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Review article 
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A B S T R A C T   

A long-standing goal of personalized and precision medicine is to enable accurate prediction of the outcomes of a 
given treatment regimen for patients harboring a disease. Currently, many clinical trials fail to meet their 
endpoints due to underlying factors in the patient population that contribute to either poor responses to the drug 
of interest or to treatment-related adverse events. Identifying these factors beforehand and correcting for them 
can lead to an increased success of clinical trials. Comprehensive and large-scale data gathering efforts in 
biomedicine by omics profiling of the healthy and diseased individuals has led to a treasure-trove of host, disease 
and environmental factors that contribute to the effectiveness of drugs aiming to treat disease. With increasing 
omics data, artificial intelligence allows an in-depth analysis of big data and offers a wide range of applications 
for real-world clinical use, including improved patient selection and identification of actionable targets for 
companion therapeutics for improved translatability across more patients. As a blueprint for complex drug- 
disease-host interactions, we here discuss the challenges of utilizing omics data for predicting responses and 
adverse events in cancer immunotherapy with immune checkpoint inhibitors (ICIs). The omics-based method-
ologies for improving patient outcomes as in the ICI case have also been applied across a wide-range of complex 
disease settings, exemplifying the use of omics for in-depth disease profiling and clinical use.   

1. Introduction 

Translating therapeutics for clinical use requires the initiation and 
successful completion of a clinical development process consisting of a 
series of clinical trials in order to verify the efficacy and safety of a given 
treatment. This high-risk process requires an estimated average of 10–15 
years and 2 billion dollars for bringing an individual drug to market [1]. 
In fact, 90% of drugs that advance from a preclinical stage to Phase I 
trials do not make it to market [2]. Studies investigating the clinical trial 
data collected between 2016 and 2018 attribute the reasons for these 
failures to: insufficient clinical efficacy or excessive toxicity (79%), 
strategic realignment (13%), commercial reasons (7%) and operational 
or technical shortcomings (1%) [3]. As such, the main factors contrib-
uting to the failures in bringing new drugs to the market can be cate-
gorized to intrinsic factors, i.e. non-specificity to the molecular targets, 
poor efficacy or toxicity, and/or extrinsic factors, e.g. improper trial 
design, attrition rates, incorrect dosage or underlying factors in the 
treated population. Intrinsic factors can be addressed by improving 

target selection and drug discovery processes for identification of better 
drug candidates. The enrolment of patients takes one third of the overall 
trial duration. However, an eligible patient may not be recruited at the 
stage of the disease or belong to a specific genotype or sub-phenotype 
that is targeted by the tested drug. Therefore, the quantification and 
stratification of patient multi-omics features, in particular the underly-
ing characteristics that contribute to a heterogenous response or toxicity 
profile in a subgroup of patients, will be helpful for prospectively 
selecting a subset of the population responding to the drug. If a patient is 
a priori part of the suitable subset, then their participation in the clinical 
trial will hereby increase the observed efficacy of the tested drug. This 
has generally been ignored when conducting traditional randomized 
clinical trials involving large cohorts, as the general assumption over-
looks the genetic, environmental or other phenotypic heterogeneity 
between individuals in the cohort [4]. The patient heterogeneity and 
corresponding drug response heterogeneity have been exemplified in 
therapeutics that aim to target complex biological systems such as 
metabolism, the gut microbiota or the immune system to treat a 

* Corresponding author. 
E-mail address: boyangji@gmail.com (B. Ji).  

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2023.07.032 
Received 12 January 2023; Received in revised form 17 July 2023; Accepted 22 July 2023   

mailto:boyangji@gmail.com
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.07.032
https://doi.org/10.1016/j.csbj.2023.07.032
https://doi.org/10.1016/j.csbj.2023.07.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.07.032&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 21 (2023) 3912–3919

3913

particular disease [5–8], which can lead to a wide range of outcomes for 
therapies that aim to modulate their functions. For example, individual 
differences in dietary patterns can have a large impact on the gut mi-
crobial composition [9]; the in-born or disease specific errors in genetics 
can lead to differences in the metabolic network of patient tissues [10, 
11]; and the exposures to allergens, pollutants or pathogens can affect 
patient immune system function [12]. Altogether, the use of multi-omics 
profiling for the cohort integrated with advanced computational meth-
odologies will provide a potential approach to recruit suitable patients 
to reduce the high failure rate of clinical trials. 

