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ARTICLE

Extensive screening reveals previously
undiscovered aminoglycoside resistance genes in
human pathogens
David Lund 1,2, Roelof Dirk Coertze2,3, Marcos Parras-Moltó1,2, Fanny Berglund 2,3, Carl-Fredrik Flach 2,3,

Anna Johnning 1,2,4, D. G. Joakim Larsson 2,3 & Erik Kristiansson 1,2✉

Antibiotic resistance is a growing threat to human health, caused in part by pathogens

accumulating antibiotic resistance genes (ARGs) through horizontal gene transfer. New

ARGs are typically not recognized until they have become widely disseminated, which limits

our ability to reduce their spread. In this study, we use large-scale computational screening of

bacterial genomes to identify previously undiscovered mobile ARGs in pathogens. From

~1 million genomes, we predict 1,071,815 genes encoding 34,053 unique aminoglycoside-

modifying enzymes (AMEs). These cluster into 7,612 families (<70% amino acid identity) of

which 88 are previously described. Fifty new AME families are associated with mobile genetic

elements and pathogenic hosts. From these, 24 of 28 experimentally tested AMEs confer

resistance to aminoglycoside(s) in Escherichia coli, with 17 providing resistance above clinical

breakpoints. This study greatly expands the range of clinically relevant aminoglycoside

resistance determinants and demonstrates that computational methods enable early

discovery of potentially emerging ARGs.
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Antibiotic resistance keeps spreading among pathogens,
threatening to irrevocably lessen the usefulness of anti-
biotics in treating and preventing bacterial infections1.

Resistance commonly arises when microorganisms acquire
mobile antibiotic resistance genes (ARGs) through horizontal
gene transfer2. This process is usually facilitated by mobile genetic
elements (MGEs), such as conjugative plasmids and insertion
sequences, which can allow ARGs to rapidly disseminate between
bacterial cells in communities under sufficient selection
pressures3,4. Pathogens are constantly becoming more resistant
through the accumulation of new, often more efficient, ARGs5,6.
However, the lack of knowledge about the evolutionary processes
behind this ongoing gene transfer makes effective preventative
measures hard to implement.

Aminoglycosides constitute an important class of antibiotics
for which clinical resistance is increasing7,8. These compounds
have a long history of clinical use, primarily as a treatment for
infections by Gram-negative bacteria (e.g. Enterobacteriaceae),
but also as a second-line treatment against specific Gram-
positive pathogens (e.g. multidrug-resistant Mycobacterium
tuberculosis)9,10. Resistance to aminoglycosides is associated with
several mechanisms, where drug inactivation by aminoglycoside-
modifying enzymes (AMEs) is most common in clinical
settings11,12. Among the AME mechanisms, the most abundant
are the aminoglycoside acetyltransferases (AACs) and the ami-
noglycoside phosphotransferases (APHs)13,14. The AACs act by
acetylating aminoglycosides at position 1 (AAC(1)), 2’ (AAC(2’)),
3 (AAC(3)), or 6’ (AAC(6’)). The majority of these enzymes
belong to the large GCN5-related N-acetyltransferase (GNAT)
family of proteins15,16, except most AAC(3) enzymes17 and,
potentially, AAC(1) enzymes for which no sequences have been
made publicly available13. The APHs, on the other hand, use
phosphorylation at position 2’’ (APH(2’’)), 4 (APH(4)), 3’
(APH(3’)), 3’’ (APH(3’’)), 6 (APH(6)), 7’’ (APH(7’’)), or 9
(APH(9)) to inactivate aminoglycosides. The origins of APHs are
not clear, but they have been hypothesized to share an evolu-
tionary history with Mph macrolide phosphotransferases and
eukaryotic protein kinases (e.g. cAMP-dependent protein kinase
cAMP) due to their structural similarity18,19. Among the AMEs,
AACs have the highest known diversity, with 86 gene sequences
present in ResFinder20, compared to 39 gene sequences of APHs
reported to date. However, the full diversity of these enzymes
remains unknown.

Bacterial communities present in humans, animals, and
external environments are known to maintain a large diversity of
ARGs. This includes genes encoding AMEs and constitutes a
reservoir from which genes can be recruited into pathogens21–24.
The recent origins of most ARGs are still unknown, which sug-
gests that they were likely mobilized from species that are not yet
well-represented in current sequence repositories25. Conse-
quently, new emerging ARGs are often identified after they
become widespread in pathogens and thus constitute a substantial
clinical problem. For example, the beta-lactamase NDM-1 was
originally discovered in a Klebsiella pneumoniae infection
acquired from India in 200826, but already by 2009, the gene was
frequently encountered in clinics in India, Pakistan, Bangladesh,
and the UK27. This rapid emergence suggests that NDM-1 was
commonly carried by pathogens before its discovery. Similarly,
the plasmid-encoded colistin resistance determinant MCR-1,
which was first observed in commensal and clinical isolates from
China in 2015, was present in at least 16 countries across two
continents at the time of its discovery28,29. The inability to stop
emerging resistance genes lead not only to increased morbidity
and mortality of patients but also to growing healthcare costs30.
Indeed, the costs resulting from a single outbreak of NDM-
carrying bacteria at a hospital ward have been estimated to be in

the order of 1 million US dollars31. To protect the efficacy of
existing and future antibiotics, emerging ARGs should ideally be
identified at an early stage. This would enable gene-specific
diagnostics and facilitate the implementation of countermeasures,
such as targeted infection control and surveillance, to limit fur-
ther dissemination.

A fundamental challenge in the detection of emerging ARGs
is their general absence from the sequence databases, making it
difficult to identify them using standard methods. New ARGs
can be detected using functional metagenomics32, but this
technique is costly and has limited throughput, and is therefore
hard to implement at a large scale. Alternatively, a wide range of
computational methods has been developed for the prediction
of uncharacterized ARGs from sequencing data33. These
methods typically leverage the current resistance gene data-
bases, like ResFinder20 and CARD34, and use models to predict
genes based on their sequence or structural features. Examples
include fARGene, which uses gene-specific hidden Markov
models (HMMs) to identify homologous ARGs with low
sequence similarity;35 deepARG, which applies deep learning
algorithms to discriminate between new ARGs and other
genes;36 and PCM37 and ARGGNN38, both of which use
machine learning to identify new ARGs based on features from
their protein structure. Experimental validation has shown that
the general accuracy for computational prediction of ARGs is as
high as >80%35, making these methods a reliable option for
detecting new resistance genes.

