
Archeologists have revealed traces of intentional fermentation of
grains which can be dated back to 10,000 – 12,000 years ago,
coinciding or even preceding the estimated origins of agriculture and
sedentary societies. This suggests that fermentation technologies,
such as bread making and production of alcoholic beverages, have
been a crucial activity in human history, since its earliest days.

Saccharomyces cerevisiae, a unicellular organism also known as
baker’s yeast, has provided a natural platform to drive fermentation
processes, mainly due to its capacity to ferment sugars into ethanol.
The transformation of nutrients, such as sugars, inside cells generates
energy and the necessary precursors that the cells need for survival
and growth. This process is known as metabolism, and is composed
of thousands of chemical reactions. These reactions require enzymes
and proteins, encoded by the genes of cells.
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Throughout history humans have learned to use the metabolic potential of Saccharomyces cerevisiae
and other yeasts to obtain chemical products that can be beneficial for society. This has resulted in
development of applications for production of widely used pharmaceuticals, including insulin and
artemisinic acid, flavors, fragrances, cosmetics, and fuel precursors.

In this thesis I use different quantitative approaches in systems biology to understand how different
yeast species have evolved proteins that enable them to adapt to diverse environmental conditions.
Furthermore, mathematical models and software resources were developed to aid to understand how
the differences between enzymes affect the function of the cell. These models were used to predict
how yeast cells can be engineered to increase their production of desired products, offering a
successful example on an increased production of heme inside of S. cerevisiae cells. Heme is an
important precursor of the protein that carries oxygen in human blood.

Finally, this thesis provides the community of biological scientists with models, software tools and
methods for gaining understanding of the role of enzymes in living systems, and how they can be
used for directed engineering purposes, such as the production of chemicals and pharmaceuticals;
but also, for gaining basic knowledge on how cells function and interact with their environment,
which has the potential to contribute to our understanding of human disease.
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metabolism of budding yeasts 
 
Iván Domenzain del Castillo Cerecer 
Department of Life Sciences 
Chalmers University of Technology 

Abstract 
Fermentation technologies, such as bread making and production of alcoholic 
beverages, have been crucial for development of humanity throughout history. 
Saccharomyces cerevisiae provides a natural platform for this, due to its capability 
to transform sugars into ethanol. This, and other yeasts, are now used for production 
of pharmaceuticals, including insulin and artemisinic acid, flavors, fragrances, 
nutraceuticals, and fuel precursors. In this thesis, different systems biology methods 
were developed to study interactions between metabolism, enzymatic capabilities, 
and regulation of gene expression in budding yeasts.  
 
In paper I, a study of three different yeast species (S. cerevisiae, Yarrowia lipolytica 
and Kluyveromyces marxianus), exposed to multiple conditions, was carried out to 
understand their adaptation to environmental stress. Paper II revises the use of 
genome-scale metabolic models (GEMs) for the study and directed engineering of 
diverse yeast species. Additionally, 45 GEMs for different yeasts were collected, 
analyzed, and tested. In paper III, GECKO 2.0, a toolbox for integration of 
enzymatic constraints and proteomics data into GEMs, was developed and used for 
reconstruction of enzyme-constrained models (ecGEMs) for three yeast species and 
model organisms. Proteomics data and ecGEMs were used to further characterize 
the impact of environmental stress over metabolism of budding yeasts.  
 
On paper IV, gene engineering targets for increased accumulation of heme in S. 
cerevisiae cells were predicted with an ecGEM. Predictions were experimentally 
validated, yielding a 70-fold increase in intracellular heme. The prediction method 
was systematized and applied to the production of 102 chemicals in S. cerevisiae 
(Paper V). Results highlighted general principles for systems metabolic engineering 
and enabled understanding of the role of protein limitations in bio-based chemical 
production. Paper VI presents a hybrid model integrating an enzyme-constrained 
metabolic network, coupled to a gene regulatory model of nutrient-sensing 
mechanisms in S. cerevisiae. This model improves prediction of protein expression 
patterns while providing a rational connection between metabolism and the use of 
nutrients from the environment. 
 
This thesis demonstrates that integration of multiple systems biology approaches is 
valuable for understanding the connection of cell physiology at different levels, and 
provides tools for directed engineering of cells for the benefit of society. 
 
Keywords: stress adaptation; metabolism; omics analysis; enzyme capacity; 
genome-scale modeling; metabolic engineering; gene regulation; systems biology  
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1.- Background 
 
This chapter has the intention of providing the reader with an understanding of the 
central subjects of the research presented in this thesis, namely, the relevance of the 
use and study of diverse yeasts for the humankind; systems biology as a scientific 
field; and how can the tools of systems biology be used for advancing our knowledge 
and manipulation of yeasts for biotechnological and medical uses.  
 
I acknowledge systems biology as a rapidly evolving discipline, where novel 
methods and concepts are being developed frequently. Therefore, I have decided to 
present this section following a historical narrative, which describes the non-linear 
path followed by scientists in establishing and practicing a discipline. History is 
defined and told backwards in time, therefore, the selection of references and time 
points in the narrative, represent a snapshot of the ideas that have influenced those 
presented in this thesis. 
 
A historical narrative facilitates showing that science is not a well-defined set of 
rules, theories, and methods that operates in a one-directional way, according to a 
given program. But rather, I see science as an evolving complex network of 
individuals, institutions, infrastructures, concepts, and methods, explored by human 
curiosity, sometimes driven by necessity, but many others just by our grit and 
insatiable wish for understanding. 
 
1.1 Why to write a Doctoral thesis on yeasts? 
 
Around 10,000 years ago humans started the development of agriculture, which led 
to an unprecedented availability and accumulation of food resources that fostered the 
development of the first sedentary societies and organized civilizations, setting the 
basis for a never-ending history of cultural innovations. Archeologists have revealed 
that vestiges of intentional fermentation of grains can be dated back to around the 
same era, some of them even dating it to 13,000 years ago1,2. This suggests that 
fermentation technologies have accompanied human history since its origins. 
Production of alcoholic beverages and bread making are fermentation-based 
processes, ubiquitous across eras and cultures, made possible by diverse yeast 
species that break down the sugars in nutrient rich foods into alcohol or organic 
acids. Even though yeast cells were first observed under a microscope by Anton Van 
Leeuwenhoek in 1680, understanding of yeasts as causal agents of fermentation, took 
shape over the next 200 years, involving notable scientists such as Lavoisier, Gay-
Lussac, Louis Pasteur and Emil C. Hansen3. 
 
Yeasts are unicellular organisms, such as bacteria, however, their cells contain a 
well-defined nucleus, that stores their genetic material, and other intracellular 
compartments specialized in vital processes. Therefore, yeasts are classified as 
Eukaryote organisms (like plants, mushrooms, insects, reptiles, birds, humans, etc.), 
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within the Fungi kingdom and the Ascomycota phylum. Most yeasts that have been 
historically used by humans display asexual reproduction, in which a new organism 
develops from a bud due to cell division of an original cell, thus, they have been 
popularly called budding yeasts. In 1837 the term Saccharomyces, meaning “sugar 
fungus” in Latinized Greek, was coined by Julius Meyen to name budding yeasts3. 
These yeasts have been further classified into the Saccharomycetales order in more 
recent times4.  
 
Saccharomyces cerevisiae, widely known as baker’s yeast, has been the most utilized 
and studied of all budding yeast species. Being a unicellular Eukaryote, with a 
millenary relation to humans, makes it a suitable platform for the study of cellular 
processes of signaling, division, aging, and death, also present in organisms as 
complex as the human body. Hence, its use in biological and medical sciences as a 
model organism has resulted in several Nobel prizes, mostly in the category of 
physiology and medicine. Examples of these include the discovery of DNA synthesis 
and replication (Kornberg, awarded in 1959); discovery of restriction enzymes 
(Arber, Nathans and Smith, in 1978); discovery of key regulators of the cell cycle 
(Hartwell, Hunt and Nurse in 2001); discovery of the protection of chromosomes by 
telomeres (Blackburn, Greider and Szostak in 2009); and discovery of mechanisms 
involved in autophagy (Ohsumi, in 2016)5. 
 
Furthermore, S. cerevisiae has been studied and engineered for its use in a wider 
variety of industrial purposes, spanning from the production of insulin, opioids, and 
other relevant pharmaceuticals for improving human health, as well as for production 
of chemicals, flavors, fragrances and cosmetics6. In more recent years, other non-
conventional yeast species have attracted attention due to their unique phenotypic 
characteristics that can be leveraged in the industry, for instance, high accumulation 
of lipids in Rhodotorula toruloides and Yarrowia lipolytica for production of biofuel 
precursors; high temperature tolerance (up to 52°C) in Kluyveromyces marxianus7; 
and high tolerance towards acetic acid in Zygosaccharomyces bailii8. Overall, this 
shows the value of using yeasts and fermentation technologies for providing viable 
alternatives to conventional chemical processes, facilitating transition towards 
sustainable production frameworks. 
 
The history of yeast domestication might be much more complex than it appears, 
resembling more a process of co-evolution, in which diverse yeasts have been 
adapted to different environments with different production purposes across 
thousands of years; whilst humans have been able to utilize yeasts for increasing 
nutritional value of food, production of alcohol, present in ritual practices across 
many cultures, and even for understanding biological processes that are present in 
our own cells. 
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1.2 Cellular metabolism 
 
Despite their microscopic size, yeasts were first noticed by humans due to their 
effects over grains and fruits, namely, production of “air bubbles” and development 
of alcoholic and sour tastes. These observable phenomena are a result of the 
conjunction of myriads of biochemical transformations (i.e., reactions) that take 
place inside of cells. These reactions operate in a network manner, initially taking 
nutrients from the environment as substrates, and converting them into molecular 
building blocks for cellular growth and byproducts, such as CO2 and ethanol (figure 
1A). The nutrients demanded by cells can be classified into a carbon source, energy 
source, nitrogen source, minerals, and vitamins. It is often that the carbon and energy 
source are the same compound, being glucose the most common across organisms9. 
 
In this network of reactions, energy (in the form of Gibbs free energy, a measure of 
the potential of chemical transformation in a substance) is extracted from the 
substrate and stored as an energy currency molecule (i.e., adenosine triphosphate, 
ATP) and other cofactors. This forms the basis of the process known as catabolism, 
which operates in coordination with anabolism, the assembly of the produced 
building blocks into macromolecular cellular components (carbohydrates, lipids, 
proteins and nucleic acids), powered by the energy stored as ATP10. Together, 
catabolism and anabolism form cellular metabolism, illustrated in figure 1B. 
 
Metabolism encompasses thousands of biochemical reactions and hundreds of 
different compounds, referred to as metabolites11. Its basic structure, conserved 
across all living forms, it is at the core of cellular function as it enables all the other 
processes that make life to happen, such as self-maintenance, signaling, growth and 
reproduction12.  
 

 
Figure 1.- A summarized view of cellular metabolism. A) Nutrients are broken down into 
byproducts, while extracting enough energy and components to run the cellular machinery 
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that enables growth. B) A more detailed view of the cellular machinery shows that nutrients 
are converted into byproducts, cofactors, energy, and molecular building blocks (catabolism, 
surrounded by a red dotted-line), then a series of mechanisms use the building blocks, energy 
and cofactors to generate new biomass or cellular growth (anabolism, surrounded by the blue 
dotted-line). 
 
To facilitate understanding, metabolism is usually divided into different pathways in 
textbook and biochemistry literature. Each of these pathways has a particular 
structure and fulfills different purposes. The most studied metabolic pathways are 
those in central carbon and energy metabolism as they are present in all known kinds 
of living cells. A brief overview of these pathways is presented next. 
 
Glycolysis, also known as the Embden-Meyerhof-Parnas pathway, is the pathway by 
which most living cells generate the necessary energy for growth from sugars. It 
consists of a series of 10 reactions divided into an “investment” part, in which ATP 
is required to phosphorylate or “activate” the substrate, and a yield section, in which 
a surplus of ATP is obtained from chemical transformations13. The final products are 
a net total of 2 ATP molecules and 2 molecules of pyruvate per each molecule of 
glucose that enters the pathway. Pyruvate can either be fermented or undergo further 
modifications in the tricarboxylic acids cycle. A detailed review of the “design” 
principles behind each reaction step, emphasizing the constraints (thermodynamic or 
kinetic) limiting each of them was published by Bar-Even and collaborators in 2012 
and can be found elsewhere14. 
 
Fermentative metabolism pathways are ubiquitous in nature, as they provide cells 
with a mechanism for restoring homeostasis, even in anaerobic environments. 
During the transformation of glucose into pyruvate in glycolysis, electrons are 
transferred from metabolite intermediates to cofactor molecules or “electron 
carriers”. The most used electron carrier in catabolism is nicotinamide adenine 
dinucleotide (NADH, with its oxidized form NAD+). Glycolysis produces two moles 
of NADH per mole of catabolized glucose, but as the redox state of the cell is highly 
regulated, these NADH molecules need to be restored into their oxidized form. Thus, 
fermentation pathways reduce the resulting pyruvate into byproducts such as lactic 
acid, common in lactic acid bacteria and mammalian muscle cells, or ethanol, 
commonly produced by different budding yeast species.  
 
The pentose phosphate pathway is a complex network of reactions that serves for 
multiple purposes. Its entry point is glucose-6-phosphate, the first metabolic 
intermediate in glycolysis, which is then oxidized into ribulose-5-phosphate plus a 
molecule of CO2, in these first reactions 2 moles of NADPH are formed, which 
provide the reducing power necessary for anabolic processes like protein synthesis. 
Further down, 2 molecules of ribulose-5-phosphate can be transformed into the 
pentoses ribose-5-phosphate (R5P), essential for DNA and RNA synthesis, and 
xylulose-5-phosphate. The carbon atoms in these molecules can then be rearranged 
and transformed back into glycolysis intermediates to maximize energy production, 
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or further transformed into erythrose-4-phosphate (E4P), an essential building block 
for synthesis of aromatic amino acids9. 
 
The tricarboxylic acids cycle (TCA cycle) is a highly versatile pathway, brilliantly 
elucidated by the works of three Nobel laureates Otto Warburg, Albert Szent-
Györgyi and Adolf Krebs15. In a simplified way, and assuming respiratory conditions 
with no loss of intermediates, this pathway takes the three carbons compound 
pyruvate, end product of glycolysis, and by a series of oxidative reactions transforms 
it into three molecules of CO2, five redox packages (4 NADH and one FADH2) and 
one energy currency molecule (GTP)9. The five redox packages can be further used 
to fuel cellular respiration to produce additional energy, in which the carried 
electrons are transferred to molecular oxygen, the final electron acceptor. Moreover, 
several of its intermediate metabolites (2-oxoglutarate, succinate and oxaloacetate) 
constitute fundamental building blocks of the cell and play major roles in amino acid 
biosynthesis16.  
 
