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Abstract: Shipping emissions are a major source of particulate matter in the atmosphere. The volatility
of gaseous and particulate phase ship emissions are poorly known despite their potentially significant
effect on the evolution of the emissions and their secondary organic aerosol (SOA) formation potential.
An approach combining a genetic optimisation algorithm with volatility modelling was used on
volatility measurement data to study the volatility distribution of a ship engine’s emissions in
real-world conditions. The fuels used were marine gas oil (MGO) and methanol. The engine was
operated with 50% and 70% loads with and without active NOx after-treatment with selective catalytic
reduction (SCR). The volatility distributions were extended to higher volatilities by combining the
speciation information of the gas phase volatile organic compounds with particle phase volatility
distributions and organic carbon measurements. These measurements also provided the emission
factors of the gas and particle phase emissions. The results for the particle phase volatility matched
well with the existing results placing most of the volatile organic mass in the intermediate volatile
organic compounds (IVOC). The IVOCs also dominated the speciated gas phase. Partitioning of
the emissions in the gas and particle phases was affected significantly by the total organic mass
concentration, underlining the importance of the effect of the dilution on the phase of the emissions.

Keywords: marine emissions; atmospheric emissions; aerosols; volatility; volatility basis set

1. Introduction

Aerosols related to emissions from transport have a negative impact on both human
health and the environment. Elevated levels of particulate matter have been shown to be
connected to increased mortality (e.g., [1–4]) and to affect the radiation balance and thus
climate change [5–7]. Marine traffic is a significant source of transport-related aerosols,
and marine traffic emissions can contribute significantly to pollutant concentrations in
the atmosphere, especially in coastal and harbour areas. Shipping contributes especially
to sulphuric oxide (SOx), nitrogen oxide (NOx), and particulate matter emissions [8–10].
Gaining new information on ship emissions is especially important because the volume of
marine traffic is increasing, although COVID-19 and the war in Ukraine are causing some
uncertainties [11]. At the same time, the fuels used in the ship engines are being switched
from heavy oil to cleaner alternatives, which affects the composition of the exhaust emission

Atmosphere 2023, 14, 1175. https://doi.org/10.3390/atmos14071175 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14071175
https://doi.org/10.3390/atmos14071175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0001-6704-2449
https://orcid.org/0000-0002-4267-6098
https://orcid.org/0000-0002-1737-2391
https://orcid.org/0000-0002-7987-7985
https://orcid.org/0000-0001-8915-4097
https://orcid.org/0000-0002-2807-8593
https://doi.org/10.3390/atmos14071175
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14071175?type=check_update&version=2


Atmosphere 2023, 14, 1175 2 of 19

aerosols [10,12]. In addition to the fuel, the engine load of a ship’s engine changes the
exhaust emission properties. Therefore, a ship’s emissions near a harbour with a lower
engine load may differ significantly from the emissions in the open sea with a higher engine
load [10,13].

The current restrictions for NOx emissions, e.g., in Europe and North America, can
be achieved only by using after-treatment devices. Selective catalytic reduction (SCR) is
an effective technology to achieve this reduction. It is technology that uses a catalyst and
ammonia, often in the form of urea, to reduce NOx to nitrogen and water. The use of
such after-treatment methods has been shown to also have an effect on the emission of
particles [14].

An exhaust aerosol released to the atmosphere evolves due to dilution and cooling, co-
agulation, evaporation, deposition, and chemical processes. Understanding these processes
is crucial to know the aerosol concentration and properties in an evolving exhaust plume,
and to estimate the aerosol emission’s effects on health and the environment. The volatility
of species in fresh exhaust is one of the key factors determining how it will evolve. Fresh
exhaust from a ship’s engine contains organic compounds that have volatilities ranging
from low (LVOCs) to very volatile (VOCs). Semi-volatile organic compounds (SVOCs) and
intermediate volatile organic compounds (IVOCs) are of special interest since they can
co-exist in both the gas and particle phases in the atmosphere. These compounds partition
between the gas and particle phases depending on the total mass of each compound present
and the effective saturation concentration values of these compounds at the prevailing
temperature and pressure conditions along the plume [15,16]. For example, dilution will
move organic matter from one phase to another. Shipping has been shown to be a major
source of SVOCs and IVOCs [13,17,18]. Further, these organic compounds contribute to the
formation of secondary organic aerosols (SOA). Unlike primary organic aerosols (POA),
which are emitted to the atmosphere directly in the particle phase, SOA is formed from gas
phase organic compounds via atmospheric oxidation and partitioning [15,19]. Since the
atmospheric SOA formation mechanisms as well as the exact molecular compositions and
evolution pathways of SVOCs and IVOCs are not fully understood, modelling efforts often
underestimate the SOA formation in the atmosphere [20,21].

