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Abstract
This thesis explores the possibilities to complement full-wave electromagnetic
solvers with fully-connected neural networks. We emphasize problems that
must be solved a very large number of times in a limited parameter domain.

We present and evaluate the normalization method ForwardNorm. For-
wardNorm normalizes the outputs of the hidden layers of a neural network
and enables training of very deep fully-connected neural networks. To mini-
mize the number of samples needed train the very deep neural networks, we
formulate a loss function that includes the misfit in (i) the output of the neu-
ral network and (ii) the derivatives of the output of the neural network with
respect to its inputs. For certain combinations of input and output, we use
continuum sensitivity analysis to compute these derivatives at a low compu-
tation cost. We also develop an auto-calibration method that simultaneously
determines (i) a set of unknown amplification factors and (ii) the mean per-
mittivity of an unknown medium under test. The method assumes that we
have access to a set of measurements that are made a-priori for the purpose
of characterization. The method is intended for on-line applications.

We test the methods on four different test-problems. For the first three test-
problems, we consider a type of microwave measurement-device intended for
an inhomogeneous dielectric medium transported through a metal pipe. In the
first test-problem, we train a neural network to determine the point-wise mean
and variance of the permittivity of the inhomogeneous dielectric. The trained
neural network is very computationally cheap to evaluate, which makes the
method appealing for real-time applications. For the second test-problem, we
apply the auto-calibration method to simultaneously determine (i) the mean
permittivity in the pipe and (ii) a set of unknown amplification factors. For
the third test-problem, we use a deep neural network to model the microwave
measurement-device with a stochastic dielectric medium and estimate high-
dimensional histograms. For the fourth test-problem, we train a deep neural
network to model the frequency response of an H-plane waveguide filter as a
function of its geometrical parameters. We then use the neural network to
optimize the geometry of the filter to achieve pass-band characteristics under
geometrical uncertainty.

Keywords: Inverse problems, calibration, optimization, neural networks,
deep learning, normalization.
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CHAPTER 1

Background

The advancement of computer hardware makes it possible to solve increasingly
complicated computational problems in engineering and science applications.
However, new and more sophisticated algorithms are at least as important to
be able to handle challenging computational problems. Moore’s law predicts
that computing power will double roughly ever two years, a prediction that
has held up surprisingly well since its formulation. However, this exponential
growth of computing power can not be taken for granted. As transistors
start to reach atomic scales, it is anticipated that the exponential growth of
computing power will start to flatten by 2025 [1]. In this post-Moore era,
advancements in algorithmic efficiency become more important than ever to
enable continued technological progress.

Maxwell’s equations form the foundation of electromagnetic theory, and
their efficient solution is of great importance for the development of novel
solutions to electromagnetic problems. For most electromagnetic problems,
we are unable to find an analytical solution to Maxwell’s equations. In these
situations, we have to resort to one of the many numerical methods that form
the field of Computational Electromagnetics (CEM). In many electromagnetic
problems, it is desirable to compute the quantities of interest for the appli-
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Chapter 1 Background

cation at hand as a function of the frequency and a set of parameters that
describe the geometry and materials of the problem, where we wish to learn
as much as possible about the behaviour of the problem with respect to these
parameters.

The Finite-Differences Time-Domain (FDTD) [2] scheme is one of the most
common methods for microwave problems. In the FDTD scheme, we represent
the electric field and magnetic field on grids that are staggered with respect
to space and time. We then use centered finite-differences to approximate
the derivatives in Ampère’s law and Faraday’s law and perform explicit time-
stepping by means of the leap-frog time-stepping scheme. An advantage of the
FDTD scheme is that the computer memory can be used almost exclusively
for the storage of the electromagnetic field. Another advantage is that we
can compute the response for many frequencies in one simulation if we excite
the problem with a pulse of large frequency-bandwidth. However, we need to
do a completely new simulation if a different waveguide port is excited or if
the angle of incidence changes in a scattering problem. We also need to do
a new simulation for any change in parameters that describe the material or
the geometry of the problem.

The Finite Element Method (FEM) [3] is a popular method for solving Par-
tial Differential Equations (PDEs). Here, we consider the frequency-domain
FEM with a single excitation frequency, which is a common formulation for
electromagnetic problems. In the FEM, the fields are expanded in basis func-
tions that are defined on finite elements. Then, a weighted average of the
residual of the PDE is set to zero. This results in a system of linear equa-
tions Ax = b that are derived from the boundary value problem, where the
sources of the problem are associated with the right-hand side vector b. For
sufficiently small problems, we can factorize the matrix A and reuse it as
a different waveguide port is excited or the angle of incidence changes in a
scattering problem. Thus, we can change the sources of the problem at the
relatively low computational cost associated with a forward and backward
substitution given a new vector b. However, we need to do a completely new
simulation for any changes to the frequency or the parameters that describe
the materials or geometry of the problem.

A third popular CEM method is the Method of Moments (MoM) [4]. Here,
we consider the frequency-domain MoM. Based on Maxwell’s equations and
appropriate information on boundary conditions, a so-called Green’s function
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is used to formulate an integral equation, where the sources are expanded in
basis functions. The weighted average of the residual of the integral equation
is set to zero, which results in a system of linear equations. The MoM is
well suited for open-boundary problems and for situations where the sources
are described by relatively few degrees of freedom compared to the degrees
of freedom required to describe the field, such as scattering problems and
antenna problems in free space. As a frequency-domain method, the MoM
shares many properties with the frequency-domain FEM with regards to the
dependencies for the system of linear equations Ax = b. If we factorize the
matrix A, we can reuse the factorization of the matrix for any changes to
the right-hand side of the problem, where the sources are associated with the
vector b. However, we need to do a completely new simulation for any changes
to the frequency or the parameters that describe the materials or geometry of
the problem.