In this study, we demonstrate how computational prediction
can be used to identify previously undiscovered aminoglycoside
resistance genes. By analyzing ~1 million bacterial genomes, we
predicted 1,071,815 genes encoding 34,053 unique AMEs, divided
into 7,612 AME families (<70% amino acid identity). Among
these, 50 new AME families contained genes that were co-
localized with MGEs and present in human pathogens. Experi-
mental validation of genes from 28 of these families showed that
24 induced a resistance phenotype in Escherichia coli, of which 17
conferred resistance above clinical breakpoints and/or epide-
miological cut-off values (ECOFFs). Our results greatly expand
the number of known AMEs and provide a unique view of the
uncharacterized but clinically relevant aminoglycoside resistance
determinants. We conclude that large-scale computational
screening of bacterial genomes constitutes an efficient way to
identify new resistance genes before they become widespread in
pathogens.

Results
Development of gene models for the prediction of new
aminoglycoside-modifying enzymes. New genes encoding AMEs
were predicted in bacterial genomes using fARGene, a software
that utilizes optimized HMMs to identify ARGs in sequence
data35. Nine HMMs (A-I) were created, representing genes from
two major mechanisms of AMEs: six models (A-F) for AACs and
three models (G-I) for APHs, based on phylogeny (Supplemen-
tary Figs. 1, 2, 3). The sensitivity of the models was optimized
based on experimentally validated protein sequences unique to
each model (Supplementary Data 1). To ensure high specificity,
the models were also optimized against negative datasets con-
sisting of genes with an evolutionarily close relationship to AACs
or APHs that have not been reported to confer aminoglycoside
resistance (Supplementary Data 1; see Methods for full details).
After cross-validation, the models displayed high sensitivity and
specificity, with all but one model showing a sensitivity of 1.0
(0.9375 for Model E [AAC(6’)-I]) while the specificity of all
models was 1.0 at the optimized threshold score (Supplementary
Fig. 4, Supplementary Table 1).
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Identification of new aminoglycoside-modifying enzymes in
pathogens. Next, we used the optimized models and screened
990,306 bacterial genomes downloaded from NCBI Assembly39

for genes encoding AMEs. This yielded a total of 1,071,815 pre-
dicted genes – 153,317 of which were previously unknown
(Supplementary Data 2) – encoding 34,053 unique protein
sequences (after clustering at 100% amino acid identity; Table 1)
representing both known and new AMEs. The predicted AMEs
clustered into 7,613 AME families ( < 70% amino acid identity),
of which 4,271 represented AACs and 3,342 families represented
APHs. Among the analyzed genomes, 280,372 (28.3%) encoded a
single AME, while 261,295 (26.4%) encoded multiple variants. As
many as 997,373 AMEs (93%) were predicted in pathogenic
species, but as these only corresponded to 6,075 unique proteins
(17.8%) across 204 AME families (2.7%) they merely represented
a fraction of the genetic diversity predicted across all species.
However, considering that only 112 (0.6%) of the species carrying
AMEs were classified as pathogenic, the amount of new AMEs
predicted in pathogenic species was considerable (Fig. 1a). This
was especially true for genes predicted by model C [AAC(3)-II,
III, VI, VII, VIII, IX], E [AAC(6’)-I], and I [APH(6)-I+APH(3’)-
II], where 75%, 81%, and 89% of the pathogen-associated pre-
dicted AME families were new, respectively. However, when
compared to non-pathogenic species, pathogens generally carried
a lower proportion of new AMEs (Fig. 1b).

New AMEs in pathogens show high potential for mobility.
Phylogenetic analysis of the AMEs predicted by each model was
used to analyze their evolutionary history. Clear deviations

between the gene and host phylogenies were observed for all
models, indicating multiple horizontal gene transfer events
(Supplementary Fig. 5). To further investigate the potential
mobility of the new AMEs found in pathogens, we screened their
genetic context for MGEs. We identified 104 pathogen-associated
AME families, of which 50 (48%) were not present in current
ARG repositories, whose members co-localized with conjugative
elements, insertion sequences, integrons, and/or other known
mobile ARGs (Figs. 1c and 2). Most new mobile pathogen-
associated AME families (36) were found in proteobacterial
pathogens (Pseudomonas aeruginosa being the most common).
However, pathogenic species from Firmicutes (e.g., Streptococcus
sp.) and Bacteroidetes (Elizabethkingia anophelis) were also pre-
sent among the carriers. Notably, several AME families (e.g., C24,
H510, see Supplementary Data 3), included genes present in
multiple phyla, suggesting that these genes have at some point
undergone inter-phyla horizontal gene transfer.

The new mobile pathogen-associated AME families were
generally associated with specific types of MGEs, with only 10
families (20%) co-localizing with elements from multiple
categories. The most common indication of MGEs were genes
involved in conjugation – such as relaxases and/or mating pair
formation genes – which were co-localized with AMEs from 34
new pathogen-associated families (68%; Fig. 2a). These were
primarily mating pair formation genes from the F, G, or FATA
classes and the MOBP1 relaxase, which are associated with broad
host ranges40. By contrast, the known pathogen-associated AMEs
were associated with a wider variety of MGEs, with 19 AME
families (32%) co-localizing with elements from all included

Table 1 Comparison between aminoglycoside resistance genes predicted in pathogenic species and the total collection of
predicted genes.