Fresh exhaust can contain thousands of different species. Trying to explicitly model or
even experimentally characterise their chemistry in order to study the effects of volatility is
challenging. Representing the volatilities of an emission as a volatility distribution rather
than as individual values for specific compounds has been shown to be an effective ap-
proach [22–24]. The volatility basis set (VBS) approach groups species of similar volatilities
together. Effective saturation concentration is used to characterise the volatility of these
volatility bins.

Saturation vapour pressure-driven mass transfer between the gas and particle phases
can be solved if the initial volatility distribution is known [25]. Obtaining this initial
volatility distribution can be challenging. There is a lack of experimental data on aerosol
volatilities. One approach to this problem is using existing emission inventories or exper-
imentally identifying the species present in the emitted mixture and assigning volatility
properties to these species. However, apart from the fact that identification of the VOC
composition is associated with large uncertainties and incomplete mass closure, effective
saturation concentration values are not available for the majority of organic compounds.
Saturation concentrations are readily derived from the available saturation vapour pres-
sure, but they describe a vapour over a pure liquid. Effective saturation concentration,
however, applies to a vapour in a mixture and requires an activity coefficient [22,26,27].
Building a volatility distribution this way may therefore include some strong approxima-
tions. Another approach is to perform volatility measurements, for example with help of a
thermodenuder, conditioning the measured aerosol at different temperatures, measuring
the loss of the volatile PM, and comparing these results to an aerosol that has bypassed
the thermodenuder. Simulation studies and optimisation methods can then be used to
find the physical properties of an initial volatility distribution that match the measured
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evaporation behaviour when used as an input in an evaporation model. In practice, this is
typically challenging, since the evaporation of an aerosol depends on several properties
such as the effective saturation concentration, the vaporisation enthalpy, and the mass
accommodation coefficient. Several combinations of these can produce similar evaporation
behaviour. One possible solution to this problem is using a genetic optimisation algorithm
to find the volatility distribution and vaporisation enthalpies that match the measured
behaviour as well as possible [28,29].

The VBS approach is readily used to model emissions of organic species and their
effects on the atmosphere [23,30,31]. There are volatility distribution studies for on- and off-
road engines [32–34] and laboratory experiments measuring the overall volatility of a ship’s
engine emissions [35,36]. However, ship exhaust volatility studies in real-world conditions
are sparse. Huang et al. [17] measured the SVOC and IVOC volatility distributions aboard
a large cargo vessel for high and low sulfur fuels and observed that a lower sulfur content
corresponded to higher emissions of IVOC and SOA mass as well as higher volatility of
the emissions.

This study offers novel information on ship exhaust emission volatilities in real-
world conditions with different engine loads and fuels. In addition to providing volatility
distributions for particle phase measurements, the species were identified in the gas phase
to provide volatility distributions, including the more volatile species in the ship’s emissions.
The effect of the volatility on the partitioning of the emissions to the gas and particle phases
was also studied to better understand a ship’s engine emissions and their evolution in the
atmosphere. This study adds to the rather sparse amount of information we have on the
volatility of a ship’s engine emissions, especially when operated in real-world conditions.

2. Methods

Ship exhaust emissions were measured aboard the Stena Germanica passenger/Ro-
Pax ferry on September 2021, between Gothenburg, Sweden, and Kiel, Germany. Stena
Germanica has four 4-stroke Sulzer 8ZAL40S diesel engines, which each provide 6000 kW
for two controllable pitch propellers. The measurement setup used to study the volatility
of the emissions with the thermodenuder is shown in Figure 1. The fuel used in most of the
measurements was marine gas oil (MGO) with a low sulfur content of 0.095 wt %. Stena
Germanica can also run on methanol, and emissions resulting from the use of this fuel were
also measured. During the methanol operation, a small amount (6–14%) of MGO is used
as a pilot fuel. Every emission was sampled after the selective catalytic reduction catalyst.
The SCR was operated either with added urea (switched on) or without urea (switched off)
to study the effect of the catalytic reduction. The investigated engine was operated to reach
stable test periods with loads of about 25%, 50%, or 70%. The selection of the cases used in
this paper is listed in Table 1.