For all the considered CEM methods, it is computationally costly to change
any parameters that describe the materials or geometry of the problem. In
effect, we can only sample discrete points in the parameter space that describes
the materials and geometry of the problem. In many applications, we wish to
know the behavior of the quantities of interest as a function of material and/or
geometry parameters for a specific (and limited) region in the parameter space
that describes the material and/or geometry. An approach to achieve this is
to fit a data-driven model to data that is computed by a conventional CEM
method. The model can then be used to approximate the conventional CEM
method for intermediate parameter values. A simple example of such a model
is a linear model, where we use gradients of the quantities of interest with
respect to the parameters that describe the problem to construct a local model
around a linearization point. To extend the range of validity of the model, we
can use more expressive models such as higher-order polynomials or rational
functions. In recent years, the neural network has been of particular interest as
a data-driven black-box model. Neural networks offer powerful generalization
capabilities due to their ability to express complicated non-linear relationships
between input and output.

In this thesis, we explore possibilities to complement or replace full-wave
solvers with computationally inexpensive data-driven models. In particular,
we exploit neural networks to model the complicated non-linear relationships
present in microwave problems. We train the data-driven models to emu-
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Chapter 1 Background

late the full-wave solvers in a limited domain of the parameter space, which
provides a powerful complement to full-wave solvers.

1.1 Problem formulation
In this thesis, we consider frequency-domain electromagnetic problems with
linear materials. We introduce an input vector x that contains parameters that
describe the problem in terms of its geometry, materials, excitation frequency,
and so on. We also introduce an output vector y that contains quantities of
interest for the specific problem. The input vector x and output vector y are
related through a model f as

y = f(x), x ∈ P, (1.1)

where P is the domain of the model. We refer to the set of attainable y for x ∈
P as the range of the model. While this thesis only considers electromagnetic
problems, this formulation encapsulates any type of problem where one or
more quantities y are deterministically dependent on the parameters x that
define the problem.

As an example, we can consider a situation where we want to solve the
Helmholtz equation on a domain that contains a homogeneous dielectric.
Based on the field solution, we want to compute scattering parameters as
a function of the permittivity of the dielectric. Then, the input x is the
permittivity of the dielectric. The output y is the scattering parameters. Fi-
nally, the model f consists of the solution to the Helmholtz equation and the
computations to determine the scattering parameters from the field solution.

Optimization problems
In an optimization problem, we wish to find an input xopt such that the output
y = f(xopt) minimizes a loss function G. We can formulate this as

xopt = argmin
x∈P

G(f(x)) (1.2)

s.t.
{

g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0
h1(x) = 0, h2(x) = 0, . . . , hl(x) = 0

6



1.1 Problem formulation

where we seek to minimize a scalar loss function G under a set of inequality
constraints gi for i = 1, 2, . . . , m and equality constraints hj for j = 1, 2, . . . , l.
Some inverse and calibration problems can be formulated in terms of the op-
timization problem (1.2). An optimization problems is called feasible if there
is a vector x such that all constraints are fulfilled simultaneously, otherwise
the optimization problem is called infeasible. For feasible problems, the set of
vectors x where all constraints are fulfilled is then called the feasible region.
Furthermore, we distinguish between linear and non-linear optimization prob-
lems, as they typically require different solution methods. An optimization
problem is only linear if the loss function and all the constraints are linear
functions of x, otherwise it is non-linear. In general, the loss function G may
have many local minima. When we solve an optimization problem, we are
interested in finding the global minimum. The global minimum of an opti-
mization problem is the smallest value of G(f(x)) that is attainable for all
x within the feasible region. For many conventional non-linear optimization
methods, we provide an initial guess and the method finds a nearby minimum
[5]. To avoid poor local minima, it is therefore of crucial importance to have
a strategy to obtain a good initial guess.

In Paper B, we optimize the geometry of a waveguide filter to achieve the
lowest possible reflection in a pass band. Here, the input x consists of a set
of parameters that specify the geometry of the filter. The output y is the
reflection coefficient of the filter at a set of frequency points. The model f
is the solution to the electromagnetic problem as well as the computations
to determine the reflection coefficient from the field solution. Inside the pass
band, we define the non-linear loss function G(y) to be the function which
returns the largest reflection. Here, we use linear inequality constraints to
define bounds for each input parameter. Inside the stop band, we use a non-
linear inequality constraint to ensure that the lowest reflection is above a
certain threshold. In this problem, there are no equality constraints.

Inverse problems
The inverse problem is to, given y, find x such that y = f(x). When we solve
an inverse problem, there are complications that we must consider [6]. There
might not be an input x such that f(x) = y. For example, the output y may
stem from a true model f0 and the model f is an approximation of f0, or the
output y may contain noise. Conversely, there may be infinitely many inputs
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Chapter 1 Background

x such that f(x) = y.
In situations where there is no input x such that f(x) = y, we often attempt

to instead find an estimate xest that minimizes the misfit between f(xest) and
y with respect to some suitable metric. We can formulate this minimization
problem in terms of an optimization problem by the loss function G(u) =
||u − y||. The minimization problem then becomes

xest = argmin
x∈P

||f(x) − y||. (1.3)

The inversion process might be unstable, or ill-conditioned, such that a small
perturbation in the output y leads to a large change in the estimate xest. To
obtain useful estimates for such problems, we often need to impose additional
constraints on the problem to limit the set of valid solutions. This process is
known as regularization.