Pathogens All species

Model Representative phenotype(s) Predicted AMEs [unique
proteins]

AME Familiesa Predicted AMEs [unique
proteins]

AME Familiesa

A AAC(2’)-I 296 [41] 6/4 4,715 [1,645] 341/7
B AAC(3)-I 1,755 [36] 1/4 3,061 [832] 360/8
C AAC(3)-II, III, VI, VII, VIII, IX 102,582 [1,028] 18/6 116,274 [6,961] 1,469/13
D AAC(6’)-I,II 19,015 [526] 8/8 24,754 [2,248] 513/9
E AAC(6’)-I 436,848 [998] 35/8 446,428 [5,021] 1,185/9
F AAC(6’)-I 20,899 [110] 4/6 23,087 [886] 349/8
G APH(2’’)-I 3,403 [305] 9/6 5,172 [1,251] 386/6
H APH(3’)-I, II, III, IV, V, VI, VII, VIII, IX,

XV+APH(3’’)-I
231,817 [1,745] 30/14 248,178 [6,005] 1,146/22

I APH(6)-I+APH(3’)-II 180,758 [1,286] 33/4 200,146 [9,204] 1,776/6
Total 997,373 [6,075] 144/60 1,071,815 [34,053] 7,525/88

a = New/known.
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categories. Conjugation was indicated to also be the main
mechanism by which known AMEs are transferred, as genes
from 42 known pathogen-associated families (78%) appeared
close to conjugation genes (Fig. 2b). Furthermore, genes from 27
of the new pathogen-associated AME families (54%) co-localized
with other mobile resistance genes, suggesting that co-selection
can play a part in their dissemination. These co-localized ARGs
included genes conferring resistance to beta-lactams, tetracy-
clines, macrolide, quinolones, and sulfonamides, as well as other
aminoglycoside resistance genes (Supplementary Data 3).

Next, we analyzed the source environment, geographical
location, and collection date of the isolates containing the new
mobile pathogen-associated AMEs. From this, we found that 21
families (42%) contained at least one gene identified in a clinical

isolate (Fig. 3a), and that hosts of the new mobile pathogen-
associated AME families were found globally (Fig. 3b). Interest-
ingly, genes from seven families were found in genomes isolated
before 1979, suggesting that they have been present in pathogens
for a long time (Fig. 3c).

Most of the new AMEs induce a resistance phenotype. We
assessed the functionality of the predicted AMEs by expressing
representative genes from 28 new mobile pathogen-associated
AME families in E. coli. The resulting phenotypes were evaluated
through disk-diffusion tests with seven different aminoglycosides.
Genes were selected for evaluation based on their potential risk to
human health through the combination of host species patho-
genicity, co-localized MGE-associated genes, and other ARGs
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(Supplementary Data 3), as well as the likelihood of producing a
measurable resistance phenotype under the tested conditions
(assuming a similar phenotype to the closest known homolog). Of
the 28 tested ARGs, 24 (86%) conferred significantly increased
resistance (i.e., decreased susceptibility compared to control with
p-value < 0.01, exact p-values for each test are shown in Supple-
mentary Data 4) to at least one aminoglycoside, while 23 (82%)

conferred resistance to multiple aminoglycosides in E. coli
(Fig. 4). While several of the tested genes provided significantly
increased resistance to amikacin, gentamicin, kanamycin, neo-
mycin, netilmicin, and tobramycin (12, 3, 22, 6, 12, and 11 genes,
respectively), none induced resistance to spectinomycin. When
comparing the inhibition zone diameters to EUCAST’s clinical
breakpoints and ECOFFs41, 17 of the tested genes (61%)
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conferred resistance levels above the breakpoints for amikacin
(D292, E111, E141, E449, E553, F309), gentamicin (C322,
C1264), neomycin (H957), netilmicin (D292, E64, E111, E141,
E449, E526, E550, E553, E606, E657, E963, F72, F309, F314) and/
or tobramycin (C322, C1264, E449, E553, E963) (Fig. 4, Sup-
plementary Fig. 6).

Discussion
In this study, we screened ~1 million bacterial genomes and
identified genes encoding aminoglycoside-modifying enzymes
(AMEs) from 7,613 gene families ( < 70% amino acid identity).
This included 50 previously undiscovered AME families co-
localizing with genes associated with mobile genetic elements
(MGEs) in human pathogens. Genes from 21 of these 50 new
pathogen-associated mobile AME families were identified in
clinical isolates, demonstrating that they are already circulating
among pathogens in the human microbiome. The phenotypes of
the predicted AMEs were experimentally confirmed, with 24 of
the 28 tested genes (86%) significantly increasing the resistance to
at least one aminoglycoside. Our findings extensively expand the
number of known clinically relevant AMEs and demonstrate that
computational screening can be used to identify potential emer-
ging resistance genes.

Seventeen (61%) of the experimentally validated AMEs con-
ferred resistance above the clinical breakpoints and/or ECOFFs
for amikacin, gentamicin, neomycin, netilmicin, and/or tobra-
mycin as defined by EUCAST (Fig. 4, Supplementary Fig. 6).
However, it is important to note that extrapolation of exact
resistance levels generated in heterologous expression systems
should always be done with caution. Also, our assay did not
conform exactly to EUCAST standards since the validations used
disks containing 30 µg antibiotics (except for netilmicin and
spectinomycin, which used disks containing 10 µg and 25 µg
respectively), while the EUCAST cut-offs for gentamicin, neo-
mycin, and tobramycin are based on disks with 10 µg loadings41,
and in this sense, the estimates of resistance we present are likely
conservative. On the other hand, we used a high expression
vector, which likely resulted in higher levels of resistance than
what would be observed naturally. Nevertheless, our results show
that several of the identified AMEs constitute potential con-
tributors to the declining efficacy of aminoglycosides and could,
when present in pathogens and expressed at sufficient levels,
prevent successful antibiotic treatment. It should be noted that
four of the tested new AMEs did not provide aminoglycoside
resistance under our experimental conditions (C24, C118, C715,
E18), even after the genes were codon optimized for E. coli. It is,
however, plausible that these genes are still functional in other
hosts or genetic contexts. Interestingly, all four of these AMEs
were encoded by genes originally identified in Streptococcus sp.,
indicating that they may be genetically incompatible with E. coli.
However, two of the other tested AMEs that were associated with
Streptococcus (E449, E526) did induce a resistance phenotype,
demonstrating that at least some AMEs can function in evolu-
tionarily distant hosts.