To study the volatility of a particle phase emission from a ship’s engine, the sample
was first diluted using a porous tube diluter (PTD) and an ejector diluter. The sample
was then led to a thermodenuder, which was heated to 250 ◦C [37]. The temperature
was gradually brought down to 50 ◦C while simultaneously measuring the particle size
distribution with two scanning mobility particle sizers (SMPS). The differential mobility
analysers (DMA) and condensation particle counters (CPC) forming the SMPSs were DMA
3081 and CPC 3756 (TSI), for the long-SMPS, and DMA 3085 and CPC 3776 (TSI) for the
nano-SMPS. The Soot-Particle Aerosol Mass Spectrometer (SP-AMS; Aerodyne Research
Inc. [38], Billerica, MA, USA) measured the composition (total organic, sulphate, nitrate,
ammonium, and chloride) and submicron particle mass concentration of the ship’s emission,
and the aethalometer (Model AE33; Magee Scientific, Berkeley, CA, USA) measured the
equivalent black carbon (eBC) concentration. The evaporation of the aerosol could then
be studied by comparing the measurement points downstream from the thermodenuder
to an aerosol bypassing the thermodenuder. The mass fraction lost in the thermodenuder
after calculation of the nominal thermodenuder losses is the fraction of the original aerosol
evaporating at a given temperature. This, or conversely the mass fraction remaining in
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the particle phase, can be used as the target data for the subsequent volatility modelling.
The black carbon concentration measurements with the aethalometer were used to both
estimate the losses inside the thermodenuder not caused by vaporisation, such as the wall
losses, and to estimate the amount of black carbon in the sample.

AE33

PTD Ejector diluter

SP-AMS

T
h

e
rm

o
d

e
n

u
d

e
r

Stack

Long-SMPSNano-SMPS

Figure 1. Setup used in the volatility measurements. The sample from the stack is diluted before
it either enters or bypasses the thermodenuder. From there, the sample is led to an aethalometer,
SP-AMS, and two SMPS setups.

Table 1. The different measurement cases used in the volatility experiments.

Fuel Engine Load After-Treatment

Marine gas oil 70% SCR without urea
Marine gas oil 70% SCR with urea
Marine gas oil 50% SCR without urea
Marine gas oil 50% SCR with urea

Methanol 50% SCR without urea

Furthermore, offline sampling was also used to study the ship’s exhaust. The organic
carbon (OC) emissions for the MGO fuel were measured by collecting samples on quartz
filters with a dilution ratio (DR) varying between 45 and 50. Because there was no filter
collection for methanol post-catalyst, the OC emissions in this case were estimated using
the SP-AMS. The filter samples were analysed using a thermal–optical carbon analyser
(OCEC model 5 L; Sunset Laboratory). Five samples were taken for each measurement with
the temperature of the diluted sample being 24–26 ◦C. To obtain the organic (particulate)
matter (OM) concentration of the emission from the filter samples, the OC concentration
was multiplied by 1.2 [39]. Gas characterisation was conducted using several different
measurement techniques. Polyaromatic hydrocarbons (PAH) and dibenzothiophenes (DBT)
were collected on polytetrafluoroethylene (PTFE) filters and XAD-2 adsorbent tubes for
the gas phase. PAH and DBT samples were analysed at the Region Skåne laboratory with
a gas chromatograph–mass spectrometer (GC-MS) comprised of an Agilent 5975C mass
spectrometer and an Agilent 7890A gas chromatograph (Agilent Technologies). VOC and
C6-C10 alkane samples were collected using Tenax TA-Carbopack B sorbent tubes and
C2-C6 non-methane hydrocarbons (NMHC) using evacuated stainless steel canisters. The
canister and sorbent tube samples were analysed with gas chromatographs connected to a
GC-MS and a flame ionisation detector (FID) at the Finnish Meteorological Institute. More
detailed measurement descriptions are available [40].

The total hydrocarbon (THC) emissions in methane equivalents were measured using
a flame ionisation detector (FID) on the raw (not diluted) exhaust that was led to the
instrument using a heated line with a temperature of 180 ◦C, and the online VOC emissions
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were measured with a proton transfer reaction time-of-flight mass spectrometer (PTR-
ToF-MS 8000, Ionicon Analytics, Innsbruck, Austria). The sample exhaust was filtered for
particulates before being diluted by a factor of 4 by an ejector diluter prior to the PTR-
ToF-MS. The ejector, dilution air, and the sampling line were heated to at least 50 ◦C to
minimise the wall losses of the gas phase species. Table S1 in the Supplementary Material
contains all the identified species, their effective saturation concentrations, and the mass
fractions for each of the five fuel, engine load, and after-treatment combinations. Not all
the species were identified for each of the five measurement cases, which can also been
seen in Table S1.