2. Analysis of omics data with machine learning methods 

Accessing high-resolution omics data across a large number of in-
dividuals and multiple disease settings has revolutionized our under-
standing of disease. In particular, sequencing for genomics/ 
transcriptomics/metagenomics and mass spectrometry for proteomics/ 
metabolomics/lipidomics have been shown to provide valuable infor-
mation. These assays can be performed in bulk tissues or fluids, or in 
conjunction with single cell isolation and imaging techniques for an in- 
depth look at not only inter-individual differences, but also intra- 
individual differences between certain cells types or tissues [13–16]. 
The vast amount of data that can be gathered from these assays will 
provide an invaluable resource for researchers in identifying the bio-
logical features required to confer responses to treatment, as well as 
minimizing adverse events. These stratified features can then be inte-
grated back into the study design by modifying the appropriate inclu-
sion/exclusion criteria, thereby creating a more defined sub-population 
tailored to the treatment and potentially increasing the likelihood of a 
successful trial (Fig. 1). In addition, the classification based on the 
prognostically significant subgroups and following subgroup analysis 
can be performed to identify the features associated with the specific 
subgroup, which can be potential biomarkers for prognosis. Moreover, 
the prominent features that confer treatment responses or adverse 
events can also be exploited as potential mechanistic targets for novel 
therapeutics that could be used in conjunction with the original treat-
ment as combination therapies for an even greater translatability across 
more individuals (Fig. 1). 

The unbiased and often hypothesis-free nature of omics efforts mean 
that one can limit any preconceived biases about the mechanism behind 
the interplay between drugs, patients and their disease status, and 
essentially let the data highlight correlations between individual fea-
tures and a phenotype of interest, which in this case would be a response 
or an adverse event to the drug. A caveat to the comprehensiveness of 

omics data is that the size and dimensionality of these data sets can now 
easily balloon into the petabyte range and spanning several thousand 
individual features [17–19]. Consequently, appropriate bioinformatic 
methods to analyze and construct predictive models based on omics are 
required to draw appropriate conclusions, ensure data integrity, miti-
gate batch/assay-specific effects and minimize the false positive pre-
dictions. In particular, machine learning methods such as deep neural 
networks are now widely used to learn from omics data [20]. These 
models, while being extremely powerful tools for discriminating re-
sponders from non-responders, or for highlighting the most important 
features behind an adverse event, still lack the transparency and inter-
pretability compared with the mechanistic models such as 
Genome-Scale Metabolic Models (GEMs) and Ordinary differential 
equation (ODE) based models [21–24]. With the advent of new inter-
pretable machine learning models or hybrid models incorporating both 
structural/mechanistic information along with deep neural networks, 
we might see increased mechanistic understanding without a loss in 
predictive performance. As an example, a recent study constructed a 
biologically interpretable neural network architecture for the prediction 
of castration resistant prostate cancer utilizing multi-omic features, i.e. 
mutations, methylation patterns, copy number alterations and gene 
expression levels [25]. This deep learning approach had higher perfor-
mance in predicting castration resistant prostate cancer (AUPRC = 0.88, 
1033 total cancer samples of which 333 were castration resistant) 
compared to other machine learning approaches (second-best perform-
ing was support vector machines with AUPRC = 0.85), as well as the 
added benefits of mechanistic interpretability, highlighting the impor-
tance of MDM4 copy number or gene expression increases in patients 
with castration resistant prostate cancer [25]. Currently, predictive 
models utilizing omics data and their corresponding identified features 
for response / adverse events evaluation have the potential to find use in 
clinical practice and in the development of novel combination thera-
peutics [26,27]. 

Combinatorial therapies have shown a greater success rate in the 
clinic as it employs cancer treatment using more than one approach. 
Furthermore, combinatorial therapies have the possibility of improving 
patients drug response and reduce adverse events. In the context of 
cancer immunotherapy with ICIs, the use of ICIs involve complex host- 
disease-drug interactions that are highly dependent on the individuals, 
but we still lack a complete understanding of the important factors 
necessary to improve patient outcomes (Fig. 2). Moreover, ICIs are 
frequently used in combination with other therapies, thus making it 
highly relevant to identify the potential cancer drugs that can be taken 
with a given ICI for better outcomes [28]. 