Notably, the TCA cycle serves as an engine that adjusts the rate and direction of its 
revolutions according to the conditions that the cell is exposed to. In anaerobic 
conditions, the cycle operates for production of building blocks, but it is also likely 
to operate in both directions in order to balance redox potential. When glucose is not 
available and non-fermentable compounds constitute the main carbon source of the 
cell (e.g. ethanol or acetate), the TCA cycle, aided by shunt reactions, facilitates 
production of phosphoenolpyruvate (PEP), a glycolytic intermediate upstream 
pyruvate, enabling a reversed glycolytic process (gluconeogenesis) in which 
glucose-6-phosphate and other building blocks can be produced by the cell. The 12 
main precursor metabolites for biomass synthesis, the pathways in which they are 
mostly produced, and the biosynthetic pathways that they participate in, are 
summarized in table 1.  
 
The electrons carried by the redox packages formed in a clockwise turn of the TCA 
cycle can be leveraged for production of additional ATP by the cell. Mechanisms for 
creating a current of electrons through different membrane proteins, and using this 
work for pumping protons from the inside to the outside of such membrane against 
a concentration gradient, are present across all domains of life17. The flow of 
electrons is taken at the end of the chain of pumping proteins by an acceptor 
molecule, oxygen being the one used by yeasts, animals, and many bacteria.  
 
Prokaryote cells carry out this process in their cell membranes, pumping protons to 
the immediate surroundings, whilst yeast and all eukaryotes carry this out in the 
intermembrane space of specialized compartments with inner folded membranes, the 
mitochondria. Flow of protons from the exterior to the interior of the space enclosed 
by these membranes, activates the rotational motion of a specialized complex of 
proteins, ATP synthase, which consists of stator and a rotor part. The latter enables 
phosphorylation of ADP molecules to ATP while it spins18, resembling the function 
of water turbine in a hydroelectric dam.  
 



 6 

This additional energy producing series of mechanisms is known as oxidative 
phosphorylation, in opposition to glycolysis, known as substrate-level 
phosphorylation. The elucidation of this pathway took years of relentless, and 
controversial, work by Peter Mitchell and Jennifer Moyle. The former was awarded 
the Nobel prize in 1978, for his development of the chemiosmotic theory of cell 
energetics, while Jennifer Moyle, as very often in science, remained 
unacknowledged for her meticulous molecular work and measurements which 
majorly supported the ideas and hypotheses of Mitchell15. This theory of cell 
energetics has been suggested to be one of the more counterintuitive postulates in 
biology, comparable to the level of the hypothesis of natural selection by Charles 
Darwin17. However the theory is now a well-accepted and fundamental part of the 
current paradigm of cell physiology in science18. 
 
Oxidative phosphorylation greatly increases the amount of ATP that can be 
generated by using the nutrients, in particular the carbon source, fed to the cell. Its 
thermodynamic efficiency has been estimated to be as high as 0.42, theoretically, 
which surpasses that of the most efficient hydrogen fuel cells made by humans9, and 
also that of most thermal engines, which are the basis of current human industries.  
 
Even more surprising is the scale and rates at which this process takes place inside 
of cells. Eukaryotes have evolved mitochondrial structures that offer enormous 
amounts of surface membrane area per volume. Extending the full membrane area 
of these in front of our eyes would cover as much as four full football pitches, all 
packed by electron transfer complexes and the ATP synthase engine17. Using the 
energy carried by the transfer of electrons enables proton pumping, up to a rate that 
can maintain an electric potential of 150-200 mV, across a membrane of 5-6 nm. 
Upscaling these numbers to a macroscopic world would imply that an electric 
potential of 30x106 V/m is generated by the electron transport chain19. In human 
experience, this would be equivalent to a person been “hit” by a thunderbolt.  
 
Consequently, this massive electric potential causes a flow of protons back again 
into the mitochondria across the inner channels of ATP synthase, whose rotor can 
spin up to 100 revolutions per seconds, generating several molecules of ATP per 
rotation in each of its copies20. No wonder why mitochondria are often called “the 
powerhouse of cells”. 
 
Table 1.- Twelve main precursor metabolites for cellular biosynthesis. 

Precursor metabolite Pathway Biosynthetic 
associated processes 

Glucose-6-phosphate Glycolysis/gluconeogenesis Carbohydrates 
production 

Fructose-6-phosphate Glycolysis/gluconeogenesis Carbohydrates 
production 

Glyceraldehyde-3-
phosphate 

Glycolysis/gluconeogenesis Phospholipids 
biosynthesis 
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3-phosphoglycerate Glycolysis/gluconeogenesis Amino acid and 
nucleotides 
metabolism 

Phosphoenolpyruvate Glycolysis/gluconeogenesis Synthesis of aromatic 
amino acids 

Pyruvate Glycolysis Amino acids 
metabolism 

Ribose-5-phosphate Pentose phosphate pathway Amino acid and 
nucleotides 
metabolism 

Erythrose-4-phosphate Pentose phosphate pathway Synthesis of aromatic 
amino acids 

Acetyl-CoA TCA cycle Lipids metabolism 
2-Oxoglutarate TCA cycle Amino acids 

metabolism 
Succinyl-CoA TCA cycle Protein biosynthesis 
Oxaloacetate TCA cycle Amino acid and 

nucleotides 
metabolism 

 
 
1.3 The central dogma of molecular biology 
 
In 1943 Erwin Schrödinger, an Austrian physicist, delivered a series of lectures at 
Trinity College Dublin in Ireland, in which he addressed the question What is life? 
He followed thermodynamic arguments to conclude that life is fundamentally a state 
of organization in matter, which keeps itself under a higher level of molecular order 
in contrast to its surroundings, by means of boundaries that define the interior and 
exterior of the system.  
 
The processes for maintaining this state of organization require a constant flow of 
energy and materials in and out the boundaries. At the times of Schrödinger, 
extensive studies on the mechanisms of inheritance of acquired characteristics by 
living organisms were available. But the fundamental pieces of inheritance 
mechanisms were lacking, therefore, he hypothesized that some sort of molecular 
information needed to be transferred from cells to their daughters, and then stored in 
them, so that the required processes for life and its reproduction could be executed 
again. Schrödinger, as a quantum physicist, saw the necessity of an aperiodic crystal 
as the molecular basis of this information storage and transfer. These lectures were 
later published as the essay What is life? in 194421. 
 
Schrödinger ideas inspired a generation of crystallographers to investigate the 
structure of biological macromolecules using the principles of radiation and quantum 
chemistry and physics. Francis H. Crick, coming from a prominent direct academic 
lineage, holding the names of J. J. Thomson, Lord Rayleigh, W. H. Bragg, and Max 
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Perutz22, worked together with James D. Watson and Rosalind Franklin in 
deciphering the identity and structure of such aperiodic crystal.  
 
In 1953, Crick and Watson published a scientific article in Nature, entitled 
“Molecular structure of nucleic acids: A structure for Deoxyribose nucleic acid”, in 
which they proposed the double helix structure of DNA, with nucleotide bases at its 
core, for which they found specific pairings (adenine – thymine and guanine – 
cytosine) that, according to them, “immediately suggests a possible copying 
mechanism for the genetic material”23. This was acknowledged as the missing piece 
in genetic inheritance mechanisms by the scientific community and Crick and 
Watson were awarded the Nobel prize in physiology and medicine, together with 
Maurice Wilkins, in 1962. Although their proposed structure was based on the 
experimental work of Rosalind Franklin, in particular “photo 51”(figure 2), she was 
excluded from the awarded prize, as many other notable women scientists have been 
unjustly omitted from the history of scientific discovery24.  
 
Later on, Francis Crick systematized the available knowledge on molecular biology 
in a couple of articles, in 195825 and 197026, setting the foundations of the well-
known central dogma of molecular biology. This concise formulation of molecular 
biology consists of the following. First, proteins are the core components in cells that 
enable cellular processes to take place, due to its “enzymatic” or catalytic activity.  
 

 
Figure 2.- Photo 51, X-ray crystallography image of DNA. Raymond Gosling. King’s College 
London. 1952. Source: http://www-project.slac.stanford.edu/wis/images/photo_51.jpg. 
 
Proteins consist of long sequences of different amino acids tied together by covalent 
bonds, there are 20 different amino acids that can be combined in particular 
sequences to form specific proteins. The information for synthesizing each protein 
is stored in DNA, the sequence of nucleotide bases at the core of its helix structure, 
organized by triplets, corresponds to a sequence of specific amino acids. Crick 
demonstrated the correspondence 4 bases –> organized in triplets –> 20 amino acids, 
using combinatorial and heuristic arguments.  
 

http://www-project.slac.stanford.edu/wis/images/photo_51.jpg
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DNA can generate copies of itself by replication and then be transcribed, in order to 
produce RNA, a single stranded molecule that keeps the sequence of nucleotide 
bases, containing the code for proteins. At the time of his articles, little was known 
about the role of ribosomes in protein synthesis, however, it was hypothesized that 
some sort of protein with catalytic activity could be responsible for taking adapted 
pieces of RNA and use them as a template for putting a sequence of amino acids 
together, thus, RNA is translated into a protein. 
 
It must be mentioned that Francis Crick acknowledged the importance that post-
translational modification of proteins may play on their final function, especially 
chemical modification of discrete amino acid sequences and 3D protein structure. 
Nonetheless, his reasoning prioritized the linear sequence of amino acids, and its 
relation to DNA code, as the central factor differentiating cellular function between 
organisms and shaping inheritance. A schematic view of the central dogma of 
molecular biology, aided by more modern knowledge (e.g., ribosomes as protein 
synthesizers) is shown in figure 3. 
Central to the theory assembled by Crick and others of his time were the following 
points: 
 

- The main function of proteins is to act as enzymes. 
- “Once that information has passed into a protein it cannot get out again”25. 

The transfer from protein to protein or from protein to DNA is impossible. 
Information meaning the precise determination of sequences, either of 
bases in nucleic acids or amino acid residues in proteins. 

- “The central dogma is intended to apply only to modern organisms, and not 
to events remote in the past, such as the origin of life or the origin of the 
code”26. 

 

 
Figure 3.- The central dogma of molecular biology. DNA contains the genetic information to 
reproduce all the necessary processes for life, it reproduces itself by DNA repli26cation. DNA 
gets transcribed into RNA and messenger fragments of it are taken by ribosomes, that 
assemble sequences of amino acids, according to the code in RNA. Linear sequences of amino 
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acids undergo folding and post-translational modifications that convert them into functional 
proteins that enable chemical transformations and biological processes. Uppercase labels 
indicate macromolecular components of the cell. Lowercase labels indicate biological 
processes that transfer information from one molecular level to lower ones. 
 
Nevertheless, it should also be mentioned that Francis Crick was aware of the 
limitations of these ideas. In his 1958 article, exposing the central dogma, he 
expressed the following words, displaying a radical Popperian approach to science27, 
regarding the process of protein synthesis: “some of these points are now ripe for a 
direct experimental attack”25, and even expressed that potential discovery of an 
information transfer not considered by the central dogma would “shake the whole 
intellectual basis of molecular biology”25. Hence, even though Crick and 
collaborators used the term “dogma” for their theory, they did not conceive it, neither 
communicated it, as a universal truth. 
 
The discovery of DNA and the enunciation of the central dogma facilitated the 
acceptance of molecular biology as its own scientific discipline, differing from 
traditional biochemistry, and pure genetics, in its scope, questions, and methods. For 
molecular biology the correspondence gene – protein provides a foundation for the 
exploration of gene “function”, relying on directed molecular experiments to test the 
relation genotype – phenotype as its main methodological tool (e.g., single gene 
knock-outs)28.  
 
The scope of molecular biology brought an ontologically reductionist perspective to 
biology, in which living organisms could be reduced to the study of the molecules 
constituting them, which by themselves could be explained by the principles of 
chemistry and, ultimately, physics. In this way, molecular biology offered a solution 
to the philosophical and methodological problems of 20th century biology29.  
 
1.4 What is Systems Biology? 
 
According to Thomas S. Kuhn view of the scientific enterprise, once a scientific 
community have shaped methodological, ontological, and epistemological 
consensus through contrasting competing theories, a paradigm is established30. An 
established paradigm ensures scientific progress in a cumulative way, in which 
scientists focus on measuring all the missing quantities that would enable their 
theoretical framework to explain the observable phenomena that their field is 
concerned with.  
 
No paradigm has proven to be flawless in the history of physico-chemical sciences24, 
as observations that deviate from their conclusions arise often, or even internal 
contradictions can be found in them after detailed scrutiny. Therefore, “anomalies” 
accumulate during the lifetime of a paradigm, up to points in which the consensus 
around the paradigm cannot be held any longer.  
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In the case of molecular biology, such paradigmatic anomalies started to appear early 
in its development. One of this examples came 1960, when Denis Noble published a 
series of mathematical models of the heart’s pacemaker mechanism that successfully 
captured experimental observations. It was by setting up a mutual dependency on a 
voltage potential at the cellular level, and ion transport activity at the protein level, 
that experimental observations on Purkinje fibers from sheep ventricles could be 
predicted31,32. This posed an example on a feedback mechanism between distant 
levels of biological organization, protein activity and cellular physiology, which 
should be, in principle according to the central dogma, dictated by lower-level 
mechanisms, like gene expression and protein activity itself.  
 
The years spanning from 1950’s – 70’s saw a sudden rise of introduction of 
mathematical thinking and modeling in biological problems, based on principles of 
thermodynamics33–36, reaction kinetics37–41, and information theory42–44. This opened 
a wave of scientific development, that did not necessarily account for the central 
dogma, and provided predictive power. Common to all these lines of development 
was the reliance on a “systems thinking”, rather than a “component thinking”45, 
prevalent in molecular biology46.  
 
Systematization of the study of reaction kinetics in the context of metabolic networks 
in the 70’s and 80’s gave rise to the theory of metabolic control analysis (MCA)37,47, 
its main prediction being that kinetic control of metabolic pathways did not reside in 
a single catalytic step, but it is rather distributed across several points in the network. 
This provides another example of the prediction of a network property from 
assembling detailed knowledge, at the molecular level, on a large scale. 
 
In parallel, molecular biology developed further, especially in its methods. Genome 
sequencing became available in the 1970’s48,49, leading to an unprecedented 
accumulation of biological data and major efforts towards functional 
characterization of genes, following a gene – phenotypic function logic. During the 
1980’s several genome-wide sequencing projects were launched50, and in the 1990’s 
large-scale identification and characterization of genes was enabled by microarray 
technologies51,52.  
 
At the turn of the century, a full catalogue of thousands of associations gene – 
function across many different model organisms, from all domains of life, was made 
available by the gene ontology consortium53. Such an accumulation of new 
biological data fueled the development of detailed mathematical studies, relying on 
molecular knowledge, explaining biological phenomena at different spatial, 
temporal and organizational scales54–60.  
 
The emergence of a new discipline was fully realized with the foundation of two 
independent systems biology institutes, one in Seattle, USA, and the other in Tokyo, 
Japan, in the year 2000. Additionally, seminal publications by the founders of these 
institutes, Hiraoki Kitano61,62 and Leroy Hood and Trey Ideker63, provided a 
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framework to understand the scope, methods, tools, and questions of systems 
biology.  
 
