the effectiveness of the 54 TCP
techniques across all 10 projects.

5.1.1 APFD-P

Per Project Table 4 shows per project the mean APFD-P values across all versions and all
54 TCP techniques (“Mean”), where “Max.” and “Min.” corresponds to the mean APFD-
P value (across all versions) of the best and worst technique, respectively. For each TCP
technique, we compute a 95% confidence interval of the mean across all versions with
bootstrap. Column “Conf. Int.” depicts the minimal lower bound (“Lower”) and the maximal
upper bound (“Upper”) of all confidence intervals. These confidence interval bounds supply
a range of APFD-P values per project. Finally, column “vs. random” shows the number of
TCP techniques that perform statistically better (“4”), equal (“="), or worse (“—") than a
random benchmark ordering, as assessed by the ranks of the first application of the Scott-
Knott test (analysis step 2). Note that the random ordering achieves a mean APFD-P value
(across 100 random orderings) of approximately 0.5.
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Table 4 APFD-P of the 54 TCP techniques per project compared to a random ordering

Project Mean Conf. Int. vs. random

Max. Min. Upper Lower + = -
Byte Buddy 0.64 0.43 0.69 0.37 40 8
Eclipse Collections 0.64 0.60 0.71 0.53 54
JCTools 0.60 0.45 0.68 0.38 4 0 50
Jenetics 0.62 0.49 0.70 0.40 3 27 24
Log4j 2 0.64 0.43 0.68 0.38 22 0 32
Netty 0.65 0.43 0.76 0.34 31 8 15
Okio 0.70 0.42 0.76 0.36 33 6 15
RxJava 0.59 0.48 0.64 0.43 24 10 20
Xodus 0.71 0.51 0.74 0.43 46 4 0
Zipkin 0.54 0.48 0.61 0.42 27 11 16

We observe that the mean APFD-P values range from 0.42 for Okio to 0.71 for Xodus,
with confidence interval bounds between 0.34 for Netty and 0.76 for Netty and Okio. The
best techniques for each project range between 0.54 (Zipkin) and 0.71 (Xodus).

Compared to a random ordering, it depends on the project and TCP technique whether
TCP on benchmarks is more effective and, therefore, provides a benefit. We see three kinds
of projects:

— the ones where the majority of the TCP techniques perform better than random, i.e.,
Byte Buddy, Eclipse Collections, Netty, Okio, and Xodus;

— the ones where the are a similar number of techniques that are better and worse (or
equal) to random, i.e., Log4j 2, RxJava, and Zipkin; and

— the ones where the majority of techniques are inferior to random, i.e., JCTools and
Jenetics.

This shows that for most projects, a wrong TCP technique or the wrong parameterization can
have detrimental effects on its effectiveness, rendering the technique inferior to a random
ordering. Nonetheless, for every project there exists at least a few techniques that outperform
random substantially.

Overall To assess how effective TCP on benchmarks is across all projects, we depict the
results of the double Scott-Knott test (analysis step 3) in Fig. 7. The y-axis shows the APFD-
P ranks from the first Scott-Knott test (analysis step 2), the shape represents the mean
rank across the 10 projects, and the whiskers represent the 95% confidence interval of the
mean computed with bootstrap. The x-axis shows the 54 TCP techniques. The facets show
the ranks of the second Scott-Knott test. Techniques with the same rank (i.e., in the same
facet) perform statistically comparable, and techniques with different ranks are statistically
different. Colloquially, the higher on the y-axis and the more to the left on the x-axis, the
better a particular TCP technique performs.

The first and most interesting observation is that the toral strategy outperforms the addi-
tional strategy, with the first three ranks only containing tofal techniques. This is different
from unit testing research and what Mostafa et al. (2017) assume. We see two reasons
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Fig. 7 APFD-P ranks across all projects and version, and for a threshold t = 3%. For the independent
variable descriptions, see Table 2

for this: (1) performance changes are captured by benchmarks that cover similar parts of
the software under test; and (2) a large subset of the benchmarks in a suite have overlap-
ping coverage with other benchmarks, where the average overlap is between 25% and 37%
(see Table 3).

The best performing techniques (with rank 1) are the ones using dynamic-coverage and
granularity benchmark-parameter in combination with the fotal strategy. The first addi-
tional techniques using dynamic-coverage achieve rank 4, again with benchmark granularity
benchmark-parameter. For both dynamic-coverage strategies, the granularity benchmark-
method performs worse compared to benchmark-parameter, indicating that they should
prioritize benchmarks on parameter level to be more effective.

In terms of static-coverage, the best techniques achieve a higher rank than the first
additional technique with dynamic-coverage, i.e., rank 2 and 3. Interestingly, all of these
use the most imprecise static CG algorithm, i.e., sc-algo®™. A reason could be that the
more precise sc-algo®“F® and sc-algo®*“F® show a higher number of benchmarks with-
out coverage information, i.e., 28% or higher as compared to 21% or lower for sc-algo®™
(see Table 3). Reif et al. (2019) demonstrate that reflection is a common cause for unsound-
ness of static CGs, which potentially affects the higher percentage of empty coverage sets
and, consequently, the lower effectiveness. Similar to dynamic-coverage techniques, static-
coverage techniques with granularity benchmark-parameter tend to outperform techniques
with benchmark-method.

Regarding the reflection option (sc-ro) or entrypoint set (sc-ep), we do not observe par-
ticular differences in APFD-P. For sc-algo®™ and sc-algo®*C*, Table 3 shows that there
is hardly any coverage difference between the reflection options sc-ro™" and sc-ro™%
(when all other coverage-specific parameters are fixed). Although this is not the case for sc-
algo®™, sc-ro does not seem to have a big impact on APFD-P. The entry point set (sc-¢p)
for all CG algorithms (sc-algo) has an impact on the number of covered methods, sc-ep*
results in larger CGs per benchmark than sc-ep™, but no impact on the overlap, and only a
minor impact on the empty coverage sets. Nonetheless, we do not see their impact on the
coverage information reflected in the APFD-P effectiveness.