Fig. 1. Advancing drug development with information gathered from omics data. Safety and efficacy are key components of drug development. When running a 
clinical trial for a drug candidate, subgroups enriched in efficacy/safety can be identified. Analyzing omics data obtained from patients belonging to contrasting 
subgroups, i.e. responders vs. non-responders or patients experiencing adverse events vs. those that do not, can identify features that are associated with a beneficial 
drug response and safety profile. These features can be harnessed in the clinic as biomarkers for response or safety, or could be utilized for further studies in order to 
improve efficacy and safety of a given drug. 
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3. Immune checkpoint inhibitors in cancer therapy 

One of the defining hallmarks of cancer is the ability of tumor cells to 
evade surveillance and subsequent destruction by the immune system 
[29]. Therapies that aim to prime the immune system to start attacking 
the cancer are known as immunotherapies and have revolutionized the 
way to treat many different types of cancers [30]. Immunotherapies that 
target the interactions between negative-costimulatory receptors on the 
surface of certain immune cell classes (T-cells in particular) and their 
ligands are known as ICIs, and have found widespread clinical use in the 
treatment of metastatic cancers [31]. Cancer cells actively bind to these 
receptors in order to exhaust neighboring T cells, which limits their 
effector function and turns the T cell into a state of dysfunction, thereby 
maintaining immune tolerance. ICIs targeting the programmed cell 
death 1 protein (PD-1) and its ligand (PD-L1), alone or in combination 
with the cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) are 
widely used in the treatment of several types of late-stage cancers, with 
new agents being introduced all the time [32]. As of October 2022, nine 
ICIs have been approved for the treatment of 18 different cancer types, 
with nearly half of all metastatic cancer patients given the opportunity 
to receive an ICI regiment as part of their treatment [31]. While ICIs 
have been successful in creating a durable response in late-stage cancers, 
the majority of patients do not respond to ICIs [33]. Furthermore, 
immunotherapy can result in both acute and chronic immune related 
adverse-effects (irAEs), most often when administering combination 
treatments targeting both PD-1 and CTLA-4 [34]. These can range from 
common and relatively mild ones, such as rashes and vitiligo experi-
enced in ~50% of patients with melanoma [35], to fatalities most 
commonly occurring due to ICI-induced colitis [36]. As such, identifying 
which factors can distinguish responders from non-responders as well as 
factors associated with irAEs are necessary for improving patient out-
comes and extend ICI applicability to malignancies with poor or no 
efficacy. 

4. Predictors of responses and adverse events in ICI therapies 

4.1. Cancer immune features as biomarkers of responses 

A starting point for identifying predictive biomarkers for ICI 
response came from quantifying the expressed ligands of immune cell 

checkpoint receptors in the tumor. For ICIs targeting the PD-1/PD-L1 
axis, quantifying cancer cell expression of PD-L1 had mixed clinical 
utilization partly due to the difficulties in establishing pathological 
concordance for quantifying PD-L1, as well as the observation that 
subsets of patients with tumors containing low or no expression of PD-L1 
could still respond and benefit from ICI treatment [37–40]. Several 
studies had showed the potential to predict patient response to ICI 
treatment with the expression of other checkpoints (i.e. CTLA4, PD-L2) 
that can be accessed in cancer patients before ICI treatment [41], and 
recent studies explored the utility of dynamic profiles of serial immune 
biomarkers and genomic features, which may provide a non-invasive 
and time-efficient approach for ICI efficacy prediction [41,42]. 

4.2. Genomics based biomarkers of responses 

Another observation is that ICIs has been mostly confined to 
epithelial cancers with relatively high tumor mutational burden (TMB), 
in part owing to the large number of potential tumor-specific neo-
antigens that can be generated and subsequently recognized by ICI- 
primed T-cells [43]. The landmark KEYNOTE-158 study prompted 
therefore accelerated FDA approval of ICIs for solid tumors with a high 
TMB (at least 10 mutations per megabase), as quantified by the targeted 
DNA sequencing assay [44]. These aforementioned biomarkers for ICI 
responses might have utilized complex biological assays, as in the 
mutational burden case, but the extracted features are relatively simple 
and the targeted nature of these assays do not actually profile entire 
-omes for a complete look into the biological processes of the tumor. 

Genomic studies employing whole-genome-sequencing or exome 
sequencing of tumors undergoing ICI therapy have therefore been con-
ducted to further elucidate which specific genetic mutations or genome- 
wide mutational signatures drive a response to ICI (Fig. 2). A study that 
surveyed exome sequencing data from more than 1500 patient receiving 
ICI therapy across multiple cancer types, uncovered that the homozy-
gosity in the genetic locus encoding the major histocompatility complex 
class I (MHC-I), which is part of the antigen presentation machinery, is 
associated with a 38% increased hazard of death in anti-CTLA-4 or anti- 
PD-1 therapy [45]. Variation in the antigen presentation machinery 
could increase the chance of peptides harboring tumor neoantigens 
being bound and presented to induce the immune responses. Defects in 
tumor interferon signaling, which plays a critical role in immune cell 