Kitano defined systems biology as a field that aims at understanding biological 
systems at system level, requiring a change in our notion of “what to look for” in 
biology. Based on detailed understanding of genes and proteins, the focus is on 
understanding system’s structures, dynamics and control mechanisms, and also to 
develop strategies to modify and construct biological systems based on rational 
design principles61,62. This provides a high-level definition of the field, delimiting the 
epistemological subjects of systems biology (i.e., what counts as knowledge?). 
 
On the other hand, Ideker’s definition of systems biology argues that, in order to 
understand the relation between molecular interactions and global changes in 
biological systems, it is necessary to integrate various levels of global measurements 
together with mathematical models of the systems of interest. This should be guided 
by the following steps: define all the components of the system; perturb and monitor 
systems components systematically; reconcile experimental observations with 
model predictions; and design new perturbation experiments to distinguish between 
multiple model hypotheses63. In contrast to Kitano’s definition, this is a more 
methodological definition of the field, highlighting the procedures and steps that 
count as valid for constructing systems biology knowledge. 
 
From these definitions, two main aspects are of crucial importance at differentiating 
systems biology from other fields in biology: 1) understand complex biological 
organization and processes using detailed knowledge and measurements of 
molecular components, and 2) the use of mathematical models for understanding 
relations in between molecular components and predict systems responses. Albeit 
these epistemic and methodological differentiation, systems biology shares concerns 
that are central to other branches of biology, such as, information transfer, with 
molecular biology; characterization of adaptive states of cells and organisms, with 
physiology; definition of the succession of adaptive states, with developmental 
biology; and the appreciation that all aspects in an organism are products of 
selection, with ecology and evolutionary biology64. 
 
Denis Noble has been another major contributor to the definition and understanding 
of systems biology, not just with his science but also with his philosophical 
publications and dissertations. A fundamental idea across his works is the 
identification of an ontological difference between molecular biology and systems 
biology. Noble describes the ontology of molecular biology as a reductionist causal 
chain, in which genes play the most fundamental role and their code governs the 
processes taking place at higher levels of organization (upwards causation). In 
contrast, systems biology rejects this idea by acknowledging that transmission of 
information is not just one way in biological systems (downwards causation), and 
that functionality is something that can just be understood at the organism level, 
encompassing all the lower levels of organization65–67. The differences between these 



 13 

opposite views are summarized in figure 3 and explained in a cellular context in 
figure 4. 
 

 
Figure 3.- Upwards and downwards causation in systems biology. Dark yellow arrows 
represent the upwards transfer of information, central to reductionist approaches. Blue arrows 
represent downwards causation or transfer of information introduced by systems biology. 
Reproduced from Noble, D., 200865. 
 
 

 
Figure 4.- Upwards and downwards causation in the context of a cell. Downwards 
information transfer between macromolecules (i.e., from higher to lower levels of 
organization, represented with blue arrows) complement the one-way information transfer of 
molecular biology (upwards transfer, represented by dark yellow arrows) and enable study of 
emergent system properties. 
 
Bernhard Ø. Palsson defines another distinction in between different levels of 
causation in biological systems, which he has called the dual causation of systems 
biology68. In this way, physical laws and changes on the environment impose 
constraints during the lifespan of an organism. In order to survive, organisms adapt 
to these constraints, through phenotypic adaptations or proximal causation (e.g., 
transcriptional responses to environmental stress). Additionally, changes in the 
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genotype, at the level of sequence and composition, generate diverse populations of 
individuals, the most fit ones proliferate in the phenotypic landscape (distal 
causation), giving rise to continuous iterations of the dual causation cycle (proximal 
– distal), as depicted in figure 5. 
 

 
Figure 5.- Dual causation of the genotype-phenotype relation proposed by Bernhard Palsson. 
Adapted from Palsson, B. O., 2015, pp. 25368. 
 
1.5 Methodological approaches in systems biology 
 
In the last two decades systems biology has been pushed forward by the advent of 
high-throughput technologies for measurement of cellular components at large scale. 
Gene sequencing for whole organisms, facilitated that several model organism whole 
genomes were already available in the final years of the last century69–72. Later, next-
generation sequencing technologies facilitated myriads of studies characterizing the 
RNA of cell samples73,74, even at the single cell level75,76.  
 
Mass spectrometry methods have matured enough to be used for detection and 
quantification of the thousands of proteins inside cells77–83. Furthermore, this 
technology is applied to the detection of intracellular metabolites, nonetheless, this 
task remains challenging as these molecules tend to be small, present in low 
concentrations and have high turnover rates11,84,85. Additionally, carbon isotope 
labelling techniques have been used for following the breakdown of molecules by 
cellular metabolism to compute fluxes, using a model as a scaffold86–89.  
 
Altogether, these technologies have provided the means for the generation of a 
multitude of datasets of biological components measurement at a genome-scale. The 
study of these datasets is called -omics (genomics, transcriptomics, proteomics, 
metabolomics and fluxomics), a neologism indicating an entire set or a whole sphere 
of activity90. 
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Throughout the development of systems biology as a field in biological sciences, 
two main approaches have been developed and implemented, the top-down and 
bottom-up (figure 6). The top-down approach consists of studying large datasets of 
experimental observations of molecular components (i.e., a bird’s eye to the 
organism as a whole91), to extract information or construct explanations at higher 
levels of organization (pathways, cellular function, etc.). Based on an inductive 
process, in top-down systems biology methods, general or basic behaviors are sought 
through understanding or establishing connections of particular observations. 
Basically, this is a data-driven process, in which new biological information is 
extracted from large datasets92.  
 
Different quantitative techniques are available for the study of these datasets, for 
instance statistical characterization and modeling, such as differential expression 
analysis and gene-set enrichment analysis, for study of transcriptomics and 
proteomics data 71,93–95; linear regression and correlation studies, for integrating 
multiple layers of data96–99; graph theory for metabolome studies100–103; and heuristic 
models such as neural networks, for study of transcription factor networks104,105. 
These approaches to science are often described as hypothesis-free or data-driven 
and are powerful tools for finding patterns in biological systems106, nevertheless, it 
is hard to justify the generality of these findings, as for any inductive reasoning 
(known in philosophy of science as Hume’s problem of induction24). 
 
The other methodological approach in systems biology, bottom-up, consists of 
building mathematical models, usually based on basic principles or a priori 
fundamental knowledge, for description of biological systems and quantitative study 
of their properties and behavior11,78. Mathematical models enable hypothesis-driven 
science, by predicting the outcome of a system under perturbation in quantitative 
terms, allowing comparison with experimental information.  
 

 
Figure 6.- The two methodological approaches in systems biology. The top-down approach 
represents an “eagles-eye view” over data, coming from particular observations, and aims to 
build knowledge on cellular mechanisms by finding relations among the data. Bottom-up 
systems biology relies on the construction of mathematical models, from basic general 
principles, that can explain particular cellular behavior, at different scales, in a quantitative 
fashion. 
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Broadly, modeling frameworks in systems biology can be classified according to the 
specificity of the mechanisms being abstracted. Thermodynamic and kinetic models 
describe interaction between cellular components, usually at the reaction or even 
quantum level, using fundamental physico-chemical principles. Chemical reaction 
networks are used to describe flow of matter and energy on larger scales (e.g., 
metabolic pathways, cellular compartments, or cellular subsystems). Finally, whole 
cell models attempt to provide a quantitative description of the cell as a whole, by 
integrating multiple biological phenomena of distinct nature, usually simplifying 
highly complex processes like protein synthesis. 
 
1.6 A brief history of modeling in systems biology 
 
Bottom-up systems biology has been formed by the contribution of ideas and 
methods coming from diverse fields, overall, with the intention of making biology a 
quantitative and predictive science. The pioneering ideas on systems thinking of 
Norbert Wiener107 and Ludwig Von Bertalanffy33,108 came in the 1950’s; Denis 
Noble, a physiologist, developed the first model explaining the interaction between 
genetic components and properties at the cellular and tissue levels, the heart 
pacemaker model31,32; Mathematically-oriented chemical engineers, such as Arnold 
Fredrickson and Henry Tsuchiya, focused on explaining population dynamics of 
microbial cells in bioreactors during the 1960’s and 1970’s, using concepts like 
structured modeling, conservation equations, and differential equation systems with 
probabilistic terms109–112.  
 
The early 1970’s also saw the rise of the metabolic control analysis theory and 
applications, mostly driven by biophysicists and biochemists like Reinhart Heinrich, 
Tom Rapoport and Henrik Kacser, during the 1970’s37,39,41, and Douglas Kell and 
Hans Westerhoff extending it in more recent times113–116. In the 1980’s, another 
pivotal contribution from chemical engineering ideas came into systems biology, the 
formal analysis of reaction networks117,118, applied by E. T. Papoutsakis119 to 
transform metabolic pathway maps into algebraic systems, and by M. R. Watson, 
who developed a computational implementation of linear programming for obtaining 
numerical solutions of metabolic steady-states120.  
 
In the second half of the 80’s Bernhard Palsson used dynamic models of reaction 
kinetics to understand metabolism, from single reactions121 to a human red cell122. It 
was also Palsson’s group, who in the early 1990’s applied the concepts of steady-
state reaction networks and optimization to the metabolism of the bacterium 
Escherichia coli, in a series of studies predicting its biosynthetic capabilities123–126. 
The first metabolic network at a genome-scale was published in 1999, for the 
bacterium Haemophilus influenzae127. Also during the final years of the XX century, 
new studies aimed to extend MCA and kinetic modeling to account for more 
complex reaction networks128–130, non-linear kinetics131,132, thermodynamic 
constraints129,130, and the study of metabolic oscillations at the pathway level13,133–137.  



 17 

 
On parallel to these developments, other researchers were interested into the 
behavior of whole cells and pursued the project of modeling the interaction between 
different subcellular systems. Thus, a simple whole cell model for E. coli was 
published in 1979138, and a more sophisticated one, including interactive software, 
in 1999139. This approach evolved further, to integrate more, and more sophisticated, 
description of subcellular processes, also implemented different mathematical 
formalisms for the process involved, this delivered the whole cell for Mycoplasma 
genitalium140,141. 
 
The different lines of thought that shaped bottom-up systems biology have 
consolidated into three main categories of quantitative modeling frameworks in 
systems biology: constraint-based methods, kinetic modeling, and multi-scale 
models. I follow this distinction as it allows for clear differentiation of models in 
terms of their biological scope and, or scale. Additionally, the three categories also 
display a clear distinction between the mathematical elements that define them, and 
the methods used for quantitative simulation. A summarized description of this is 
given in table 2. 
 
Table 2.- Quantitative modeling frameworks in systems biology 

Modeling framework Scope and scale Mathematical 
formulation 

Constraint-based Metabolism at a pathway, 
subsystem or genome-scale 

Linear and non-linear 
equation systems 

Kinetic Metabolism or synthesis of 
macromolecules at the 
reaction, pathway or 
subsystem scale  

Differential equation 
systems  

Multi-scale models Metabolism, synthesis of 
macromolecules, cell cycle, 
whole cell models 

Mixed. Each cellular 
subprocess is modeled 
following a specific 
formalism and the different 
layers can be coupled. 

 
Whole cell models proved to be powerful at reconciling multiple layers of omics 
data, while providing mechanistic connection, nonetheless, their formulation 
requires hundreds to thousands of molecular parameters, not readily available for a 
wide variety of organisms. Therefore, their applicability has been limited to three 
different species (E. coli138,139, M. genitalum140,141 and S. cerevisiae142) in 45 years of 
development. 
 
Kinetic models provide detail predictions on the dynamics of chemical systems. 
Their detailed representation of biochemical reactions, based on kinetic mechanisms, 
enables construction of equation systems that predict metabolite concentrations and 
reaction fluxes. However, the complex kinetic expressions require the incorporation 
of extensive enzyme parameters. Additionally, the non-linearity and the common 
coupling in between mass balances across metabolites, demands the use of complex 
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mathematical methods or approximations for obtention of quantitative prediction, 
hindering their application to large-scale metabolic networks, usually restraining 
their use to the pathway and reaction level. 
 
1.7 Genome-scale metabolic models and flux balance analysis 
 
A genome-scale metabolic model (GEM) is a computational representation of an 
organism's metabolism, encompassing all the biochemical reactions that occur 
within its cells. It serves as a comprehensive blueprint of the chemical 
transformations that enable the organism to grow, produce energy, and carry out 
various functions. GEMs are constructed using information from the organism's 
genome, cataloging the enzymes and transporters encoded in its DNA and mapping 
them to the reactions they catalyze143. They represent a knowledgebase on cell’s 
metabolism, offering a comprehensive catalogue of its molecular components and 
their interactions. 
 
One powerful technique employed with GEMs is Flux Balance Analysis (FBA). 
FBA is a computational method used to simulate and analyze the flow of metabolites 
through the metabolic network of an organism under steady-state assumption, where 
the rates of metabolite production and consumption are balanced (i.e., no internal 
accumulation of metabolites mass)144. This assumption enables the construction of 
mass balances around each metabolite, mathematically represented as a 
homogeneous system of linear equations. Nevertheless, as metabolism is highly 
interconnected and redundant, these systems tend to be highly underdetermined (i.e., 
non-zero degrees of freedom). Due to this FBA operates on the principle of 
optimizing a cellular objective while accounting for mass conservation and 
thermodynamic constraints, as undetermined systems are characterized by a solution 
space of infinite solutions, rather than a unique one. A commonly used objective 
function in FBA is to assume that cells allocate resources to maximize their growth 
rate145.  
 
In practice, FBA uses linear programming to find the distribution of reaction fluxes 
(the rates at which reactions occur) that satisfy the constraints of the metabolic 
network to achieve the imposed objective, thus FBA is at the core of constrain-based 
methods in systems biology146. By solving this mathematical problem, FBA predicts 
how nutrients are utilized, how byproducts are generated, and how metabolic 
pathways are coordinated to support cellular function144.  
 
Researchers utilize GEMs and FBA in various ways, ranging from understanding an 
organism's metabolic capabilities to guiding the design of biotechnological 
processes. In the context of biotechnology, GEMs can aid in the rational engineering 
of microorganisms for the production of valuable compounds such as biofuels, 
pharmaceuticals, and chemicals147. By manipulating the reaction fluxes in silico, 
researchers can predict and fine-tune metabolic engineering strategies to optimize 
product yields and reduce unwanted byproducts. 
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1.8 Protein-constrained models 
 
The determination of accurate flux distributions using GEMs and FBA is a major 
challenge, as optimal values of an objective function can be attained by alternate flux 
distribution profiles148. This means that a global systems behavior, such as the growth 
rate of a cell, can be realized by different intracellular metabolic states, however, not 
all the alternate optima in an FBA problem are biologically meaningful. Therefore, 
the quality number of constraints defines the accuracy of predicted phenotypes. 
Nonetheless, intra and extracellular flux constraints are not readily available for a 
wide variety of organisms and conditions. 

