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Abstract
Semi-supervised learning (SSL) is a learning framework that enables the use
of unlabeled data with labeled data. These methods play a crucial role in re-
ducing the burden of human labeling in training deep learning models. Many
methods for SSL learn from unlabeled data through confidence-based pseudo-
labeling. This technique involves assigning artificial labels to unlabeled data
based on model predictions, given that these predictions exceed a confidence
threshold. A drawback of this approach is that large parts of data may be ig-
nored. This work proposes a self-supervised component for these frameworks
to enable learning from all unlabeled data. The proposed self-supervision in-
volves aligning feature predictions across weak and strong data augmentations
for each unlabeled sample. We show that this approach, DoubleMatch, leads
to improved training speed and accuracy on many benchmark datasets.

SSL is often studied in the closed-set scenario, where we assume that un-
labeled data only contain classes present in the labeled data. More realis-
tically, there is a risk that unlabeled data contain unseen classes, corrupted
data, or outliers in other forms. This setting is referred to as open-set semi-
supervised learning (OSSL). Many existing methods for OSSL use a procedure
that involves selecting samples from unlabeled data that likely belong to the
known classes, for inclusion in a traditional SSL objective. This work proposes
an alternative approach, SeFOSS, that utilizes all unlabeled data through
the inclusion of the self-supervised component proposed by DoubleMatch.
Additionally, SeFOSS uses an energy-based method for classifying data as
in-distribution (ID) or out-of-distribution (OOD). Experimental evaluation
shows that SeFOSS achieves strong results for both closed-set accuracy and
OOD detection in many open-set scenarios. Additionally, our results indi-
cate that traditional methods for (closed-set) SSL may perform better in the
open-set scenario than what has been previously suggested by other works.

Furthermore, this work proposes another method for OSSL: the Beta-model.
This method proposes a novel score for ID/OOD classification and introduces
the use of the expectation-maximization algorithm in OSSL, for estimating
conditional distributions of scores given ID or OOD data. This method
demonstrates state-of-the-art results on many benchmark problems for OSSL.

Keywords: Semi-supervised learning, open-set semi-supervised learning, deep
learning, classification.
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CHAPTER 1

Introduction

In recent years, the field of deep learning has experienced a substantial surge,
with applications spanning across a wide range of domains. Tasks in ma-
chine learning, such as image classification [1], image segmentation [2], gener-
ative modeling [3], language modeling [4], and audio processing [5], have been
profoundly impacted by the advancements in deep learning techniques. This
progress is continually evolving, driven by the expansion of datasets, improved
compute power, and refined methods.

For a significant duration, the achievements in the field of deep learning
relied on the framework of supervised learning. In supervised learning, a model
is fed training data in which each sample is accompanied with a ground-truth
label. The objective is to optimize the model and learn a mapping that aligns
the input data with the corresponding labels. The goal of this optimization
is that learned model generalizes to new, unseen data such that it can be
deployed in real-world scenarios.

Many breakthroughs in the realm of supervised learning can be credited
to the expansion of large labeled datasets. Prominent examples include, e.g.,
ImageNet [6], comprising over 14 million labeled images, or the text dataset
SQuAD [7] that consists of over 100,000 question-answer pairs. However,
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Chapter 1 Introduction

building these labeled datasets requires extensive efforts from human anno-
tators, making the process non-scalable and expensive. Consequently, there
is need for alternative approaches that can effectively leverage large amounts
of available unlabeled data. Unlike labeled data, obtaining unlabeled data is
generally considerably cheaper and they can be acquired through the means
of web scraping or unsupervised sensor streams.

In contrast to supervised learning, semi-supervised learning offers methods
for incorporating unlabeled data for model training. This approach involves
combining labeled data with (many more) unlabeled data during the train-
ing process. Typically, the small labeled training set is provided by human
annotators, which defines the problem we want to address. For example, the
labeled set often contains the classes that we want our model to classify. The
much larger unlabeled dataset contains valuable information that aids the
model in improving performance on the task outlined by the labeled data. A
common scenario is that we know that the unlabeled data contain the same
classes as the labeled data, which can help us learn the distributions of these
classes given some assumptions.

Methods for semi-supervised learning are typically driven by pseudo-labeling
and consistency regularization. Pseudo-labeling involves letting a model trained
on labeled data generate pseudo-labels for unlabeled data, to then incorporate
these pseudo-labeled unlabeled data in the training process in a supervised
manner. Consistency regularization, on the other hand, means encourag-
ing consistent predictions given perturbations of unlabeled data. With these
techniques, semi-supervised learning has achieved state-of-the-art results in
ImageNet classification through incorporation of large extra unlabeled train-
ing sets [8]. Semi-supervised learning has also impressively been used to reach
classification accuracies above 95% on CIFAR-10 [9] using only 40 labeled
data (4 labels per class) [10].

There are however still many active research problems and open questions
related to semi-supervised learning. One fundamental question is how to opti-
mally utilize unlabeled data. While pseudo-labeling and consistency regular-
ization have emerged as key components in semi-supervised learning, the exact
implementations of these techniques remain an ongoing area of investigation
[10]–[14]. Furthermore, recent works have been exploring the integration of
techniques from self-supervised learning as a complementary learning signal
from unlabeled data [15]–[17].
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Another active research direction is semi-supervised learning with uncu-
rated unlabeled datasets. Most methods for semi-supervised learning operate
under the assumption that the labeled set and the unlabeled set share the
same underlying distribution, in particular that they contain the same classes.
However, in practice, since the advantage of using unlabeled data lies in its
freedom from human vetting, we can rarely guarantee that the unlabeled set
does not contain unknown classes, corrupted data, or outliers in other forms.
These out-of-distribution (OOD) data may lead to performance losses when
they appear in traditional methods for semi-supervised learning. Recently,
there have been many works aimed at tackling this setting of semi-supervised
learning, often denoted open-set semi-supervised learning (OSSL) [18]–[20].

A related problem is that of class-imbalanced semi-supervised learning. An-
other assumption that traditional methods for semi-supervised learning make
is that both the labeled and the unlabeled sets are balanced in terms of classes.
We can construct the labeled set so that it is balanced. However, as we do not
know the labels of the unlabeled dataset, ensuring that the unlabeled dataset
is balanced is challenging. This may cause issues since it is known that many
methods tend to show bias towards majority classes when data are imbalanced
[21]. Methods for handling class imbalances in semi-supervised learning is an
active field [22], [23].