We distinguish between linear and non-linear inverse problems. When f is
a linear function of x, Eq. (1.1) can be written as a system of linear equations
y = f(x) = Ax where A is a matrix. For linear problems, there are a set of
general solution procedures that can be employed. When f is non-linear, we
often require strategies that are specific to the problem at hand. A common
strategy to handle non-linear problems is therefore to use iterative methods
with local linearization.

In Paper A, we wish to determine statistical properties of an inhomoge-
neous dielectric given statistical moments of measured scattering parameters.
Here, the input x consists of the statistical properties of the inhomogeneous
dielectric that we wish to determine. The output y contains the statistical
moments of the scattering parameters. The model f then consists of the elec-
tromagnetic model as well as the statistical computations used to determine
the quantities in x and y. We then employ data-driven methods to approx-
imate an inverse model g such that xest = g(y) where xest is an estimate of
x. For this approach to be successful, we consider a limited domain P where
f is locally invertible. Then, we obtain an inverse model that we can use to
estimate a solution to the inverse problem (1.3) for a limited range of y.

Calibration problems
In physical experiments, there are always errors associated with measure-
ments. The errors can be divided into three main types [7]: (i) random errors;
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1.1 Problem formulation

(ii) systematic errors and (iii) drift errors. Random errors are stochastic in
nature, and they are typically caused by electronic noise. We measure the
noise level due to random errors in terms of a signal-to-noise ratio (SNR).
To reduce the effect of random errors, we can use techniques such as signal
averaging [8] to increase the SNR. Systematic errors come from imperfections
in the measurement setup, for example from cables and connectors. Drift er-
rors are systematic errors that vary over time, and they are often caused by
temperature fluctuations.

We can compensate for systematic errors and drift errors through calibration
of the measurement system. In the context of microwave measurements, the
Vector Network Analyzer (VNA) is an important type of measurement system
which is used to measure scattering parameters. There are several methods
for calibration of VNAs. In these methods, we typically model the systematic
errors and drift errors in terms of unknown parameters in an error model. In
the calibration process, we then perform measurements on known calibration
loads to obtain enough equations to solve for these parameters. It is then pos-
sible to use the error model to account for their effect on the measurements.
An example of a common calibration method for VNAs is Thru-Reflect-Line
(TRL) [9]. TRL is used to calibrate two-port systems with a seven-term error
model. Here, measurements are performed on three loads: Thru - a direct
connection between the two ports; Reflect - a load with high reflection con-
nected to each of the two ports; and Line - some length of impedance matched
transmission line that connect the two ports. Other calibration methods in-
clude SOLT [10] and QSOLT [11]. To account for drift errors, the calibration
needs to be repeated in regular intervals. This can be problematic in settings
with limited access to the measurement system, such as production settings.

In Paper C, we present an auto-calibration method that eliminates the need
for a separate calibration phase. In this paper, we wish to use measurements of
scattering parameters that are corrupted by systematic/drift errors to deter-
mine the average permittivity of an unknown medium under test. We assume
that we have access to a series of a-priori characterisation measurements of
media with a known permittivity. Once we collect measurements on an un-
known medium under test, we then essentially solve the inverse problem and
the calibration problem simultaneously. Here, we formulate an optimization
problem that includes both the parameters of an error model and the average
permittivity of the medium under test. We then exploit the set of charac-
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Chapter 1 Background

terization measurements to solve the optimization problem. As we gather
the characterization measurements in advance, the method is well suited for
on-line applications with limited access to the measurement system.
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CHAPTER 2

Data-driven methods in electromagnetics

A drawback of most conventional methods in CEM is that they are com-
putationally costly, especially in three space-dimensions. In many solution
procedures for inverse and optimization problems the model f must be eval-
uated a very large number of times. If the model f includes a conventional
CEM method, this can therefore be a severely limiting factor for a given com-
putational budget.

Another alternative is to replace the conventional CEM method with a
computationally inexpensive data-driven model. In this approach, we use a
conventional CEM method to create a data set that consists of input-output
pairs, or samples. We then train a data-driven model on the input-output
pairs in a training set to make the response of the model match the provided
data. The data-driven model itself can incorporate a-priori knowledge of the
system in its design, a so-called grey-box model, or it can be designed without
any prior assumptions, a so-called black-box model. If the model is properly
chosen, it is able to match the data points well and interpolate correctly
between them. To verify this, we typically reserve a portion of the data in a
test set, which we use to evaluate the trained model. If we choose a model
that is inexpensive to evaluate, it can then be a very powerful and useful
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Chapter 2 Data-driven methods in electromagnetics

complement to solve inverse and optimization problems.
It is imperative that the data used to train a data-driven model is of good

quality. This means that we need to consider and appropriately handle any
errors that might be present in the data, such as numerical errors that are
associated with the numerical method. The data should also be representative
of the problem we wish to solve. For instance, when we use a data-driven
model to solve an optimization problem, we wish to have a strategy to ensure
that there are enough samples in the vicinity of the minimum we wish to find.
For problems with small parameter domains, we can simply populate the
training set and test set with enough samples to cover the entire parameter
domain. For problems with larger parameter domains, this might not be
feasible and more sophisticated strategies may be required. In Section 2.4,
we discuss an example of such a strategy where we iteratively populate the
training set with additional samples in the vicinity of minima that are found by
an optimization method. To decrease numerical issues in the training process,
it is often beneficial to normalize the input and output features. We typically
normalize such that each input and output feature has zero mean and unit
variance.