If an initial volatility distribution is known, the behaviour of an aerosol emission
regarding evaporation can be simulated by solving the saturation vapour pressure-driven
mass transfer between the gas and particle phase [25]. The mass flux of species i from the
gas phase to the particle phase Ii is given by

Ii =
2πdp pMiDiβi

RT
ln

1 − psur f ,i
p

1 − p f ar,i
p

, (1)

if cp,i > 0, and
1−

psur f ,i
p

1−
p f ar,i

p

> 0, or

Ii =
2πdp MiDiβi

RT
ln
(

psur f ,i − p f ar,i

)
, (2)

if cp,i > 0, and
1−

psur f ,i
p

1−
p f ar,i

p

≤ 0.

Here, dp is the particle diameter, p is the total gas pressure, Mi, Di, and βi are the
molecular weight, diffusion coefficient, and correction factor for the transition regime for
species i, respectively. R is the gas constant, and T is the temperature. psur f ,i and p f ar,i are
the partial pressures of species i at the particle surface and far away from the particle. cp,i
is the mass concentration of species i in the particle phase.

To solve the initial volatility distribution from the evaporation data, we used a genetic
optimisation algorithm [28,29]. We generated an initial population consisting of individuals
with random volatility distributions. Population, here, refers to a set of volatility distribu-
tions. Each volatility distribution is an individual with randomly generated volatility bins.
The mass fractions in the volatility bins of each individual add up to one. Each individual is
used as input in an evaporation model to produce evaporation curves showing the fraction
of mass that has not evaporated from the particle phase as a function of temperature.
These curves are compared to a target function obtained from the evaporation seen in the
thermodenuder measurements. Comparing the remaining mass after evaporation seen in
the thermodenuder to the remaining mass according to the evaporation model and taking
the mean square error gives each individual a fitness value. If desired, the algorithm can
then keep on searching for new individuals even after reaching the wanted population size
until it has found enough best fit candidates that have fitness values better than some best
fit criterion.

After generating an initial population, the model chooses randomly, albeit with some
bias towards the individuals with best fitness values, two parents or volatility distributions
from the initial population to produce a child. The child inherits one half of its properties
from each parent. In practise, this means that the child is a new volatility distribution made
by taking half of the volatility bins from one parent distribution and half from the other
(inheriting) and normalising this new distribution to one. It is also possible for the child to
mutate, which means creating a completely new volatility distribution, as when creating
the initial population. A child with a better fitness value than the worst existing individual
in the population replaces that worst individual. If the fitness value of this individual child
is worse than any of the individuals already in the population, the child is discarded. This
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step is repeated over the whole population to produce a new generation. In this case, the
word generation does not exactly match its normal definition, since older individuals fit
enough to stay are also included in the next generation. The whole process is repeated
over a chosen number of generations. The algorithm attempts to improve the fitness of
the individuals, but the chance of mutation keeps the population varied to prevent the
algorithm from converging to a local rather than global minimum. The general outline of
the genetic algorithm is presented in Figure 2.

Combine 
parents 

(properties 
from both)

Mutation 
(Assign 
random 

properties)

Good enough 
fitness value

The next 
generation

Discard if 
fitness not 

good enough

Check 
fitness

Discard 
worst old 
individual

Repeat over x generations

Produce 
offspring

Population 
of n 

individuals

Final 
population

Figure 2. Flowchart describing the basic process of the genetic optimisation algorithm. An initial
population of randomly generated individuals, i.e., volatility distributions, produces children taking
one half of the volatility properties from each parent. The child can also mutate, which means drawing
a completely new volatility distribution. These children are either accepted into the population or
discarded based on how well their volatility behaviour matches a measured volatility when used
as input in a volatility model. A new generation of individuals is created this way that, in turn,
goes through the same process. The population of volatility distributions keeps on improving by
discarding the worst individuals and replacing those with ones whose volatility behaviour better
matches the measurement data. The aim of the process is to produce a volatility distribution that
reproduces measurement data as accurately as possible when used in a volatility model.

To obtain a volatility distribution for a ship’s exhaust emissions, measurements were
carried out onboard the Stena Germanica ship. The volatility distribution we obtained from
the thermodenuder experiments was the volatility distribution of a particle phase sample
of the emission. The measured mass fractions remaining were loss-corrected based on the
black carbon mass lost in the thermodenuder at different temperatures, since black carbon
will not evaporate during the heat treatment. The SP-AMS and aethalometer data were used
to calculate the fraction of particulate mass from the BC and organic compounds. The size
distributions were measured using the two SMPS setups and scaling the total concentration
according to the mass fractions as BC and organic compounds. These experimental data
were then used as an input for the genetic optimisation algorithm.