Finally, semi-supervised learning is often studied in the domain of computer
vision. The main reason is the wide range of publicly available datasets for im-
age classification that allow for easy evaluation and benchmarking of methods.
This is, however, at the risk of methods becoming biased to this particular
domain, not performing equally well for other modalities, such as audio, text,
radar, and lidar. In particular, many current methods for semi-supervised
learning in computer vision are reliant on domain-specific data augmentation
[11], [12], that naturally are not easily transferable to other domains.

Contributions: This thesis includes three appended papers, whose main
contributions lie in method development for semi-supervised learning. In Pa-
per A, we propose DoubleMatch, a method for semi-supervised learning that
aims to improve methods based on pseudo-labeling to more effectively uti-
lize all unlabeled data. This is done by proposing the inclusion of a self-
supervised loss component that is applied to all unlabeled data. Experimental
results demonstrate that this added loss accelerates training speed and im-
proves classification accuracy on various benchmark datasets. In Paper B, we
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Chapter 1 Introduction

present SeFOSS, a method for the setting of open-set semi-supervised learn-
ing. SeFOSS builds on the DoubleMatch method by including the proposed
self-supervision on all unlabeled data. Additionally, it uses an energy-based
method for to determine if unlabeled data are in-distribution (ID) or out-of-
distribution (OOD). The energy-based method for OOD detection is comple-
mented with an adaptive procedure for determining a threshold to identify
data that confidently belong to the known classes. The experimental results
show that SeFOSS achieves strong and robust results across a wide range
of open-set problems, both for classifying the known classes and for classi-
fying data as in- or out-of-distribution. In Paper C, we look further into
the problem of open-set semi-supervised learning. Paper C proposes a novel
score for ID/OOD classification. Furthermore, Paper C introduces the use of
the expectation-maximization algorithm in OSSL for estimating conditional
distributions of scores given ID or OOD data. These proposed components
are put together into the Beta-model that reaches state-of-the-art results on
many benchmark problems for OSSL. Beyond the appended papers, this the-
sis offers overviews of semi-supervised learning for classification and open-set
semi-supervised learning.

1.1 Thesis outline
This introductory chapter provides background information and sets the scope
of the thesis. In the following chapter, we provide an overview of the field of
semi-supervised learning for classification, focusing on methods applied in the
domain of deep learning. In the third chapter, we cover the setting of open-
set semi-supervised learning and provide a review of existing literature. The
fourth chapter summarizes the appended papers. Finally, the thesis concludes
with summarizing remarks and an outlook for future work.
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CHAPTER 2

Semi-supervised learning for classification

Semi-supervised learning is a machine learning paradigm that lies between
supervised and unsupervised learning. In this setting, training data consists
of both labeled data and unlabeled data. The idea is to somehow leverage
information from the unlabeled data, together with the typically much smaller
labeled set, while training a model. Take for example the illustration in figure
2.1. Given only information from labeled data, we can form a reasonable
classification boundary. However, with the added information from unlabeled
data, a more accurate classification boundary can be inferred to lie between
the two half-moons. This improved boundary would be difficult to determine
using only the labeled data.

This chapter provides an overview of semi-supervised learning. While there
exist works on semi-supervised learning for regression, this chapter focuses
on the realm of classification. To establish the foundations, we start by pre-
senting a formal problem definition. Subsequently, we cover the necessary
assumptions that underlie methods for semi-supervised learning. We proceed
to examine the historical progression of methods in the field of semi-supervised
learning. In the latter and largest part of this chapter, we turn our attention
to the application of semi-supervised learning in the context of deep learn-
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Chapter 2 Semi-supervised learning for classification

x

y
Labeled data

x
y

With unlabeled data

Unlabeled data
Labeled data
Decision boundary

Figure 2.1: Illustration of semi-supervised classification with two classes (red and
blue). With unlabeled data, we can better estimate the distributions
of the two classes, and thus improve our decision boundary.

ing: this part of the chapter explores various techniques that are used for
semi-supervised learning in the domain of deep learning.

2.1 Problem definition
In semi-supervised learning, we are provided with a labeled training set of
independent and identically distributed data,

{(xi, yi)}m
i=1; (xi, yi) ∈ X × Y, (2.1)

where X ⊆ RD is the input space with D being the input dimension, and Y =
{1, . . . , C} is the label space with C being the number of classes. These data
have an underlying distribution p(x, y). In addition to the labeled training
set, we have set of independent and identically distributed unlabeled training
data,

{xi}n+m
i=m+1; xi ∈ X , (2.2)

where the underlying distribution p(x) is the marginal distribution of p(x, y).
The goal is to learn a mapping from the input space to the label space:

fθ : X → Y (2.3)

where f is parameterized by θ. This is typically achieved by minimizing the
expectation of a risk function:

argmin
θ

E
x,y∼p(x,y)

[l(fθ(x), y)] + α E
x∼p(x)

[Ω(x; θ)] , (2.4)

8



2.2 Assumptions

where α is a scaling parameter to control the balance between the two terms.
The expectation is often evaluated with Monte Carlo approximations using
batches of the training data. The term for fitting the labeled training data is
l : Y × Y → R, which generally is implemented as a cross-entropy loss. The
learning from unlabeled data occurs through the regularization term

Ω : X → R . (2.5)

The construction of this regularization term is one of the key challenges in
semi-supervised learning, as it defines how we utilize the unlabeled data for
improving our learned model.

2.2 Assumptions
In order to learn from unlabeled data, we need to make some assumptions
regarding the underlying structure of the data. The book Semi-Supervised
Learning by Chapelle et al. [24] suggests three main assumptions in the form
of the smoothness assumption, the cluster assumption, and the manifold as-
sumption.

Smoothness assumption
The smoothness assumption can be briefly summarized by stating that if two
points are close, then so should the corresponding outputs. Intuitively, this
allows us to propagate information from our labeled training data to nearby
unlabeled data. This assumption is necessary also for supervised learning,
otherwise we cannot expect our model to generalize to unseen test data. Note
that the closeness in this context is an open question, which we will return to
in the manifold assumption.

Cluster assumption
In this assumption, we say that points that lie in the same cluster are likely
to share class. This does not imply that each class consists of one cluster,
but rather that each cluster is comprised of a single class. Equivalently, this
assumption can be formulated as assuming that decision boundaries are ex-
pected to lie in low-density regions. An implication of this assumption is that

9



Chapter 2 Semi-supervised learning for classification

if we find a way to cluster our data, we can assign each cluster the class of
any labeled training data contained in that cluster.

Manifold assumption
In the smoothness assumption, we say that points that are close should have
outputs that are close. However, in high-dimensional spaces, pairwise dis-
tances between points tend to be non-expressive. Thus, we need to assume
that the high-dimensional data lie on a low-dimensional manifold where we
can compute more meaningful distances.