The concept of cellular resource allocation has been explored to incorporate 
additional constraints on metabolic models. This framework mainly consists of 
considering a resource known to be limited in the cell, and then formulate a resource 
cost for each reaction of the network. Consequentially, phenotypes get constrained 
by flux of nutrients, stoichiometry, and a finite cellular resource. These approach has 
been used by considering a crowded cellular environment149,150, a finite membrane 
area for the expression of transporter proteins151, and bounded total protein mass 
available for metabolic enzymes152–158. These modeling frameworks have succeeded 
at refining the phenotype predictions of classical FBA for growth in diverse 
environments. Furthermore, this kind of models are capable of capturing overflow 
metabolism in E. coli, S. cerevisiae and human cells.  

These models connect reactions in the network to the constrained resource by 
establishing a flux cost. In models constrained by the total amount of protein such 
cost becomes the enzyme demands of each reaction. The use of the Michaelis-
Menten equation enables representation of reaction fluxes as a function of enzyme 
amounts: 

𝑣 = 𝑉!"#
$

$%&!
= 𝑘'"([𝐸)]

$
$%&!

       (eq 1.1) 

Where 𝑉!"# is the maximum attainable flux by a reaction; S is the concentration of 
the substrate; 𝐾! is the Michaelis constant; 𝑘'"( is the turnover number of the 
enzyme; and [𝐸)] is the concentration of the enzyme. Consequently, this expression 
imposes an upper limit on reaction fluxes, which cannot be higher than the product 
of 𝑘'"( and the concentration of the enzyme.  
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Aims and significance 
 
In the process of writing this thesis, and reviewing the research done during my PhD 
studies, I have identified two central elements among the included publications: a 
habit of looking at biological phenomena from different angles and perspectives to 
build understanding, and constant effort to leverage systems biology methods to 
deliver both applied solutions and conceptual progress, sometimes opening up new 
questions. 
 
In paper I, the phenotypic responses in budding yeasts, caused by environmental 
changes are investigated at a global molecular level. Bioinformatics methods 
enabled identification of stress responsive genes as evolutionarily young genes. 
Results were summarized in a proposed hypothesis for evolution of long-term stress 
adaptation mechanisms in budding yeasts. This study shows an example of the 
iteration between proximal (e.g., phenotypic changes due environmental factors) and 
distal causation (biological causation caused by changes in the genotype across 
reproduction events) in biological systems. Demonstrating that observable 
phenotypes are the result of diverse phenomena (environmental, physiological, and 
evolutionary) interacting at multiple scales and time spans.  
 
Paper II presents a critical assessment of the use of GEMs for studying diverse yeast 
species. A catalogue of all the available GEMs for budding yeasts was collected and 
made available for the community. Furthermore, a basic testing pipeline was also 
developed and used to evaluate GEMs. Results showed how accessibility, usability, 
and interoperability of GEMs can be benefited by incorporating modeling standards, 
version-control and community development practices. These concepts were central 
to the development of yeast 8159, the consensus model of S. cerevisiae, and 
humanGEM160, the most comprehensive model of global human metabolism 
available, projects in which I also contributed to during the time of my PhD studies, 
but remained outside the scope of this thesis. 
 
Paper III provides an extension to the framework of enzyme-constrained metabolic 
modeling. By updating GECKO to its 2.0 version several objectives were reached, 
namely, generalization of the software to GEMs for any organism; circumvent the 
problem of the lack of kinetic data for specific organisms; provide an automatically 
updated catalogue of high-quality ecGEMs for five different organisms, facilitated 
by software version-control and continuous integration. 
 
Additionally, a case study on integrative data analysis is presented, in which 
proteomics data, generated for paper I, were integrated into ecGEMs for S. 
cerevisiae, Y. lipolytica and K. marxianus. Results indicated that these yeasts have 
evolved different molecular mechanisms to tolerate environmental stress, despite 
their phylogenetic relation. Nevertheless, a possible systems-level emergent property 
was identified, up-regulation and high saturation of enzymes in different sectors of 
amino acids metabolism as a common stress-response mechanisms across budding 
yeasts.  
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Systems biology applications for development of technology are introduced in 
papers IV and V. In the former, enzyme-constraints are used for improving 
predictions of metabolic engineering targets by traditional GEMs and methods. Gene 
targets for increasing production of heme by S. cerevisiae cells were predicted, the 
top gene modification predictions were incorporated into a yeast strain, yielding a 
70-fold increase in the intracellular heme levels. Here, the possibility of improving 
model predictions by incorporation of kinetic data, was achieved and results 
delivered a promising production strain for a highly demanded product.  
 
The method for prediction of gene targets for increased bioproduction was further 
improved and systematized, focusing on providing optimal combinations of gene 
targets and facilitate understanding of the predicted engineering strategy. In paper 
V production of 102 diverse chemicals in S. cerevisiae was simulated with an 
ecGEM; lists of predicted targets for each product were made available for web-
based visualization. Moreover, sets of targets predicted for groups of products, 
instead of individual chemicals, were identified, suggesting the possibility of model-
driven development of platform strains. Finally, general principles for guiding 
metabolic engineering in yeast cells were extracted from analyses over simulations 
and predicted targets.  
 
These two applied studies demonstrate the value of using mathematical models for 
guiding bioengineering projects, as they provide an initial tool for prediction of 
intervention strategies, but also a conceptual scaffold for analysis and understanding. 
Altogether, activating the design-build-test-learn cycle of synthetic biology and 
metabolic engineering. 
 
In paper VI integration of multiple modeling formalisms is used to represent the 
crosstalk between nutrient signaling, gene expression and metabolism in S. 
cerevisiae. The hybrid model provided explanation to cellular phenotypes that 
cannot be predicted by any of the implemented modeling tools individually. Namely, 
enzyme expression profiles that do not correspond completely to catalytic or 
substrate optimization. Predictions explain how different layers of cellular processes 
interact and give rise to multi-purpose cellular phenotypes. As suggested by the 
interplay between upwards and downwards causation in systems biology. 
 
In summary, this doctoral thesis presents a series of studies aiming to understand the 
complexity of cellular phenotypes in budding yeasts, using the methodological 
flexibility of systems biology as a means. The fluid nature of systems biology 
research, oscillating between basic and applied science, set a framework for delivery 
of technological and conceptual outputs in this work. Scientific and technological 
assets, in the form of model catalogues, software tools, and methods for engineering, 
are presented and made publicly available. On parallel, new hypotheses, mechanistic 
explanations, and even new questions emerged from this body of work.    
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2.- Understanding long-term adaptation to environmental stress in 
budding yeasts: A top-down approach 
 
The budding yeasts S. cerevisiae, K. marxianus and Y. lipolytica have acquired a 
variety of niche-specific adaptations that make them interesting for bioproduction in 
industrial conditions. S. cerevisiae displays high tolerance to ethanol and osmotic 
pressure161; K. marxianus is able to grow at high rates in high temperatures162; both 
of these conditions can be found in industrial processes. Additionally, Y. lipolytica 
has evolved to endure hydrophobic environments, and is also known for its high 
accumulation of lipids, also interesting for bioproduction163. 
 
It is desired to engineer these yeast strains to transform them into robust cell factories 
for diverse production of chemicals, as an alternative to conventional chemical 
processes. In this context, robustness implies providing the yeasts with production 
and proliferation capabilities up to the industrial level. For this, it is crucial to 
understand the behavior of the different yeast species under different environments, 
provided with particular stress factors164. In this study low pH, high osmotic pressure 
(characteristic of raw material feedstocks), and high temperature (common in 
industrial processes) are probed as stress conditions, to answer the following 
questions: 
 

1.- Are there any multi-stress responsive biological mechanisms in any of 
these yeasts? (same mechanism in several conditions, for a given yeast) 
  
2.- Are there any biological mechanisms for stress tolerance shared by these 
yeasts in particular conditions? (same mechanism across yeasts, for a given 
condition). 
 

2.1 Experimental characterization of stress responses  
 

In order to provide a comparable set of conditions to test for these questions, growth 
rate was kept constant in controlled chemostats, where cell cultures were grown at 
0.1 h-1, biological triplicates were ran for each organism-condition pair. Conditions 
are specified in table 3. 
 

Table 3.- Experimental conditions for chemostat cultures at0.1 h-1 
Condition S. cerevisiae K. marxianus Y. lipolytica 
Standard 30 °C, pH 5.5 30 °C, pH 5.5 28 °C, pH 5.5 
High temperature 36 °C, pH 5.5 40 °C, pH 5.5 32 °C, pH 5.5 
Low pH 30 °C, pH 3.5 30 °C, pH 3.5 28 °C, pH 3.5 
Osmotic stress 30 °C, pH 5.5, 600 

mM KCl 
30 °C, pH 5.5, 600 
mM KCl 

NA 

 
The use of chemostats allows cell cultures to adapt to stress, through several 
generations, until the steady-state is reached. Thus, samples represent a long-term 
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adaptation phenotype, to not be confused with stress shock experiments caused by 
exposure to pulse variations in environmental variables165.  
 
RNA and total protein were isolated from cell pellets obtained from the samples for 
high-throughput quantification. RNA sequencing was performed using next 
generation illumina sequencing and returned transcript data in transcripts per million 
(TPM). Protein measurements were performed using LC-MS/MS and quantified 
using XIC (eXtracted Ion Current)77,166. Transcriptome and protein data were 
processed in similar ways, undergoing steps of removing extreme low counts and 
non-consistently measured elements, TMM normalization for transcriptomics, and 
sample quality assessment through PCA. This data treatment was necessary to 
perform differential expression analysis of transcripts and proteins in a fair way, 
addressing how much the abundance of a given gene product varies in stress 
conditions in comparison to a control condition.   
 
 
2.2 Stress responsive mechanisms across conditions 
 
Statistically significant genes, at the transcript level, were identified using log2FC= 
± 2 and  FDR<0.01 as significance threshold values. Figure 11 shows that for the 
three organisms, a big proportion of the stress responsive genes are condition 
specific, and few were found to be responsive to multiple conditions, in comparison.  
Proteomics measurements were also assessed for differential expression, showing 
similar patterns, however with a much lower number of DE proteins in comparison 
to transcripts, even when relaxing FDR upper limit to 0.05.  
 
In order to understand possible system mechanisms involving the differential 
expressed genes, gene function was sought for all organisms, querying from Ensembl 
database167 for the S. cerevisiae case, and BLAST2GO168 for the other yeasts, for 
which each protein-coding genes searches for a functionally annotated homolog. 
This process failed to annotate 20% of the K. marxianus measured mRNAs, 38% in 
the Y. lipolytica case. In the case of S. cerevisiae, around 11% of measured 
transcripts lack a functional annotation (figure 12A).  
 
Mapping the DE genes, at the mRNA level, to the lists of functionally annotated 
genes revealed that unannotated genes were overrepresented in all conditions for the 
three yeasts (figure 12B). This proportion reached 50% in Y. lipolytica. These results 
suggested that performing gene-set enrichment analysis among the DE genes, in 
order to characterize stress adaptation mechanisms, would not be representative of 
the whole transcriptional response of the yeasts. Additionally, proteomics 
measurements failed to quantify a big proportion of proteins encoded by genes that 
were DE at the transcript level, suggesting that they encode for very low weight 
proteins, usually elusive to MS/MS approaches77, or were discarded by the previous 
filtering steps of data processing, due to inconsistent measurements across biological 
triplicates in a given condition.  
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Figure 11.- Statistically significant differentially expressed genes in S. cerevisiae, K. 
marxianus and Y. lipolytica, after long-term exposure to high temperature (HiT), low pH 
(LpH) and osmotic pressure stress (Osm).  
 

 
Figure 12.- Genes without functional annotation in S. cerevisiae, K. marxianus and Y. 
lipolytica. A) Proportion of unannotated genes among all genes. B) Proportion of unannotated 
genes among the total number of differentially expressed genes (up-regulated + down-
regulated) by stress condition.  
 
2.3 Are transcriptional stress responses evolutionarily conserved across 
budding yeasts? 
 
Then, for addressing the second of the initial questions, the core genes across the 
three yeasts, thought to be present in the least common ancestor between them, 
around  325 MYA169 (figure 13A), were identified running homology searches of 
single copy orthologs among their amino acid protein sequences, using orthoFinder 
software170. A list of 2959 core protein-coding genes was obtained, and DE genes for 
the conditions shared by the three yeasts (high temperature and low pH) were 
mapped to it. A low fraction of the total DE genes found a match in the list of single-
copy orthologs. Strikingly, almost none of the identified matches showed to be DE 
in more than one yeast species, shown in figure 13B. This indicates that the response 
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to long-term high temperature and low pH exposure is mostly by differential 
expression of non-core genes, or genes that emerged later than their LCA.  
 

 
 

Figure 13.- Core genes shared by S. cerevisiae, K. marxianus and Y. lipolytica. A) Simplified 
phylogenetic tree indicating the speciation event separating the clades of the three yeasts. 
Single-copy orthologs across the three species are thought to have been present in their LCA. 
B) Mapping of DE genes in high temperature and low pH to the set of core genes. Venn 
diagrams show DE of genes in a given species, condition and directionality. Stress responsive 
core genes are mostly restricted to a single species. 
 
A least stringent approach was used to classify non-core genes, aiming to account 
for duplication events of genes. Therefore, genes present as multiple copies in a 
given yeast, and as one copy in the other two species, were classified as multi-core 
genes. In this way all the protein coding genes of the three yeasts were divided in 
three classes: single-core genes, multi-core genes, non-core genes, as shown by 
figure 14A. As an example, HIS1 is a single-core gene; GAL1 and GAL3 provide a 
case of a duplicated gene in S. cerevisiae present as a single copy in the K. marxianus 
and Y. lipolytica (GAL1); while the gene YJL199C is only present in S. cerevisiae 
(figure 14B). In general, single-core genes account for most genes, detected at the 
transcript level, in the three yeasts, more than 50% in all cases, showing even higher 
values among the protein level measurements (figure 14C). 
 
Mapping of the DE expressed genes, from all organism-condition pairs, and both at 
the transcript and protein level, revealed a clear pattern of a significant highly 
likelihood of DE, caused by stress exposure, of younger and duplicated genes when 
compared to evolutionarily conserved ones, or “older genes”, as shown in figure 15. 
 

High temperature

A)

B) Low pH

core genes non-core genes
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Figure 14.- Gene grouping according to conservation among the three yeasts and duplication 
events. A) An example of the gene grouping rationale, explained for the S. cerevisiae case. B) 
Examples of single-core (HIS1), multi-core (GAL1-GAL3) and non-core genes in S. 
cerevisiae (YJL199C). C) The total number of protein-coding genes, sorted by conservation 
and duplication categories, detected at the mRNA and protein level for S. cerevisiae, K. 
marxianus and Y. lipolytica. 
 