Fig. 2. Drug response and adverse event prediction in 
cancer immunotherapy with immune checkpoint in-
hibitors. ICIs target the interplay between the host, tumor 
and immune system. This requires the consideration of 
multiple factors in order to comprehensively assess 
response and safety to ICIs. These factors can be grouped 
into 4 main categories: Top-left: Tumor intrinsic factors, 
such as the mutational burden or expression of checkpoint 
ligands. Bottom-left: Tumor microenvironment and im-
mune cell factors, such as the infiltration of cytotoxic T- 
cells in the tumor. Top-right: Imaging based radiomics, 
which are routinely available in the clinic and can be used 
for input to machine learning algorithms in order to extract 
visual features of the tumor that are correlated with 
response or safety. Bottom-right: Diet and the microbiota 
can directly stimulate immune cells in the gut lining, and 
subsequently affect whole body immunity which in turn 
will impact ICI outcomes.   
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mediated killing of cancer cells, has also been associated with an unfa-
vorable response to ICI, especially in melanoma [46,47]. 

4.3. Gene expression-based biomarkers of responses 

As ICI treatments involves priming of the host immunity towards a 
cancer, the magnitude of a response will depend not only on tumor- 
intrinsic factors, e.g. mutational burden or gene expression programs, 
but also on the interplay between cancer cells and host immunity/ 
metabolism. Factors of ICI response that lie proximal to the tumor 
include the degree of immune infiltration [48], which has been profiled 
by assays ranging in complexity from simple cell type counting, e.g. 
through histological or flow cytometry methods, to bulk and single-cell 
transcriptomics. The latter provides a full picture of the expression 
programs within individual cell types [49]. Single cell gene expression 
studies of tumor samples from multiple patients undergoing ICI have 
now been performed and provide not only information about the cancer 
cells, but also any other cell type that is present in the tumor microen-
vironment [50]. In metastatic melanoma, bulk transcriptomics from 473 
patient tumors along with single cell transcriptomics from 33 patient 
tumors identified a gene expression program in cancer cells responsible 
for T-cell exclusion and nonresponse to ICI and consisted of genes 
involved in antigen presentation, interferon signaling, response to the 
complement system and immune modulation [50]. By mining publicly 
available cell line transcriptomics and drug perturbation data sets, the 
researchers were able to extract cancer cell lines associated with this 
resistance program and subsequently identify drugs that preferentially 
kill these cells. This analysis discovered the CDK4/6 inhibitor abema-
ciclib as a drug that could preferentially target the T-cell exclusion 
program, and murine experiments verified this finding in vivo, with mice 
receiving a combination of abemaciclib and anti-PD-1 therapy experi-
encing reduced tumor growth and longer survival than anti-PD-1 mon-
otherapy alone. This study highlights the potential of omics for 
dissecting the tumor-immune landscape and enabling the identification 
of novel drug candidates for boosting ICI response rates. Currently, 
abemaciclib is being investigated in clinical trials as a combination 
therapy with ICI for various cancer types (e.g., NCT02791334, 
NCT04751929, NCT04627064). 

4.4. Radiomics based biomarkers of responses 

Imaging of patients to assess the response over the course of ICI 
therapy is standard practice [51]. These images, collected routinely 
using for instance computerized tomography (CT) or positron emission 
tomography (PET), allows for the complete visualization of the primary 
tumor and secondary metastatic sites [52]. While standard radiological 
assessment of these images is performed (Fig. 2), e.g. to classify stage 
and tumor subtypes, radiomic approaches aim to extract higher-level 
features of the image data, based on the presumption that genomic 
and molecular features in the tumor that contribute to ICI response will 
affect the tumor physiology and therefore be detectable from imaging 
data [53]. A large study assessing CT scans of 1055 primary and meta-
static lesions obtained from 203 metastatic melanoma and non-small 
cell lung cancer patients was able to extract features from the imaged 
lesions and used them to train machine learning models for ICI response 
at the lesion or patient level [52]. Response prediction performance at 
the lesion level was superior in non-small cell lung cancer (test 
AUC-ROC = 0.83 for pulmonary metastatic lesions, 42 responding and 
31 non-responding lesions obtained from 25 patients) compared to 
melanoma (test AUC-ROC = 0.64 for lymph node lesions, 17 responding 
and 43 non-responding lesions obtained from 22 patients), but 
combining these into patient response predictions yielded a test 
AUC-ROC of 0.76 (70 patients) across both cancer types [54]. 