Finally, only 2 of 54 techniques do not statistically outperform a random ordering across
our projects.
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5.1.2 Top-3

Per Project Table 5 shows per project the Top-3 effectiveness across all versions and all 54
TCP techniques, similar to Table 4. Different from APFD-P, a lower Top-3 value is better,
i.e., fewer benchmarks are required to be executed to find the three largest performance
changes. This is reflected in Table 5, where columns “Mean Min.” and “Conf. Int. Lower”
are further left as “Mean Max.” and “Conf. Int. Upper”, respectively.

We observe that the range of mean Top-3 values is wide, where depending on the project
and technique between 16% (0.16) and 86% (0.86) of the full benchmark suite must be exe-
cuted to capture the three largest performance changes. This shows that TCP can be effective
regarding Top-3 in the best cases, but it can also have almost no benefit over executing the
full suites if the worst technique is utilized. Depending on the project, the best technique
requires executing between 29% (Eclipse Collections) and 66% (Zipkin).

It is more often the case than for APFD-P that any TCP technique provides a benefit in
terms of Top-3 over a random ordering. For eight projects, i.e., Byte Buddy, Eclipse Col-
lections, JCTools, Jenetics, Netty, Okio, RxJava, and Xodus, the majority of techniques are
superior to random. For Log4j 2, more techniques are inferior or equal and, therefore, not
effective compared to random. However, for this project 22 techniques are superior. An
interesting project is Zipkin, for which all techniques perform equal to random. Zipkin is
also the project that shows the lowest APFD-P values among all projects (see Table 4).
Nonetheless, these results show that most TCP techniques enable capturing the largest
performance changes early.

Overall Similar to APFD-P and Fig. 7, Fig. 8 shows the results of the double Scott-Knott
test (analysis step 3) across all projects.

In line with the APFD-P results, the sole, best TCP technique (rank 1) employs dynamic-
coverage in combination with the fotal strategy, prioritizes benchmark parameterizations
(benchmark-parameter), and retrieves coverage information only once per benchmark
method (dc-bench™). The additional strategy is generally more effective than for APFD-P,
with the first technique already ranked in cluster 2. However, almost all additional tech-
niques are ranked one cluster lower than the corresponding fotal technique with the same
parameters.

Table 5 Top-3 of the 54 TCP techniques per project compared to a random ordering

Project Mean Conf. Int. vs. random

Min. Max. Lower Upper + = -
Byte Buddy 0.57 0.73 0.48 0.81 40 7 7
Eclipse Collections 0.29 0.62 0.16 0.83 54 0 0
JCTools 0.44 0.73 0.27 0.85 53 0 1
Jenetics 0.53 0.67 0.43 0.78 46 8 0
Logd4j 2 0.48 0.75 0.33 0.82 22 16 16
Netty 0.39 0.68 0.20 0.86 38 16 0
Okio 0.45 0.71 0.26 0.86 46 0 8
RxJava 0.51 0.68 0.37 0.79 48 6 0
Xodus 0.37 0.68 0.23 0.85 42 8 0
Zipkin 0.66 0.70 0.54 0.79 0 54 0
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Fig.8 Top-3 ranks across all projects and versions, and for a threshold ¢ = 3%. For the independent variable
descriptions, see Table 2

Regarding static-coverage, the best performing technique is the same as for APFD-P,
i.e., total strategy with granularity benchmark-parameter constructing CGs with sc-algo®™®,
sc-ro™% | and sc-ep®. Techniques employing sc-algo®™ again perform better than tech-
niques with more precise CG analyses. The first technique using a different CG algorithm
has rank 4. Techniques relying on sc-algo®™ likely perform better due to significantly
fewer top 3 benchmarks with empty coverage sets (see Table 3). Different from APFD-P,
sc-algo®CF? performs the worst, with all techniques but the ones using the additional strat-
egy and benchmark-parameter having rank 7, only one above a random ordering. The best
static-coverage techniques (rank 2 and 3) almost exclusively rely on the highest reflection
option parameter available, i.e., sc-ro"™¥. Nonetheless, sc-ro does not have a considerable
impact on lower ranked static-coverage techniques. Finally, we do not observe a Top-3 dif-
ference when using CGs with distinct entry points per benchmark (sc-ep™) or unified entry
points across all benchmarks (sc-ep®).

For both, static-coverage and dynamic-coverage techniques, benchmark granularity benchmark-
parameter performs better (or equal) than benchmark-method. This is in line with the findings
from APFD-P. Overall, none of the 54 techniques perform worse than a random ordering.

RQ 1 Summary: TCP techniques on benchmarks are effective in terms of both APFD-P
and Top-3.

The best techniques achieve an APFD-P value between 0.54 and 0.71, depending on the
project. Across all techniques, the total strategy outperforms the additional strategy, and
dynamic-coverage achieves better results than static-coverage.

Regarding Top-3, the best techniques are able to capture the three largest performance
changes after executing between 29% and 66% of the benchmarks contained in the entire
suite, depending on the project. Similar to APFD-P, the best technique follows the fotal
strategy with dynamic-coverage; however, additional techniques are performing almost
equally well.

Prioritizing benchmarks at the right granularity is important for both effectiveness mea-
sures with benchmark-parameter outperforming benchmark-method. Finally, coverage-
type-specific parameters can decide whether a technique is more or less effective. In
particular, the static CG algorithm has a considerable impact on both effectiveness
measures with sc-algoR™ performing best.
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5.2 RQ 2: Robustness

This section presents how robust the TCP techniques’ effectiveness is with respect to what
magnitude of performance change is considered significant (see Section 4.4.1). To this end,
we perform the following two analyses using a diverse set of thresholds ¢+ € T, where
T=1{0,1,2,3,4,5,6,7,8,9, 10, 15, 20, 25, 50, 100}:

(1) We investigate the impact of the different thresholds ¢ on the overall ranking of TCP
techniques.

(2) We study the effectiveness difference of the techniques when using different thresh-
olds 7.

Note, we only investigate APFD-P robustness and refrain from analyzing Top-3 robust-
ness, as by construction Top-3 considers the benchmarks exhibiting the 3 largest perfor-
mance changes, which do not change for different performance change size thresholds
t.