As the evolution of the Saccharomycotina subphylum spans 400 million years of 
evolution, and these 3 species span a large swath of its diversity, a deeper look into 
the timing of gene emergence/duplication and their likelihood to be DE was 
necessary. To assess de novo gene emergence, for each species, each protein-coding 
sequence of AA was searched for homologs across 3 other species at the genus, 
clade, subphylum and phylum levels using orthoFinder (figure 16A). A similar 
process searched for duplication events in the evolutionary history of each species 
(figure 16B). Figure 16C provides an example of the phylogeny of the proteomes 
that were used for homology searches with orthoFinder for the S. cerevisiae case. 
Details on this sorting algorithm are further explained in the supplementary 
material of paper I. 
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With this approach the protein-coding genes of the three yeasts were divided into 6 
groups, genes conserved at the phylum level (group I), subphylum (group II), clade 
(group III), genes (group IV), and genes restricted to the species-strain level (group 
V) (figure 16D). For S. cerevisiae an additional group of genes was introduced in 
between the clade and genes level, corresponding to a major duplication event (called 
the whole-genome duplication event, WGD, in the literature) occurring 25 MYA. 
The increasing number in the group names represents how evolutionary “young” 
genes, or gene duplication events, are.  
 

 
Figure 15.- Multi and non-core genes are enriched for stress-responsive DE genes. A) 
Normalized ratio of the total number of genes per group, over the number of DE genes, at the 
mRNA level, in each group. Results were normalized by the ratio between all DE genes over 
all genes quantified for each organism-condition. p-values, under a test, indicate significant 
differences between the enrichment found multi and non-core genes vs. core genes. B) 
Percentage of DE proteins out of the total number of detected proteins per group, shown for 
the three yeasts and all stress conditions. p-values, under a test a two-sided Fisher’s exact test, 
indicate significant differences between the percentages for multi and non-core genes vs. core 
genes. 
 
The refined gene grouping confirmed that stress responsive genes (at transcript level) 
are significantly underrepresented, proportionally, among the evolutionary 
conserved genes. Therefore, young genes are enriched for stress-responsive genes in 
these conditions and species, specifically those corresponding to groups IV, V and 
WGD in cerevisiae, the genus and species-specific genes and gene duplication 
events. This enrichment is as high as four to six times higher for group V genes, in 
comparison with what would be expected by chance (total number of DE genes over 
the total number of genes). These results are shown for the S. cerevisiae case in 
figure 17A, and a very similar pattern was observed for the K. marxianus and Y. 
lipolytica cases, as shown by figure 3 and supplementary figure 7 in paper I, 
respectively.  
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Figure 16.- Gene sorting according to evolutionary age and duplication events. A) Bottom-
up approach followed for assessing evolutionary age of single copy genes. Starting from 
phylum, the first match as of a gene as ortholog with the organisms in a given phylogenetic 
level assigns its belonging to an age group. B) Top-down approach followed for multi-copy 
genes. Starting from genus, and going downwards, a duplication event is established as the 
last or lower phylogenetic level in which orthologs with the same number of copies can be 
found for each gene. C) Simplified phylogenetic tree used for sorting of the S. cerevisiae 
genes, each phylogenetic level shows the organisms that were selected as representative for 
it. The same kind of trees were reconstructed for K. marxianus and Y. lipolytica. D) Total 
number of genes measured at the transcript level sorted by emergence and duplication timing 
for the three yeast species. 
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Figure 17.- Comparison of genes and their proteins across age groups. A) Fold enrichment 
for DE genes across gene groups for S. cerevisiae in all stress conditions. B) Percentage of 
essential and growth-related genes in groups I, IV and V for S. cerevisiae. C) Distribution of 
gene expression levels (at transcript level) in standard conditions across gene groups I, IV and 
V for the three yeast species. D) Distribution of the percentage of AA sequence identity loss 
per million years for the genes in groups I and IV in the three yeast species. 
 
2.4 Young genes are lowly expressed and encode for non-essential and rapidly 
mutating proteins 
 
Additional experimentally characterized information was searched in the literature 
for the genes of S. cerevisiae. Investigation of cellular localization (according to 
localization GO terms53) of the proteins encoded by young genes (groups IV and V) 
revealed a significant enrichment for localization in the plasma membrane, cell wall 
and vacuole. In contrast, proteins encoded by genes in group I were significantly 
enriched (Benjamini-Hochberg corrected p-values171, computed by a hypergeometric 
test) for mitochondrial, cytoplasmic and nuclear localization. More than 40% of 
ancient genes were found to encode for essential proteins, or proteins impairing 
growth under deletion, whilst this proportion is very low in comparison with genes 
in groups IV, V (figure 17B). Together, this suggests the involvement of ancient 
genes in core cellular function, and young genes being related to less essential 
processes, most likely involving extra/intra cellular and intercompartmental 
exchange. 
 
These results were complemented by the observation that, on average, genes in 
groups IV and V are expressed as mRNA in lower levels than those in group I, across 
the three yeasts growing on standard or reference conditions (figure 17C). Also, the 
percentage of genes detected at the protein level in non-stress samples by MS/MS, 
decreases drastically for young genes, in comparison to ancient ones (figure 17D). 
Failure of protein detection in MS/MS approaches has been reported to be related to 
proteins with very low abundance in the measured samples166. Additionally, the data 
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processing steps may have discarded proteins with highly variable abundances 
across biological triplicates.  
 
Other studies have found a relation between low expression levels and non-
essentiality of gene products with increased mutation rates in S. cerevisiae172 and 
Schizosaccharomyce pombe173. This motivated the analysis of the mutation rate of 
genes for the yeasts in this study. For each yeast species, AA sequence identity was 
compared between homologous proteins from members of the same genus, adjusted 
to the estimated evolutionary time elapsed between each pair of species (16.9 MY 
between S. cerevisiae and S. eubayanus; 27.43 MY between K. marxianus and K. 
lactis; and 22.42 MY between Y. lipolytica and Y. bubula169), allowing to assess for 
adaptation rates of protein sequences. This showed that, on average, younger genes, 
shared at the genus level, display significantly higher adaptation rates than ancient 
ones (group I).  
 
Based on all the finding in this work, we propose a model of evolution to intermittent 
stress, in which random mutations may occur among all genes, then those mutants 
that cannot grow properly will be eventually selected out (counter-selection of 
growth deficient mutants). From the remaining pool of mutants, those that are unfit 
for enduring the environmental factors are again counter-selected (non-beneficial 
mutants). At the end of this cycle, the stress-tolerance beneficial mutants remain in 
the population and, after generations, can pass these mutations to new cells. 
 
2.5 Summary 
 
In this chapter, the approaches followed to study long-term adaptation to stress by S. 
cerevisiae, Y. lipolytica and K. marxianus, are described. Transcriptomics and 
proteomics data were obtained from bioreactor cultures at steady state, using a low 
dilution rate. Differential analysis of the transcriptome and proteome revealed that 
stress-responsive genes tend to be uncharacterized genes, specially for K. marxianus 
and Y. lipolytica. Moreover, it was found that molecular tress responses of budding 
yeasts are niche-specific, and not majorly shared across the Saccharomycotina 
subphylum. 
 
Confronted with these results, an approach for dividing the entire genome of these 
yeasts into gene groups that reflect the evolutionary or duplication age, was 
developed. Mapping of DE genes, at the transcript level, to the obtained gene groups, 
showed that young genes (restricted to the genus or species) are more likely to be 
DE under stress, in comparison with ancient conserved genes. Further analysis 
showed also that young genes are lowly expressed as mRNA and tend to encode for 
proteins that 1) are not involved in cellular growth or essential processes; 2) are 
elusive to MS/MS detection, suggesting heterogenous or low expression; 3) are 
located in cell wall and plasma membrane; and 4) display higher rates of mutation 
than ancient genes.  
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All these results enabled the proposal of an evolutionary mechanism for long-term 
stress response, seemingly conserved across budding yeasts. Notably, the resulting 
hypothesis was purely derived from the data analysis, without the need of 
introducing any directionality or teleology in the evolutionary hypothesis. This 
shows an example of the possibility of gaining understanding of high-level cellular 
or even evolutionary processes from an Eagle-eye look into high-throughput 
molecular data, even in the absence of extensive annotation for gene functionality.  
 
From a more practical point of view, the findings in paper I provide the metabolic 
engineering and synthetic biology communities with a list of uncharacterized genes 
correlated with stress adaptation and young evolutionary age, and seemingly not 
related to essential processes. Past studies have found that engineering gene 
expression for stress-tolerance purposes usually comes with a trade-off of other 
cellular functions. Thus, the stress responsive young genes identified here constitute 
a set of candidate targets for improving strain robustness. 
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3.- Genome-scale metabolic modeling of budding yeasts: evaluation of 
accessibility, usability and interoperability 
 
The yeast S. cerevisiae was the first ever Eukaryote genome to be sequenced in its 
entirety in 199670. This, together with the accumulated molecular biology data for 
this organism in public databases, made possible to reconstruct one of the very first 
genome-scale metabolic models, iFF708, in 2003174. This model was utilized for 
comparison of biosynthetic capabilities against the E. coli network.  
 
For model reconstruction for other less studied species, metabolic modelers 
developed a model reconstruction approach, in which a well-curated preexisting 
network, for a phylogenetically related organism, is taken as an initial model 
scaffold. The draft model is then refined with computational algorithms, addition of 
molecular data and homology searches for genes encoding for functionally annotated 
enzymes. This approach proved to be fruitful for modeling the metabolism of other 
non-cerevisiae budding yeasts, as the iFF708 model, and its progressive improved 
versions, provided a comprehensive draft model to guide this process.  
 
The history and genealogy of almost 20 years of yeast models has been extensively 
reviewed by other authors175–178, therefore, in paper II, an effort for collecting, 
comparing and evaluating the high-quality published models of diverse yeast species 
was done. In total, 45 different GEMs for 12 different yeast species were found in 
the literature (shown in table 4). Model files were sought in the web and collected 
into a single repository, publicly available at: 
https://github.com/SysBioChalmers/YeastsModels. 
 
Table 4.- Number of high-quality GEMs reconstructed per yeast species (2003-2021). 
 

Name # of models 
Saccharomyces cerevisiae 19 
Komagataella pastoris 8 
Yarrowia lipolytica 5 
Scheffersomyces stipitis 4 
Rhodotorula toruloides 2 
Candida glabrata 1 
Candida tropicalis 1 
Kluyveromyces lactis 1 
Kluyveromyces marxianus 1 
Lachancea kluyveri 1 
Schizosaccharomyces pombe 1 
Zygosaccharomyces parabailii 1 

 
As expected, S. cerevisiae is the species with the highest number of models available 
(18). It was also observed that different reconstructions for a given species are 
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usually developed by different research groups. Even though a series of so-called 
consensus models have been sequentially published for S. cerevisiae159,179–183, new 
reconstructions stemming from independent efforts have also been released. 
Different groups usually have differences in their scope and questions, however, this 
finding may also indicate that researchers do not always choose to leverage the 
knowledge collected by previous attempts, which very often results in model 
inconsistencies.  
 
It was also found that the oldest models for S. cerevisiae are still being highly cited, 
in some cases even more than more recent publications or even the consensus 
models, shown in figure 18A, and figure 2F and the supplementary materials of 
paper II. If citations can be seen as a proxy measure of model utilization, this 
suggests that the community is used to exploit previous model versions, instead of 
leveraging the systematization and correction of knowledge available in more recent 
models. 
 

 
Figure 18.- Usability of budding yeasts GEMs. A) Citation landscape of GEMs for 
diverse yeast species. B) Evolution of the Memote scores for annotation on different 
model fields across versions of the consensus yeast model. 
 
The process of model recollection revealed that models are made public in different 
ways and formats. Most of the models were accessible as part of the supplementary 
material of their corresponding publications, and 55% of them were deposited in 
specialized databases for metabolic models, such as biomodels184 and 
openCOBRA185. Nonetheless, these models are available in a wide variety of file 
formats, despite the existence of a standardized format for model reconstruction and 
sharing, the Systems Biology Markup Language (SBML)186. For 26% of the models 
no SBML file was found in the web and, instead, these models were shared in 
alternative software-dependent formats which may not be compatible with most 
modeling simulation software available. 
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Figure 18A also shows that in the last 10 years, more yeast species have been 
modeled using GEMs, however, multiple reconstructions exist for other species that 
are of relevant industry for research and industrial purposes. Which raised concerns 
about the confusion that researchers may face when needing to select a model for 
their applications. Inspired by this, we developed a simple computational pipeline 
that simulates the first use of a GEM by an unexperienced user. This pipeline has the 
objective of identifying the most relevant model components to run a simulation and 
attempts to solve for a simple FBA problem using the COBRA187, RAVEN188 and 
COBRApy toolboxes185.  
 
43 models were tested with this pipeline (as model files could not be found in any 
source for two of the published models). Most of the models were found to be 
readable by either of the mentioned toolboxes. For 24% of the studied models no 
preestablished objective function was found. Similarly, a biomass or growth 
pseudoreaction could not be found easily within the model structure for 16% of the 
cases (searching for preestablished objective or querying the most used names for 
this reaction in the literature). Additionally, it was not possible to run a successful 
cellular growth simulation, using the preestablished constraints and available 
information, for 24% of these models. Therefore, the process of familiarization with 
a specific model structure is not straightforward for a considerable number of these 
models.  
 
Furthermore, when running analysis with GEMs it is a common task to search for 
evidence of reactions, metabolites and genes in other databases or other models. 
Therefore, annotation of model components with unambiguous identifiers and 
connections to external databases is essential for model utilization. The MEMOTE 
test suite189 was used for evaluating the degree of annotation of model components 
for these 43 models, however, the test failed for 36% of them, due to inconsistencies 
or errors in the model file. Nevertheless, the MEMOTE test was successfully ran for 
all the models belonging to the S. cerevisiae series, enabling comparison across 
model versions. Results of this test, showed a consistent improvement in the 
annotation of metabolites, reactions, SBO terms (system biology ontology terms190), 
and consequently on the overall memote score of the consensus cerevisiae models 
across versions, with the highest scores obtained by the latest reconstruction yeast 
8159 (figure 18B). Suggesting that coordinated modeling projects, community 
development, and version-control practices (as in the case of yeast 8) are useful for 
improving model quality. A detailed summary of the test results (customized test + 
Memote) can be found as supplementary materials of paper II. 
 
 
 
3.1 Summary 
 
In paper II a critical assessment of GEMs for diverse yeast species was carried out. 
45 models for 12 species were found among the scientific literature. Model files were 
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collected, offering a catalogue of GEMs for diverse yeasts. This process revealed 
that model files may not be readily accessible in the web, and that there exists 
variability regarding the file format that researchers choose for their models. This 
introduces problems to the modeling community, as non-compliance to standard 
formats creates compatibility problems with simulation and testing software for 
metabolic modeling. Additionally, it was also observed that redundancy in modeling 
efforts is common, as several model reconstructions have been published by different 
research groups for some of these species.  
 
A simplified testing pipeline, aiming to simulate the use of a GEM by a new user, 
revealed that for 24% of the models, executing simulations provided with minimum 
information, was not possible. Additional tests showed how model quality, in terms 
of annotation and consistency, can get benefited from long-term, community-driven, 
cumulative modeling projects, as in the case of the series of S. cerevisiae consensus 
models. 
 