2.1 Neural networks as surrogate models
A surrogate model is a computationally inexpensive model that is trained to
emulate a detailed model, often in a limited parameter domain. We define the
surrogate model f̂ as

ŷ = f̂(x; θ) (2.1)

where ŷ is an estimate of y and θ is a set of tunable parameters. When we
train the model, we tune the parameters θ of the model such that

f̂(x; θ) ≈ f(x), x ∈ P̂ ⊆ P (2.2)

where P̂ is a subset of the full parameter domain P. Typically, the detailed
model f(x) consists of a conventional CEM method, such as the FEM. Sur-
rogate models can be used by themselves, or as a complement to a detailed
model in a space-mapping scheme [12]. Examples of commonly used surro-
gate models include polynomial response surface models, radial basis function
models and support vector regression models [13].
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2.1 Neural networks as surrogate models

Neural networks have been of particular interest in recent years for their
powerful performance as black-box models. Architectures such as convolu-
tional neural networks, recurrent neural networks and auto-encoders [14] have
emerged with impressive results for tasks in computer vision and natural lan-
guage processing. Attention-based mechanisms have recently gained popu-
larity, where transformer-based models [15] achieve state-of-the-art results in
tasks such as image classification [16] and machine translation [17]. Neural
networks allow for rapid and massively parallel execution on a Graphics Pro-
cessing Unit (GPU). This makes neural networks very attractive to use as
surrogate models in optimization and inverse problems.

In this work, we consider Fully-Connected Neural Networks (FCNN). A
FCNN consists of an input layer, one or more hidden layers and an output
layer. FCNNs are well suited for regression tasks with a fixed number of
inputs. We can describe an L-layer FCNN surrogate model as the function
composition

f̂ = h(L) ◦ h(L−1) ◦ . . . ◦ h(1) (2.3)

where h(l) denotes the fully connected layer l. The number of layers L is
referred to as the depth of the neural network. Here and in the following, we
use the super-index (l) in parentheses to indicate that a quantity is associated
with fully connected layer l. The operation f = g ◦ h is the function composi-
tion operation that takes two functions g and h and returns a function f such
that f(x) = g(h(x)). The fully connected layer l is given by

h(l) = g
(

W(l)h(l−1) + b(l)
)

(2.4)

where g is an element-wise non-linear activation function, W(l) a weight ma-
trix and b(l) a bias vector. In this description, the layer l = 1 is a special case
for which we define h(0) = x. Common choices for the activation function g

include Rectified Linear Units (ReLU) [14] and hyperbolic tangent functions.
When we train an FCNN, we tune the elements in the weight matrices and
bias vectors to make the function (2.3) described by the FCNN match the
input-output pairs in the training set. The powerful hardware of today allows
training of very deep networks with the capability to express complicated
non-linear relationships between input and output.

When we train deep networks there are potential complications that we
must consider. For deep neural networks, we might run into numerical issues
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such as the vanishing gradient problem [18]. For networks with very many
degrees of freedom and the capability to express complicated input-output
relationships, we also risk overfitting the neural network to the training data.
Overfitting is when a neural network too closely memorizes the samples in the
training set and fails to give accurate estimates ŷ when presented with unseen
inputs x. A clear indicator of overfitting is when the error on the training set
is much smaller than the error on the test set. Overfitting can happen when
the number of samples in the training set is too small in relation to the degrees
of freedom and expressive capabilities of the neural network. Typically, the
solution is to add more samples to the training set. However, these samples
can be expensive to obtain. Therefore, the number of samples is often the
primary limiting factor for how expressive models that we can successfully
train.

Here, we present a normalization method that enables the training of very
deep FCNNs. We also present a loss function which also incorporates the
derivatives of the output y with respect to the input x in the training of a
neural network to decrease the number of samples necessary for training. The
two methods together makes it possible to train very deep neural networks
with comparatively few samples.

Deeper neural networks with ForwardNorm
Normalization between hidden layers in neural networks is an important tech-
nique to train deep neural networks. Important examples of normalization
techniques include BatchNorm [19] and LayerNorm [20]. In these techniques,
we insert normalization layers between the fully-connected layers that trans-
form each element of the layer output as

h̃
(l)
j =

h
(l)
j − µ

(l)
j

σ
(l)
j

. (2.5)

Here, µ
(l)
j and σ

(l)
j are normalization parameters and h̃

(l)
j is element j of the

normalized output of fully connected layer l. The statistics of h
(l)
j typically

shift during training of the neural network which means that µ
(l)
j and σ

(l)
j

need to be repeatedly updated during training for the normalization to be
effective. The specifics of how the normalization parameters are determined
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2.1 Neural networks as surrogate models

differ between normalization techniques. However, FCNNs are difficult to
normalize with this kind of normalization technique as the updates of the
normalization parameters perturb the training process [21].