5.2.1 Technique Ranking across all Thresholds t

To investigate whether the overall effectiveness and the ranking among the 54 techniques
change if we consider the APFD-P values of all studied thresholds ¢, we perform the analysis
steps of RQ 1 (see Section 5.1) with the following minor modifications:

(1) We calculate the APFD-P values for every threshold ¢ individually. This results in a
single APFD-P value for each TCP technique applied to a project, a version, and a
threshold ¢.

(2) We apply the Scott-Knott ESD test for every project, where a TCP technique is rep-
resented by the APFD-P values it achieves in every version for every threshold 7 as
opposed to every version with a single threshold 7 (i.e., t = 3 for RQ 1). This provides
us with a single rank per technique and project, considering all thresholds 7.

(3) We apply the Scott-Knott ESD test again on the ranks of the previous analysis step.
This step remains unchanged compared to RQ 1.

Figure 9 shows the APFD-P ranks for each TCP technique across all projects, versions,
and thresholds. Similar to Fig. 7, techniques that have no statistical significant difference
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among each other are ranked in the same cluster (facet). Techniques that are further to the
left perform better, and techniques that are further to the right perform worse.

The results are largely similar to the APFD-P results from RQ 1 in Fig. 7. The total
techniques still perform the best, with the top 5 techniques (ranked 1 and 2) exclusively
being fotal techniques. Similarly, techniques with dynamic-coverage outperform the ones
with static-coverage. Nevertheless, we notice three differences where the threshold has a
non-negligible impact on the ranking:

—  Techniques with additional strategies “catch up” to total strategies, with the first one
already having rank 3 as opposed to rank 4.

—  All techniques now perform better than a random ordering, whereas two techniques
(additional with static-coverage) performed equally to random when considering the
specific threshold ¢ = 3.

— The confidence intervals are considerably narrower, indicating that the techniques’
APFD-P ranks are more stable, which gives us high confidence in the robustness of the
ranking, even if a different threshold ¢ is chosen.

5.2.2 Effectiveness Variation across different Thresholds t

The previous section showed that different thresholds ¢, have a minor impact on the APFD-
P rank of the TCP techniques. We now investigate whether the APFD-P value of a particular
technique changes with different thresholds ¢. For this, we apply the following analysis
steps:

(1) Similar to analysis step (1) of RQ 1 (see Section 5.1), we first calculate APFD-P for
every combination of the projects; their versions; the 54 TCP techniques; and, different
from RQ 1, the different performance change size thresholds ¢. This results in a single
APFD-P value for each combination.

(2) We then calculate the APFD-P robustness for each TCP technique per project and
version, as defined as the difference between the maximum and minimum APFD-P
value. Intuitively, the robustness describes by how much the APFD-P values change
when using different thresholds 7. Let’s define the APFD-P value of a particular TCP

technique 7C P, for a project p, in a version v, and for a threshold ¢ as etT CP.p v
The set of all effectiveness values is then ETCP:P-v = U,er e,TCP’p’U. Finally, the

robustness 7€ PPV ig then defined as r '€ PPV = max (ETCP-Pv)y —min(ETCP. vy,
with min and max being the minimum and maximum APFD-P value e, respectively.
A robustness value r of 0.0 means that a TCP technique is robust and does not change
with different thresholds 7, whereas a robustness value of 1.0 indicates a completely
unstable technique with large effectiveness differences for different thresholds 7.

(3) Finally, we apply the Scott-Knott ESD test for the TCP techniques, combining the
robustness values of all projects and versions, at significance level o = 0.05. This
results in a single cluster rank per technique across all projects.

Per Project Figure 10 shows the APFD-P robustness (y-axis) for each project (x-axis),
where each data point of a project (p) is a robustness value r7 €7 _for all TCP techniques
(T C P) in all versions (v).

We observe that the threshold ¢ has a considerable impact on a technique’s APFD-P
value. Depending on the project, technique, and version, the APFD-P values vary between
0 and 0.62. Netty is the least-impacted with a median robustness of 0.11, whereas Xodus is
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the most impacted project with 0.28. This shows that the decision of what is a significant
performance change has a drastic impact on the evaluation of TCP techniques.

Overall Figure 11 depicts the APFD-P robustness (y-axis) for each TCP technique, across
all projects and versions. Techniques to the left are more robust than ones to the right, also
indicated by the Scott-Knott rank (facets) reported by analysis step (3). Note that whiskers
represent minimum and maximum robustness values and not confidence interval bounds as
in previous figures.

We observe that although there are statistically significant differences between the three
clusters, the mean robustness does not change much among the techniques. The fotal tech-
niques tend to be more robust than the additional techniques, as the majority of techniques
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Fig. 11 APFD-P robustness for each TCP technique across all projects and versions, when considering
the thresholds € {0, 1, 2,3,4,5,6,7,8,9, 10, 15, 20, 25, 50, 100}. The shapes indicate the mean, and the
whiskers show the minimum and maximum. For the independent variable descriptions, see Table 2
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with rank 1 use the toral strategy, and the majority of techniques with rank 3 use the addi-
tional strategy. 4 of 6 techniques with dynamic-coverage are ranked 1, whereas the other
two are ranked 2. In terms of benchmark granularity, techniques with benchmark-method
tend to be more robust than ones with benchmark-parameter. Finally, we do not observe
robustness differences between techniques with different coverage-type-specific parame-
ters, i.e., neither for techniques with dynamic-coverage (dc-bench) nor for techniques with
static-coverage (sc-algo, sc-ro, and sc-ep).

RQ 2 Summary: The threshold ¢, at which a performance change is considered sig-
nificant, has a minor impact on the overall ranking of techniques, compared to RQ 1.
Techniques relying on the total strategy and dynamic-coverage are still the best. How-
ever, the APFD-P value of a particular technique varies considerably with different
thresholds ¢. Our results show an APFD-P difference between a median of 0.11 and 0.28,
with a maximum up to 0.62, across projects, versions, and techniques.