4.5. The association between gut microbiota and ICIs responses 

Distal and environmental effects can also influence host immunity, 
and consequently also impact the outcomes of ICI. Of particular interest 
has been the gut microbiota, due to its inherent link to host immunity 
and potentials for modulation through diet, prebiotics/probiotic sup-
plements and fecal microbiota transplant (FMT). It is now well estab-
lished, from a multitude of studies, that specific bacterial species and 
metabolic processes in the gut can directly influence ICI response 
[55–64]. Fecal metagenomic sequencing (MGS) studies in melanoma 
patients undergoing ICI has identified bacterial species belonging to the 
Faecalibacterium, Akkermansia and Bifidobacteria genera as especially 
important predictors for positive responses. Although the exact mech-
anisms behind the immunomodulatory effects of these microbes are still 
unclear, several studies have shown the important roles of the microbial 
production of immunomodulatory metabolites (e.g. short-chain fatty 
acids [65,66], TMAO [67] and bile acids [68]), direct induction of 
beneficial immune cells lining the intestine in a MHC-I [69] or Toll-like 
receptor [70] type manner, and bacterial epitopes cross-reacting with 
ones found in cancer [71]. 

Meta-analyses of pooled MGS data sets obtained from different 
studies have been used to construct machine learning models based on 
host microbiota features (e.g. microbial composition, microbial genes, 
and microbial metabolic pathways) [60–62], with the best performing 
models achieving AUC-ROC values of around 0.7 [61,62] across 
different data sets. An issue with utilizing the microbiota for responses 
prediction is the large heterogeneity between patient populations in 
terms of microbial composition. No predominant species can therefore 
be used as consistent biomarkers across studies. Therefore, future work 
will trend to identify a more consistent microbial feature set that can be 
generalized across patient populations, for instance by moving from 
species point of view towards a more functional one. Our previous work 
on establishing predictive models across patient cohorts also suggested 
an increased importance of functional features compared to the indi-
vidual species [60]. However, it is worth noting that MGS reveals the 
microbial composition, but not actually capture the metabolic activities 
of microbes. Therefore, it would require analyses of fecal metatran-
scriptomics/proteomics or metabolomics for the dynamic profiling in 
the context of ICI. 

4.6. Multi-omics based biomarkers of responses 

Identifying the most important tumor-intrinsic factors for ICIs across 
cancer types remains a challenging feat. Individual studies are often 
fragmented across widely different malignancies, ICIs, patient de-
mographics, and evaluation criteria. The integrative approach that 
combines multi-omics data, including genomics, transcriptomics, pro-
teomics, metabolomics, and/or metagenomics, has been developed to 
predict the responses in cancer patients with ICI treatments [72–74]. 
Meta-analyses of publicly available omics data obtained from ICI studies 
have therefore been conducted in order to increase study power and use 
the large sample sizes to construct predictive models for ICI response. 
One of the largest meta-analysis performed consisted of > 1000 
whole-exomes/transcriptomes obtained from ICI-treated cancer patients 
spanning six different cancer types [75]. Individual data sets were then 
subjected to standardized bioinformatic processing, normalization and 
response evaluation in order to retrieve germline mutations, somatic 
mutations, mutational signatures, copy number alterations, HLA typing 
and gene expression levels, which could then be standardized and used 
as input features for a machine learning model (XGBoost) for predicting 
ICI response. The final trained model scored clonal TMB, CXCL9 
expression, ultraviolet (UV) associated mutational signature, APOBEC 
mutational signature, and tobacco mutational signature as the top 5 
most important features. The machine learning based predictor signifi-
cantly outperformed (p < 0.05, DeLong test for AUC comparisons) 
mutational burden as a lone predictor on three different test cohorts 
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(AUC-ROC = 0.86 vs. 0.68 for the KEYNOTE-028 study of multiple 
tumor types [n = 76] [76], AUC-ROC = 0.66 vs. 0.58 for the University 
Hospital Essen study of melanoma [n = 121] [77] and AUC-ROC = 0.70 
vs. 0.62 for the Samsung MC study of non-small cell lung cancer 
[n = 144] [78]). Furthermore, the importance of the UV, APOBEC and 
tobacco associated mutational signatures for model prediction suggests 
the need to employ whole-exome/genome sequencing assays or 
large-scale targeted sequencing panels for the prediction of ICI response, 
as these signatures require the sequences of large/multiple sections of 
the tumor in order to accurately compute. 