The findings in paper II call metabolic modelers to comply to standard practices 
and formats for sharing models (such as maintained databases or git repositories); 
leverage community efforts and build upon previous modeling projects to maximize 
the amount of knowledge contained in GEMs; improve model accessibility (standard 
identifiers and annotation) to bring GEMs closer to a wider number of researchers 
and industry professionals. 
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4.- Extending the concept of enzyme-constrained metabolic modeling to 
multiple organisms 
 
As mentioned in the first chapter, the development of efficient cell factories is a 
resource and time intensive process, which may take years and millions of USD to 
be completed. This process can be alleviated by reconstruction of GEMs, which 
provide an extensive knowledgebase of cell metabolism, a tool for quantitative 
simulation and prediction, and a scaffold for omics data integration. 
 
There is high potential for developing efficient cell factories using the three yeast 
species studied in paper I as platforms, as they display interesting phenotypic 
adaptations to environments that can also be found in industrial settings. 
Additionally, there is considerable accumulated knowledge on engineering the 
metabolism of these yeasts for directed purposes, especially for S. cerevisiae. 
 
From paper II, three candidate GEMs for these species were identified as suitable for 
guiding engineering attempts. The models yeast8 for S. cerevisiae, iSM996 for K. 
marxianus, and iYali4 for Y. lipolytica, were all found to be the products of 
community-development projects, including the feedback of supporting 
communities of users, reconstructed using version-controlled approaches, and 
comply to standard practices in model format (model format, annotation of model 
fields with external database identifiers).  
 
Previously, incorporation of enzyme constraints proved to significantly improve the 
content scope and prediction capabilities of the model yeast7. In order to update the 
ecGEM of S. cerevisiae to its version 8, and reconstructing ecGEMs for K. 
marxianus and Y. lipolytica, it was necessary to update the GECKO toolbox, which 
was originally designed to work with the model yeast 7, and also suited for the high 
availability of kinetic parameters for S. cerevisiae. 
 
4.1 The GECKO formalism for incorporation of enzyme constraints into 
metabolic networks 
 
Enzyme-constrained produced by GECKO are members of the family of protein-
constrained models, explained in section 1.8. GECKO accounts for enzyme cost of 
reactions by integrating enzymes for each reaction as if they were components in the 
model, they become a pseudometabolite in the model (E). The expression for the 
maximum flux attainable through a reaction is given by16: 

𝑣*+,- =	𝑘'"("#*𝐸.+ (eq. 4.1) 
 

Where 𝑘'"("# is the turnover number of enzyme i for the substrate in reaction j, in 
units of s-1; and *𝐸.+ corresponds to the abundance of the enzyme in units of 
mmol/gDw. Therefore, the real demand of the enzyme j by reaction i, is expressed 
by: 
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𝑒*. =
/"
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, 𝑠. 𝑡. 𝑒. ≤ *𝐸.+	(eq. 4.2) 

 
For each enzyme j, a total demand (𝑒.) is expressed as the sum of enzyme demands 
across all reactions in which it participates. By accounting for 𝑒. as 
pseudoreactions in the model, mass balances can be constructed around each 
enzyme (𝐸.), which in steady-state take the form of: 
 

12#
1(
= 𝑒. − ∑

/"
0$%&"#
* = 0, 𝑠. 𝑡. 𝑒. ≤ *𝐸.+ (eq. 4.3) 

This enables straightforward integration of the enzyme mass balances into the 
matrix formulation of a GEM, adding enzymes as new rows and enzyme usages as 
new columns in the stoichiometric matrix. The modified stoichiometric matrix then 
takes the following form for a reaction network with m metabolites, n reactions, 
and p enzymes: 
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 (eq. 4.4) 

 
Thus, in steady-state, the following system of linear equations is obtained:  

𝑆𝑣 = 0,			𝑣 = A𝑣3, … , 𝑣5, 𝑒3, … , 𝑒7B (eq. 4.5) 
 
In order to obtain flux distributions using FBA, constraints are set in the form of: 

𝐿𝐵* ≤ 𝑣* ≤ 𝑈𝐵*; 	0* ≤ 𝑒. ≤ *𝐸.+ (eq. 4.6) 
 
Which allows over fluxes and enzyme usage reactions, the latter having an upper 
limit equal to the concentration of each measured enzyme in a proteomics dataset. 
For unmeasured enzymes, an additional constraint is imposed in the form of: 

∑ 𝑀𝑤. ∗ 𝑒.7 ≤	𝑃(8( ∗ 𝜎 (eq. 4.7) 
 
Where 𝑃(8( is equal to the total protein mass available for expression of metabolic 
enzymes and 𝜎 accounts for an average saturation factor across all unmeasured 
enzymes.   
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4.2 Analysis of the kinetic parameters in the BRENDA database 
 
The main incorporation of the GECKO modeling framework is enzyme constraints, 
based on turnover number and molecular weight of enzymes. The reconstruction of 
ecYeast7 required the formulation of a set of criteria for matching kinetic parameters 
to enzymes and reactions in the model. This classification was based on giving 
priority to parameter entries reported for S. cerevisiae and the specific substrates of 
the reactions in the model, but also allowing it to complement the parameterization 
relaxing the match at the organism, substrate, enzyme commission number, in a 
progressive way.  
 
The first GECKO version matched more than 3,000 kinetic parameters to yeast7, 
48% of them coming from entries reported for enzymes in other organisms. 
Moreover, for 56% of the introduced parameters it was necessary to relax the 
searches at the level of EC number, by progressive addition of wild-cards (e.g., 
EC1.1.1.X, EC1.1.X.X), due to lack of reported entries for all the reactions in the 
model. All these aspects raise concern for implementation of the method on GEMs 
for other less studied organisms, especially since quantitative prediction of ecGEMs 
is highly dependent on the selection of parameters156,191. 

 

 
Figure 19.- A) Availability of kinetic parameters reported for S. cerevisiae, Y. lipolytica and 
K. marxianus in the BRENDA database (queried on 2017/05/25). kcat). kcat - enzyme turnover 
number, Km- Michaelis constant, SA- enzyme specific activity, MW- molecular weight. B) 
Distribution of the number of  kcat entries per organism in BRENDA. C) Distribution of 
reported kcat values for different classes of EC3.4.X.X enzymes. D) Distribution of reported 
kcat entries classified by phylogenetic origin and metabolic context (yellow color for amino 
acid and lipid metabolism, and intermediate and secondary metabolism; blue color for central 
carbon and energy metabolism). P-values compare yellow to blue distributions under a one-
sided Kolmogorov-Smirnov test.  
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As the BRENDA database is the main source of kinetic parameters for GECKO, a 
global statistical analysis of the database was performed. All the available 
parameters, reported as kcat or specific activities (kcat =SA*Mweight), were retrieved 
from BRENDA, restricting the queries to non-mutant enzymes, in order to reflect 
their natural activity. This returned 39,280 parameter entries for 4,130 unique EC 
numbers, annotated with substrate name and organism of origin. Phylogenetic 
information for every organism was retrieved from the KEGG phylogenetic tree192. 

 
A first inspection showed a large bias of the compiled database towards few 
organisms, such as S. cerevisiae. Figure 19A shows that kinetic parameters are 
found in the order of hundreds or thousands, depending on the category, while very 
few parameters are reported for Y. lipolytica enzymes (just 2 kcat values) ad K. 
marxianus (21 kcat values). This range of number of entries is the same for most of 
the organisms with entries in the database, while just 5 model organisms account for 
the 24% of the total entries, as shown in figure 20B. It was also found that reported 
kinetic parameters are highly variable and may span several orders of magnitude 
even for closely related enzymes. Significant differences were found for distribution 
of kcat values for closely related enzymes (classes with one or two imputed wild-
cards), as the example provided in Figure 19C.  
 
Classification of kcat values by phylogeny and metabolic context (associating E.C. 
numbers to enzymes in the KEGG metabolic superpathways), revealed that central 
carbon and energy metabolism (CEM) enzymes tend to be significantly more active 
than those or in amino acid, lipid, intermediate and secondary metabolism, across 
the 5 KEGG kingdoms of life (animals, archaea, bacteria, fungi, plants and protists), 
figure 19D. Additional comparison of CEM enzymes divided by kingdoms of life 
showed that entries reported for fungi display significantly higher values, on average,  
than those for other kingdoms. The complete details of the statistical analysis and 
data processing of the BRENDA database are available in the supplementary 
material of paper III. 
 
4.3 Development of GECKO 2.0: a toolbox for integration of kinetic and omics 
constraints into metabolic models 
 
In paper III, the GECKO toolbox was updated and expanded to its 2.0 version 
following an open-source community development approach. This consists of 
making not just the code, but the whole history of development of the software, in 
which every new addition or removal to the code is justified by the author of the 
modification. This was adopted using a web-based git version control platform, 
enabling organized collaboration and programing by several users without the risk 
of damaging stable versions of the software. 
 
Based on the findings of the previous section, the set of criteria for matching kinetic 
parameters to reactions in a GEM were modified for GECKO 2.0. In the new 
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algorithm, the lack of parameters for the modeled organism is circumvented by 
matching a parameter annotated to the phylogenetically closest organism with 
available kcat for the same reaction. This assumption was inspired by the reduced rate 
of mutation in conserved genes across budding yeasts, such as metabolic genes, 
reported in paper I.  
 
The introduction of wild-cards by the algorithm cannot be fully avoided when 
parameterizing a genome-scale model, as not all biochemical reactions have been 
characterized to the kinetic level, however, this problem is partially alleviated by the 
introduction of additional 8,118 new entries, which were found as specific activities 
in the database and were not part of the parameters pool in the first version of 
GECKO. 
 
The code was refactored and adapted to a general structure of a GEM, extending its 
applicability to basically any GEM compatible with the COBRA or RAVEN 
toolboxes. In accordance with the claims in paper II, the output models from 
GECKO 2.0 are returned and stored in SBML L3V1 FBC2186 for compatibility with 
any systems biology modeling or simulation software. Model functionality is 
verified, and overconstraining parameters are automatically flexibilized, in order to 
deliver an ecGEM that reproduces experimentally observed growth rates (provided 
by the user). Additionally, version control of the SBML file of a yeast ecGEM 
enabled tracking the effects that modifications in the software have on the ecGEM 
structure and basic functionality, contributing to reproducibility of results. 
 
The model ecYeast7 was reconstructed using both versions of GECKO (1.0 and 2.0) 
to enable evaluation of the impact of the software upgrade over the model structure 
and performance. GECKO 2.0 proved to be effective at reducing the number of 
parameter matches with flexibilized EC number queries (introduction of wild-cards), 
from 1,817 to 556 (56% to 17% of the total number of parameters). The effect of the 
phylogenetic distance matching criterion was assessed by comparing the distribution 
of kcat values retrieved by the two versions of ecYeast7 to the distribution of values 
reported for S. cerevisiae and all Fungi.  
 
Statistical analysis showed that the algorithm in GECKO 2.0 is able to resemble the 
distribution of kinetic parameters for S. cerevisiae available in the data in a better 
way. Further comparison of batch growth rates on 19 different environments found 
a small increase in the average accuracy of predictions. Altogether, this demonstrates 
that GECKO 2.0 is effective at improving the specificity parameterization of a 
model, trying to resemble a phylogenetically related kinetic distribution without 
sacrificing predictive power. 
 
Finally, computational times were drastically reduced, documentation extended and 
improved and a series of simulation utilities were added to the toolbox. The aim of 
the GECKO toolbox is to provide a software resource that can aid the research even 
outside the projects of our research group, it is a public resource. 
 



 41 

4.4 Reconstruction of catalogue of ecGEMs for diverse organisms 
 
The GECKO 2.0 toolbox was used to reconstruct ecGEMs for the three budding 
yeasts S. cerevisiae, K. marxianus and Y. lipolytica. To further test the functionality 
of the toolbox, the model iML1515 for E. coli193 and Human1 for H. sapiens 
metabolism160 were extended with enzyme constraints. The size of the initial models 
and resulting ecGEMs is shown in table 5. The large increase in model size (number 
of reactions and metabolites) is introduced by the pseudo reactions and metabolites 
that balance the use of enzymes in the ecGEM156. Notably, GECKO 2.0 produced 
ecGEMs with an enzyme-gene coverage (percentage of metabolic genes with kinetic 
parameters) between 71-88%. 
 
Nevertheless, metabolic modeling is a constantly evolving field. Additions and 
corrections are typical in the lifetime of a model or modeling software, therefore, 
changes in an ecGEM structure can be induced either by changes in the original 
model source, changes in the GECKO toolbox software, or changes in the software 
dependencies, such as RAVEN and SBML. Accounting for all these factors make 
version-control of a unified catalogue of ecGEMs into a cumbersome task. To solve 
this problem, an automated virtual continuous integration platform was developed 
and made publicly available, ecModels container.  
 
Table 5.- Size metrics summary for the ecGEMs catalogue. 

Original GEMs 
Organism S. cerevisiae Y. lipolytica K. marxianus E. coli H. sapiens 
Model ID yeastGEM_8.3.3 iYali4 iSM996 iML1515 Human1 
Reactions 3963 1924 1913 2711 13101 

Metabolites 2691 1671 1531 1877 8400 
Genes 1139 847 996 1516 3628 

Enzyme constrained GEMs 
Model ID ecYeastGEM eciYali eciSM996 eciML1515 ecHumanGEM 
Reactions 8028 3881 5334 6084 46259 

Metabolites 4153 1880 2064 2334 12191 
Enzymes 965 647 716 1259 3224 
Enzyme 
coverage 

84.72% 76.39% 71.89% 83.05% 88.86% 

Reactions w/ kcat 3771 1586 2891 2562 27014 
Reactions w/ 
Isoenzymes 

504 205 532 456 3791 

Promiscuous 
Enzymes 

572 324 469 673 2184 

Enzyme 
complexes 

252 75 27 383 756 

 
This platform consists of an automated pipeline that constantly checks for version 
changes in the git repositories of the original model source, the GECKO toolbox, 
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and the RAVEN toolbox; if any change is detected the whole model reconstruction 
pipeline is run for all the models in the catalogue. In this way, all ecGEMs in the 
catalogue reflect the current version of the GECKO toolbox, and the current amount 
of knowledge accumulated in their sources, without the need of extensive curation 
or manual work.  
 
The ecModels pipeline stores every model in each iteration using git and unique 
version identifiers, facilitating traceability of changes. All ecGEMs available in the 
catalogue are tested and calibrated by GECKO, except for ecHumanGEM which 
provides a knowledgebase of metabolism and kinetic parameters that is not specific 
to any kind of human cell or tissue, therefore, not suitable for simulation. 
 