5.3 RQ 3: Efficiency

This section presents the efficiency of the studied TCP techniques, as defined by their run-
time overhead with respect to a full benchmark suite execution. Figure 12 presents the three
efficiencies across all projects and versions: (1) analysis time, which is the sum of the fol-
lowing two times, in Fig. 12a; (2) coverage time, i.e., the time it takes to extract coverage
information, in Fig. 12b; and (3) prioritization time, i.e., the time it takes to prioritize all
benchmarks of a suite based on the coverage information, in Fig. 12c. The techniques are
ranked from the lowest overhead on the left to the highest overhead on the right and are,
again, clustered into ranks with the Scott-Knott ESD test (similar to RQ 1 and RQ 2). The
y-axis depicts the mean runtime overhead for each technique across all projects and ver-
sions. Individual technique runtimes, i.e., of a particular project in a specified version, are
normalized by the execution time of the full benchmark suite of the particular project and
version. Whiskers represent the 95% bootstrap confidence interval of the mean overhead.

Analysis Time From Fig. 12a, we observe that the 27 techniques ranked in clusters 1 to 6
have a range of mean overheads between <1% and 3.7%, with confidence interval bounds
from <1% to 4.5%. These techniques exclusively use static-coverage, with the majority
relying on sc-algo®“¥™ and sc-algo®*CF. All techniques use the lowest reflection option
(sc-ro™°NE) and/or use a single CG entry point set (sc-ep®).

The 23 techniques ranked in cluster 7 include all dynamic-coverage and static-coverage
techniques relying on the algorithms sc-algo®“F? and sc-algo®*“¥® in combination with
multiple entry point sets (one per benchmark; sc-ep™). This cluster contains the techniques
with the widest variety of mean overheads, ranging from 10% to 23%, with confidence
interval bounds between 6% and 42%.

The dynamic-coverage techniques show a low overhead variability among the different
projects and versions, with mean overheads between 10% and 17%. Although all dynamic-
coverage techniques are ranked in cluster 7, there is a significant difference between
techniques with dc-bench™ (10.7%) and dc-bench?(16.8%).

The techniques with the highest runtime overhead rely on static-coverage in combination
with sc-algo®™, sc-ro™?%, and sc-ep™. Their mean overhead ranges from 55% to 59%, with
confidence interval bounds between 43% and 72%.
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Finally, we neither observe differences in analysis time overhead between fotal and
additional strategies nor benchmark-method and benchmark-parameter granularities. This
indicates that prioritization time contributes less to the analysis time than coverage time.

Coverage Time Figure 12b shows the coverage time overhead per combination of
coverage-type-specific parameters. This figure is different from all the others because (1)
coverage extraction is the first step of the analysis performed by a TCP technique and,
hence, it can not be affected by previous steps; and (2) different prioritization strategies and
benchmark granularities rely on the same coverage information.

We observe that the coverage time has similar overhead numbers as the analysis time,
and they are ranked into four clusters. This is a first indication that coverage time is indeed
the deciding factor for a TCP technique’s analysis time.

Coverage extractors with rank 1 are using the lowest reflection option (sc-ro
single CG entry point set (sc-ep®), and only differ by their CG algorithm (sc-algo
algo®“F2, and sc-algo®1CF?). All these extractors have an overhead below 1%.

The second rank (2), again, contains only static-coverage extractors. Three of these are
the same extractors as in cluster 1 but with entry point sets per benchmark (sc-ep™). The
remaining extractor with rank 2 employs sc-algo®™ with the maximum reflection option
(sc-ro™*) and a single entry point set (sc-ep*). Their mean overhead ranges from 2.7% to
3.2%.

Cluster 3 contains all dynamic-coverage extractors and all remaining but one static-
coverage extractor (which we discuss below). Their mean overheads are between 10.6%
and 22.1%, with confidence interval bounds ranging from 6% to 41%. Interestingly, these
extractors make up all but one of the TCP techniques in analysis time cluster 7 (see Fig. 12a).
The overheads of the dynamic-coverage extractors are responsible for the majority of the
analysis time of the dependent TCP techniques.

Finally, the coverage extractor with the highest overhead (ranked 4) retrieves static-
coverage using sc-algo®™ i

NONE
), a
RTA oo

in combination with sc-ro"¥ and sc-ep™. This also explains the
worst TCP techniques (in analysis time cluster 8) that all rely on this extractor.

The overheads from the extractors in cluster 3 and 4 are almost equal to the TCP tech-
niques’ analysis times in clusters 7 and 8. This shows that coverage is the major factor of
long analysis times of TCP techniques.

Prioritization Time Figure 12c shows the prioritization time overhead per TCP technique
across all projects and versions. Note that here we are again interested in all 54 TCP
techniques.

We first observe that the majority of the techniques, i.e., 51 of 54, have a mean priori-
tization time overhead below 1%. This confirms the suggested finding that coverage time
and not prioritization time is the main contributor to TCP efficiency, for most of the stud-
ied techniques. Nevertheless, three techniques show overheads worth mentioning (ranked
16 and 17); all three rely on static-coverage, apply the additional strategy with granularity
benchmark-parameter, and use sc-algo®™ as CG algorithm.

The technique in rank 16 uses the lowest reflection option (sc-ro™°NE) in combination
with a single CG entry point set (sc-ep®), resulting in a mean overhead of 2%, with confi-
dence interval bounds between 1.2% and 2.8%. The reason why this technique is only one
cluster away from the worst techniques is because of the high number of covered methods
per benchmark, i.e., on average 3,005.32 as depicted in Table 3. However, this technique has
arelatively low analysis time overhead of 2.3%, which is largely caused by the prioritization
overhead.
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Finally, the two techniques with the highest overhead (with rank 17) use the maximum
reflection option (sc-ro™*¥). Their mean overhead is 3.8% and 8% for sc-ep™ and sc-ep®,
respectively. The technique with sc-ep™ also has the highest mean analysis time overhead at
59%; and the technique with sc-ep® is the only one in analysis time cluster 7, which is due
to the high prioritization overhead. Both techniques owe their high prioritization overheads
to the number of covered methods per benchmark, i.e., on average 7,497.67 (sc-ep™) and
14,855.13 (sc-ep®).