2.3 History of semi-supervised learning
The first instances of semi-supervised learning in the literature appeared in the
1960s and 1970s [25]–[27]. These methods employed a technique today called
self-training, which involves an iterative process where the model is initially
trained using only labeled data. In each subsequent step, model predictions on
unlabeled data are used to expand the training set, and the model is retrained
using the new training set. At this time, the methods were very general and
were often referred to as pattern recognition machines.

In the 1990s, there was growing interest in more application-focused semi-
supervised learning for text applications [28], [29]. Text is a typical domain
where a lot of unlabeled data are available, but labeled data are expensive.
For example, Yarowsky [28] used a form of self-training for semi-supervised
sense classification of words.

2.4 Semi-supervised learning in deep learning
In the deep learning paradigm, input data are typically high-dimensional and
our learned models are neural networks with many hidden layers. Naturally,
many new techniques for semi-supervised learning have emerged to cater to
this setting. This section covers some of the most popular techniques for semi-
supervised in deep learning. Note that some details of the covered methods
in this section may differ from the original works. The main purpose of this
section is to give an overview of the general ideas and approaches of this
paradigm.

10



2.4 Semi-supervised learning in deep learning

Pseudo-labeling

One of the dominant techniques for semi-supervised learning in deep learning
is pseudo-labeling. This essentially means using model predictions on unla-
beled training data as training labels. A simple early version of this technique
was introduced by the pseudo-label method [30]. The pseudo-label method
simply takes the class with the largest predicted probability for each unlabeled
sample and uses this as the training label. Sticking to the notation from (2.5),
letting Ω be an element-wise loss for unlabeled data, we obtain

Ωpseudo label = H

(
argmax

y′
[pθ(y′|x)], pθ(y|x)

)
, (2.6)

where pθ(y|x) is the predicted distribution over classes for unlabeled sample x

and argmax[·] is defined as RC → RC so that it returns a one-hot vector where
the position for the one corresponds to the position of the largest element of
the input vector. The cross entropy, H(·, ·), is calculated between two discrete
probability distributions, pa and pb, as

H(pa, pb) = −
C∑

i=1
pa

i log pb
i , (2.7)

where pa
i and pb

i are the i-th elements of pa ∈ RC and pb ∈ RC , respectively.
It has later been found that using only pseudo-labels for data with confident

model predictions tends to yield better results. For example, FixMatch [12]
and UDA [11] assign pseudo-labels to unlabeled data that satisfy

max
y

pθ(y|x) > τ, (2.8)

where τ is the confidence threshold. This results in a loss on unlabeled data
that looks similar to

ΩFixMatch = 1{max
y′

pθ(y′|x) > τ}H
(

argmax
y′

[pθ(y′|x)], pθ(y|x)
)

, (2.9)

where 1(·) is the indicator function.
A more involved pseudo-labeling procedure is proposed in the method Meta

Pseudo Labels [8]. This method uses an alternating procedure where a stu-
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Chapter 2 Semi-supervised learning for classification

dent model is updated based on the pseudo-labels it is provided by a teacher
model. The teacher model on the other hand is updated based on the student
performance on a held-out validation set. Intuitively, this can be interpreted
as optimizing the teacher model to produce the best possible teaching samples,
hence the name Meta Pseudo Labels.

Relating the pseudo-labeling technique back to our assumptions of section
2.2, we can interpret this as an application of the clustering assumption. When
we train our model to produce confident predictions in high-density regions
(regions where our training data are located), we are implicitly pushing the
decision boundaries to low-density regions in accordance with the clustering
assumption.

Adaptive and dynamic thresholds

The pseudo-labeling procedure of FixMatch and UDA, as described in (2.8),
relies on a static threshold. Many recent works have focused on replacing
this static threshold with dynamic and adaptive thresholds. This direction
of research is motivated by two main factors. Firstly, the varying learning
difficulty associated with different classes incentivizes using class-dependent
thresholds. For example, the model may produce less confident predictions for
a particular class, causing fewer pseudo-labels and hindering learning for that
class. Secondly, neural networks tend to generate increasingly confident pre-
dictions as the training progresses, suggesting that thresholds can be modified
based on the completed number of training steps.

One example of a method that proposes a dynamic confidence schedule as
function of the training time is Dash [13]. This work identifies that FixMatch
tends to produce very few pseudo-labels early in training, but also increasingly
many incorrect pseudo-labels in the later stages of training. To counteract
this, Dash, suggests a schedule for the threshold that decreases monotonically
as training progresses. The dynamic threshold is computed as

τDash
t = Cγ−(t−1)p̂, (2.10)

where t is the current timestep in training, C and γ are a constant hyperpa-
rameters, and p̂ is the base threshold that is computed based on a pre-training
phase.

A method that instead proposes adaptive thresholds per class, e.g., is Flex-
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Match [14]. FlexMatch adjusts the class-dependent thresholds depending on
how many pseudo-labels are assigned to each class: if a class is less frequent
in the pseudo-labels, its threshold is lowered in order to assign more pseudo-
labels corresponding to that particular class. A similar method that also
uses class-dependent adaptive thresholds is FreeMatch [10]. In FreeMatch,
the class-dependent thresholds are computed based on the average predic-
tion confidence for each class: classes that are less confidently predicted are
assigned lower thresholds.

Consistency regularization
Another major technique for semi-supervised learning in deep learning is con-
sistency regularization. The idea of consistency regularization is to minimize
the difference in predictions for similar data points. Similar data points are
often generated by applying perturbations to the training data. Given origi-
nal unlabeled training sample, x, and the corresponding perturbation, x̃, the
general structure for consistency regularization looks like

ΩConsistency regularization = d (fθ(x), fθ(x̃)) , (2.11)

where d(·, ·) is some distance measure, e.g., mean squared error or KL diver-
gence. The distance may also be calculated between two different perturba-
tions, instead of the original data and a single perturbation.

Consistency regularization relates both to the smoothness assumption and
the cluster assumption of section 2.2. The smoothness assumption is addressed
by manually constructing close inputs through perturbations, to then encour-
age similar predictions for these nearby inputs. Additionally, the consistency
regularization is applied mainly in high-density regions due to the concentra-
tion of training data in these regions. This implicitly enforces similar pre-
dictions within clusters, which moves decision boundaries toward low-density
regions, in accordance with the cluster assumption.

How perturbations for consistency regularization are designed has been an
active field of research. An early version of consistency regularization in semi-
supervised learning was used in the Ladder network [31], where perturbed
data are created by injecting Gaussian noise to the activations at each layer
of the network. The noisy activations are then denoised by a trainable decoder
network. The resulting loss is the sum of squared errors between the denoised
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activations and the activations from a clean pass through the network for all
layers:

ΩLadder networks =
L∑

l=1
λl∥zl − ẑl∥2 (2.12)

where L is the number of layers in the network, λl is a layer-dependent scaling
factor, zl are the clean activations for unlabeled sample x at layer l, ẑl are the
corresponding denoised activations, ∥ · ∥ is the l2 norm.