In Paper B, we present a novel normalization procedure that we refer to as
ForwardNorm. Here, we insert normalization layers (2.5) between each fully
connected layer. During the training of the neural network, we repeatedly
update the parameters of the normalization layers. After each update of
the normalization parameters, we also update the weight matrices and bias
vectors of the neural network such that the function f̂ remains unchanged
by the update. In this way, we reparametrize the weight space of the neural
network with no effect on its output. The procedure lessens the perturbation
of the training process by the update of the normalization parameters which
allows us to efficiently train very deep FCNNs.

Gradient enhanced training of neural networks
If we also have access to the Jacobian matrix

Jpq = ∂yp

∂xq
(2.6)

for the samples in our training and test sets, we can include it in the loss
function that we use when we train the neural network [22]. This can massively
reduce the number of samples needed to successfully train the network. In
situations where the derivatives are computationally inexpensive to obtain,
this can allow training much more expressive neural networks within a given
computational budget.

In Paper B, we exploit automatic differentiation to differentiate (2.3) with
respect to the input x as shown in Figure 2.1. As we evaluate the neural
network, we then obtain both the function values ŷp and the Jacobian matrix

Ĵpq = ∂ŷp

∂xq
(2.7)

simultaneously. To include the derivatives in the training of the neural net-
work, we formulate the total loss function

L = F (y, ŷ) + αG(J, Ĵ) (2.8)
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x

y

J

f̂(x)

Auto-diff

F (y, ŷ)

G(J, Ĵ)

F + αG L
ŷ

Ĵ

F

G

Figure 2.1: Flowchart illustrating how the loss L is computed from the input x,
the output y and the Jacobian matrix J. Here, the neural network is
denoted by f̂(x). The Jacobian ŷ is computed using automatic differ-
entiation.

which is a linear combination of two loss terms: F (y, ŷ) - the misfit of the
function values; and G(J, Ĵ) - the misfit of their derivatives. The weight α is
considered a hyper-parameter that needs to be tuned. For the test-problems
that we consider, the number of samples that are required to train the neural
network is significantly reduced when we include the derivatives in the loss
function. In Section 2.3, we describe how we use continuum sensitivity analysis
to compute these derivatives at a very low computational cost for certain
electromagnetic problems.

2.2 Optimization methods based on surrogate
models

Surrogate models open exciting possibilities to solve optimization problems.
In general, methods for non-linear optimization deal with local optimization,
which locates a minimum in the vicinity of an initial guess [5]. To avoid poor
local minima, it is therefore necessary to find a good initial guess before we
apply any local optimization methods. Here, a computationally efficient sur-
rogate model can be of great benefit. If the surrogate model is differentiable,
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2.2 Optimization methods based on surrogate models

Figure 2.2: Example of a grid-search method for a two-dimensional parameter vec-
tor x. The level curves indicate value of the goal function G

(
f̂ (x)

)
.

The blue dots indicate the set of candidates x{i} for i = 1, 2, . . . , N
which are spaced on an equi-distant grid. The red circle shows the ini-
tial guess x[0]

opt, which is the candidate x{i} that gives the lowest value
of G

(
f̂
(
x{i})).

we can also compute the Jacobian matrix (2.7) for any input x.
Here, we discuss how a computationally efficient surrogate model allows us

to massively sample the parameter domain to find an attractive initial guess.
We also discuss how the Jacobian matrix can be used to formulate iterative
methods for local optimization.

Grid-search method

When we solve a non-linear optimization problem, we often have little to no
prior knowledge of the behavior of the loss function that we wish to minimize.
When this is the case, we must sufficiently explore the parameter domain to
find a good initial guess. A simple approach is to find an initial guess x[0]

opt as

x[0]
opt = argmin

x{i}
G
(

f̂
(

x{i}
))

, i ∈ {1 . . . N} (2.9)
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for some suitable set of candidates x{i} for i = 1, 2, . . . , N . Here, we should
choose N large enough to sufficiently explore the parameter space. Figure 2.2
shows an example of this, where the candidates x{i} for a two-input model are
chosen on a Cartesian grid. With a sufficiently small grid-spacing, grid-search
methods allow thorough exploration of the parameter domain. However, the
number of function evaluations grows very rapidly when the grid-spacing is
decreased, particularly for high-dimensional input. Here, a computationally
efficient surrogate model is of great benefit.

In Paper B, we train a neural network to use as a surrogate model for the
optimization of a waveguide filter. As the neural network is very inexpensive
to evaluate, we can sufficiently sample the parameter domain to find an initial
guess for the geometry parameters. We then iteratively refine the guess to
obtain a better estimate.

Iterative optimization methods with automatic differentiation

Iterative optimization methods based on a search direction are an important
kind of local optimization methods that exploit the updating scheme

x[n+1]
opt = x[n]

opt − γ[n]d[n] (2.10)

where we, for each iteration n, take a step of length γ[n] in direction d[n]

[23]. Examples of such methods are the method of steepest descent, Newton’s
method and line-search methods [5], where different choices of method dictate
how γn and dn are chosen. When we apply such methods, it is of great benefit
to have access to the gradient ∇xG. We note that

∇xG = ĴT ∇ŷG (2.11)

and thus, as long as we can compute ∇ŷG, we can use the Jacobian Ĵ to
compute ∇xG.