RQ 3 Summary: The efficiency of TCP techniques applied to benchmarks ranges from
<1% to 59% overhead of the duration of a full benchmark suite execution. Techniques
relying on static-coverage can have very low (often below 4%) or very high overheads
(sometimes exceeding 55%), whereas the overhead of dynamic-coverage techniques is
less varied (between 10% and 17%). In most cases the time to extract coverage informa-
tion is the major contributor to the overall analysis time. However, additional techniques
that use coverage information with a high number of called methods per benchmark
spend a considerable amount of time “just” applying the prioritization strategy.

6 Discussion and Recommendations

In this section, we discuss the trade-off between TCP effectiveness and efficiency, provide
recommendations for researchers and practitioners, and compare our findings to the findings
of TCP for unit tests.

6.1 Choosing a TCP Technique

Our results, especially RQ 1 and RQ 3, show that the studied TCP techniques are to a
varying degree effective and efficient. However, whether a specific technique is also useful
in practice depends on both effectiveness and efficiency.

We have found that the most effective techniques in terms of APFD-P and Top-
3 use dynamic-coverage. The best dynamic-coverage technique uses the rotal strategy,
benchmark-parameter, and dc-bench™ and has an analysis time overhead of approximately
11%. In case of very long-running benchmark suites (e.g., 2.71h for Log4j 2 or 38.45h
for Eclipse Collections), even a 11% overhead may still be worthwhile if it leads to large
performance changes being identified sooner.

However, if an 11% overhead is too expensive, a technique relying on static-coverage
might be an attractive alternative. The most effective static-coverage technique, for both

APFD-P and Top-3, in our study uses the fotal strategy, benchmark-parameter, sc-algo®™,

sc-ro™X  and sc-ep®. This technique is also efficient with a mean analysis overhead of below
3%.

It is important to keep in mind that TCP can be less effective than a random order-
ing, depending on the project and the parameterization of the technique (see Tables 4
and 5). However, on average across all studied projects all techniques are superior to
random (see Figs. 7, 8 and 9).

Practitioners who are keen on applying TCP for their microbenchmark suites should

carefully evaluate whether they would benefit from it, by answering the following questions:
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(1) Is the suite runtime too long to wait for its completion, and can we, therefore, benefit
from prioritization?

(2) Which analysis overhead is acceptable (in relation to the suite runtime)?

(3) Which technique is effective and efficient for our project?

6.2 Efficiency of Static vs. Dynamic Coverage Techniques

A few static-coverage techniques are almost as effective as dynamic-coverage techniques,
and the majority are as efficient or considerably more efficient than dynamic-coverage
techniques. However, static-coverage is always faster than dynamic-coverage can not be
generally assumed, i.e., extensive overheads are possible with the “wrong” technique
parameterization.

Our results show that in most cases the coverage time is the deciding factor whether a
technique is fast or slow. For example, highly effective static-coverage techniques, such as
the ones ranked in cluster 3 for APFD-P (see Fig. 7) as well as Top-3 (see Fig. 8), have
the highest runtime overhead at above 50%. Often a change of one coverage-type-specific
parameter can already improve the efficiency drastically without sacrificing effectiveness.
The technique relying on the fotal strategy with static-coverage, benchmark-parameter, sc-
algo®™, and sc-ep™ is equally effective for either sc-ro value. However, sc-ro"?® has a
mean overhead of 55%, whereas for sc-ro™°NE the overhead is below 3%. This shows that
sophisticated reflection handling mechanisms of static CG libraries can have a detrimental
impact on the effectiveness of static-coverage techniques.

6.3 Impact of Coverage-Type-Specific Parameters

Our study is, to the best of our knowledge, the first to define coverage-type-specific param-
eters of TCP techniques and to assess their impact on effectiveness and efficiency. Previous
studies either fixed these parameters, e.g., the static CG algorithm, or do not explicitly men-
tion them (Zhang et al. 2009b; Luo et al. 2016; Luo et al. 2019; Mostafa et al. 2017). Our
results show that these parameters can have an impact on both effectiveness and efficiency.
Hence, they cannot be neglected in rigorous experimental evaluations. We hypothesize that
there is a similar impact of coverage-type-specific parameters on TCP effectiveness in
functional testing research. Future studies should validate this hypothesis.

For dynamic-coverage techniques, choosing between dc-bench™ and dc-bench? can
affect both effectiveness and efficiency: (1) favoring dc-bench™ over dc-bench?, i.e.,
retrieving dynamic-coverage per benchmark method rather than per benchmark parameter-
ization, reduces the overhead from 17% to 11%; (2) while being more effective regarding
Top-3 effectiveness; and (3) remaining equally effective in terms of APFD-P.

For techniques with static-coverage, both effectiveness and efficiency is drastically impacted
by coverage-type-specific parameters. Effectiveness changes mostly with different CG algo-
rithms. Surprisingly, the least precise algorithm among the studied ones, i.e., sc-algoR™®,
enables the most effective techniques. This is likely due to sc-algo®“F® and sc-algo®tCF®
being not able to extract coverage information for many benchmarks (see Table 3). As
already discussed before, changes to coverage-type-specific parameters can also lead to
efficiency drops. Especially, more sophisticated reflection options, i.e., sc-ro"¥ instead of
sc-ro"NE _and constructing CGs per benchmark with smaller, more specific entry point sets
(sc-ep™), is often much less efficient at a similar effectiveness.
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6.4 Choice of Threshold

Our study’s robustness results (RQ 2 in Section 5.2) show that depending on which per-
formance change size is considered to be significant, i.e., as defined by the threshold z,
the concrete APFD-P values change on median between 0.11 and 0.28, depending on the
project. Nonetheless, the technique rankings hardly change, which demonstrates that all
techniques are similarly affected by different thresholds 7.