The subsequent Π-model [32] instead applies consistency regularization di-
rectly to the predicted probability distributions given two perturbations, p̂a

θ(y|x)
and p̂b

θ(y|x). The perturbations are obtained by applying two instances of
some stochastic data augmentation on x along with two different realizations
of the stochastic dropout regularization [33] in the forward pass through the
neural network.1 The obtained loss for unlabeled data is

ΩΠ-model = ∥p̂a
θ(y|x)− p̂b

θ(y|x)∥2. (2.13)

The concept of using moving averages as teacher predictions was introduced
in the Temporal ensembling method [32]. With this terminology, the teacher
prediction is typically treated as the ground truth for the student prediction.
The basic motivation behind using a moving average as teacher prediction
is to generate less noisy targets. Temporal ensembling uses the same per-
turbation strategy as the Π-model. However, instead of using two different
perturbations, the teacher prediction is an exponential moving average of the
perturbed student prediction, updated each epoch, 2 as

pteacher
θ (y|x)← βpteacher

θ (y|x) + (1− β)pstudent
θ (y|x), (2.14)

where β is the momentum parameter (typically close to, but smaller than 1).
The loss is then given by

ΩTemporal ensembling = ∥pteacher
θ (y|x)− pstudent

θ (y|x)∥2 (2.15)

The method Mean teacher [34] develops the idea of using moving averages

1Dropout is a common regularization technique for neural networks that involves stochas-
tically masking neurons and their connections in each forward pass during training.

2An epoch in this context means the time it takes to cycle through the full training set in
the training process.
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as teacher predictions by taking an exponential moving average of the model
parameters. This has the advantage that the exponential moving average can
be updated every training step instead of once every epoch. The average of
the model parameters are updated each training step as

θEMA ← βθEMA + (1− β)θ. (2.16)

Mean teacher uses a perturbation strategy that consists of a data augmen-
tation, Gaussian noise on the input layer, and dropout. The perturbation
is applied both to the teacher prediction and the student prediction (in two
different realizations). The resulting loss is

ΩMean teacher = ∥p̂θEMA(y|x)− p̂θ(y|x)∥2 (2.17)

The methods covered so far in this section are relying on random perturba-
tions for consistency regularization, i.e., these methods smooth the prediction
function in random directions around the input. The method Virtual adver-
sarial training (VAT) [35] takes another approach. In VAT, the idea is to
smooth the prediction function in the least smooth direction with respect to
the input, i.e., the adversarial direction. The adversarial direction is, in this
context, defined as the direction of the point, within a small region of the
input, that gives the largest change in prediction (relative to the unperturbed
input). Formally, the loss is written as

ΩVAT = dKL (pθ(y|x), pθ(y|x + radv)) , (2.18)

where
radv = argmax

r;∥r∥<ϵ

dKL (pθ(y|x), pθ(y|x + r)) . (2.19)

Here, dKL(·, ·) is the KL-divergence and ϵ is a small scalar that sets the size
for the region in which we look for the adversarial direction. Unfortunately,
there exists no closed form expression for radv, so VAT uses a one-step power
iteration to approximate radv.

Data augmentation

Early implementations of consistency regularization often relied on simple
techniques for data augmentation, such as horizontal flips and translations in
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the context of images. However, notable achievements were made with the
introduction of optimized domain-specific augmentations in ReMixMatch [36],
FixMatch [12], and UDA [11]. These augmentations are, e.g., RandAugment
[37] for images, which comprises a set of operations, such as shearing, rotating,
and adjusting colors or brightness. For a domain like language, these domain-
specific augmentations can be, e.g., back-translation [38] that involves trans-
lating a sentence from language A to language B, and then back to language
A, to obtain a slightly perturbed version of the original sentence. Notably,
ReMixMatch and FixMatch pioneered a setup of using weak augmentations
for teacher predictions and strong augmentations for student predictions in
the image domain. The weak augmentation consists of a horizontal flip and
translation and the strong augmentation consists of Cutout [39], followed by
two randomly sampled operations from RandAugment. Examples of these
weak and strong augmentations can be seen in figure 2.2. The augmentation
strategy of ReMixMatch and FixMatch has been widely adopted by many
subsequent works [10], [13], [14], [16], [17], [40], [41].

Original image

Weak augmentations

Strong augmentations

Figure 2.2: The currently widely used augmentation strategies for semi-supervised
learning, consisting of weak and strong augmentations of images. Weak
augmentations are horizontal flips and stochastic translations. Strong
augmentations comprise operations such as Cutout, shearing, rota-
tions, and color filters.
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Interpolation consistency

Another form of data augmentation is to use interpolations of training data.
This strategy was introduced for supervised learning under the name mixup
[42]. The idea is to create new training data by interpolating both input data
and corresponding labels using the Mix-operation, defined as

Mixλ(a, b) = λa + (1− λ)b, (2.20)

where λ is a parameter between 0 and 1 that is sampled from a Beta dis-
tribution. The methods Interpolation consistency training (ICT) [43] and
MixMatch [44] introduced the idea of using interpolations in semi-supervised
learning. For unlabeled data, we cannot interpolate labels to form optimiza-
tion targets, instead we can interpolate model predictions. For example, ICT
uses the exponential moving average of the model parameters to form targets
for interpolations of unlabeled data according to

ΩICT(xa, xb) = ∥pθ(y|Mixλ(xa, xb))−Mixλ(pθEMA(y|xa), pθEMA(y|xb))∥2,

(2.21)
where xa and xb are two different unlabeled samples. Training with inter-
polations can be argued being well-aligned with the cluster assumption of
section 2.2. If we are considering a classification problem with more than a
few classes, it is likely that that xa and xb belong to different classes, and
thus different clusters. Assuming xa and xb are not incorrectly predicted as
the same class, the interpolation loss will move the decision boundary toward
the region between these data, which is a low-density region.

Self supervision

A related field to semi-supervised learning is self-supervised learning. In self-
supervised learning, we are training a model using training data fully with-
out labels. The goal is not to learn a classifier, but to learn a useful low-
dimensional representation of the often high-dimensional data. Note how this
relates to the manifold assumption of section 2.2. There are various tech-
niques that are commonly used for self-supervised learning. One is to enforce
prediction consistency across augmentations of data (much like consistency
regularization for semi-supervised learning) [45]–[48]. Another technique in-
volves training the model to reconstruct masked regions of input data [49],
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[50]. Additionally, a common approach is to train the model to perform a
pretext task, such as predicting the angle of a stochastic rotation applied to
training images [51]–[53].