Here, it is advantageous to use neural networks as surrogate models, since
then Ĵ can cheaply be evaluated through automatic differentiation. For con-
ventional CEM methods, the derivatives in J can be costly to obtain. Some
derivatives can be obtained through continuum sensitivity analysis as dis-
cussed in Section 2.3, but this is not always possible. While it is possible
to estimate Ĵ through finite-difference approximations of the derivatives, this
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Ω

ΓP

Γ1

Γ2

Γq

ΓPEC

Ei
q

ζq

ζ2

ζ1

ζP

Figure 2.3: The boundary value problem under consideration. The enclosed vol-
ume Ω is surrounded by the PEC surface ΓPEC. The volume is con-
nected to P waveguides that are truncated by waveguide ports that co-
incide with the surfaces Γ1, Γ2, . . . , ΓP . Waveguide port q is excited by
the incident wave Ei

q. The local longitudinal coordinates ζ1, ζ2, . . . , ζP

are directed normally outwards from Γ1, Γ2, . . . , ΓP .

approach is computationally costly and prone to numerical errors. With au-
tomatic differentiation, we can compute Ĵ for any combination of quantities
in the input x and the output ŷ at an inexpensive computational cost. It is
also possible to compute higher-order derivatives through automatic differen-
tiation. This is useful in optimization methods such as Newton’s method [5],
where the update scheme involves the inverse of the Hessian matrix.

2.3 Domain knowledge in data-driven methods for
near-field problems

In this thesis, we consider frequency-domain problems within an enclosed
volume Ω that is enclosed by PEC surfaces ΓPEC as shown in Figure 2.3. The
volume is connected to P waveguides that are truncated by waveguide ports
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that coincide with the boundary surfaces Γ1, Γ2, . . . ΓP . The waveguides have
identical, constant cross-sections and are filled with a homogeneous dielectric.
Here, we consider situations where the frequency ω is within the frequency
range where only the dominant mode of the waveguides is propagating. We
also assume that the length of the waveguide is sufficiently large to make all
evanescent higher-order modes have a negligible amplitude at the waveguide
port. In this setting, we consider the boundary value problem

∇ × ∇ × E − µ0(ω2ϵ − jωσ)E = 0 in Ω, (2.12)
n × E = 0 on ΓPEC, (2.13)

n × ∇ × E + γmn × n × E = 2γmn × n × Ei
q on Γq, (2.14)

n × ∇ × E + γmn × n × E = 0 on Γp∀p ̸= q. (2.15)

The electric field E is governed by a vector Helmholtz’ equation. The ma-
terials in Ω are modeled by the permeability in vacuum µ0, permittivity ϵ

and conductivity σ. Here, the permittivity ϵ and conductivity σ may vary in
space. The unit normal n is directed outwards from the volume Ω. We use
a Dirichlet boundary condition on the PEC surfaces ΓPEC. On the surfaces
Γ1, Γ2, . . . ΓP that coincide with the waveguide ports, we use Robin boundary
conditions. Here, γm is the complex propagation constant of the dominant
waveguide mode m [24]. Port q is excited by the incident electric field

Ei
q = Ei

0,qe+γmζq m (2.16)

where ζq is the local longitudinal coordinate associated with port q as shown
in Figure 2.3. We define the scattering parameter Spq as the ratio

Spq =
Er

0,p

Ei
0,q

(2.17)

where Er
p = Er

0,pe−γmζpm is the reflected electric field at port Sp. To compute
all scattering parameters, we need to excite each port once, meaning that we
need to solve P boundary value problems. The matrix S that contains all
scattering parameters is referred to as the scattering matrix.
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2.3 Domain knowledge in data-driven methods for near-field problems

Finite element method

We solve the boundary value problem (2.12)-(2.15) with the FEM. Find the
electric field E ∈ H0(curl; Ω) such that

a(v, E) = b(v), ∀ v ∈ H0(curl; Ω) (2.18)

where

H(curl, Ω) =
{

E :
(∫

Ω
|E|2 dΩ < ∞

)
and

(∫
Ω

|∇ × E|2 dΩ < ∞
)}
(2.19)

H0(curl, Ω) = {E ∈ H(curl, Ω) : n̂ × E = 0 on ΓPEC} (2.20)

For the boundary value problem (2.12)-(2.15), the bilinear form a and linear
form b become

a(v, E) =
∫

Ω

[
(∇ × v) · (∇ × E) − µ0(ω2ϵ − jωσ)v · E

]
dΩ

+ γm

P∑
p=1

∫
Γp

(n × v) · (n × E) dΓ (2.21)

b(v) = 2γm

∫
Γq

(n × v) · (n × Ei
q) dΓ. (2.22)

Next, we expand E in the curl-conforming basis functions Nj ∈ H0(curl, Ω)
[3] according to

E(r) =
∑

j

EjNj(r). (2.23)

We use Galerkin’s method and choose the weighting functions from the set of
basis functions Nj . Finally, Equation (2.18) yields a system of linear equations
with the unknown and sought Ej .

Sensitivity analysis

We can expand the scattering parameter (2.17) around a linearization point
xlin as

Spq(xlin + δx) = Spq(xlin) + δSpq(xlin, δx) + . . . (2.24)
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where δSpq(xlin, δx) is the sensitivity of scattering parameter Spq with respect
to the linearization point xlin and δx is an arbitrary infinitesimal perturbation.
If we neglect the higher order terms, we obtain the linear model

Spq(xlin + δx) ≈ Spq(xlin) + δSpq(xlin, δx). (2.25)

If we have access to the sensitivity δSpq(xlin, δx), we can use (2.25) as a locally
applicable model of Spq.