One could argue that the threshold should always be set to ¢t = 0, which would con-
sider all performance change of any size for APFD-P calculation. However, this can be
problematic for two reasons:

(1) Performance experiments are prone to measurement bias, where the measurement
result does not accurately reflect the (software) systems’ true performance (Georges
et al. 2007; Mytkowicz et al. 2009; Curtsinger and Berger 2013). Non-obvious exe-
cution environment peculiarities can affect the measurement, such as environment
variables, stack sizes, background processes, or frequency scaling. Consequently, a
measured performance change might in fact be due to a confounding factor and not
due to a change to the software. Even if one follows a rigorous measurement methodol-
ogy, the absence of measurement bias can not be guaranteed. Therefore, false-positives
in the detection of performance changes impact the effectiveness evaluation of TCP
techniques. To manage measurement bias, a threshold ¢ can filter out these changes.

(2) Multiple co-occurring performance changes between two software versions are com-
mon (Chen and Shang 2017), but often they are of small size. Consequently,
developers might only be interested in changes of a certain size, e.g., everything below
a 10% change is not worth investigating. The exact threshold ¢ that is relevant depends
on the project, developer, and application scenario. Our results show that defining this
threshold can considerably change the evaluated effectiveness of a technique.

We suggest that researchers conducting all kinds of performance experiments to consider
different thresholds r when evaluating the effectiveness of their approaches. In particu-
lar, research on TCP for benchmarks must consider the sensitivity of the evaluation metric
APFD-P. Practitioners eager to apply TCP on their benchmark suites should decide which
performance change sizes they are interested in capturing early, as it can change which
technique is optimal for their usage scenario.

6.5 Comparison to TCP for Unit Tests

To assess how TCP for benchmarks compares to TCP for unit tests, we compare our results
to the ones of Luo et al. (2019). Their study is the most recent, large-scale study of static
and dynamic TCP techniques for unit tests.

Different from their study, ours investigates benchmark granularities on method
(benchmark-method) and parameter (benchmark-parameter), whereas theirs looks at class
and method level. The implementation of our static-coverage techniques resembles theirs,
both are based on Zhang et al. (2009b). Our dynamic-coverage techniques rely on coverage
information on method-level, whereas theirs rely on statement-level coverage.

There is a conceptual difference between dynamic TCP for unit tests and dynamic TCP
for benchmarks: coverage information (for unit tests) is usually acquired during the test
executions of the previous version. Luo et al. (2019) refrain from studying the efficiency
of dynamic techniques, because “the temporal overhead is quite high and well-studied”. As
benchmarks are executed many times to retrieve reliable results (see Section 2), TCP for
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benchmarks can utilize a single benchmark execution of a new version to instrument the
code and retrieve dynamic coverage information, as described in Section 3.

Luo et al. (2019) report the following APFD values for TCP with method granularity
(which is more effective than class granularity): techniques with static-coverage achieve on
average 0.764 and 0.818 across their study objects, whereas the ones with dynamic-coverage
reach 0.809 and 0.898, respectively for total and additional strategies.

Our results highlight four major observations compared to unit tests:

(1) TCP is considerably less effective for benchmarks than for unit tests, if we assume
that values for APFD and APFD-P are comparable. This is likely due to performance
changes being less correlated with the number of covered methods (or statements)
than functional faults are. Figure 13 depicts the relation between coverage set size and
performance change size. The Spearman’s rank correlation test validates that there is
only a low correlation at p = 0.22. To circumvent this situation, TCP for benchmarks
requires better approximations for performance changes than “just” the sum of all cov-
ered items. To this end, Mostafa et al. (2017) build a performance change impact model
for collection-intensive software, and Chen et al. (2020) build a runtime-cost-aware
machine learning model. However, both studies (partially) evaluated their techniques
with unit test suites which are executed in a benchmark-like fashion. In this study,
we explored the state of traditional TCP applied to benchmarks among a large set of
parameter combinations. It is our hope that future research can use this foundation to
develop techniques that are more effective for prioritizing benchmarks.

(2) The total strategy is more effective than the additional strategy for benchmarks when
relying on either static-coverage or dynamic-coverage; whereas the opposite is true
for TCP for unit tests. A potential reason for this relates to the definition of APFD-
P by Mostafa et al. (2017): it does not distinguish between multiple (performance)
faults detected by the same benchmark as APFD does, but it considers benchmark
results as a single fault with different severities, i.e., the performance change size.
Future research should aim at devising a new effectiveness metric for TCP for bench-
marks. This would require building a data set that distinguishes root causes of distinct
performance changes (with their severities/change sizes) per benchmark. However,
it is unclear whether this is feasible, as performance is non-linear and not directly
additive (Siegmund et al. 2015).

o
o

p=0.22,p<2.2e-16

~
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Fig. 13 Relation between coverage set size and performance change size. Each dot represents a benchmark

parameterization between two versions. The blue line depicts a linear model, and in the top right corner is
the Spearman’s rank correlation coefficient p and p-value
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(3) The efficiency of TCP for benchmarks is less of a concern compared to TCP for
unit tests, at least for the majority of the studied techniques. About half of the static-
coverage techniques have an overhead below 4%, whereas the dynamic-coverage
techniques have an overhead between 10% and 17%. This reasonable overhead
potentially makes TCP for benchmarks applicable in practice.

(4) The performance change of a benchmark executed on two adjacent versions is a con-
tinuous, open-ended value, whereas the outcome of a unit test is binary, i.e., either it
exposes a fault or not (disregarding flaky tests for simplicity). This leads to the chal-
lenge that measurement uncertainty and bias impacts the robustness of the technique
evaluation, as studied for RQ 2 in Section 5.2.

6.6 What is an Important Performance Change?

This paper’s goal is to reorder microbenchmarks in a suite to detect more important per-
formance changes sooner. For this, we define the importance of a performance change to
be linked to the performance change size: a larger performance change is more important
than a smaller performance change, as proposed by Mostafa et al. (2017). While it may
seem natural to use this definition, developers might perceive different benchmarks as more
important than the ones that exhibit the largest change. The definition is central to the effec-
tiveness of the TCP techniques, and other definitions are likely to lead to different results
and conclusions.