Influential works for self-supervised learning in the image domain made use
of so called contrastive learning [45], [46], which means not only enforcing
similar predictions for different versions of the same data, but also increasing
the disagreement of representations given different data. One argument for
the contrastive loss is that without enforcing the disagreements, the model
can converge to the collapsed solution: predicting the same representation for
all data. However, subsequent works [47], [48], [54] found that collapse can
be avoided without contrastive learning by instead using exponential moving
average as teacher models and by the use of cleverly placed stop gradient
operations.

There are many works that borrow techniques from self-supervised learning
for semi-supervised learning. The motivation is that the self-supervision can
improve the latent representations of data in the model, or that it can help
methods based on confidence-based pseudo-labeling (see (2.9)) to utilize all
unlabeled data, not only data that fall above the confidence threshold.

One work that incorporates techniques from self-supervised learning for
semi-supervised learning is S4L [15]. S4L employs a rotation loss to unlabeled
data, formulated as follows:

ΩS4L = 1
4

∑
r∈R

H(rtarget, g(zr)), (2.22)

where R = {0◦, 90◦, 180◦, 270◦} and rtarget is the one-hot vector that denotes
the current rotation, e.g., rtarget = (0, 1, 0, 0)T for r = 90◦. Here, zr is the
latent representation of the network (predicted by some backbone model fθ)
for an unlabeled image x that has undergone rotation r, while g is a trainable
4-way classifier that predicts the rotation based on the latent representation.
The rotation prediction serves as a typical pretext task, since the main interest
lies in improving the latent representations. By creating latent representations
that can be used for predicting rotations, they are hopefully also more useful
for classifying the actual classes of our training set.

EnAET [55] similarly employs a self-supervised pretext task for semi-supervised
learning. However, instead of predicting rotations, the model is trained to
predict the continuous parameters of more general transformations such as
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projective and affine transformations.
In, DoubleMatch [56], the idea is to improve the utilization of unlabeled data

in methods that employ confidence-based pseudo-labeling. To enable learning
from all unlabeled data, DoubleMatch proposes an auxiliary self-supervised
loss to all unlabeled data to align the latent representations for weak and
strong augmentations of a given unlabeled image, given by

ΩDoubleMatch = − zw · g(zs)
∥zw∥ · ∥g(zs)∥ , (2.23)

where zw and zs are the latent representations for weak and strong augmenta-
tions of unlabeled image x, respectively. The trainable linear transformation
g(·) is used to map the latent representations of strongly augmented data to
the latent space of weak augmentations.

Recently, CCSSL [40], SimMatch [17], and ProtoCon [16] have used forms
of contrastive learning for latent representations where pseudo-labels are used
for determining which data to pull together and pull apart.
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CHAPTER 3

Open-set semi-supervised learning

In semi-supervised learning, it is commonly assumed that labeled and unla-
beled training data follow the same distribution and that the set of classes
for the labeled and the unlabeled training sets are equal. For many practical
applications, this assumption is probably not reasonable. On the contrary, it
seems natural to assume that the unlabeled set may contain outliers, unseen
classes, or corrupted data. In this case, we want to make sure that these
out-of-distribution (OOD) data do not harm the training of our model, and
perhaps also that our model can learn to identify the OOD data at test time.
Take figure 3.1 as an example. Here, the unlabeled data give us information
about the distributions of class A and class B, but they also indicate the ex-
istence of a third class that is not present in our labeled training data. A
well-trained model on these data preferably has the ability to classify class A
and class B, but also to identify data that likely do not belong to class A or
class B.

This chapter gives an overview of the field of open-set semi-supervised learn-
ing. Note that some works denote this field safe semi-supervised learning, or
robust semi-supervised learning. We start by expanding the problem formu-
lation from chapter 2 to fit the open-set problem. Next, we cover existing
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x

y
Labeled data

x
y

With unlabeled data

Unlabeled data
Labeled data
Decision boundary

Figure 3.1: Illustration of open-set semi-supervised learning. The unlabeled data
can improve our estimations of the class distributions, but they also in-
dicate the presence of an unknown class. A preferable decision bound-
ary is to classify red and blue based on the two leftmost half-moons,
but also to reject the unknown class belonging to the rightmost half-
moon.

methods and techniques that attempt to tackle this problem. Finally, we
mention a few related research problems.

3.1 Problem formulation
Similarly to the problem formulation presented for the closed-set setting in
chapter 2, we have a labeled training set

{(xi, yi)}m
i=1; (xi, yi) ∈ Xl × Yl, (3.1)

where again Xl ⊆ RD with D being the input dimension, and Yl = {1, . . . , C}.
We assume our labeled samples are independent and identically distributed
from an underlying distribution pl(x, y). Additionally, we have the unlabeled
training set

{xi}n+m
i=m+1; xi ∈ Xul, (3.2)

such that Xl ⊆ Xul ⊆ RD, and the corresponding (unknown) labels associated
with the unlabeled samples are in Yul = {1, . . . , C, C +1, . . . , C +K}, meaning
there are K novel classes in the unlabeled set that are not part of the labeled
set. We assume that our unlabeled samples are independent and identically
distributed with the underlying distribution pul(x). Note that, in contrast
to chapter 2, we no longer assume that pul(x) is the marginal distribution of
pl(x, y).
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3.1 Problem formulation

In general, we are interested in learning the classification mapping corre-
sponding to our labeled training set:

fθ : Xl → Yl (3.3)

However, we may also be interested in the binary classification of in-distribution
(ID) and out-of-distribution (OOD) data:

P (y ≤ C|x); x ∈ Xul, (3.4)

meaning predicting the probability of a sample belonging to the known classes,
given a sample from the unlabeled distribution.

Taking the classification of data as ID or OOD one step further, we can
also consider unknown classes that are fully unseen during training, i.e., not
part of the unlabeled set. These classes can be introduced by the test set
Xtest, such that Xl ⊆ Xtest ⊆ RD where the corresponding classes belong to
Ytest = {1, . . . , C, C + K + 1, . . . , C + K + L}, meaning the unknown classes
from the unlabeled training set are replaced by new unknown test classes. We
are in this case interested in modeling

P (y ≤ C|x); x ∈ Xtest. (3.5)

Different works in open-set semi-supervised learning focus on different goals.
Some works primarily aim to achieve high closed-set accuracy, meaning at-
taining high accuracy on the known classes. This corresponds to having a
well performing closed-set classifier, fθ, as defined in (3.3). These works ar-
gue that unknown classes in the unlabeled training set can harm the closed-set
performance of traditional methods for semi-supervised learning.