Gas phase information is needed to obtain a full volatility distribution. Gas phase
measurements were carried out to identify the gaseous species. All these species were then
assigned effective saturation concentrations C∗

i values. Since there is a lack of knowledge
when it comes to the exact effective saturation concentration values of most species, they
were estimated based on their saturation vapour pressures and number of carbon and
oxygen atoms [26]. The components were then divided into bins according to the effective
saturation concentration values to obtain a volatility distribution as listed in Table S1.

To combine the two volatility distributions into one distribution, information on how
these aerosols are divided between gas and particle phases is necessary. Organic aerosols
with known volatility distribution and total concentration partitions to the gas and particle
phases in equilibrium are calculated as in the following equation

ξi =
1

1 + C∗
i

∑ C0,iξi

, (3)
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where ξi is the partitioning coefficient of species i to the particle phase, and C∗
i and C0,i

are the effective saturation concentration and the total mass concentration of species
i, respectively. This equation can be solved iteratively for each species present in the
aerosol but can also be used with the VBS approach, treating each volatility bin as an
individual species.

Our approach was to solve partitioning based on the OM and THC measurements from
the ship stack. The thermodenuder-derived volatility distribution was used together with
the mass concentrations from the OM measurements to see how this aerosol partitioned to
the gas and particle phases. The same was performed for the volatility distribution that was
based on the identified species aboard the Stena Germanica, assuming that the total organic
mass was the measured THC mass concentration. The particle and gas phase masses
in each volatility bin from the OM and THC measurements were then compared. The
volatility bins used for the OM and THC measurements were partly overlapping; therefore,
there was a chance that some organic mass was double-counted. To account for this, the
gas and particle phase concentrations for each bin were assumed to be the contributions
from the OM and THC measurements with the higher organic mass concentration. The
final volatility distribution was then formed by combining the chosen particle and gas
phase concentrations for each bin and normalising the volatility distribution to the total
organic mass obtained by summation of the individual bins. To test the feasibility of this
approach, the particle phase mass fraction in the new VBS was compared to what it should
be according to the partitioning equation. The process is illustrated in Figure 3. In all five
cases, these two particle phase mass fractions compared reasonably well as can be seen in
Figures S1–S5 in the Supplementary Materials.

Particle
Gas

Particle Phase

Gas Phase
Partitioning

Thermo- 
denuder 
+ OM

Gas phase 
measurements 
+ THC

Measured
Partitioning 
equation
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1

0
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Figure 3. Schematic of the algorithm used to construct a full volatility distribution from the OM and
THC measurements. Volatility distribution is created using the thermodenuder measurements with
the OM concentration and the identified gas phase species together with the THC concentration.
Partitioning to the gas and particle phases is then solved for all the bins and for each of the two
distributions. For each bin, the particle and the gas phase concentration is chosen to be the larger
contribution. The fraction of mass in the particle phase in this new volatility distribution is then
compared to the fraction in the particle phase according to the partitioning equation using the same
volatility distribution.
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3. Results
3.1. Volatility Distribution of a Ship’s Emissions

The genetic optimisation algorithm was used to find an initial distribution that would
match the measured evaporation in the thermodenuder as well as possible when inserted
into the evaporation model. The genetic optimisation algorithm was run 50 times for
each case with a population size of 100 and over 25 generations. The final volatility
distribution was the average of these 50 runs in each bin. The resulting evaporation curves
together with the measurement points from the thermodenuder are shown in Figure 4. The
measured remaining mass fractions were corrected based on the black carbon losses inside
the thermodenuder, as described in the previous section.
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Figure 4. The evaporation curves obtained from the optimisation algorithm and the thermodenuder
data compared to the measured data points from the thermodenuder measurements.