Our results suggest that the new pathogen-associated AMEs
are primarily transmitted via conjugation. Based on strict criteria

(see Methods), as many as 68% of the 50 new pathogen-
associated mobile AMEs were co-localized with genes involved in
conjugation. This was close to what was observed for the known
AMEs, of which 78% were found on conjugative plasmids. We
noted that several of the new AMEs were associated with broad-
host plasmids, including plasmids carrying type-IV secretion
systems of class F and T, which suggests a potential to spread over
large evolutionary distances42. There were also differences in the
genetic context between new and known AMEs. Most striking
was the association between AMEs and integrons, where only 6%,
compared to 48% of new and known pathogen-associated AMEs,
respectively, were located close to class 1 integrases. The new
AMEs were also to a lower extent co-localized with known mobile
ARGs. Indeed, 91% of the known pathogen-associated AMEs
were co-localized with known genes conferring resistance to other
antibiotics, including beta-lactams, tetracyclines, and macrolides,
which was only true for 54% of the new AMEs. This could
indicate that several of the new AMEs found in pathogens
represent emerging ARGs that have not yet become associated
with the most efficient MGEs and/or co-localized with other more
established and well-spread ARGs. Multidrug resistance plasmids
carrying large gene arrays are formed by a stepwise process that
includes several consecutive evolutionary events distributed over
time43. A lower tendency for co-localization with other ARGs has
also been seen for carbapenemases, of which many are believed to
have been transferred into pathogens after the relatively recent
introduction of carbapenems for treating bacterial infections44. It
is thus possible that several of the AMEs identified in this study
may become more prevalent over time, and once present in
contexts that facilitate transfer and co-selection it cannot be
excluded that they may complement, or even replace, some of the
well-established aminoglycoside resistance genes.

Several of the new mobile pathogen-associated AMEs identified
in this study were present in old samples, with genes from seven
families (C1, C4, E18, G5, H100, I80, I269) being carried by
bacteria isolated before 1980. These genes have thus been present
in pathogens such as Bacillus anthracis, Streptococcus pneumo-
niae, and Salmonella enterica for at least four decades without
becoming sufficiently widespread to be identified as ARGs. Fur-
ther investigation into these families revealed that each showed a
strong preference for a narrow taxonomic host range (Bacillus
spp., Listeria spp., Streptococcus spp., Bacillus spp., Pseudomonas
spp., S. enterica, and Legionella spp., respectively), which sug-
gested that they lack the means to spread efficiently. However, for
four of the seven AME families identified in old isolates (C1, E18,
G5, I80), a small proportion of genes were present in evolutio-
narily distant pathogens, indicating horizontal gene transfer
(Supplementary Data 3). Among these evolutionarily distant
hosts, the earliest confirmed collection date was 2006, and we,
therefore, speculate that these genes may have more recently
become associated with MGEs that improved their ability to
transfer more broadly. It is also possible that these genes, and
other AMEs found in this study, are facing strong barriers that
hamper their dissemination45. Oftentimes, ARGs are associated
with an increased fitness cost. This, to a large extent, depends on
the gene nucleotide sequence, where the presence of rare codons

Fig. 4 Results from disk diffusion tests using E. coli and 28 selected new AMEs. Panels a–g show the mean inhibition zone diameter difference [mm]
between clones carrying new AMEs (n= 3 for each gene and antibiotic) and susceptible controls (n= 6 for each antibiotic) for seven different
aminoglycosides: amikacin (AK 30 µg), gentamicin (CN 30 µg), kanamycin (K 30 µg), neomycin (N 30 µg), netilmicin (NET 10 µg), spectinomycin (SH 25 µg),
and tobramycin (TOB 30 µg). Individual data points are presented in Supplementary Fig. 6. Significantly increased growth (p-value < 0.01, one-sided two-
sample t-test) is denoted by an asterisk above the bar, with red asterisks indicating a resistance level beyond the clinical breakpoint (amikacin, gentamicin,
tobramycin) or ECOFF (neomycin). Standard deviations are displayed as error bars. Panel h shows an overview of the tested antibiotic resistance genes and the
aminoglycoside(s) that each gene conferred significantly increased resistance to, with asterisks denoting clinical levels of resistance.
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in the new host can drastically reduce the translation rate and
thereby prevent a sufficiently high expression46. It is therefore
possible that some of the AMEs identified in this study are not
sufficiently beneficial and that most bacteria favour more cost-
efficient aminoglycoside resistance determinants47.

The over 1 million predicted AMEs clustered into almost 8,000
AME families – of which only a very small proportion (1.2%)
have been previously characterized. This demonstrates the vast
diversity of AMEs, of which many are latently present in many
bacterial communities48. Indeed, AMEs were ubiquitously present
in both environmental and commensal bacteria, including Acti-
nobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Chloroflexi,
and Cyanobacteria (Supplementary Fig. 5). Moreover, the genes
predicted by the different models showed clear taxonomic pre-
ferences, suggesting that they originate from different bacterial
phyla (Supplementary Figs. 5, 7)25. While most ARGs in non-
pathogenic species may not present an immediate threat, it is not
unreasonable to assume that some of them could be mobilized
and transferred into pathogens in the future. Notably, aside from
the 50 new mobile pathogen-associated AME, we identified 433
additional new AME families associated with MGEs, suggesting
that the mobilization of several genes may have already occurred
(Fig. 1d). This was supported by the phylogenetic analysis which
showed clear indications of horizontal transfer events in all trees,
suggesting that not only the clinically relevant AMEs are mobile
(Supplementary Fig. 5). A highly diverse and partially mobile
resistome has recently been described for other ARGs, including
beta-lactam, macrolide, tetracycline, and quinoline resistance
genes49–52. This further emphasizes that the full resistome –
including the many ARGs that have not yet been found in
pathogens – needs to be considered to fully assess the future risks
to human health associated with the promotion of antibiotic
resistance.

The identification of new AMEs described in this study was
based on computational predictions. These genes should be
treated as putative ARGs until they have been experimentally
validated. Even if most of the predicted genes were present in
monophyletic clades together with known resistance genes
(Supplementary Fig. 5), some of them might have recently lost
their original functionality. However, the experimental validation
showed that 86% of the tested genes provided increased resistance
in E. coli to at least one aminoglycoside. This is in line with
previous studies using the same methodology, for which 60-90%
of tested genes produced the expected phenotype49–52. This study
thus provides further evidence that computational prediction can
be used to expand the resistome beyond the limited number of
gene sequences that are currently present in the ARG databases.
We also argue, based on our results, that computational screening
of bacterial isolates constitutes the most efficient large-scale
approach to identifying new, potentially emerging, resistance
determinants.