Other works place greater emphasis on open-set recognition, which involves
the ability to distinguish known classes from unknown classes. The motivation
for these works is that if unknown classes appear at training, it is unlikely that
test data comprise only the known classes. Open-set recognition can be either
in the form of distinguishing the known classes from the unknown classes in
the unlabeled training set, as represented in (3.4), or it can be in the form of
identifying known classes in the presence of classes completely unseen during
training, as described in (3.5).

The training objective of open-set semi-supervised can generally be written

23



Chapter 3 Open-set semi-supervised learning

as
argmin

θ
E

x,y∼pl(x,y)
[l(fθ(x), y)] + α E

x∼pul(x)
[Ω(x; θ)] , (3.6)

which is similar to the objective of the closed-set case (see (2.4)), with the
difference that the unlabeled term now is an expectation over the distribution
that may contain unknown classes, pul(x).

3.2 Existing techniques for open-set
semi-supervised learning

This chapter covers existing techniques for open-set semi-supervised learning.
We try to categorize methods based on what kind of technique it employs, in
an attempt to summarize existing approaches and research directions in this
field.

Filtering in-distribution data from unlabeled data
A recurring theme in methods for open-set semi-supervised learning is to clean
the unlabeled data by attempting to identify which data belong to the known
classes and which do not. When in-distribution (ID) data are identified, these
can be used in the unsupervised loss of a traditional SSL method. How to
best identify which data belong to the known or unknown classes is however
still an open question.

Many methods [57]–[59] resort to different forms of the softmax confidence
score,

max
y

pθ(y|x), (3.7)

where the idea is that ID data yields higher-confidence predictions than OOD
data. For example, UASD [57] uses the confidence of the average prediction
from the most recent epochs given an unlabeled sample:

c(x) = max
y

1
t

t∑
i=1

pθi
(y|x), (3.8)

where pθi(y|x) for i = 1, . . . , t are the network predictions for sample x from
the t most recent epochs during training. A sample is classified as ID if
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c(x) > τ , where τ is set as the average confidence given a labeled ID validation
set.

MTCF [60] takes a different approach by employing a separate prediction
head, s(x), responsible for the binary prediction of ID or OOD. The param-
eters, θ, of the extra prediction head (and the rest of the model) are jointly
optimized with the (unknown) scalar scores si ∈ [0, 1], i = m + 1, . . . , m + n

for all unlabeled data. In practice, this results in an alternating procedure as
follows:

1. Update θ by minimizing some semi-supervised loss using only unlabeled
data predicted as ID, and a binary cross-entropy loss for classifying data
as ID or OOD,

2. Reassign ID scores for unlabeled data si ← s(xi) for i = m+1, . . . , n+m.

The ID scores for labeled training data are fixed as si = 1, i = 1, . . . , n.
In OpenMatch [18], ID data are identified by resorting to one-vs-all classi-

fiers. With one-vs-all classifiers, there is one prediction head for each known
class, responsible for predicting if a sample belongs to that particular class
or any other class. A sample is identified as OOD if none of the one-vs-all
classifiers gives a high-confidence prediction. An advantage of using one-vs-all
classifiers for OOD detection is that each classifier has access to both positive
and negative labeled training data from the labeled training set.

SeFOSS [61] uses the free-energy score, as proposed by [62], to classify data
as ID and OOD. The free-energy score is obtained by

E(x) = −T · log
C∑

i=1
efθ,i(x)/T (3.9)

where T is a scalar hyperparameter and fθ,i(x) is the predicted logit1 associ-
ated with class i. Knowing that the network is trained to produce large logits
for ID data (through the cross-entropy loss), we can assume that the free en-
ergy generally takes larger negative values for ID data than for OOD data.
While still being easy and cheap to compute, the free-energy score tends to
produce better results for OOD detection than the softmax confidence [62].

1The logits are the final network activations before they are transformed to a probability
distribution by the softmax function.
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SAFE-STUDENT [63] builds on the free-energy score and proposes en-
ergy discrepancy for OOD detection. The motivation is that because the
free-energy score is dominated by the largest logit through the exponential
function, it does not sufficiently take into account information contained in
other logits. The proposed energy discrepancy is approximately given by

ED(x) ≈ fθ,ymax(x)− fθ,y′(x) (3.10)

where
ymax = argmax

y∈Yl

fθ,y(x) and y′ = argmax
y∈Yl\ymax

fθ,y(x). (3.11)

This means that ED(x) is approximately equal to the difference between the
largest and the second largest logits, which should be large for ID data.

Recycling of out-of-distribution data
Another idea that appears in the literature for open-set semi-supervised learn-
ing is to “recycle” OOD data. The goal is to identify useful information in
OOD data that somehow can be used in the training process to improve model
performance.

One of these methods is TOOR [59]. TOOR attempts to recycle OOD data
by closing the distribution gap between the features of ID data and the features
of OOD data. This is done by adversarial training of an feature extractor,
F (·), parameterized by θF , together with a discriminator, D(·), parameterized
by θD. The feature extractor is responsible for extracting features from data
samples and the discriminator classifies data as ID or OOD based on their
features. The adversarial objective is

min
θF

max
θD

E
x∼pOOD(x)

log D(F (x)) + E
x∼pID(x)

log(1−D(F (x))). (3.12)

With this objective, the discriminator is trained to correctly classify data as
ID or OOD, but the feature extractor is trained to fool the discriminator by
making OOD features indistinguishable from ID features. By transforming
OOD features to the ID space, the idea is that the OOD data can be used to
improve learning for the classification problem on Yl by inclusion in, e.g., a
consistency regularization or pseudo-labeling loss.

OSP [20] uses OOD data to “prune” OOD features from ID data. This is
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done by matching ID data with OOD samples that has similar features. The
features of the ID sample are then transformed by subtracting a vector that
is parallel to the OOD features. The model is then forced to focus on the ID
features by encouraging similar predictions for the ID data before and after
semantic pruning.

Another technique related to recycling is Style disturbance [64]. Style dis-
turbance takes inspiration from the idea of neural style transfer which takes
the content of one sample and transforms it to the style of another sample.
Style disturbance expands the training set of open-set semi-supervised learn-
ing by creating new data with the contents of ID data and the styles of OOD
data by employing style transfer with AdaIN [65].

