CHALMERS

UNIVERSITY OF TECHNOLOGY

Demonstrating the Benefits of Service-Aware Pod Autoscaling with Shared
Resources

Downloaded from: https://research.chalmers.se, 2025-06-07 11:09 UTC

Citation for the original published paper (version of record):

Tonini, F., Natalino Da Silva, C., Wosinska, L. et al (2023). Demonstrating the Benefits of
Service-Aware Pod Autoscaling with Shared Resources. 2023 IEEE 9th International Conference on
Network Softwarization: Boosting Future Networks through Advanced Softwarization, NetSoft 2023
- Proceedings: 305-307. http://dx.doi.org/10.1109/NetSoft57336.2023.10175413

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Demonstrating the Benefits of Service-Aware Pod
Autoscaling with Shared Resources

Federico Tonini, Carlos Natalino, Lena Wosinska and Paolo Monti
Department of Electrical Engineering
Chalmers University of Technology
Gothenburg, Sweden
{tonini,carlos.natalino,wosinska,mpaolo } @chalmers.se

Abstract—Service providers can leverage shared resources to
reduce the overall amount of required resources while keeping
acceptable Quality of Service (QoS) levels. Kubernetes (K8s)
provides a Horizontal Pod Autoscaling (HPA) mechanism that
allows to automatically adjust the number of Pods to closely
follow the user demand variations over time. To properly leverage
shared resources with HPA, service providers need to limit the
use of dedicated resources and overprovisioning. However, in the
case of traffic spikes, there may not be enough resources to satisfy
the demand. The HPA, which relies on resource usage to drive
the scaling, is unaware of how many requests could not be served
with the required QoS. This might result in an underestimation
of the number of required Pods to be added, leading to additional
QoS degradation. This demonstration showcases the effectiveness
of a new Pod autoscaling mechanism (i.e., Service Aware Pod
Autoscaling (SAPA)) that relies on user request measurements
from the service load balancer to better estimate the number
of required Pods. SAPA allows selecting the amount of Pod re-
sources (dedicated and shared) in a simple way. We demonstrate
the benefits of SAPA by comparing it to a KS8s cluster based
on the traditional HPA in terms of resource usage and service
latency.

Index Terms—Cloud native services, QoS, service degradation,
Pod autoscaling, Kubernetes, Shared resources.

I. INTRODUCTION

Containers and container orchestration platforms changed
the way services are provided. Compared to Virtual Machines
(VMs), they offer easier management of distributed applica-
tions, reduced overhead, reduced start/stop time, and more
effective utilization of compute resources [1], [2]. Kubernetes
(K8s) [3] is a container orchestration platform that allows
autonomous scaling of Pods (i.e., collections of containers)
to closely follow user demand by means of a Horizontal
Pod Autoscaling (HPA) mechanism [4]. K8s provides two
ways of assigning resources: resource request and limit [5].
For each Pod, service providers can specify the assignment
of dedicated resources by setting the request amount, while
shared resources are defined by the limit. Dedicated resources
can be accessed at any time during service operation, and are
paid for regardless of their use. On the other hand, shared
resources are in contention with other Pods running on the
same machine and are used only when dedicated resources

This work was supported by EUREKA cluster CELTIC-NEXT projects
AI-NET-ANIARA and AI-NET-PROTECT funded by VINNOVA.

are not enough to satisfy the demand. Since they are subject
to contention, they are paid for only when accessed.

Service providers can rely on shared resources to reduce
cost and degradation [6]. To do so, the over-provisioning of
dedicated resources should be kept to a minimum, encouraging
the use of shared resources. However, in the case of sudden
traffic spikes, resources might not be enough to satisfy the
whole demand. In this case, degradation is experienced due
to the time it takes for K8s to detect the lack of resources
and adjust the number of Pod replicas (usually referred to
as scaling delay). In this situation, the HPA is unaware of the
demand that was not satisfied, hence may under-dimension the
required (or desired) Pods. To overcome this issue, dedicated
resources are usually over-provisioned, preventing the use of
shared resources. Therefore, a better scaling mechanism is
needed to fully exploit the benefits of shared resources.

Different strategies have been proposed to improve the
HPA mechanism. In [7], the authors experimentally assess the
performance of different Artificial Intelligence (Al)-based pre-
diction models in reducing HPA over-provisioning while pro-
viding some level of Quality of Service (QoS). The works in
[8], [9] introduce workload prediction techniques to anticipate
traffic bursts and adjust the number of replicas accordingly.
Experimental results show reduced service response time and
resource usage compared to the conventional HPA. The work
in [10] relies on Reinforcement Learning (RL) to automate the
scaling mechanism while continuously learning and adapting
the resources to the environment. All the aforementioned
works improve the scaling process substantially. However,
these strategies focus on scaling dedicated resources and are
not designed to work with shared resources. The HPA can be
used in the presence of shared resources, but its performance is
limited by the (sometimes) incorrect evaluation of the required
replicas. Therefore, there is a need for a new strategy to
overcome the HPA issues while leveraging shared resources.