In this study, we identified an abundance of new mobile AMEs
carried by pathogenic species, showing that computational
methods enable the identification of potentially emerging ARGs
before they become widespread. Experimental validation showed
high accuracy for predicting functional new resistance determi-
nants, and several of the tested new AMEs provided resistance
well beyond clinical breakpoints. The introduction of new and
potent ARGs constitutes a serious threat to the efficacy of existing
and future antibiotics1–3. Knowledge about which ARGs may
become a clinical problem in the future is crucial for the imple-
mentation of suitable preventive measures to limit dissemination.
It is also vital for sequencing-based methodologies that today are
routinely used in diagnostics53, infection control54, and
surveillance55. Indeed, the results of this study show that existing
ARG databases are clearly limited and will only provide

information about a small part of the clinically relevant resistome.
In fact, this single study almost doubles the number of known aac
and aph gene variants circulating in pathogens. It is thus
imperative that the reference databases of ARGs are expanded
and here computational prediction offers an accurate and scalable
method that can complement the more traditional approaches.

Methods
Model creation and optimization. Nine profile hidden Markov models (HMMs)
were created and optimized using fARGene v0.135 as follows. Nucleotide sequences
representing aac and aph genes were downloaded from ResFinder v4.020 and
translated using EMBOSS Transeq v6.5.7.056. Since minimal differences are
required for some aminoglycoside resistance genes to be considered different
variants57, the protein sequences were clustered at 90% amino acid identity using
USEARCH v8.01445 with parameters ‘-cluster_fast -id 0.9’58 to reduce redundancy.

The centroid sequences representing GNAT AACs, non-GNAT-like AACs, and
APHs were aligned separately using mafft v7.2359, with default parameters.
Phylogenetic trees were created from the alignments using FastTree v2.1.1060, with
default parameters. From the resulting trees, nine subsets of sequences that
clustered together were identified (Supplementary Figs. 1, 2, 3). These subsets were
used to create nine HMMs using ‘fargene_model_creation’ from fARGene v0.135.
Of these models, six (denoted A-F) represented AACs (with model C representing
non-GNAT-like AAC(3)s), and three (denoted G-I) represented APHs
(Supplementary Data 1). Sequences that deviated from the nine subsets could not
be included in any model without severely reducing its performance and were
therefore excluded.

For each model, the sensitivity was estimated using leave-one-out cross-
validation. The specificity was estimated using a negative set of protein sequences
that are evolutionarily close to the AME but have not been associated with
aminoglycoside resistance. For the six AAC models, the specificity was estimated
from a set of 374 sequences representing evolutionarily related acetyltransferases,
including members of the GNAT family of N-acetyltransferases to which most
AAC enzymes also belong. For the three APH models, 60 sequences representing
homologs of homoserine kinase II and macrolide phosphotransferases were used to
estimate the specificity (Supplementary Data 1). For all models, domain score
thresholds were assigned with the criteria that both sensitivity and specificity
should be as high as possible. However, to ensure a low false positive rate, high
specificity took priority over high sensitivity. Additionally, throughout the model
creation process, we paid attention to any overlap between the sequences predicted
by different models, and we found no such overlap for the final models.

Resistance gene prediction and phylogenetic analysis. All bacterial genomes
from NCBI Assemly (downloaded August 2021) were searched for genes encoding
AMEs with fARGene v0.135 using the new HMMs. For each model, AME families
were created by clustering the protein sequences, together with their corresponding
reference sequences from ResFinder, at 70% amino acid identity using USEARCH
v8.0.144558 with parameters ‘-cluster_fast -id 0.7’. Nine phylogenetic trees were
created from the representative centroid sequences using the methodology
described in the previous section. For each centroid, the closest known homolog
was identified by applying BLASTx v2.10.161, using a custom database primarily
based on ResFinder v4.020 but augmented with sequences from CARD62. The
obtained identity score was visualized together with the trees using ggtree v3.0.463.

Genetic context analysis. For each of the 7612 predicted AME families, genetic
regions of up to 10 kb up- and downstream of the genes in the cluster were
retrieved using GEnView v0.164. These genetic contexts were screened for MGEs,
including conjugative elements, integrons and insertion sequences (ISs), and
known ARGs. Conjugative elements were identified by translating the genetic
regions in all six reading frames using EMBOSS Transeq v6.5.7.056 and screening
the translated contexts with 124 HMMs from MacSyfinder CONJScan v2.065, using
HMMER v3.1b266. Integron Finder v1.5.167 was applied to the genetic contexts to
identify integrons. insertion sequences and co-localized mobile ARGs were iden-
tified by applying BLASTx v2.10.161 to the genetic contexts. For insertion
sequences, a reference database based on ISFinder68,69 was used to find the best
among overlapping hits located within 1 kb of the predicted AME, with the criteria
of hits showing >50% coverage and >90% nucleotide identity. For co-localized
ARGs, ResFinder v4.0 was used as a reference database20, with the criterion of hits
showing >90% nucleotide identity.

The similarity between the proteins encompassing each family and known
AMEs was evaluated using BLASTx v2.10.161 and the same database as during the
phylogenetic analysis. Each AME family was classified as either known or new
based on the highest obtained identity score, where >70% amino acid identity to
any ResFinder/CARD AME was considered known. Additionally, pathogenic host
species within each cluster were identified by cross-referencing the represented
species with a reference list based on the PATRIC database70. Finally, for each
AME family, metadata about the host genome isolates was collected from NCBI
using Entrez Direct v13.971,72.
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Experimental validation. Representative genes from 34 new AME families were
selected for functional validation. Together with four positive (aph(9)-Ia [U94857],
aac(3)-IIb [M97172], aph(3')-III [M26832], aph(3'')-Ib [M28829]) and two negative
(tet(A) [AF534183], dfrA1 [FJ591049]) control gene sequences obtained from
CARD62, the genes were codon optimized for E. coli using the GenScript online
codon optimization tool73 and synthesized by Twist Bioscience (USA). These genes
were shipped pre-inserted within the pBAD multiple cloning site region of the
pBAD/myc-His B plasmid vector (Invitrogen, USA). Upon arrival, the lyophilized
DNA was resuspended in nuclease-free water to a final concentration range of
10–20 ng/µl (validated using a Qubit 2.0 Fluorometer [Invitrogen, USA]) and
stored at −20 °C.