4.7. Omics based biomarkers of adverse events 

Omics-based adverse events prediction in ICI has been comparatively 
less studied, possibly due to the difficulty of harmonizing widely 
disparate irAEs across malignancies, choice and dose dependency of the 
ICI used, different organ systems being affected, varying time to irAEs, 
and a wide spectrum of frequencies and severity [34]. The safety profile 
of the most commonly used ICIs has been relatively well established, 
with patients undergoing ICI therapy targeting CTLA-4, either alone or 
in combination with PD-1. The patients with combinatory ICIs therapies 
experienced higher frequencies of any-grade irAE (up to 60%) than 
those on PD-1 monotherapy alone (5–20%), with a similar distribution 
when limiting to grade 3 or higher irAEs (55% vs. 6% for PD-1 vs. 
monotherapy alone, respectively) [34]. Therefore, most studies have 
focused on improving the safety profile of CTLA-4 and PD-1 + CTLA-4 
ICI therapies and have also been limited to investigating single immune 
related factors, including T-cell receptor diversity [79], autoimmune 
antibody generation and clonal expansion of cytotoxic T-cells [80]. A 
study aiming to identify tumor-intrinsic factors contributing to irAEs 
was recently performed in order to address this knowledge gap [81]. By 
accessing adverse event reports from the FDA Adverse Event Reporting 
System, subsetting for irAEs from cancer patients undergoing 
PD-1/PD-L1 ICI and linking these with omics data from The Cancer 
Genome Atlas (TCGA), the omics-based signatures were associated with 
the presence/absence of irAEs. This analysis identified cytolytic activity, 
interferon-gamma signaling, PD-1 expression, TCR diversity, M1 
macrophage abundance, cytotoxic T-cell abundance and B-cell abun-
dance as features that were significantly positively correlated with the 
presence of irAEs (Note that M1 macrophage/cytotoxic T-cell/B-cell 
abundance are predicted abundances as determined through immune 
cell deconvolution from bulk tumor transcriptomics data in the TCGA). 
The correlation analysis with individual features of mRNA, miRNA, 
lncRNA and protein expressions revealed that mRNA expression of 
lymphocyte cytosolic protein 1 (LCP1) and adenosine diphosphate 
dependent glucokinase (ADPGK) are strongly associated with the pres-
ence of irAEs, both of which are involved in the activation of T-cells. 
Constructing a bivariate predictive model using the expression of these 
two genes could predict irAEs in an independent cohort with an 
AUC-ROC of 0.8 (28 patients, of which 14 experienced any-grade irAEs). 
The fact that the expression of genes involved in T-cell activation are 
enriched in patients with irAEs could point towards cross-reactivity of 
antigens that are present in both tumors and healthy tissue. 

The role of T-cells in mediating the irAE induced by ICIs have been 
examined closer in a study that performed state of the art single cell or 
bulk omics analyses of immune cells obtained from 71 blood samples of 
metastatic melanoma patients undergoing checkpoint immunotherapy 
and experiencing irAEs [82]. This data set allowed for the dissection of 
distinct immune cell populations, with CD4 + effector memory cells 
being enriched in samples from patients with severe irAEs. Moreover, 
targeted sequencing of the T-cell receptor indicated that high receptor 
diversity is also strongly correlated with severe irAEs. By utilizing 
computational tools to extract immune cell abundances and T-cell re-
ceptor sequences from samples subjected to bulk transcriptomics, a lo-
gistic regression model for severe irAE (grade 3 or higher) was trained 
and validated with a AUC-ROC of 0.90 (27 patients, of which 12 

experienced grade 3 or higher IrAEs). 
Factors for determining irAEs, while promising, are still at an early 

stage and would need to be prospectively validated as a method for 
identifying at-risk patients for ICI induced irAEs. Furthermore, 
designing drugs that target genes potentially responsible for irAEs, e.g. 
LCP1 and ADPGK, could potentially reduce toxicity towards the host at 
the risk of hampering the ability of immune cells to attack the cancer. 

5. Modulating the host microbiota for improved efficacy and 
safety of ICIs 

As described above, immunotherapy has shown successful treatment 
outcomes in multiple cancers, while a high number of patients do not 
respond to the treatment. Therefore, strategies to enhance the efficacy of 
immunotherapy is probably part of the solution to improve their effec-
tiveness. Several approaches have been developed to enhance the effi-
cacy of ICI, including rational ICIs combinations, combination of ICIs 
and radiotherapy, combinations of cancer vaccines and ICIs, modulation 
of immune metabolism and mudulation of gut microbiota [83–88]. 
Since the combinations of cancer therapies have been extensively dis-
cussed [87], here we focused on how microbiota engineering contrib-
uted to improved ICI efficacies. 