In this experimental demonstration, we will show how
service-related information can be used to improve K8s scaling
in the presence of shared resources. More specifically, we
propose to use a novel scaling mechanism called Service
Aware Pod Autoscaling (SAPA) that takes as input the user
requests for a better estimation of the required Pod replicas
[11]. Knowledge about the demand is crucial to avoid the
underestimation intrinsic of HPA, allowing to keep dedicated

| Load balancer | | Prometheus |

| K8s SAPA |
——:—l Prometheus scrape loop I——:—

[eara loon |
ISAPA loop |

loop /

|
|
|
|
Ly
>

| scale(Npods) |
e —

‘ SAPA |

Fig. 1. The communication between the different components in the demon-
strator.

resource over-dimensioning to a minimum while leveraging
shared resources. An initial assessment of the benefits intro-
duced by SAPA is presented in [11], by means of a custom
Python-based simulator. In this demo, we experimentally prove
these benefits. More specifically, we will demonstrate the
effectiveness of SAPA by comparing the operations of two
K8s clusters, each one with different autoscaling mechanisms,
one driven by the K8s HPA and the other driven by the SAPA.
Different metrics (i.e., service delay and CPU usage) will be
collected and shown through a custom Grafana dashboard [12]
to illustrate the benefits of SAPA.

II. DESIGN OF THE SERVICE AWARE POD AUTOSCALING
(SAPA) MECHANISM

In this section, we briefly present the architectural design of
the proposed SAPA mechanism for efficient Pod autoscaling.
The architecture is based on the following components:

o a K&8s cluster handling the Pods utilized by the service.
More specifically, K8s is used to scale up to down the
number of Pods performing the service, a process that
consists in either creating new Pod replicas or terminating
them.

o A load balancer, one for each service, collecting user
requests and forwarding them to different Pod replicas.

o Prometheus [13], a metrics collector that stores data to
be used for statistics. Examples of these data are the
amount of user requests per unit of time and the number
of running Pod replicas.

o The SAPA, which is in charge of computing the desired
number of Pod replicas.

Periodically, the SAPA component leverages the aggregated
number of requests over a period of time (NN,..,) to compute

Load Cluster 1

balancer
Q "

Users Y R :‘Servicerzﬂﬂ ,,,,,, B . .
Service 1 /"\,/ I Prometheus ™

P B Service 1
/" f——" R
N

P Load
.‘. balancer HPA % o
Ks §)
[N
.&. Load Cluster 2 /" Grafana
balancer /" dashboard
Users \/H\ Service 1 ashboars
Service 2 }%"‘
_/ RS -
£ > y
¥
Y Q
\'4 f—xo-—1 Sf -
_/ .

Load

balancer % -

Fig. 2. Demo setup.

the desired number of Pod replicas (Np,qs) with the following

formula:
NTE
qw , (D

NOS: .
Pod {Oé M,y

where M,.., represents the maximum supported request rate
per Pod without degrading the QoS. The ratio Nyeq/M;eq is
the actual number of replicas that are required to satisfy the
demand by relying only on the Pod request resources. By
tuning the value of a, Np,qs can be under-dimensioned or
over-dimensioned, changing the share between the Pod request
and limit resources to be used.

The demonstration workflow of SAPA is depicted in Fig.
1. There are two main loops executed in parallel that consist
of an exchange of messages among the different components
of the architecture. In the first loop, Prometheus periodically
(e.g., every 5s) collects and stores metrics, e.g., number of user
requests arrived at the load balancer, number of Pod replicas,
and resource usage. The second loop is usually executed within
a larger period (e.g., 30 s). In this loop, the SAPA component
retrieves the value of the user requests from Prometheus and
the number of running Pods. Then, SAPA computes the desired
number of replicas (Npyqs) using (1) and evaluates the need
for scaling by comparing it with the number of running
replicas. If the two are different, SAPA triggers a scaling
procedure to update the number of Pod replicas. This is done
by specifying the new number of replicas to K8s. Finally, K8s
creates or terminates Pods to reach the desired value received
from the SAPA.

III. DEMO SETUP

The demo will be executed remotely on a workstation
running at Chalmers’ premises. Figure 2 shows the main
building blocks of our demo. We will consider two K8s
clusters with the same amount of resources. One of them will
run the traditional HPA, while the other will run SAPA. Two
services will be considered and will be deployed in both K8s
clusters. Two independent traffic profiles, one per service, will
be synthetically generated and varied over time, mimicking
user request fluctuations. We will execute the requests of each
traffic profile twice, targeting both K8s clusters. To have a

=
=

o
©

o -
0 o
3¢
E
7R
.