Robust optimization
Another line of research for open-set semi-supervised learning attempts to
adjust the optimization steps so that parameters updates never harm perfor-
mance on ID data. Some of these methods resort to bi-level optimization.
For example, DS3L [66] and WRSSL [67] use bi-level optimization to weight
unlabeled data such that the resulting updates minimize a supervised loss
on a labeled training set. For example, DS3L learns a weighting function
wα(·), parameterized by α, that is used to weight each unlabeled sample in a
traditional SSL loss. The bi-level optimization objective can be written as

min
α

E
x,y∼pl(x,y)

[
l(y, pθ̂(y′|x))

]
(3.13)

such that

θ̂ = argmin
θ

E
x,y∼pl(x,y)

[
l(y, pθ̂(y′|x))

]
+ E

x∼pul(x)
[wα(x)Ω(x; θ)] , (3.14)

where l(·, ·) and Ω(·) are the loss functions for labeled and unlabeled data,
respectively. The intuition behind this objective is that the model parameters
are learned by the inner weighted SSL objective, but the weighting function,
learned through the outer objective, makes sure that the weighting of the
unlabeled data causes the inner objective to be aligned with performance on
ID data.

SPL [68] similarly uses bi-level optimization for robust optimization. How-
ever, instead of learning a weighting function for unlabeled data, it optimizes
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a mask for the model parameters. The idea is to find the parameters that are
associated with features corresponding to ID data to restrict negative effects
from OOD data.

A different approach for robust optimization is proposed in Fix-a-Step [69].
The idea of Fix-a-Step is to ignore the gradient from unlabeled data if the
gradient from unlabeled data does not point in a similar direction as the
gradient for labeled data. Given the gradient associated with the labeled loss,
gL = ∇θl, and the gradients associated with the unlabeled loss, gU = ∇θΩ,
the parameter updates in each training step is

θ ←

{
θ − ϵ(gL + αgU ), if gL · gU > 0
θ − ϵgL otherwise,

(3.15)

where ϵ is the learning rate and α is a scaling for the unlabeled loss. The intu-
ition behind this procedure is that if the inner product between the gradients
is positive, gL · gU > 0, the angle between the gradients is less than 90◦ and
we thus assume that the unlabeled loss is somewhat aligned with the labeled
loss. However, if the inner product is negative, the gradients are pointing
in different directions, so the gradients from unlabeled data can potentially
harm performance on labeled data. In this case, we ignore the gradient from
unlabeled data.

Self-supervision
Some works for open-set semi-supervised learning relax the idea of learning
primarily from unlabeled data that are ID. These works instead incorporate
techniques from self-supervision to learn from all unlabeled data, regardless
of whether they are ID or OOD. This is to avoid limiting learning to samples
confidently ID, recognizing that OOD data may possess valuable information
that can contribute to performance on ID data as well.

Some examples are T2T [70] and OSP [20] that employ the rotation loss
of (2.22) on all unlabeled data. Another example is SeFOSS [61] that takes
the self-supervision proposed by DoubleMatch [56] and applies it for open-set
semi-supervised learning.

OpenCOS [71] suggest self-supervised contrastive pre-training using all train-
ing data. The pre-trained model is then used to detect ID and OOD data from
the unlabeled training set. The labeled data and the ID data from the unla-
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beled set can then be used to fine tune the pre-trained model using some SSL
method.

In Υ-model [58], the authors find that if we somehow know the true classes
and labels of the OOD data, these classes can be added to the classification
problem with the effect of increased accuracy on the ID classes. Phrased
differently, if we learn to classify the entire Yul, we can improve the perfor-
mance on Yl. Motivated by this finding, the Υ-model performs deep clustering
[72] on OOD data to identify these unknown classes and include them in the
classification problem. The number of unknown classes, K, is however a hy-
perparameter and it may not be possible to know the number of unknown
classes in the OOD data.

3.3 Related research problems
There are some research problems that are closely related to that of open-set
semi-supervised learning. One is open-world semi-supervised learning [73]–
[77]. In open-world semi-supervised learning, the focus lies in discovering and
classifying the unknown classes of the unlabeled data. In contrast to open-set
semi-supervised learning that generally focuses on classification accuracy on
Yl, open-world semi-supervised learning aims to achieve high accuracy on Yul.

Another related topic is open-set domain adaptation [78], [79]. In domain
adaptation, we generally consider a labeled source domain and want to adapt
to a unlabeled target domain containing the same classes as the source domain,
but with a domain shift. In open-set domain adaptation, it is assumed that
the target domain contains unknown classes. We can see that this problem
becomes similar to open-set semi-supervised learning if we consider the labeled
source domain as our labeled training set, and the unlabeled (open) target
domain as our unlabeled training set.

In semantically coherent out-of-distribution detection [80], [81], the goal is
to classify unseen data as ID or OOD. Many other works on OOD detec-
tion simply consider one dataset as ID and another dataset as OOD, even if
they contain classes that are semantically very close. In semantically coher-
ent OOD detection, the aim is to identify classes in the unseen dataset that
are semantically close to the known dataset and identify these as ID (e.g.,
dogs in the unseen dataset should be considered ID if there are dogs in the
known dataset). Models for semantically coherent OOD detection are gen-
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erally trained using a labeled dataset as ID data, and an unlabeled dataset
that contains classes that are semantically close to the ID data and some
classes that are not. This setup is similar to that of open-set semi-supervised
learning.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
Published in proceedings of the 2022 26th International Conference on
Pattern Recognition (ICPR),
pp. 2871-2877
©2022 IEEE DOI: 10.1109/ICPR56361.2022.9956182 .

This paper proposes a method for (closed-set) semi-supervised learning.
A common technique for existing methods for semi-supervised learning is to
employ confidence-based pseudo-labeling on unlabeled data. This process
assigns artificial labels to unlabeled data for which the model’s predictions
exceed a confidence threshold. Data for which the model produces less con-
fident predictions are disregarded from the training objective. Consequently,
these methods may ignore large parts of unlabeled data, in particular for more
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Chapter 4 Summary of included papers

challenging classification problems. For better utilization of unlabeled data,
this paper proposes the inclusion of a self-supervised component to enable
learning from all unlabeled data. This additional self-supervision is applied to
all unlabeled data and involves aligning feature predictions across weak and
strong augmentations of each sample. More specifically, we implement this
self-supervision as an extension of the widely adopted SSL baseline FixMatch.
Our proposed method is evaluated benchmark datasets CIFAR-10, CIFAR-
100, SVHN, and STL-10. DoubleMatch demonstrates particularly strong re-
sults on CIFAR-100 and STL-10, with improved accuracies and training speed
when comparing to FixMatch. However, on the relatively simpler classification
tasks of CIFAR-10 and SVHN, our proposed method is not equally effective. A
possible explanation could be the model’s ability to generate sufficiently many
correct pseudo-labels when the classification problem is relatively straightfor-
ward, diminishing the benefits introduced by the additional self-supervision.
Contributions: Erik Wallin did the main work. Lennart Svensson, Fredrik
Kahl, and Lars Hammarstrand supervised.