The volatility distributions obtained by using the genetic optimisation algorithm on
the thermodenuder measurements are shown in Figure 5. The error bars are the standard
deviations of the 50 genetic optimisation runs. In case of the MGO, the thermodenuder
experiments were performed for 75% and 50% engine loads after SCR treatment either with
or without urea injection. The nonvolatile fraction of the particle phase varied between
35 and 50%. Most of the volatile mass without urea injection was clearly in the IVOC
volatility range, and the results followed a similar pattern with both engine loads and both
types of fuels used. Urea treatment seemed to even out the volatility distribution with
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the mass being divided more evenly between low-, semi-, and intermediate-volatile bins.
When using a lower load, the nonvolatile fraction in the emission was slightly larger with
and without urea. The volatility distribution of the particle phase emission when using
methanol as a fuel with a 50% engine load was similar to the equivalent case using the
MGO; although in the IVOC range, the most volatile bins had a smaller contribution to
the distribution.
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Figure 5. The volatility distributions of the particle phase samples used in the thermodenuder
experiments shown as mass fractions from the total particle phase mass. The genetic optimisation
algorithm was run 50 times for each case. The mass fraction from the particle phase organic mass
is the average of these runs in each bin, and the error estimation comes from standard deviation of
these runs.

The total volatility distribution based on both gas and particle phase measurements
was constructed as described in the Methods section. The resulting volatility distributions
are shown in Figure 6. In every case, a large amount of the mass was in bins 4 and 6. Based
on the PTR-MS and GC-MS measurements, these high concentrations can be attributed to
phthalic anhydride and maleic anhydride, respectively [40]. While the source of these anhy-
drides is not clear, phthalic anhydride could be an oxidation product from naphthalene [41].
Adding urea did not seem to have a large effect on the gaseous part of the distribution.
When using methanol, there was a higher fraction of material in the very volatile bins.
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Figure 6. The combined volatility distributions as mass fractions from the total organic mass based on
the OM and THC concentration measurements. The OM concentrations were applied to the VBS from
the thermodenuder measurements and the THC to the VBS derived from gas phase measurements from
the engine.

As an example, Figure 7 shows the partitioning to the particle phase for the MGO when
using 75% engine load and the urea after-treatment. In this case, the results were similar,
but the partitioning from the particle to the gas phase was very rapid when the volatility
changed between bins 2 and 4. Similar plots can be seen for the rest of the measurement
cases in Figures S1–S5 in the Supplementary Materials. It can be seen that although the
curves followed similar trends, there was some discrepancy in the mentioned volatility
bins. This could be explained by the uncertainty when it comes to the volatility fraction
measurements but also by the volatility bin approach, which combines different volatilites
and, as such, also creates uncertainty. The partitioning change between the intermediate
volatility bins happens so rapidly that a large fraction of mass near the bin edge could
cause some error, and in all the cases, in particular, bin 4 had a significant fraction of mass
in it.
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Figure 7. An example of the partitioning of a volatility distribution to the particle phase for an MGO
with 75% engine load and urea treatment, constructed as described in the Methods section. The black
crosses are the measured mass fractions in the particle phase based on the thermodenuder and the
total hydrocarbon concentration measurements. These are compared to what the mass in the particle
phase should be according to the partitioning equation.

Figure 6 shows the normalised volatility distributions and partitioning calculated
for the sampling point directly after the emission when no dilution occurred. When the
emission is released to the atmosphere, the partitioning evolves, since both the total mass
concentration and the concentration of the constituent species will change due to dilution.
The partitioning of the emissions with the previously derived volatility distributions to the
particle phase as a function of the dilution is shown in Figure 8.

The emission factors, after calculating the partitioning in the gas and particle phases,
are shown in Table 2. The table also shows the total mass concentration in the raw, i.e.,
undiluted exhaust. It should be noted that these are not the exact measured emission
factors but the calculated values after partitioning based on the volatility distribution of
the emission. For the MGO with 70% engine load, the addition of urea seemed to reduce
the emission factor of the particle phase, while the gas phase emission factor was slightly
higher. The total mass concentration was clearly lower when the engine load was 50%. The
particle phase emission factor for the 50% engine load was also lower, and unlike with the
70% case, it was higher after urea treatment. The gas phase emission factor was similar to
the 70% case and did not change significantly after the urea injection. For methanol, the
total mass concentration was much higher than for the other cases. This was due to the
much higher gas phase emission. In the undiluted case, some of the gas phase compounds
partitioned to the particle phase.

The emission factors were also calculated using partitioning, corresponding to a
diluted emission with a dilution ratio of 1000. As expected, the gas phase emission was
increased, while the particle phase emission was reduced. In each case, the gas phase
emission became the dominant one. For methanol, the particle phase emission factor was
heavily reduced, since the volatility distribution consisted mostly of the more volatile bins.
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Figure 8. Partitioning of each of the measurement cases to the particle phase due to dilution. The
total organic mass concentration of the emission is reduced with the dilution, which drives more
mass from the particle to the gas phase.

Table 2. The total emissions as the mass concentration and emission factors for the particle and gas
phases for the five measurement cases. The emission factors are shown as calculated at the point of
release from the ship stack, assuming no dilution and assuming the partitioning of the emission is
equivalent to it being diluted with DR = 1000.