Approximately 15 ng of each DNA sample was mixed with 50 µl of
electrocompetent E. coli TOP10 cells and transferred to chilled 1 mm
Electroporation Cuvettes (Bio-Rad, USA). Electroporation was performed at 1.7 kV
for 5.3 ms using the Eppendorf™ Eporator™ (Eppendorf, Germany). The
transformed cells were immediately resuspended in 1 ml preheated SOC medium
and incubated for 1 hour at 37 °C while shaking at 300 rpm. The transformants
were plated on LB agar with and without supplemented 100 µg/ml ampicillin and
incubated overnight at 37 °C. Successful transformants were identified as single
colonies on plates supplemented with ampicillin. The no-plasmid control indicated
no growth on these plates, confirming the presence of plasmids in the cloned
samples. A single colony from each transformed sample was streaked on LB agar
plates supplemented with 100 µg/ml ampicillin, incubated overnight at 37 °C, and
stored at 4 °C the following day.

Validation of the predicted AMEs was performed using the disk diffusion test74.
Eight aminoglycosides were selected (kanamycin [K 30 µg], gentamicin [CN 30 µg],
neomycin [N 30 µg], spectinomycin [SH 25 µg], netilmicin [NET 10 µg], amikacin
[AK 30 µg], tobramycin [TOB 30 µg], streptomycin [S 10 µg]), together with two
negative controls (tetracycline [TE 30 µg] and trimethoprim [W 5 µg] [Oxoid,
United Kingdom]). A single colony from each of the transformed clones was
inoculated in LB broth supplemented with 100 µg/ml ampicillin and incubated
overnight at 37 °C while shaking at 150 rpm. The following day 100 µl of the
overnight culture was inoculated in fresh LB broth supplemented with 100 µg/ml
ampicillin and incubated at 37 °C for ~6 h. L-(+)-arabinose (Sigma, USA) was
added to each broth (0.1%) and incubation continued until an OD600 measurement
of 0.7 was reached. Each of the samples was then spread on Mueller-Hinton agar
plates supplemented with 0.1 % L-(+)-arabinose. One of each antibiotic was added
to the plates using an antibiotic disk dispenser (Oxoid, United Kingdom). Plates
were incubated at 30 °C, thereby avoiding the formation of inclusion bodies75, for
~18 h. Results were taken by measuring the inhibition zones of each antibiotic on
the various samples. The disk diffusion screening was repeated for a total of three
replicates. Confirmation of the cloned inserts used in the expression studies was
validated using Sanger Sequencing.

Since the E. coli TOP10 strain is resistant to streptomycin, we excluded six
tested AMEs that were only expected to confer resistance to this aminoglycoside
(I26, I64, I81, I91, I270, I642), based on the resistance profile associated with their
respective closest known homolog. The inhibition zone diameters produced by
these AMEs for the other tested aminoglycosides are reported in the supplementary
material (Supplementary Fig. 6, Supplementary Data 5).

Statistics and reproducibility. Phylum enrichment analysis was performed to test
whether the AMEs predicted by different models had specific taxonomic affilia-
tions. For each model, the number of unique host species from each of the main
four bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria)
was counted and compared to the number of species from the same phylum
present in the database using Fisher’s exact test. A p-value < 0.01 was considered
significant.

To determine if the experimentally tested AMEs conferred significantly
increased resistance in E. coli, p-values were calculated using a one-sided two-
sample t-test. For each gene, the inhibition zone diameters obtained from the three
replicates were tested against the diameters from the corresponding negative
controls (both empty plasmid and no-plasmid controls) for each tested
aminoglycoside. For significant tests (p-value < 0.01), the average inhibition zone
diameter of the replicates was compared to EUCAST’s clinical breakpoints
(amikacin, gentamicin, tobramycin) or epidemiological cut-off values (ECOFFs;
neomycin)41 when available. Genes were considered to give clinical resistance when
the average zone diameter plus one standard deviation was below the
corresponding clinical breakpoint/ECOFF.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All genomes used for this study are publicly available at https://www.ncbi.nlm.nih.gov/
assembly. The models created and used in this study are available from https://github.
com/fannyhb/fargene. Protein sequences, nucleotide sequences, and metadata
corresponding to the new genes predicted in this study are listed in Supplementary

Data 2. Raw data from the disk diffusion tests is presented in Supplementary Data 5.
Source data used to generate the figures can be found in Supplementary Data 6.

Code availability
The code used for the genetic context analysis is available at https://github.com/
davidgllund/ARG_context_analysis_pipeline76.

Received: 20 January 2023; Accepted: 24 July 2023;

References
1. Lerminiaux, N. A. & Cameron, A. D. Horizontal transfer of antibiotic

resistance genes in clinical environments. Can. J. Microbiol. 65, 34–44 (2019).
2. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic

elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31,
e00088–00017 (2018).

3. Stokes, H. W. & Gillings, M. R. Gene flow, mobile genetic elements and the
recruitment of antibiotic resistance genes into Gram-negative pathogens.
FEMS Microbiol. Rev. 35, 790–819 (2011).

4. Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Genomics and the evolution of
antibiotic resistance. Ann. N. Y. Acad. Sci. 1388, 92–107 (2017).

5. Cantón, R. & Ruiz-Garbajosa, P. Co-resistance: an opportunity for the bacteria
and resistance genes. Curr. Opin. Pharmacol. 11, 477–485 (2011).

6. Pournaras, S. et al. Detection of the new metallo-β-lactamase VIM-19 along
with KPC-2, CMY-2 and CTX-M-15 in Klebsiella pneumoniae. J.
antimicrobial Chemother. 65, 1604–1607 (2010).

7. Ramirez, M. S., Nikolaidis, N. & Tolmasky, M. Rise and dissemination of
aminoglycoside resistance: the aac (6′)-Ib paradigm. Front. Microbiol. 4, 121
(2013).

8. Khodabandeh, M. et al. High-level aminoglycoside resistance in Enterococcus
faecalis and Enterococcus faecium; as a serious threat in hospitals. Infect.
Disord.-Drug Targets (Former. Curr. Drug Targets-Infect. Disord.) 20, 223–228
(2020).

9. Garneau-Tsodikova, S. & Labby, K. J. Mechanisms of resistance to
aminoglycoside antibiotics: overview and perspectives. Medchemcomm 7,
11–27 (2016).

10. Forge, A. & Schacht, J. Aminoglycoside antibiotics. Audiol. Neurotol. 5, 3–22
(2000).

11. Takahashi, Y. & Igarashi, M. Destination of aminoglycoside antibiotics in the
‘post-antibiotic era’. J. Antibiotics 71, 4–14 (2018).

12. Serio, A. W., Keepers, T., Andrews, L. & Krause, K. M. Aminoglycoside
revival: review of a historically important class of antimicrobials undergoing
rejuvenation. EcoSal Plus 8 (2018).