One way that can infer the host microbiota towards a more ICI 
favorable state is to assess the patient’s dietary intake and optimize the 
dietary patterns. A recent study assessing the metagenomes and dietary 
habits of 128 melanoma patients identified the correlation between di-
etary fiber intake and the improved progression-free survival on ICI 
therapy [89]. Unexpectedly, intake of over-the-counter probiotic sup-
plements in these melanoma patients was negatively correlated with ICI 
response, which clearly highlights the need to better distinguish ratio-
nally designed ICI specific probiotics from general probiotic supple-
ments [89]. While both of these findings were also validated in murine 
models, which potentially implies a causal connection between diet, 
probiotics and ICIs responses, a recent meta-analysis of previous ICI 
studies have instead found positive correlations between probiotics 
intake and improved survival [90]. 

Intervention studies aiming to alter the host microbiota towards a 
responder state by introducing exogenous microbes have recently been 
conducted. Two studies that employed FMT from metastatic melanoma 
ICI responders into patients with anti-PD-1-refractory metastatic mela-
noma have shown positive results, with a subset of patients gaining a 
clinical response and considerable remodeling of the tumor microenvi-
ronment [91,92]. FMT comes with its limitations, especially the risk of 
accidental transmission of pathogens. Due to this risk, the FDA has 
announced several safety alerts about patients developing FMT-related 
complication, including two deaths. 

Probiotic interventions are potentially a more attractive option for 
modulating non-responder microbiomes due to their defined nature, 
albeit with the risk of losing the complex ecological dynamics of a fecal 
sample microbiota. A randomized phase 1 trial had investigated the 
combination of anti-PD-1 +anti-CTLA-4 ICI therapy in 30 patients of 
treatment-naïve metastatic renal carcinoma with or without the sup-
plementation of Clostridium butyricum, a bifidogenic and butyrate- 
producing bacterium [93]. Although the primary endpoint of 
enhancing the abundance of Bifidobacterium spp. was not met, patients 
that received the probiotic experienced a significantly longer 
progression-free survival than those with ICI therapy alone (12.7 months 
vs. 2.5 months) [93]. 

Recently, microbial correlates for ICI induced irAEs have also been 
investigated. As mentioned earlier, ICI induced colitis has been reported 
as the main source for anti-CTLA-4 related deaths (70%) [36]. An early 
study aiming to identify stool biomarkers for ICI induced colitis per-
formed metagenomic profiling of 34 prospectively enrolled melanoma 
patients and reported higher abundances of bacteria belonging to the 
Bacteroidetes phylum in patients that did not experience colitis [94]. 
However, the 16 S rRNA sequencing used to profile the microbiota here 
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does not have enough resolution to distinguish microbes at lower 
taxonomic resolutions. In order to obtain species/strains level associa-
tions, as well as functional and genetic ones, MGS based studies of the 
microbiome related to irAEs have now been performed [61,95]. One 
study examined MGS data from a cohort of 77 advanced melanoma 
patients undergoing PD-1 + CTLA-4 blockade with approximately half 
of the patients experiencing severe or higher grade irAEs. Abundances of 
Bacteroides intestinalis and Intestinibacter bartlettii were found to be 
correlated with grade 3 or higher irAEs, confirming and expanding upon 
the findings of the aforementioned 16 S rRNA-seq based study. These 
findings were validated in antibiotic treated mice followed by gavage 
with B. intestinalis, which resulted in increased ileal damage compared to 
non-gavaged mice. Another recent study also examined correlations 
between microbes, assayed using MGS, and irAEs resulting from 
anti-PD-1 ICI [61]. This analysis identified Lachnospiraceae spp. and 
Streptococcoccus spp., with Streptococcoccus spp. being associated with 
lower progression-free survival, as well as increased incidence of irAEs 
across multiple organs, whereas Lachnospiraceae spp. was associated 
with both response to ICI and incidence of irAEs. This suggests varying 
outcomes of the immunostimulatory effect of gut microbes on the host, 
with some leading to an increased immunity towards both cancer and 
healthy tissue, whereas other might only be contributing to autoim-
munity without any cancer-specific targeting. The results from studies 
on how the gut microbiota can affect the emergence of irAEs are still in 
the preclinical phase and will therefore require further validation in 
human intervention trials to see if they can provide a reduced ICI 
toxicity profile without impacting response rates. 