4.5 Testing functionality of automatically reconstructed ecGEMs 
 
As pointed out before, one of the main advantages of extension of a GEM with 
enzyme constraints is the reduction of the solution space, discarding phenotypes that 
are not within the kinetic capabilities of the cell. Incorporation of kinetic constraints 
with GECKO 2.0 proved to be effective at reducing the solution space for the new 
ecGEMs for K. marxianus, Y. lipolytica and E. coli. Flux variability analysis (FVA) 
was run using the built-in FVA utility in GECKO 2.0 and compared to the variability 
ranges obtained for an equivalent GEM. Two different constraint scenarios were 
tested, substrate-limited (by fixing a low glucose uptake rate) and protein-limited (by 
enabling any substrate uptake rate and fixing growth rate to the 𝜇!"# of the ecGEM. 
This analysis revealed that enzyme constraints reduce the number of totally variable 
fluxes (reactions that can take any flux value between -1000 and 1000 mmol/gDw h, 
which is an undesirable model trait) to zero, in all organisms and conditions (figure 
20). 
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Figure 20.- Cumulative distributions for flux variability ranges predicted by GEMs and 
ecGEMs for K. marxianus, Y. lipolytica and E. coli under substrate-limited and protein-limited 
conditions. 
 
Additionally, ecGEMs predicted flux variability ranges with significantly lower 
values than those in conventional GEMs, especially in protein-constrained regime, 
where the differences in median flux variability ranges can reach even several orders 
of magnitude. Notably, the median flux variability range displayed by ecGEMs did 
not show to be as sensitive to the magnitude of the carbon flux as conventional 
GEMs, and the predicted median variability range values are in the order of 10-4 to 10-

3 mmol/gDw h, which may be negligible when compared to the precision of flux 
estimation by experimental approaches. 
 
Prediction of cellular growth and total protein content of cells under diverse 
environments in E. coli by eciML1515 were compared to those of a metabolic and 
gene expression model (ME-model)194. Despite the high degree of detail regarding 
protein expression in ME-models, eciML1515 proved to improve prediction of 
cellular growth, while predicting cell protein contents within the range of predictions 
of the ME-model, demonstrating that ecGEMs are capable of capturing metabolism 
and cell physiology by using a simple description of kinetic limitations. 
 
4.6 Evaluation of the impact of proteomics constraints on ecGEMs predictions 
 
GECKO offered the first method for streamlined integration of proteomics 
measurements as constraints for metabolic networks. As enzymes are explicitly 
included as model components, and enzyme occupation by substrates is emulated by 
the introduction of enzyme usage reactions, which represent the concentration of an 
enzyme that is needed to sustain the flux through all the reactions that are catalyzed 
by it. Thus, absolute measurements (abundance data), in units of mmol/gDw can be 
applied as usage constraints for each of the enzymes in the model. 
 
The proteomics data obtained from steady-state cultures of S. cerevisiae, K. 
marxianus and Y. lipolytica under environmental stress, collected and quantified for 
paper I, were reprocessed and transformed into absolute abundance values, by 
comparison of MS/MS spectra with data obtained from a calibrated external 
standard77. Enzyme abundances from standard and stress conditions were then 
integrated into the ecYeastGEM, eciSM996 and eciYali models, generating 11 
condition-specific constrained models (4 for S. cerevisiae and K. marxianus and 3 
for Y. lipolytica), aiming to gain more understanding of the stress responses of 
budding yeasts. The procedure for incorporation of enzyme abundance constraints 
in GECKO was revisited, systematized, and incorporated into the GECKO 2.0 
simulation utilities. A description of the proteomics integration procedure is 
provided in the supplementary material of paper III.  
 
To assess the effect of individual protein constraints on flux predictions, flux 
distributions were obtained for all organisms and conditions. These simulations were 
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obtained using FBA and, for each case, three distributions were obtained, one with 
ecGEM + proteomics, another one with the ecGEM without proteomics data 
(constrained by the total protein pool), and a distribution using the original GEM 
without kinetic parameters. To do so, different objective functions were used. For all 
cases flux constraints on measured glucose uptake were introduced. For the ecGEM 
with proteomics, FBA was run by minimizing the total utilization of unobserved 
proteins (non-measured); for the ecGEM without proteomics and the conventional 
GEM, an objective function that maximizes the amount of non-growth associated 
energy expenditure (NGAM) was used, as a way to emulate the additional nutrient 
demands of stressed cells156. 
 
Cumulative distributions of fluxes showed significant differences when comparing 
predictions between models with and without constraints, indicating a different 
allocation of flux when proteomics data are introduced. When focusing on prediction 
of enzyme demands between ecGEMs with and without proteomics constraints, most 
enzymes are predicted in a range between 0.5 and 2 fold-change (𝐹𝐶 = 𝑒9'! 𝑒9'7O ). 
Notwithstanding, it was found that, across organisms and conditions, 12-21% of 
utilized enzymes are predicted to be completely activated (going from 0 usage in 
non-proteomics model to a finite value in the data-constrained one) or deactivated 
(going from finite usage in non-proteomics model to a 0 value in the data-constrained 
one), most of them being in the former direction.  

 
Figure 21.- Effect of protein constraints on ecYeastGEM predictions. A) Pairwise comparison 
of predicted enzyme usage between ecYeastGEM (ecM), and ecYeastGEM constrained with 
proteomics data (ecP). Std- standard condition, HiT- high temperature, LpH- low pH, Osm- 
high osmotic pressure. B) Pairwise comparison of total protein burden per superpathway 
predicted by ecYeastGEM (ecM), and ecYeastGEM constrained with proteomics data (ecP). 
AA- amino acids metabolism, NUC- nucleotide metabolism, CEM- central carbon and energy 
metabolism, CofVit- metabolism of cofactors and vitamins, Lip- lipid metabolism.  
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Predictions for S. cerevisie are shown in figure 21A, where the “activated” enzymes 
are those vertically aligned in the left-most part of the plot, and the “deactivated” 
ones are the points parallel to the x-axis in the lower part of the plot. These prediction 
patterns are mostly caused by a more diversified use of isoenzymes in the more 
constrained models, in contrast to the optimal solutions in which the most efficient 
isoform is active. This use of isoenzymes is also suggested by proteomics data in 
which usually several isoforms of the same enzyme can be found as expressed. 
 
Protein resource allocation to different sectors of metabolism was computed as the 
total sum of predicted protein demands (in mass terms) for the enzymes present in 
metabolic superpathways, according to KEGG pathway classification192. The 
predicted total protein mass allocated to enzymes in central carbon and energy 
metabolism was affected by a 20-28% increase in 3 out of the 4 conditions (figure 
21B), which is significant as this is the highest metabolic protein burden of the cell. 
Thus, the protein data and flux predictions suggest that, under these conditions, 
protein expression of this sector of metabolism does not follow an efficiency 
maximization pattern. Predictions for the rest of metabolic sectors showed 
considerable consistency between the two different levels of constraints, indicating 
a protein-efficient expression pattern in these sectors.  
 
 4.7 Identification of constraining enzymes in stress conditions 
 
Analysis of proteomics data across condition can inform about presence and 
differential expression of individual proteins. By contextualization of these data into 
an ecGEM, flux predictions can provide an estimation of enzyme metabolic activity 
or (i.e. how much of an enzyme is used to carry a given reaction flux). Enzymes that 
showed a non-decreasing expression level, between stress and standard conditions, 
and an increased demand in predicted flux distributions were identified across all 
stress conditions and yeast species. Results were narrowed down by focusing just on 
those for which a relative enzyme usage (a proxy to its saturation) is equal or higher 
than 0.95 (highly saturated). These enzymes represent proteins that are not down-
regulated by the cell, and are more demanded by the metabolic network under stress, 
up to the level of becoming potential flux limitations.  
 
A total of 16 enzymes following this increased metabolic demand pattern were 
identified across all differential comparisons (stress vs standard), and are listed in 
table 6. Interestingly, none of the genes encoding for these enzymes were found to 
be significantly DE (in any direction) among the results reported in paper I. The fact 
that none of these enzymes seems to be limited by regulation at the transcript and 
protein level under stress conditions, parallel to their increased demand from the 
network, suggests them as candidate targets for engineering flux patterns. 
Consideration of the location in metabolism for some of these enzymes highlights 
their potential use for bioproduction, as several of them are either in or close to the 
TCA cycle, provider of building blocks, and amino acid metabolism. 
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Table 6.- Highly saturated enzymes with non-decreasing expression levels in budding yeasts 
under stress exposure. Single-copy orthologs across the three species are indicated in grey. 
Gene names starting with KLM correspond to K. marxianus, those with YALI to Y. lipolytica. 

Enzymes Genes Short 
names SubSystems HiT LpH Osm 

P37291 YLR058C SHM2 

Glycine, serine and 
threonine 
metabolism; 
Glyoxylate 
metabolism; Folate 
metabolism 

X     

Q07500 YDL085W NDE2   X     

P38858 YHR163W SOL3 Pentose phosphate 
pathway   X   

P53315 YGR248W SOL4 Pentose phosphate 
pathway   X   

P00958 YGR264C MES1 

Selenocompound 
metabolism; 
Aminoacyl-tRNA 
biosynthesis 

    X 

P28777 YGL148W ARO2 Aromatic amino 
acids biosynthesis     X 

P32895 YKL181W PRS1 

Pentose phosphate 
pathway;  Purine 
metabolism; 
Biosynthesis of 
amino acids 

X   X 

P52489 YOR347C PYK2 

Gluconeogenesis;  
Purine metabolism; 
Biosynthesis of 
amino acids 

X   X 

W0T7K6 KLMA_30312  
Citrate cycle (TCA 
cycle);  Propanoate 
metabolism 

  X   

W0TGN7 KLMA_70385  beta-Alanine 
metabolism   X   

W0TCW7 KLMA_60181  Arginine and 
proline metabolism X X X 

Q6BZU8 YALI0F30745g  Folate metabolism X   NA 

Q6C5P5 YALI0E16346g  

Glycine, serine and 
threonine 
metabolism; 
Glyoxylate 
metabolism; Folate 
metabolism 

  X NA 

Q6C5R5 YALI0E15818g  Alkane metabolism   X NA 
Q6C6P0 YALI0E07766g  Alkane metabolism   X NA 
Q6CGX5 YALI0A15147g  Alkane metabolism   X NA 
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Finally, genes encoding for the enzymes in the ecGEMs were mapped to the list of 
2,959 shared single copy orthologs in the three species. Despite some of the enzymes 
shared by the three yeasts, being among the highly saturated enzymes in table 6, 
these seem to be responsive to stress in a single species. A less stringent search found 
that, from all the highly saturated enzymes, none of them showed to be highly 
saturated in more than one species. This finding is consistent with those in paper I, 
that say that each of these species has evolved different molecular mechanisms to 
tolerate environmental stress, which here is shown to be conserved at the level of 
enzyme limitations. 
 
4.8 Summary 
 
In paper III GECKO, a software toolbox for incorporation of kinetic and omics 
constraints into genome-scale metabolic models, was extended and upgraded to its 
2.0 version. The software was generalized to be capable of processing any GEM 
structure with a format compatible with COBRA and RAVEN toolboxes. The 
number of kinetic parameters available for incorporation into model reactions was 
increased and the matching algorithm was improved, based in phylogenetic distances 
between organisms. These modifications increased the quality of model 
parameterization, resembling the kinetic profile of the modeled organism in a better 
way, without compromising prediction accuracy in ecYeastGEM. The toolbox is 
provided as an open-source software resource, open to community development. 
 
Furthermore, a pipeline for reconstruction of ecGEMs was automated and connected 
to the original sources of GEMs for S. cerevisiae, K. marxianus, Y. lipolytica, E. coli 
and H. sapiens, thus, enabling the construction of a catalogue of continuously 
updated and version controlled ecGEMs for diverse budding yeasts and model 
organisms. Reduction of the solution space by incorporation of enzyme constraints 
proved to be efficient in the microbial models of this catalogue, even more for 
protein-limited conditions, which arise at high growth rates or high substrate 
availability. 
 
Integration of proteomics data from stress condition samples into the ecGEMs for 
the yeast species in the catalogue predicted that, despite being phylogenetically 
related, these three species are faced with different enzymatic limitations in their 
metabolic networks when exposed to environmental stress. Nevertheless, 
comparison of these results with DE data enabled identification of a few potential 
gene targets for controlling flux under stress conditions that are also found in 
biotechnological applications, which may be of interest for metabolic engineering 
purposes. 
 
Overall, this study provides the systems biology community with research 
infrastructure (software and models) and an example on how to integrate diverse 
omics data and metabolic networks for gaining biological insight that eludes other 
data analysis approaches.  
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5.- The use of enzyme constraints for rational systems metabolic 
engineering 
 
5.1 Current constraint-based methods for prediction of metabolic engineering 
targets 
 
Genome-scale metabolic models have found diverse uses in metabolic engineering 
and synthetic biology. GEMs constitute a knowledgebase on the metabolism of 
organisms, thus, they provide a highly detailed metabolic map for rational design of 
engineered strains. Several constraint-based methods are available for prediction of 
intervention strategies, that rewire metabolism towards production of compounds of 
practical interest.  
 
The method optKnock, developed in 2003, which focuses on identification of fluxes 
that should be knocked-out to couple bioproduction and cellular growth. This 
approach has been successful for improving production of diverse chemicals in 
different hosts (e.g., biofuels precursors in Bacilus subtilis195 and S. cerevisiae 
cells196). OptForce, a method that finds flux candidates for knock-out and also 
reaction fluxes that must be increased to couple production to growth, was developed 
in 2010 and rapidly gained popularity for model-driven metabolic engineering197–202. 
Other extensions to these methods, such as K-optForce203, accounting for kinetic 
expressions for metabolic reactions, whenever known; and optGENE204, which 
directly assesses gene engineering interventions instead of reaction fluxes, have also 
been developed.  
 
A different approach, the flux-scanning with enforced objective function algorithm 
(FSEOF)205, also developed in 2010, is based on the trade-off between optimal 
growth and increased chemical production by a metabolic network, thus, enabling 
identification of reactions with an increasing flux pattern when switching the cellular 
objective. As this method is based in a series of FBA problems, it provides a simple 
framework for understanding the metabolic context and effect of engineered fluxes 
towards the production goal. In contrast, the methods mentioned above rely on more 
complex mathematical formulations, such as MILP problems, or even combination 
of differential equation systems together with MILP, as done in K-optForce, which 
may hinder the process of gaining understanding of the metabolic network from the 
predicted reaction targets. Nevertheless, a common problem of the current methods 
for prediction of gene intervention targets is their need for either establishing the 
maximum number of prediction outputs, or for selecting an arbitrary number of gene 
modifications from large lists of predictions, which may not result in an optimally 
producing mutant strain.  
 
The simple structure of ecGEMs, compatible with constraint-based methods provide 
an opportunity for development of novel constraint-based methods that account not 
just for flux redistribution, but also account for the impact of kinetic differences 
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among pathways, and are capable of improving prediction of gene engineering 
targets.  
 
5.2 Model-aided engineering of S. cerevisiae cells for intracellular heme 
accumulation 
 
In paper IV a metabolic model of yeast (yeast 7.6183), together with a modified 
implementation of the FSEOF method, were used for prediction of gene engineering 
targets to increase internal accumulation of heme, a cofactor essential for aerobic life 
and a crucial component of human hemoglobin, interesting for medical and food 
research purposes206,207.  
 