We can apply sensitivity analysis to compute the sensitivity δSpq(xlin, δx)
from the field solutions of the original problem and an adjoint problem. For
reciprocal microwave problems, the field solutions to all adjoint problems are
available once the full scattering matrix is computed. Then, we can compute
all the corresponding sensitivities without the need to solve any additional
field problems. In comparison to the computational cost associated with the
solution of the field problem, the computational cost associated with the eval-
uation of the sensitivity is negligible since it only involves a weighted inner
product between two (already available) field solutions.

In Paper B, we present two examples of sensitivity expressions. In the first
example, the input x describes the permittivity of an inhomogeneous material.
Here, the elements of x constitute the coefficients of a weighted sum of basis
functions that describes the permittivity. In the second example, the input
x contains parameters that describe the geometry of a waveguide filter in
terms of lengths and widths. In both examples, we use sensitivity analysis to
compute the Jacobian matrix J of y with respect to x. We then use J to aid
the training of a neural network as described in Section 2.1.

Padé approximants

Another class of model for a scattering parameter Spq is the Padé approximant.
In general, the Padé approximant of order [m/n] for a function f(x) is a
rational function that approximates f(x) as

f(x) ≈
∑m

i=0 bix
i

1 +
∑n

j=1 ajxj
, (2.26)

where m ≥ 0 and n ≥ 1.
In frequency response applications, it is natural to set m = n − 1 [25]. In
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this case, we can write the Padé approximant as the pole-residue expansion

Spq(ω) ≈
n∑

k=1

rpq,k

ω − ωk
. (2.27)

where the scattering parameter Spq(ω) is characterized by the n poles ωk and
the residues rpq,k. We assume that all scattering parameters share a common
set of poles [26] and thus omit the indices pq in the denominator of Eq. (2.27).
With the help of algorithms such as FSID [27] or Padé-via-Lanczos [25], we
can identify the residues and poles from samples in a training set. Here, the
number of samples that are needed for identification increases with the model
order n. For noisy data, we can increase the number of samples that we use
for identification for a more robust approximation.

The Padé approximant is useful as an interpolant for scattering parameters
as a function of frequency. Here, it is often sufficient to identify the dominant
pole-residue pairs in the frequency range of interest. Then, the Padé approx-
imant can be used to approximate the scattering parameters at additional
frequencies at a low computational cost. As an additional benefit, it is simple
to differentiate the Padé approximant with respect to frequency to compute
the derivative of the approximated scattering parameters with respect to fre-
quency. We can then use these derivatives to train a gradient-informed neural
network.

2.4 Data generation by computations
It is advantageous in several ways to generate data through computations.
For supervised learning, all parameters in x that define the output y must
be known, which is also necessary when the electromagnetic field problem
is solved. For all samples, we thus have ready access to the parameters x
that define the output y. Additionally, it is simple to generate more data as
needed. This is useful to tailor the size of the data set to the application at
hand, and to only generate as much data as needed to minimize the necessary
computations.

There are several important considerations when we wish to use data gen-
erated through computations to train a data-driven model. It is essential that
we are in control of the errors present in the simulations. For most compu-
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tational methods, we can reduce the error at the cost of additional computa-
tional resources in terms of computer memory and floating-point operations.
For example, in the FEM we can make the mesh finer or increase the order of
the basis functions to reduce the error. In this way, we can achieve an error
on acceptable levels for the application at hand. When we generate data to
train a surrogate model for use in an optimization problem, it is important
that we choose a parameter domain P that contains input vectors that are
relevant for the optimization problem at hand. Here, it is very useful to have
a-priori knowledge of a reference input vector xref that is known to be close
to a minimum of the optimization problem at hand. Then, we can choose
a parameter domain in the vicinity of xref under the assumption that this
vicinity contains other minima of interest.

In Paper B, we present a procedure to iteratively re-train a surrogate model
which is used to optimize the geometry of a waveguide filter to find a set
of filter geometries that correspond to good pass-band filters. We choose
a reference input xref that corresponds to a filter geometry that is known to
give reasonable pass-band characteristics. We then generate an initial training
set in the vicinity of xref. Then, we use the initial training set to train the
surrogate model. Once we apply the optimization algorithm and find a set
of minima, we populate the training set with additional samples within the
vicinity of these minima. We then re-train the surrogate model and optimize
the geometry once again with the previously found minima as a starting point.
This procedure significantly reduces the error of the surrogate model in the
vicinity of the minima.
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CHAPTER 3

Summary of included papers

This chapter provides a summary of the included papers.

3.1 Paper A
Simon Stenmark, Thomas Rylander, Tomas McKelvey
Neural Networks for the Estimation of Low-Order Statistical Moments
of a Stochastic Dielectric
Published in 2021 IEEE International Instrumentation and Measure-
ment Technology Conference (I2MTC),
pp. 1–6, May. 2021.
©2021 IEEE DOI: 10.1109/I2MTC50364.2021.9459996 .

In this paper, we train a neural network to solve an inverse problem. We
consider a problem with an inhomogeneous stochastic medium that is defined
by the point-wise mean and standard deviation of its permittivity. Here, we
assume that we have access to the scattering matrix computed for each re-
alization of the stochastic permittivity. We train a fully-connected neural
network to estimate point-wise mean and standard deviation of the permit-
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tivity given statistical moments of the scattering parameters. We demonstrate
the method on a numerical example with a cylindrical geometry surrounded
by four parallel-plate waveguide.