It is not clear how performance changes of benchmarks translate to overall end-to-end-
performance of a software system. A developer might be more interested in benchmark
changes that contribute more to the overall performance. This, however, is non-trivial to
assess:

(1) This paper’s projects under investigation all fall into the category of software libraries.
It is unclear what the end-to-end performance of libraries is. They have multiple (API)
endpoints and might be used differently by different developers.

(2) An application or system benchmark could be the gold standard for important performance
changes. For example, such benchmarks exist for the JVM, such as SPECjvm (Stan-
dard Performance Evaluation Corporation (SPEC) 2008), DaCapo (Blackburn et al.
2006), Da Capo con Scala (Sewe et al. 2011), and Renaissance (Prokopec et al.
2019). Moreover, Grambow et al. (2021) recently employed application benchmark
traces to improve microbenchmark suites. However, it is unclear how to map from
microbenchmark changes to application benchmark changes.

One might also define the importance of microbenchmarks based on whether they cover
parts of the library that is important to API clients. Following this idea, a large performance
change in a hardly used part is probably less important than a small performance change
in a heavily used part. One could get this importance definition by either (1) dynamically
tracing unit test executions of API clients, similar to Laaber and Leitner (2018); or (2)
statically mining large software repositories, e.g., with a technique as proposed by Sawant
and Bacchelli (2017).

Our definition treats different change sizes as differently important. However, developers
might deem any detected performance change, irrespective of the size, as important, as
long as it is above a certain threshold. Such a definition would be close to how unit testing
research treats functional faults, i.e., a test or benchmark either fails or succeeds.

Moreover, Mostafa et al. (2017)’s and our effectiveness definition, i.e., APFD-P and Top-
3, treats regressions and improvements the same way: they are performance changes. In a
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regression testing scenario, such as the one in this paper, developers might care more (if
not only) about performance regressions and are less concerned with performance improve-
ments. In this case, TCP techniques should prioritize benchmarks that potentially expose
performance regression over ones that do not exhibit changes or only report improvements.
This preference of performance regressions should also be reflected in the effectiveness
metrics.

Finally, which benchmarks or performance changes are really important for developers
can ultimately only be answered by developers themselves. This, however, would be a study
on its own, nonetheless an important one. Not only in the context of this study but more
generally, future research in performance engineering/testing should involve developers
more.

7 Related Work

Our study is related to three main areas of research: (1) TCP of functional tests, (2)
performance testing, and (3) performance measurements.

7.1 Test Case Prioritization of Functional Tests

Regression testing for functional/unit tests has been extensively explored (Yoo and Harman
2012), with the three main techniques being test suite minimization, regression test selection
(RTS), and test case prioritization (TCP). Our study takes the traditional TCP techniques on
unit tests (Rothermel et al. 1999), i.e., total and additional strategies, and studies them in
the context of software benchmarks.

TCP’s main idea is to reorder test cases with the goal of maximizing fault-exposure
rate, i.e., finding more faults sooner. Rothermel et al. (1999, 2001) coined the term TCP
and introduced the main techniques: fotal and additional strategies. Both are greedy, white-
box prioritization techniques relying on coverage information, such as statement, branch, or
method coverage. Where the toral strategy assigns weights once to all tests and ranks them
accordingly, the additional strategy re-assigns weights to prioritize tests that execute more,
yet uncovered regions of the production code. Elbaum et al. (2002) extended the study to
a total of 18 different techniques by rankings based on fault exposure and fault existence
probabilities. Elbaum et al. (2001) extended APFD to incorporate cost of tests and faults.

More recent trends in greedy TCP techniques combine total and additional strate-
gies (Zhang et al. 2013; Hao et al. 2014) or utilize less-expensive static coverage informa-
tion (Zhang et al. 2009b; Mei et al. 2012). Other, non-greedy techniques have been proposed
to utilize search-based algorithms (Walcott et al. 2006; Li et al. 2007), ant-colony opti-
mization (Singh et al. 2010), knapsack solvers (Alspaugh et al. 2007), and integer linear
programming (Zhang et al. 2009a). Time-aware techniques (Walcott et al. 2006; Alspaugh
et al. 2007; Zhang et al. 2009a; Do et al. 2010; You et al. 2011) study the impact of time on
TCP effectiveness.

With the emergence of CI and new code versions arriving at high velocity, efficient
black-box techniques are on the rise (Elbaum et al. 2014; Liang et al. 2018; Haghigh-
atkhah et al. 2018). Henard et al. (2016) investigate the differences between white-box and
black-box techniques, and Luo et al. (2016, 2019) compare static and dynamic techniques.

Finally, recent efforts assess TCP techniques in real world contexts (Lu et al. 2016),
contrast real faults to faults based on mutation (Luo et al. 2018), and incorporate developer
knowledge into the ranking (Tonella et al. 2006).
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Our study draws inspiration from many of the aforementioned papers. It studies tradi-
tional techniques, i.e., total and additional strategies, on method-level granularity, investi-
gates the impact of varying prioritization parameters, focuses on efficiency, and applies all
of it to software microbenchmarks.

7.2 Performance Testing

Software performance engineering (SPE) can be conducted in two general ways:
measurement-based and model-based (Woodside et al. 2007). Our work focuses on a
specific technique of measurement-based SPE, i.e., performance testing with software
microbenchmarks.

Traditional performance testing research dedicated their effort on system-level load test-
ing, and the related stress, soak, and spike testing (Weyuker and Vokolos 2000; Menascé
2002; Jiang and Hassan 2015). More recent works in load testing focus on industrial con-
texts (Nguyen et al. 2014; Foo et al. 2015) and time reduction techniques (AlGhamdi et al.
2016; AlGhamdi et al. 2020; He et al. 2019).

The other form of performance testing, i.e., software microbenchmarking, has only
received more attention from research in recent years. Software microbenchmarking is to
load testing what unit testing is to functional system/integration testing. General studies
empirically investigate the current state of software microbenchmarking (Leitner and Beze-
mer 2017; Stefan et al. 2017). Targeted research on their usage for raising the performance
awareness of developers (Horky et al. 2015), the changes that they detect (Chen and Shang
2017), their applicability in CI (Laaber and Leitner 2018) shows the potential, but also the
challenges, of using software microbenchmarks.