6. Upcoming challenges in multi-omics analysis 

Omics technologies have emerged as powerful tools for dissecting the 
heterogeneity among individual patients, including inflammatory bowel 
disease [96], diabetes [97], cardiovascular disease [98] and as high-
lighted in the ICI context [61,75,95,99]. However, there are some 
challenges that must be investigated in order to improve the responses to 
ICIs and reduce irAEs. One issue is the increasing scale and variation in 
assay type, handling protocols, experimental design and data analysis, 
which ask how to ensure reproducibility and translatability across 
studies. This will be of extreme importance to computational biologists 
aiming to conduct decentralized research by pooling data from multiple 
sources. As exemplified in ICI response prediction models, predictive 
performance on unseen data remains limited, especially when collected 
from external cohorts. Moreover, standards for reporting of metadata 
have been lacking which can introduce missing values or bias when 
harmonizing data sets. For example, a deceivingly simple metric as drug 
response will depend on the response metric used (e.g. progression-free 
survival, overall-survival, biomarker values, clinical evaluations) as well 
as the timing of the evaluation across the course of treatment [100]. As 
different investigators might adhere to their preferred reporting stan-
dard of choice, establishing improved consensus standards for reporting 
will have to be introduced. 

While studies continuously tend to include larger number of patients 
as well as profiling multi-omics at the same time in order to tackle inter- 
patient heterogeneity, the appreciation of intra-patient variability is 
another avenue that will have to be further explored in future studies. 
This can range from utilizing multiple samples collected from the same 
individual over the course of treatment in order to assess biomarker 
stability over time and identify the most suitable temporal range for 
drug interventions, as well as utilizing single cell and spatial omics 
methods for identifying cell type subsets that might experience differ-
ential responses to a drug. 

These challenges raised the requirements to overcome them in the 
development of omics-based biomarkers and assays. So, we can best take 
advantage of them in order to further our comprehension of disease 
biology and design better therapeutics to maximize personalized ap-
proaches towards the eradication of disease. Furthermore, as evidenced 

by publications and published datasets in recent years, there is still a big 
gap between evidence for clinical trials and evidence for real clinical 
usage. Beyond the validation of predictive models in the trial settings, 
the clinical usability of these developed predictive models for ICIs re-
sponses and irAEs in the real-world setting will be another big challenge 
that needed to be addressed for scalable applications. One needs to 
consider the practical implementation of these companion diagnostics. 
For instance, the required assays need to be conveniently available in all 
hospitals globally that are treating patients either at the site or via a 
diagnostic service. This is a challenge even with standard genomic di-
agnostics in oncology. The cost also needs to be tolerable to the payers 
(private insurance or public), which would require the development of 
improved omics assays at a lower cost. 
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[10] Väremo L, Nookaew I, Nielsen J. Novel insights into obesity and diabetes through 

genome-scale metabolic modeling. Front Physiol 2013;4. 
[11] Robinson JL, et al. An atlas of human metabolism. Sci Signal 2020;13:eaaz1482. 
[12] Gause WC, Rothlin C, Loke P. Heterogeneity in the initiation, development and 

function of type 2 immunity. Nat Rev Immunol 2020;20:603–14. 
[13] Efremova M, Vento-Tormo R, Park J-E, Teichmann SA, James KR. Immunology in 

the Era of Single-Cell Technologies. Annu Rev Immunol 2020;38:727–57. 
[14] Mueller K, Saha K. Single-cell technologies to dissect heterogenous immune cell 

therapy products. Curr Opin Biomed Eng 2021;20:100343. 

A. Limeta et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref1
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref1
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref2
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref2
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref3
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref3
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref4
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref4
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref5
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref5
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref5
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref6
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref6
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref7
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref7
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref8
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref9
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref9
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref10
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref10
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref11
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref12
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref12
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref13
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref13
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref14
http://refhub.elsevier.com/S2001-0370(23)00266-0/sbref14


Computational and Structural Biotechnology Journal 21 (2023) 3912–3919

3918

[15] Argelaguet R, Cuomo ASE, Stegle O, Marioni JC. Computational principles and 
challenges in single-cell data integration. Nat Biotechnol 2021;39:1202–15. 

[16] Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet 2019;20:257–72. 
[17] The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer 

analysis of whole genomes. Nature 2020;578:82–93. 
[18] Backman JD, et al. Exome sequencing and analysis of 454,787 UK Biobank 

participants. Nature 2021;599:628–34. 
[19] The Integrative HMP (iHMP) Research Network Consortium. The Integrative 

Human Microbiome Project. Nature 2019;569:641–8. 
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