MGO, 70%
Load, Urea

Off

MGO, 70%
Load, Urea

On

MGO, 50%
Load, Urea

Off

MGO, 50%
Load, Urea

On

Methanol,
50% Load,
Urea Off

Total concentration in
the exhaust (mg/m3) 13.9 12.8 7.7 9.0 73.2

Particle phase emission
(mg/kg fuel) 208.4 174.7 77.0 101.3 248.1

Gas phase emission
(mg CH4eq./kg fuel) 284.7 327.1 276.2 268.2 1349.5

Particle phase emission
(mg/kg fuel) (DR = 1000) 127.2 124.3 58.6 78.2 32.6

Gas phase emission
(mg CH4eq./kg fuel)

(DR = 1000)
416.4 411.4 297.4 302.9 1700.9

The respective gas and particle phase fractions belonging to individual VBS bins also
changed as the emissions diluted. Figure 9 shows the evolution of each measured volatility
distribution for the dilution ratios of 1, 10, 100, and 1000. The particle phase was heavily
reduced from the IVOC range already with the dilution ratio of 10 in each case. With higher
dilution, practically all the particle mass was in the SVOC and lower volatility bins.
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Figure 9. Bin-specific partitioning calculated for the five measurement cases with dilution ratios of
1, 10, 100, and 1000. The low-volatility bins, where all the mass is in the particle phase, have been
combined as one bin. The most volatile bins have similarly been combined to one volatile bin.

3.2. Comparison to Existing Volatility Distributions

Huang et al. [17] measured the volatility distributions from ship engines in real-world
conditions. They measured low-sulfur fuel emissions while leaving the port using a 50%
engine load. While the fuels almost certainly were not the same, the MGO used in our
study is also a type of low-sulfur fuel and can therefore be compared. The results from the
two studies are presented in Table 3. When comparing the results from the thermodenuder
measurements and the modelling, we readily observed that the results showed a somewhat
higher mass fraction of nonvolatile mass. In the SVOC and IVOC ranges, both results were
very similar with most of the volatile mass being in the IVOC range and peaking in the
4 × 104 µg/m3 bin.

The Ship Traffic Emission Assessment Model (STEAM) is a model that can be used
to evaluate the exhaust emissions of a marine vessel [42,43]. To estimate the chemical
composition of the organic emission, STEAM distributes VOC species to four different
groups whose relative contributions to the emission are based on measurements on marine
as well as on off-road diesel engines [44–46]. While the VOC species STEAM uses are not
exactly the same as the species identified aboard the Stena Germanica, a load-dependent
VBS set was constructed for a STEAM VOC scheme in a similar manner as for the data
obtained aboard the ship. In addition, the emission factors for load-dependent organic
carbon and hydrocarbon emissions can be obtained from STEAM [47]. The total volatility
distribution was built assuming all the organic carbon was nonvolatile material, while the
hydrocarbon emission factor was divided into volatility bins according to the VBS built
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for the STEAM VOC scheme. The figures for the 70% and 50% engine loads are shown in
Figure 10.

Table 3. Mass fractions from the thermodenuder measurements and the modelling for the MGO
using 50% load and without urea injection. The results are compared to a volatility distribution of a
low sulfur fuel and a 50% engine load by Huang et al. [17].