N

£)300 —250 -200 —-150 -100 -50 0
Time [TU]

e
o
o
o

°
IS
N
IS

o
N
o
N

Normalized user requests
Normalized CPU load

0

0

£}300 —250 -200 -150 -100 -50 0
Time [TU]

(2) (b)

N
=3

Normalized latency

-
o

{

{

X

K\

f

4

Normalized # of Pod replicas

o
)

=
=

—v— SAPA
HPA

—v— SAPA
HPA

-
U

°
n

0

05)300 —250 -200 —-150 =100 -50 O

Time [TU]

9300 —250 -200 —150 -100 -50 0
Time [TU]

© (d)

Fig. 3. Mock of the dashboard plots showing hypothetical normalized values. Time is expressed in Time Units (TUs).

fair comparison, all the Pods will be configured to use shared
CPU resources. Each cluster will be monitored by an instance
of Prometheus, which will collect and monitor the following
Key Performance Indicators (KPIs): user requests per unit of
time, response time, number of Pod replicas and desired Pods,
CPU usage per Pod, CPU usage per node of the cluster, and
total CPU usage.

Figure 3 depicts an example of a custom dashboard for
one service in a hypothetical scenario, where values have
been normalized to their maximum. The aforementioned KPIs
(collected by Prometheus) for the different clusters will be
shown using plots updated in real-time. The number of user
requests for one service is varied over time (see Fig. 3(a)).
The CPU load on the Pods (Fig. 3(b)) in the two clusters
varies according to the user demand, reaching a plateau once
the replicas are not enough to satisfy the demand (around time
-250 [TU]). Consequently, the service latency starts increasing
(Fig. 3(c)). At this point, the HPA and SAPA adjust the number
of replicas, which are updated after the scaling delay (Fig.
3(d)). The service latency start decreasing. However, the HPA
is not aware of the entity of the user demand, and performs a
wrong estimation of the number of replicas, which reaches the
correct value only around time instant 50 [TU]. This translates
into higher service latency for HPA compared to SAPA. The
experienced latency depends on the number of replicas. This
value can be over-dimensioned to reduce the overall latency. In
the HPA, this can be done by reducing the scaling threshold.
For the SAPA, the value of o can be increased. This, in turn,
reduces the use of shared resources, increasing the overall CPU
to be allocated to the service, which is proportional to the
number of Pods.

During the demonstration, the user will be able to define
the user load in the system by changing the profile of the
number of requests per second. To perform the demo on-
site, a laptop connected to a big screen will show the custom
Grafana dashboard [12]. A stable Internet connection will also
be required.

IV. CONCLUSION

In this experimental demonstration, we showcase how to
overcome the challenge of providing resource efficiency and
QoS with shared resources for containerized microservices
based on K8s. Through our demonstration, we show the
implementation of SAPA, a Pod autoscaling mechanism that

relies on user traffic data to drive the scaling. Compared to
the traditional HPA, the proposed mechanism allows for better
exploitation of shared resources for containerized services in
cloud native environments. As a future direction, the SAPA
can be enhanced with predictions to anticipate user request
variations. An intelligent strategy can also be defined to tune
the value of « over time according to the availability of shared
resources and latency performance.

REFERENCES

[1] E. Casalicchio and S. Iannucci, “The state-of-the-art in container
technologies: Application, orchestration and security,” Concurrency and
Computation: Practice and Experience, vol. 32, no. 17, p. e5668,
2020, e5668 cpe.5668. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.5668

[2] “IBM - The Benefits of Containerization and What
It Means for You,” https://www.ibm.com/cloud/blog/
the-benefits- of-containerization-and- what- it-means- for-you.

[3] “Kubernetes,” https://kubernetes.io/.

[4] “Kubernetes Horizontal Pod Autoscaler,” https://kubernetes.io/docs/
tasks/run-application/horizontal-pod-autoscale/.

[5] “Kubernetes Resources,” https://kubernetes.io/docs/concepts/
configuration/manage-resources-containers/.

[6] F. Tonini, C. Natalino, D. A. Temesgene, Z. Ghebretensaé, L. Wosinska,
and P. Monti, “Benefits of Pod dimensioning with best-effort resources
in bare metal cloud native deployments,” IEEE Networking Letters, pp.
1-5, 2023.

[7]1 L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Adaptive Al-based
auto-scaling for Kubernetes,” in IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID), 2020, pp. 599—
608.

[8] D.-D. Vu, M.-N. Tran, and Y. Kim, “Predictive hybrid autoscaling for
containerized applications,” IEEE Access, vol. 10, pp. 109 768—109 778,
2022.

[91 M. Abdullah, W. Igbal, J. L. Berral, J. Polo, and D. Carrera, “Burst-

aware predictive autoscaling for containerized microservices,” [EEE

Transactions on Services Computing, vol. 15, no. 3, pp. 1448-1460,

2022.

F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling

of container-based applications using reinforcement learning,” in /EEE

International Conference on Cloud Computing (CLOUD), 2019, pp.

329-338.

F. Tonini, C. Natalino, D. A. Temesgene, Z. Ghebretensaé, L. Wosin-

ska, and P. Monti, “A service-aware autoscaling strategy for container

orchestration platforms with soft resource isolation,” in 2023 Joint

European Conference on Networks and Communications & 6G Summit

(EuCNC/6G Summit), 2023, pp. 1-6.

“Grafana,” https://grafana.com/.

“Prometheus,” https://prometheus.io/.

[10]

(11]

[12]
(13]