3.2 Paper B
Simon Stenmark, Thomas Rylander, Tomas McKelvey, Andrei Ludvig-
Osipov
Very Deep Fully-Connected Neural Networks Applied to Microwave Prob-
lems
Submitted for publication in IEEE Transactions on Microwave Theory
and Techniques.

In this paper, we present a method to train neural networks for microwave
problems. We introduce the normalization technique ForwardNorm which en-
ables training of very deep fully-connected neural networks. We use a loss
function that includes the Jacobian matrix of the output with respect to the
input to reduce the number of samples that are needed to train the neural
networks. Here, we use continuum sensitivity analysis to compute the deriva-
tives in the Jacobian matrix. The method is demonstrated on two numerical
examples. We show that ForwardNorm enables training of networks 30 layers
deep and that we considerably reduce the number of samples needed to train
a network by including the Jacobian matrix in the training. Finally, we use a
surrogate model to optimize the geometry of an H-plane waveguide filter.

3.3 Paper C
Andrei Ludvig-Osipov, Simon Stenmark, Thomas Rylander, Tomas McK-
elvey
Auto-calibration for near-field microwave measurements
Submitted for publication in IET Science, Measurement & Technology.

In this paper, we present an auto-calibration method for scattering-parameter
measurements. Here, we simultaneously estimate the average permittivity in
the measurement domain and a set of unknown amplification factors. To
do this, the method utilises a set of a priori calibration measurements. We
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demonstrate the method on two numerical examples with cylindrical geome-
tries surrounded by four and six parallel-plate waveguides respectively.
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CHAPTER 4

Summary and Concluding Remarks

Machine learning and has revolutionized many technological fields, where to-
day’s powerful hardware and recent developments in data-driven algorithms
open up exciting new possibilities. However, in the field of computational elec-
tromagnetics, machine-learning methods are still relatively unexplored. This
thesis examines the possibilities to complement conventional computational
electromagnetic methods with data-driven models. In particular, we focus
our work on neural networks due to their powerful generalization capabilities.
We emphasize problems that must be solved a very large number of times in a
limited parameter domain, where the data-driven models can be of particular
benefit.

We present and evaluate a normalization procedure that we refer to as
ForwardNorm. ForwardNorm consists of (i) normalization layers inserted be-
tween the hidden layers of a fully-connected neural network and (ii) a custom
update procedure. In the first part of the update procedure, we optimize the
weight matrices and bias terms of the fully-connected layers using a conven-
tional stochastic steepest-descent optimizer. In the second part, we update
the parameters of the normalization layers to ensure that the outputs of each
hidden layers have zero mean and unit variance. Then, we update the weight
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matrices and bias vectors of the neural network such that its output remains
unchanged by update of the normalization layers. ForwardNorm reduces nu-
merical issues that are associated with training deep neural networks and
enables us to efficiently train very deep fully-connected neural networks. To
minimize the number of samples that are required to train the neural net-
works, we formulate a loss function that is a linear combination of the misfit
in (i) the output of the network and (ii) the derivatives of the outputs of the
network with respect to its inputs. By including the misfit in the derivatives
in the training of the neural networks, the number of samples required for
training is substantially reduced. Here, we apply continuum sensitivity analy-
sis to compute derivatives of scattering parameters with respect to parameters
that describe either (i) the permittivity within the computational domain or
(ii) the geometry of the conducting walls that surround the computational
domain. For reciprocal problems, the sensitivity analysis can be performed at
a very low computational cost. We also develop an auto-calibration method
that is suitable for on-line applications. Here, we assume that we have access
to a set of a-priori characterization measurements that we exploit to simulta-
neously determine (i) a set of unknown amplification factors and (ii) the mean
permittivity of an unknown medium under test.

We test the methods on four different test-problems. For the first three test-
problems, we consider a type of microwave measurement device intended for
an inhomogeneous dielectric medium transported through a metal pipe [28],
[29]. The problem consists of a circular cavity connected to a number of
parallel-plate waveguides, where the circular cavity contains an inhomoge-
neous dielectric. In the first test-problem, we train a neural network to solve
an inverse problem. Here, we determine the point-wise mean and variance
of the permittivity in the measurement domain given statistical moments of
measured scattering parameters. The trained neural network is very com-
putationally inexpensive to evaluate, which makes the method appealing for
real-time measurements. For the second test-problem, we apply the auto-
calibration method to determine the mean permittivity in the pipe while we
simultaneously determine a set of unknown amplification factors related to
a measurement system. We evaluate the method for a range of noise levels.
As all characterization measurements are performed in advance, the method
is well-suited for online measurement applications with limited access to the
measurement system. For the third test-problem, we use a deep neural net-
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work to model the device and estimate high-dimensional probability distri-
bution functions and their histograms. Here, we benefit from the very deep
neural networks that ForwardNorm allows us to train. Histograms such as
these can for example be used in detection problems [28]. For the fourth
test-problem, we train a deep neural network to model the frequency response
of an H-plane waveguide filter. The filter features five cavities and has two
symmetry planes. We use the neural network to optimise the geometry of
the filter to achieve the lowest possible reflection in the pass band. Inside the
stop band, we put a constraint on the stop-band frequencies to ensure that the
smallest reflection is above a certain threshold. Here, we benefit from being
able to massively parallelize the evaluation of the neural network. Through
brute force, we can explore the design space to find a good starting guess for
the optimization algorithm. We augment the data set with geometries in the
vicinity of the optimized geometries to ensure good performance of the neural
network.
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