Log10C* MGO with 50% Engine Load,
Urea Off

Huang et al. [17],
Low Sulfur Fuel

Nonvolatile (<−1) 51.3 ± 0.7% 36.2 ± 1.9%
−1 1.1 ± 0.6% 1.8 ± 1.6%
0 1.8 ± 0.9% 2.6 ± 0.4%
1 1.4 ± 0.9% 2.9 ± 0.5%
2 5.0 ± 1.5% 6.2 ± 1.4%
3 11.1 ± 1.5% 11.4 ± 0.3%
4 11.5 ± 1.2% 16.4 ± 0.1%
5 11.2 ± 2.3% 13.5 ± 0.3%
6 5.6 ± 1.4% 9.1 ± 1.5%
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Figure 10. The volatility distribution from the ship’s engine measurement compared to the volatility
distribution from the STEAM model for the (a) 50% engine load and the (b) 70% engine load.
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The amount of nonvolatile material was similar in both cases. With a 50% engine
load, the STEAM predicted somewhat higher amounts of low- and semi-volatile material,
while with a 70% engine load, the differences were small. Notable differences can be seen
in the IVOC range (300–3 × 106 µg/m3), where the mass fractions were clearly higher for
the volatility distributions based on ship measurements using both engine loads, with
bin 6 being an exception. In particular, bin 4 showed much higher mass fractions. An
explanation for this could be that the sample measured aboard Stena Germanica was
already somewhat oxidised due to the presence of the SCR. As mentioned, the high mass
concentrations in bin 4 from the ship measurements was due to phthalic anhydride. Since
phthalic anhydride is an oxidation product of naphthalene, this could explain the large
difference in this bin size. In the STEAM distribution, the high fraction of bin 6 was due to
naphtalene. This was present in much lesser quantities in the ship’s engine measurements,
where most of the mass in bin 6 was due to maleic anhydrade. The maleic anhydride’s
relative contribution seemed to be larger, when the engine load was lower. The absence of
maleic hydride from the STEAM would explain why bin 6 had more mass then the STEAM
predicted with a lower engine load and less with a higher engine load. The high amount of
very volatile material in the STEAM distribution can be attributed to formaldehyde. This
is probably because the VOC distribution from Agrawal et al. (2008) [44] is used in the
STEAM to describe the VOC speciation. The ship used was a Suezmax crude oil tanker
using a 15.8 MW two-stroke main engine and 2.85% S Heavy Fuel Oil [44]. This tanker
also had smaller four-stroke auxiliary engines, which used MGO as fuel. The emission
measurements for both the main and auxiliary engines were reported in their work, and the
VOC speciation of the main engine was implemented in the STEAM. It should be noted that
the main engine measurements of Agrawal et al. indicated high emissions of formaldehyde,
whereas the measurements for the auxiliary engine running on MGO indicated much lower
formaldehyde emissions and were more similar to the results of the current work. The
differences in the VOC emission profiles of the main and auxiliary engines [44] indicated
that there may be a need to differentiate between VOC volatility profiles of the residual and
distillate fuels and to conduct more measurements to understand the difference between
VOC emission profiles of two-stroke and four-stroke engines running on the same fuel.

4. Discussion

The volatility distributions from using the genetic optimisation algorithm and the
evaporation model on volatility experiments conducted with a thermodenuder were very
similar to those measured by Huang et al. [17] for low sulfur fuels with a sulfur content
of 0.38 wt %. It should be noted that they used a very different method in their analysis.
Their volatility distribution was obtained by using gas chromatography retention times on
samples collected on thermal desorption tubes, while the volatility distributions used in
this work were based on the evaporation of an aerosol sample in a thermodenuder. The fact
that the results from these two different approaches were so similar is encouraging, and
further studies comparing different approaches using the same samples would be useful to
confirm these results.

The results for a larger engine load followed a similar pattern to the results for
methanol as fuel further indicating that combining measured volatility data with a mod-
elling approach is a feasible way to study the volatility of a particle phase emission.

The low-sulfur fuels all produced volatility distributions with a significant amount of
volatility being in the IVOC range. This would suggest there is a high relative potential
for SOA formation. Dilution quickly causes the IVOC species to partition to the gas phase,
but the treatment here did not consider the atmospheric reactions that these species may
undergo. It is likely that the larger IVOC molecules react in the atmosphere faster than other
VOCs. Atmospheric oxidation can produce lower volatility material, and aging studies
would be necessary to better understand the effect of chemical reactions on the volatility
and partitioning of an emission.
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The emission factors for the organic gas and particle phase emissions can be very
different depending on the dilution conditions. This should be taken into account when
trying to understand the particle and gas phase emissions from transport and their impact
on the air quality of the surrounding areas. The effect of partitioning should be considered
both when designing the measurements and interpreting the results and their impacts on
particular in emission inventories, where lack of consistency in the interpretation of the
phase state of the emissions may lead to double-counting of the emissions of organic matter.
To properly understand how the volatility of an emission changes after it is released in the
atmosphere, both the effect of the dilution and the atmospheric chemistry need to be taken
into account.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14071175/s1, Figure S1: Combining the volatility distribution
for the MGO 75% engine load without the urea after-treatment; Figure S2: Combining the volatility
distribution for the MGO 75% engine load with the urea after-treatment; Figure S3: Combining the
volatility distribution for the MGO 50% engine load without the urea after-treatment; Figure S4:
Combining the volatility distribution for the MGO 50% engine load with the urea after-treatment;
Figure S5: Combining the volatility distribution for the methanol 75% engine load without the urea
after-treatment; Table S1: Identified gas phase organic species, their effective saturation concentrations,
volatility bins, and mass fractions
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