13. Ramirez, M. S. & Tolmasky, M. E. Aminoglycoside modifying enzymes. Drug
resistance updates 13, 151–171 (2010).

14. Zárate, S. G. et al. Overcoming aminoglycoside enzymatic resistance: design of
novel antibiotics and inhibitors. Molecules 23, 284 (2018).

15. Favrot, L., Blanchard, J. S. & Vergnolle, O. Bacterial GCN5-related N-
acetyltransferases: from resistance to regulation. Biochemistry 55, 989–1002
(2016).

16. Wolf, E. et al. Crystal structure of a GCN5-related N-acetyltransferase: serratia
marcescens aminoglycoside 3-N-acetyltransferase. Cell 94, 439–449 (1998).

17. Serio, A. W., Magalhães, M. L., Blanchard, J. S. & Connolly, L. E.
Aminoglycosides: mechanisms of action and resistance. Antimicrob. Drug
Resistance: Mechanisms Drug Resistance 1, 213–229 (2017).

18. Pawlowski, A. C. et al. The evolution of substrate discrimination in macrolide
antibiotic resistance enzymes. Nat. Commun. 9, 1–12 (2018).

19. Hon, W.-C. et al. Structure of an enzyme required for aminoglycoside
antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89,
887–895 (1997).

20. Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from
genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).

21. Inda-Díaz, J. S. et al. Latent antibiotic resistance genes are abundant, diverse,
and mobile in human, animal, and environmental microbiomes. Microbiome
11, 44 (2023).

22. Forslund, K. et al. Country-specific antibiotic use practices impact the human
gut resistome. Genome Res. 23, 1163–1169 (2013).

23. Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic
resistance determinants reveals microbial resistomes cluster by ecology. ISME
J. 9, 207–216 (2015).

24. Kim, D.-W. & Cha, C.-J. Antibiotic resistome from the One-Health
perspective: understanding and controlling antimicrobial resistance
transmission. Exp. Mol. Med. 53, 301–309 (2021).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05174-6

8 COMMUNICATIONS BIOLOGY |           (2023) 6:812 | https://doi.org/10.1038/s42003-023-05174-6 | www.nature.com/commsbio

https://www.ncbi.nlm.nih.gov/assembly
https://www.ncbi.nlm.nih.gov/assembly
https://github.com/fannyhb/fargene
https://github.com/fannyhb/fargene
https://github.com/davidgllund/ARG_context_analysis_pipeline
https://github.com/davidgllund/ARG_context_analysis_pipeline
www.nature.com/commsbio


25. Ebmeyer, S., Kristiansson, E. & Larsson, D. G. J. A framework for identifying
the recent origins of mobile antibiotic resistance genes. Commun. Biol. 4, 1–10
(2021).

26. Yong, D. et al. Characterization of a new metallo-β-lactamase gene, bla NDM-
1, and a novel erythromycin esterase gene carried on a unique genetic
structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob.
Agents Chemother. 53, 5046–5054 (2009).

27. Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism
in India, Pakistan, and the UK: a molecular, biological, and epidemiological
study. Lancet Infect. Dis. 10, 597–602 (2010).

28. Ye, H. et al. Diversified mcr-1-harbouring plasmid reservoirs confer resistance
to colistin in human gut microbiota. MBio 7, e00177–00116 (2016).

29. Von Wintersdorff, C. J. et al. Dissemination of antimicrobial resistance in
microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7,
173 (2016).

30. Friedman, N. D., Temkin, E. & Carmeli, Y. The negative impact of antibiotic
resistance. Clin. Microbiol. Infect. 22, 416–422 (2016).

31. Mollers, M., Lutgens, S. P., Schoffelen, A. F., Schneeberger, P. M. &
Suijkerbuijk, A. W. Cost of nosocomial outbreak caused by NDM-
1–containing Klebsiella pneumoniae in the Netherlands, October
2015–January 2016. Emerg. Infect. Dis. 23, 1574 (2017).

32. Böhm, M.-E., Razavi, M., Marathe, N. P., Flach, C.-F. & Larsson, D. G. J.
Discovery of a novel integron-borne aminoglycoside resistance gene present in
clinical pathogens by screening environmental bacterial communities.
Microbiome 8, 1–11 (2020).

33. Maryam, L., Usmani, S. S. & Raghava, G. P. Computational resources in the
management of antibiotic resistance: speeding up drug discovery. Drug Discov.
Today 26, 2138–2151 (2021).

34. Alcock, B. P. et al. CARD 2023: expanded curation, support for machine
learning, and resistome prediction at the comprehensive antibiotic resistance
database. Nucleic Acids Res. (2022).

35. Berglund, F. et al. Identification and reconstruction of novel antibiotic
resistance genes from metagenomes. Microbiome 7, 1–14 (2019).

36. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting
antibiotic resistance genes from metagenomic data. Microbiome 6, 1–15
(2018).

37. Ruppé, E. et al. Prediction of the intestinal resistome by a three-dimensional
structure-based method. Nat. Microbiol. 4, 112–123 (2019).

38. Qabel, A. et al. Structure-Aware Antibiotic Resistance Classification Using
Graph Neural Networks. bioRxiv (2022).

39. Kitts, P. A. et al. Assembly: a resource for assembled genomes at NCBI.
Nucleic acids Res. 44, D73–D80 (2016).

40. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. & de la Cruz,
F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).

41. Leclercq, R. et al. EUCAST expert rules in antimicrobial susceptibility testing.
Clin. Microbiol. Infect. 19, 141–160 (2013).

42. Coluzzi, C., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. Evolution of
plasmid mobility: origin and fate of conjugative and nonconjugative plasmids.
Mol. Biol. Evolution 39, msac115 (2022).

43. Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119
(2009).

44. Johnning, A. et al. The resistomes of six carbapenem-resistant pathogens–a
critical genotype–phenotype analysis. Microb. genomics 4, e000233 (2018).

45. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal
gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005).

46. Amorós-Moya, D., Bedhomme, S., Hermann, M. & Bravo, I. G. Evolution in
regulatory regions rapidly compensates the cost of nonoptimal codon usage.
Mol. Biol. evolution 27, 2141–2151 (2010).

47. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible
to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

48. Inda-Díaz, J. et al. Latent antibiotic resistance genes are abundant, diverse, and
mobile in human, animal, and environmental micorbiomes. (2022).