Challenges include the complexity of writing good microbenchmarks, executing them
in a rigorous fashion, and assessing their results with statistical techniques. Damasceno
Costa et al. (2019) devise a technique to statically detect bad practices, Laaber et al.
(2019) study their behavior when executed on cloud infrastructure, and Bulej et al. (2012,
2017) introduce a declarative method for comparing different benchmark results using
rigorous statistical testing. Ding et al. (2020) study whether unit tests can be effectively
used for detecting performance changes. Laaber et al. (2020) devise an approach to stop
microbenchmarks once their results are sufficiently stable; and Laaber et al. (2021a) employ
machine-learning-based classifiers to predict whether a benchmark will be stable, based on
statically-computed source code features, without the need to execute it.

In the context of regression testing, only a handful of studies have been conducted
so far. Huang et al. (2014) predict the performance impact of a new software version to
decide whether this new versions should be tested for performance. Pradel et al. (2014)
and Yu and Pradel (2017) address performance regression testing for concurrent classes.
Three regression test selection (RTS) techniques employ performance-impact prediction (de
Oliveira et al. 2017), genetic algorithms (Alshoaibi et al. 2019), and machine learning clas-
sifiers (Chen et al. 2020) to select important benchmarks, i.e., the ones that are likely to
expose performance changes, for every software version.

Closest to our work are the ones by Mostafa et al. (2017) and Chen et al. (2020),
which are, to the best of our knowledge, the only other works on TCP for performance
tests. Mostafa et al. (2017) focus on collection-intensive software and decide, based on
code changes and a performance-impact model, which performance tests to prioritize. Their
paper utilizes as baselines the “best techniques” based on unit testing research. We, however,
outline that the assumption that TCP techniques from unit testing research behave identical
for performance tests does not hold. The primary goal of Chen et al. (2020) is to predict
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whether tests are performance-affected, e.g., for RTS, but they also prioritize tests based
on whether they are affected normalized by their runtime cost. Both works, however, (par-
tially) use unit tests executed in a benchmark-like fashion as performance tests. It is unclear
whether they are even comparable to dedicated performance tests, i.e., microbenchmarks,
which are the objects in our study. We further show how the uncertainty of performance
measurements and the choice of prioritization parameters impacts TCP effectiveness and
efficiency.

7.3 Performance Measurements

The results of any software benchmarking study are affected by the validity of the under-
lying performance measurements. A lot can go wrong, and many mistakes can be made.
Consequently, measurement bias has in the past lead researchers to draw wrong conclu-
sions (Mytkowicz et al. 2009). Effects due to memory layout (Curtsinger and Berger 2013)
and dynamic compilation (Kalibera and Jones 2012; 2013) require careful experiment
design and statistical evaluation. Georges et al. (2007) provide a guide for performance eval-
uations in Java. To retrieve reliable results from unreliable environments (such as clouds),
Papadopoulos et al. (2019) outline a comprehensive methodology. We follow the method-
ologies from Georges et al. (2007) for the performance changes used in the effectiveness
measure calculation, apply cloud performance measurement methodologies (Papadopoulos
et al. 2019; Laaber et al. 2019) for the efficiency results, and employ rigorous statistical
techniques (Kalibera and Jones 2012).

8 Conclusions

This paper presents the first investigation on whether standard TCP techniques from unit
testing research are applicable in the context of software microbenchmarks. We empirically
studied the effectiveness, robustness, and efficiency of these techniques and investigated
the impact of four independent variables, i.e., fotal and additional strategies, benchmark
granularities on method and parameter level, dynamic and static coverage types, and four
coverage-type-specific parameters. The unique combinations of these independent variables
results in 54 different TCP techniques, which we evaluated on a large JMH data set com-
prising 10 Java OSS projects, across 161 versions, having 1,829 distinct microbenchmarks
with 6,460 distinct parameterizations.

We found that techniques with the fotal strategy outperform additional techniques.
The mean effectiveness ranges between 0.54 and 0.71 APFD-P, and it requires executing
between 29% and 66% (Top-3) of the total benchmark suite. The performance change size,
which is considered to be significant, impacts the effectiveness and can change the APFD-
P values considerably, i.e., by a median difference of between 0.11 and 0.28. However,
the ranking among different techniques is hardly affected by it. In terms of efficiency, we
showed that the best technique has an overhead of 11% and uses dynamic-coverage, making
TCP for benchmarks feasible. Techniques with static-coverage often reduce the overhead
even further, often below 4%, while still being competitive in terms of effectiveness. Our
efficiency analysis also revealed that the assumption that static-coverage is always cheaper
than dynamic-coverage does not hold; “wrong” parameterization can drastically decrease
efficiency, sometimes exceeding 55% of overhead. The choice of independent variable val-
ues has a considerable effect on effectiveness and efficiency, sometimes even rendering the
TCP technique inferior to a random ordering and imposing a large analysis overhead.
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Our results are of high importance to future research that considers standard TCP
techniques as baselines for novel techniques, and they raise awareness of how impactful
prioritization parameters are on TCP effectiveness and efficiency.

8.1 Future Research

It is our hope that this paper is only the beginning of performance test prioritization. We
envision five directions that seem worthwhile investigating.

—  Current TCP techniques for performance tests are either tailored to specific types of
software (Pradel et al. 2014; Mostafa et al. 2017) or evaluated on unit tests which are
used as performance tests (Chen et al. 2020). Future research should devise generally
applicable TCP techniques for benchmarks and evaluate these and existing techniques
on benchmarks.

—  This study investigated white-box TCP techniques, whereas black-box techniques have
not been explored. These could be based on benchmark quality attributes or test
similarity.

— It is unclear which information developers need to decide which benchmarks to exe-
cute on new commits and in which order. Empirical studies involving humans could
influence design decisions for better benchmark TCP and RTS.

—  Choosing TCP hyper-parameters (i.e., independent variable values) to maximize TCP
effectiveness and efficiency is non-trivial, which would require better support for
developers.

— Combining TCP and RTS techniques might provide optimal results in temporally-
constrained settings, such as CI.
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