4.2 Paper B
Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand
Improving Open-Set Semi-Supervised Learning with Self-Supervision
Manuscript 2023 .

This paper studies open-set semi-supervised learning (OSSL), a more real-
istic scenario where we assume that the unlabeled data may contain unknown
classes not present in the labeled data. Many existing works for OSSL use
methods that involve filtering out ID data from unlabeled data for inclusion in
a traditional SSL loss. The method proposed in this paper, SeFOSS, instead
follows the philosophy of DoubleMatch from Paper A, aiming to learn from all
unlabeled data, regardless of them being ID or OOD. To achieve this, SeFOSS
incorporates the self-supervision proposed by DoubleMatch on all unlabeled
data. Additionally, SeFOSS applies a pseudo-labeling loss on unlabeled data
that confidently belong to the known classes. To identify these confidently ID
data, SeFOSS employs an energy-based method for discriminating between
ID and OOD. To determine a threshold for assigning data as confidently ID,
we propose an adaptive procedure based on the energy distribution of labeled
data. SeFOSS is evaluated and compared with existing methods for OSSL
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4.3 Paper C

on open-set scenarios involving datasets CIFAR-10, CIFAR-100, SVHN, Im-
ageNet, and noise. The experimental results show that SeFOSS exhibits an
unmatched overall performance in terms of both closed-accuracy and OOD
detection across the range of studied scenarios. While other methods per-
form well on a few scenarios, they fail to consistently and robustly perform on
all scenarios. Moreover, this paper shows that methods for closed-set semi-
supervised learning may perform better in terms of closed-set accuracy than
previously reported by existing works. In fact, FixMatch outperforms all
OSSL methods on closed-set accuracy in the experiments conducted in this
paper. However, FixMatch performs poorly in terms of OOD detection, which
is of significant importance for real-world applications.
Contributions: Erik Wallin did the main work. Lennart Svensson, Fredrik
Kahl, and Lars Hammarstrand supervised.

4.3 Paper C
Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand
Beta-model: Open-Set Semi-Supervised Learning with In-Distribution
Subspaces
Manuscript 2023 .

This paper proposes a method for open-set semi-supervised learning: Beta-
model. In this method, we propose the use of a novel score for ID/OOD
classification. This score is based on computing a subspace in feature space
that is associated with ID data. For a test vector, the score is then computed as
the cosine of the angle between this test vector and the subspace. Additionally,
we propose to estimate the conditional distributions of scores for ID and OOD
data. This is done through the use of an expectation-maximization algorithm.
Accurate estimations of these conditional distributions enable us to predict
probabilities of unlabeled data being ID or OOD. Moreover, we propose an
alignment loss that further enhances the classification performance of this
score. We combine these contributions with the self-supervision proposed in
DoubleMatch and pseudo-labeling to form the Beta-model. Our proposed
method demonstrates state-of-the-art results on many benchmark problems.
Contributions: Erik Wallin did the main work. Lennart Svensson, Fredrik
Kahl, and Lars Hammarstrand supervised.
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CHAPTER 5

Concluding Remarks and Future Work

Semi-supervised learning is an important domain of deep learning for enabling
utilization of unlabeleled data, without the need for excessive human labeling
work. Despite active research, determining optimal strategies to effectively
use labeled and unlabeled data together remains an open question. Semi-
supervised learning is often studied in the closed-set setting, where unlabeled
data only contain known classes. For this setting, we proposed the method
DoubleMatch in Paper A. DoubleMatch aims to improve methods relying on
confidence-based pseudo-labeling. These methods only utilize unlabeled data
with class predictions exceeding a confidence threshold. Other data are dis-
regarded from the training loss. DoubleMatch addresses this limitation by
combining the confidence-based pseudo-labeling with a self-supervised loss,
which involves aligning predicted features of unlabeled data across different
augmentations. The experimental evaluations in Paper A show that Dou-
bleMatch improves training speed and final accuracy for many benchmark
datasets. However, DoubleMatch does not outperform previous methods on
all benchmark datasets and performs particularly poor in the low-label regime.
For such scenarios, methods focusing on refined pseudo-labeling display more
promising results [10], [14].
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Open-set semi-supervised learning represents a more realistic and challeng-
ing setting, where uncurated unlabeled training sets may contain unknown
classes, not seen in the labeled training set. In response to this scenario,
we introduced SeFOSS in Paper B. SeFOSS follows the philosophy of Dou-
bleMatch in that it aims to enable learning from all unlabeled data, in this
case both ID and OOD data. To this end, SeFOSS incorporates the same form
of self-supervised feature alignment as proposed by DoubleMatch. Moreover,
it uses an energy-based method for determining if data are ID or OOD. Exper-
imental results presented in Paper B show the robustness and superior overall
performance across many open-set scenarios, when compared to existing meth-
ods for OSSL. In contrast to many previous works, SeFOSS places significant
emphasis on OOD detection at test time, considering that unknown classes
present in training data may also appear during testing. Moreover, an impor-
tant observation from Paper B is that traditional methods for closed-set semi-
supervised learning often outperform methods for open-set semi-supervised
learning, even in the open-set scenario, when considering closed-set accuracy.

In Paper C we looked further into the problem of open-set semi-supervised
learning. Paper C proposes a novel score for classification of ID and OOD
that considerably increases performance on multiple benchmark problems.
Furthermore, Paper C proposes the use of the expectation-maximization al-
gorithm in OSSL for estimating conditional distributions of scores given ID
and OOD data. With these estimated distributions, we can produce proba-
bilistic predictions of data being ID or OOD.

For future research, an interesting research goal is to close the performance
gap in terms of closed-set accuracy between closed-set semi-supervised learn-
ing and open-set semi-supervised learning. In theory, achieving accuracies
comparable to the curated case with uncurated data should be possible, as-
suming we have access to equally many ID data. Potentially, it may even be
possible to surpass the accuracy of the curated case, given that the OOD data
contain information that can help us classify ID classes. Nevertheless, with
current methods, some level of performance loss can generally be expected
when comparing the curated case with the uncurated setting.

Additionally, we see a need to explore semi-supervised learning for domains
beyond computer vision. Specifically for our research project, investigating
semi-supervised learning for classification in radar is a notable goal. As many
methods for semi-supervised learning are relying on domain-specific data aug-
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mentation, transitioning from computer vision to radar introduces the chal-
lenge of identifying suitable augmentation strategies for the new domain. Fur-
thermore, there is a significant disparity in the availability of public datasets
for benchmarking between computer vision and a domain like radar. Ad-
dressing this disparity by contributing radar data is a goal of this research
project.
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