49. Berglund, F. et al. Comprehensive screening of genomic and metagenomic
data reveals a large diversity of tetracycline resistance genes.Microb. Genomics
6, mgen000455 (2020).

50. Lund, D. et al. Large-scale characterization of the macrolide resistome reveals
high diversity and several new pathogen-associated genes. Microb. Genomics
8, 000770 (2022).

51. Berglund, F. et al. Identification of 76 novel B1 metallo-β-lactamases through
large-scale screening of genomic and metagenomic data. Microbiome 5, 1–13
(2017).

52. Boulund, F. et al. Computational discovery and functional validation of novel
fluoroquinolone resistance genes in public metagenomic data sets. BMC
Genomics 18, 1–9 (2017).

53. Trotter, A. J., Aydin, A., Strinden, M. J. & O’grady, J. Recent and emerging
technologies for the rapid diagnosis of infection and antimicrobial resistance.
Curr. Opin. Microbiol. 51, 39–45 (2019).

54. Eyre, D. W. Infection prevention and control insights from a decade of
pathogen whole-genome sequencing. J. Hospital Infect. 122, 180–186 (2022).

55. Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on
metagenomics analyses of urban sewage. Nat. Commun. 10, 1–12 (2019).

56. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in
2019. Nucleic Acids Res. 47, W636–W641 (2019).

57. Shaw, K., Rather, P., Hare, R. & Miller, G. Molecular genetics of
aminoglycoside resistance genes and familial relationships of the
aminoglycoside-modifying enzymes. Microbiological Rev. 57, 138–163 (1993).

58. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461 (2010).

59. Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Res. 30, 3059–3066 (2002).

60. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-
likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

61. Madden, T. The BLAST sequence analysis tool. NCBI Handb. 2, 425–436
(2013).

62. Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the
comprehensive antibiotic resistance database. Nucleic Acids Res. 48,
D517–D525 (2020).

63. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an R package
for visualization and annotation of phylogenetic trees with their covariates and
other associated data. Methods Ecol. Evolution 8, 28–36 (2017).

64. Ebmeyer, S., Coertze, R. D., Berglund, F., Kristiansson, E. & Larsson, D. G. J.
GEnView: a gene-centric, phylogeny-based comparative genomics pipeline for
bacterial genomes and plasmids. Bioinformatics (2021).

65. Abby, S. S. et al. Identification of protein secretion systems in bacterial
genomes. Sci. Rep. 6, 1–14 (2016).

66. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7,
e1002195 (2011).

67. Cury, J., Jové, T., Touchon, M., Néron, B. & Rocha, E. P. Identification and
analysis of integrons and cassette arrays in bacterial genomes. Nucleic acids
Res. 44, 4539–4550 (2016).

68. Siguier, P., Pérochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the
reference centre for bacterial insertion sequences. Nucleic acids Res. 34,
D32–D36 (2006).

69. Insertion Sequence (IS) database, https://github.com/thanhleviet/ISfinder-
sequences.

70. Davis, J. J. et al. The PATRIC Bioinformatics Resource Center: expanding data
and analysis capabilities. Nucleic acids Res. 48, D606–D612 (2020).

71. Coordinators, N. R. Database resources of the national center for
biotechnology information. Nucleic acids Res. 44, D7–D19 (2016).

72. Kans, J. in Entrez Programming Utilities Help [Internet] (National Center for
Biotechnology Information (US), 2022).

73. GenScript. GenSmart Codon Optimization, https://www.genscript.com/tools/
gensmart-codon-optimization.

74. Jorgensen, J. H. & Turnidge, J. D. Susceptibility test methods: dilution and
disk diffusion methods. Manual of clinical microbiology, 1253-1273 (2015).

75. Sørensen, H. P. & Mortensen, K. K. Soluble expression of recombinant proteins
in the cytoplasm of Escherichia coli. Microb. cell factories 4, 1–8 (2005).

76. Lund, D. davidgllund/ARG_context_analysis_pipeline: Zenodo release.
Zenodo (2023). https://doi.org/10.5281/zenodo.8147354.

Acknowledgements
This research was supported by the Swedish Research Council (VR) (2018–02835, 2018-
05771 and 2019–03482). Funding sources took no part in the design, analysis, or
interpretation of the results.

Author contributions
D.L., F.B., A.J., D.G.J.L., and E.K. designed the study and developed the approach. D.L.
created and optimized the probabilistic models. M.P.-M. collected the data and ran the
fARGene analysis. D.L. implemented the computational analysis pipeline, including
phylogenetic analysis and genetic context analysis. R.D.C. and C.-F.F. performed the
experimental validation. All authors discussed the results and their implications. D.L. and
E.K. drafted the manuscript. All authors edited and approved the final manuscript.

Funding
Open access funding provided by Chalmers University of Technology.

Competing interests
The authors declare no competing interests.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05174-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:812 | https://doi.org/10.1038/s42003-023-05174-6 | www.nature.com/commsbio 9

https://github.com/thanhleviet/ISfinder-sequences
https://github.com/thanhleviet/ISfinder-sequences
https://www.genscript.com/tools/gensmart-codon-optimization
https://www.genscript.com/tools/gensmart-codon-optimization
https://doi.org/10.5281/zenodo.8147354
www.nature.com/commsbio
www.nature.com/commsbio


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-05174-6.

Correspondence and requests for materials should be addressed to Erik Kristiansson.

Peer review information Communications Biology thanks Emily Bordeleau and the other
anonymous reviewer(s) for their contribution to the peer review of this work. Primary
Handling Editors: Pei Hao and Gene Chong. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05174-6

10 COMMUNICATIONS BIOLOGY |           (2023) 6:812 | https://doi.org/10.1038/s42003-023-05174-6 | www.nature.com/commsbio

https://doi.org/10.1038/s42003-023-05174-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Extensive screening reveals previously undiscovered aminoglycoside resistance genes in human pathogens
	Results
	Development of gene models for the prediction of new aminoglycoside-modifying enzymes
	Identification of new aminoglycoside-modifying enzymes in pathogens
	New AMEs in pathogens show high potential for mobility
	Most of the new AMEs induce a resistance phenotype

	Discussion
	Methods
	Model creation and optimization
	Resistance gene prediction and phylogenetic analysis
	Genetic context analysis
	Experimental validation
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