The FSEOF method consists of running a series of FBA problems, maximizing 
product yield, subject to decreasing levels of biomass yield (g biomass produced / g 
of carbon source). A flux score, representing a normalized slope of the flux change 
across simulations, is then assigned to each reaction. Traditionally, flux scores higher 
than unity identify candidate fluxes for amplification, however, the role of reaction 
fluxes with scores lower than one has not been extensively explored in FSEOF 
approaches. These decreasing fluxes indicate reactions that should carry less flux, in 
comparison to a wild-type, in order to increase the production of the desired 
metabolite, therefore, in this project predicted flux scores lower than one were 
considered as targets for reduction, and those with a zero score, as candidates for 
complete knock-out. Flux scores were transformed into gene scores by averaging the 
flux score across all reactions catalyzed by a given gene product. This approach is 
illustrated in figure 22.  
 

 
Figure 22.- Modified flux-scanning with enforced objective function algorithm. Flux scores 
are computed as the slope obtained between the initial and final flux for every reaction from 
a series of FBA simulations constrained by decreasing suboptimal biomass yields. Gene scores 
are obtained by averaging all flux scores of the reactions catalyzed by a given gene product. 
Gene scores higher than one indicate gene candidates for overexpression; scores between 0 
and 1 indicate candidates for down-regulation (knock-down); and gene scores equal to 0 
indicate gene candidates for deletion (knock-out). 
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The modified FSEOF approach predicted 84 gene targets for increasing 
accumulation of heme, from which 62 were classified as overexpression targets, 8 as 
deletions, and 14 as gene knock-downs. Gene candidates were experimentally 
modified in yeast cells (CEN. PK. 113-11c strain background). As gene down-
regulation requires considerable fine-tunning in comparison to the other 
modifications, these gene targets were evaluated as gene deletions when 
implemented experimentally. From the 84 targets, 76 were successfully modified, 
individually, in the yeast cells. Intracellular heme concentration was measured from 
cell samples after 24 and 48 h of incubation. From the 15 tested deletions, 8 of them 
increased heme production; while from the 61 tested overexpressions, 32 proved to 
increase intracellular heme concentration.  
 
Overall, validated gene targets encode for enzymes located in the heme biosynthetic 
pathway, glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-CoA metabolism. 
Just 4 out of the 40 successful modifications were capable of inducing an increase in 
heme levels higher than 150%. Notably, overexpression of HEM13 (encoding for 
coproporphyrinogen III oxidase, was found to be the most efficient modification, 
yielding a 300% increase in heme concentration. This catalogue of experimental 
results provides a systematic assessment of FSEOF predictions for a specific 
molecule in yeast, without imposing an arbitrary limit on the targets to test. 
 
At the time in which the experimental work for construction and characterization of 
the 76 yeast mutants was finished, a new version of the yeast model was available208, 
including extensive curation of metabolism, moreover, an ecGEM was constructed 
using the GECKO toolbox. The FSEOF-based approach from figure 22 was used for 
predicting a new list of gene targets using ecYeastGEM, aiming to find a 
combination of predicted individual targets that could increase heme accumulation 
even further. This returned a list of 95 gene candidate targets.  
 
ecGEMs enable direct simulation of gene deletions (by blocking the usage of their 
corresponding enzymes) and gene overexpressions (by allowing the model to 
increase the demand of an enzyme), and evaluation of their impact on the flux 
towards heme accumulation. Gene modifications that were detrimental for heme 
production in silico were discarded from the list of ecGEM predictions. After this, a 
total of 80 gene targets remained, from which 40 were found to have also been 
predicted by the initial model yeast 7.6. Inspection of the ecYeastGEM-exclusive 
predictions revealed a considerable number of gene targets in amino acid and 
pyruvate metabolism and the TCA cycle. Suggesting that the FSEOF-based 
approach together with an ecGEM can capture gene targets that contribute to rewire 
the wild-type biosynthetic flux patterns of the cell. 
 
FVA applied to the enzyme usage reaction for the remaining 80 candidate targets 
enabled identification of redundant enzyme targets to reduce the number of 
candidates to 71. Furthermore, a sequential cumulative integration of the remaining 
gene targets into an in silico strain, allowed identification of a combination of 58 
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gene targets for optimal heme production that are predicted to be compatible, or 
suitable for combined implementation in yeast cells. 
 
An optimized mutant strain was constructed following an iterative combinatorial 
approach, adding gene modifications one by one, informed by the predicted impact 
from in silico simulations and additional physiological/experimental criteria. 
Production performance, in terms of heme accumulation and cell growth, was 
evaluated after every inclusion of a new genetic modification. In cases in which an 
introduced modification resulted in a negative effect over heme production, then this 
was substituted by another one, however, discarded modifications were kept in the 
list of candidates for following iterations of the combinatorial approach.  
 
This process acknowledges that the order of introduction of genetic modifications in 
a combined mutant influences the performance of the strain. As an example, deletion 
of GCV1 and GCV2 genes (encoding for subunits of the glycine cleavage complex) 
did not contribute to strain performance where implemented in combination with 
some other modifications, however they contributed to improve strain performance 
in further iterations of the combined mutant. This suggests that the metabolic flux 
patterns of a cell are a systems property, resulting from coordinated expression of all 
genes, and cannot be completely defined by modification of a single genes.  
 
This sequential process, explained in detail in the supplementary information file of 
paper IV, produced a strain capable of accumulating 56 mg/L of heme 
intracellularly, representing a 70-fold increase in comparison to the initial strain, 
when normalized over the total produced biomass. The cumulative effect of 
introduced gene modifications is displayed in figure 23A in terms of measured 
intracellular heme concentration and observed optical density of the cell cultures 
(proportional to biomass concentration).  
 

 
Figure 23.- Construction of a combined mutant S. cerevisiae strain improves intracellular 
heme concentration by 70-fold. A) Sequence of introduction of genetic modifications in the 
heme producing strain. Heme levels and cell culture OD600 were measured after 24 h of 
incubation. HEM13 gene was first introduced into the IMX581 S. cerevisiae strain using a 
CEN. PK. 113-11c centromeric plasmid. Gene modifications were enabled by integration of 



 52 

CRISPR-Cas9 gene into IMX581 genome. Gene overexpressions were achieved by using 
expression cassettes carrying the S. cerevisiae TEF1 promoter, followed by the inserted gene 
and the ADH1 terminator. B) Cell cultures of the initial strain (black) and the final engineered 
strain (red) showed appreciable color differences after 24 h of cultivation. Color differences 
of cell extracts showed this pattern more clearly, with the mutant cells turning red, a sign of 
the increased intracellular heme concentration. 
 
5.3 Some bloody lessons 
 
The project described in the previous section offers an example of some intrinsic 
difficulties in metabolic engineering endeavors. Construction of mutant strains and 
phenotypic characterization are time-consuming tasks, that can prolong for months 
or even years. In the case of this project, while the initial sets of predictions were 
tested the yeast GEM underwent through major changes, and even a new framework 
in constraint-based modeling was developed, which change the course of the project. 
 
From the initial set of experimental results, it was clear that not all predicted gene 
targets can induce the expected effects. This issue may relate to different aspects, in 
which model quality plays a decisive role, as errors in model components can result 
in false positive predictions. Additionally, GEMs are metabolic models that rely on 
stoichiometry constraints, ecGEMs add enzyme capacity to this, however the effects 
of complex kinetic mechanisms, dependent on metabolite concentrations, and those 
caused by the influence of regulatory gene networks over the state of proteins and 
enzymes, are not captured by these models, thus, apparent false positive predictions 
could find an explanation with further knowledge on cell physiology. This is case is 
shown for the case of individual overexpression of HEM4, which was found to be 
detrimental for the phenotype, possibly due to previously reported toxicity effects of 
uroporphyrinogen III, the product of the enzyme encoded by HEM4. 
 
Interestingly, it was observed that several genetic modifications did not improve the 
cells performance significantly but proved to contribute to increased heme 
production when combined with others. Even more striking is the fact that the order 
of inclusion of genetic modifications in a multiple mutant strain has an impact on the 
cumulative effect of modifications. The example of GCV1 and GCV2 show how the 
potential of a genetic manipulation sometimes can be unleashed by modifications in 
other sectors of metabolism. 
 
Explicit integration of enzymes into ecGEMs allows to consider the effects of gene 
redundancy in metabolism, thus, offering a platform for a more comprehensive 
search for an expression profile more suitable for chemical production. Additionally, 
their simple structure and the treatment of enzymes as pseudometabolites and 
pseudoreactions enables a straightforward simulation of genetic modifications. 
Nonetheless, as the approach taken in this project for evaluation of modifications in 
the ecGEM relied on comparison of optimal flux distributions (from FBA), 
quantitative computing of the effect of gene deletions under carbon-limited 
conditions remains challenging. 
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5.3 ecFactory: a method for refining prediction of genetic engineering targets 
for increased chemical production using enzyme constraints 
 
The findings of paper IV suggest that ecGEMs are a suitable platform for refining 
predictions of gene engineering targets for increased bioproduction by constraint-
based methods. The learnings from the iteration between computational and 
experimental work, explained in the previous section, motivated the development of 
a structured method that predicts an optimal combination of gene targets for 
increasing production, ecFactory, which is presented an applied at large-scale in 
paper V. 
 
This method is rooted in an FSEOF-based approach for prediction of gene 
modifications for redirecting metabolic flux towards production of a desired 
metabolite. In summary, ecFactory consists of three major steps: 1) prediction of 
gene expression scores, indicating intensity and directionality of genetic 
modifications; 2) discard gene targets encoding for unfavorable enzymes (redundant, 
low efficiency) and; 3) Obtention of a minimal combination of modifications 
required for driving cells from optimal biomass formation to a metabolic production 
regime. The overall objective of this method is to reduce the number of predicted 
targets to an optimal metabolic engineering strategy, by taking enzyme allocation 
and connectivity into account.  
 
FVA restricted to the enzyme usage pseudoreactions for the genes that are predicted 
by the initial step of the method, provides an estimate of the ranges of enzyme 
expression needed for achieving optimal production yield. In figure 24A a simplified 
representation of a metabolic pathway with enzymes is shown, in which 3 linear 
reaction steps are essential for the task of maximizing production of the final 
compound “D”, additionally, and flux through a reaction that consumes the precursor 
of D for another purpose is detrimental for production. For the second reaction step 
there exist three different isoenzymes that can catalyze the reaction. Figure 24B 
displays the variability ranges for the enzyme demands in a pathway like this, 
comparison of these ranges with a parsimonious FBA solution, representing the 
minimal enzyme burden necessary for achieving a cellular objective, allows 
classification of enzyme in 4 classes: essential for production, optimal for 
production, suboptimal for production and futile for production. Enzymes that are 
either futile or suboptimal for production are discarded from the list of candidate 
targets. In the ecFactory pipeline, a suboptimal biomass production rate is fixed as a 
constraint, therefore, the enzyme usage variability ranges represent the demand of 
enzymes that can maximize production of the desired metabolite, while ensuring a 
fixed level of cellular growth. 
 
As it was observed that for a given cellular objective, enzyme demand reactions can 
take variable flux levels, this variability should be considered for simulation of gene 
engineering for modification of enzyme expression levels. In the ecFactory method, 
a second FVA is run under the constraint of fixing growth rate to the maximum value 
possible for a unit carbon source uptake rate. Enzyme usage variability ranges 
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represent the expression levels expected from a “wild-type” strain that has evolved 
to maximize its growth yield. Comparison of the variability ranges for optimal 
production to those for optimal production (shown in figure 25) facilitate 
identification of gene target candidates encoding for enzymes with clearly 
differentiated expression patterns under the two different scenarios, which are 
prioritized in further steps of the algorithm. 
 

 
Figure 24.- Redundant enzymes in metabolism. A) A toy model network with the metabolic 
task of producing metabolite D from A. Unique enzymes catalyze reaction steps 1, 3 and 4, 
while reaction step 2 can be catalyzed by three different isoenzymes. B) Variability analysis 
on enzyme usage reactions. Blue and red points indicate the variability range for the usage of 
all enzymes. Grey points indicate the usage value obtained for each enzyme from an optimal 
flux distribution maximizing production of D. In FBA simulations, only the most efficient 
isoenzyme for a given reaction is the one carrying all the flux. Lowercase ei indicate usage 
pseudoreaction for enzyme Ei.  
 
After evaluation of enzyme usage variability ranges, the remaining gene target 
candidates for modification are incorporated into the ecGEM, one by one. Evaluation 
of production levels are performed by comparing maximum product formation rate 
and yield of individual mutants to those attainable by a wild-type strain, simulated 
by fixing the usage bounds of the enzyme candidates to those obtained from the 
variability analysis for an optimal growth scenario. Gene knockouts are simulated 
by blocking their corresponding enzyme usage reactions. For the case of gene 
knockdowns and overexpressions, the bounds of their respective enzyme usage 
reactions are changed from those obtained for the optimal growth scenario, to the 
usage bounds computed for an optimal production scenario in the variability 
analysis. Gene modifications that are detrimental for production are discarded from 
the list of remaining target candidates. The use of enzyme usage variability ranges 
for simulation of modification on enzyme expression levels is shown in figure 26. 
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Figure 25.- Identification of optimal enzyme usage ranges under two different scenarios. 
𝑒!"#$% indicate enzyme usage in flux distributions maximizing for chemical production, 𝑒!&!$ 
indicate enzyme usage in flux distributions maximizing for biomass production. A) Usage 
variability ranges for enzymes with increased demand under production and overlapping 
demand range with an optimal biomass scenario. B) Usage variability ranges for enzymes with 
increased demand under production and differentiated demand range between the two optimal 
scenarios. C) Usage variability ranges for enzymes with the same demand bounds predicted 
for both scenarios. D) Usage variability ranges for enzymes with the decreased demand under 
production and overlapping range with an optimal biomass scenario. E) Usage variability 
ranges for enzymes with decreased demand under production and differentiated demand range 
between the two optimal scenarios. F) Enzymes with undistinguishable demand ranges 
between the two scenarios, in which the production range is a subset of the enzyme usage 
range for optimal biomass production. 

 
Figure 26.- Simulation of genetic modifications in a simplified metabolic pathway. 
Modification of enzyme expression levels is simulated by changing the bounds of each 
enzyme usage from those in an optimal growth scenario (𝑒!

') to the ones computed for an 
optimal production scenario (𝑒!

(). KD.- gene knock-down, KO.- gene knock-out. 
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As a final step in ecFactory, a minimal combination of genetic modifications 
necessary to reach the predicted maximum production rate and yield is obtained. 
This is done by introducing all the remaining candidate gene modifications 
simultaneously in an ecGEM (i.e., fixing the usage bounds according to the ones 
predicted for an optimal production scenario for all enzymes encoded by the gene 
target candidates), maximum production rate and yield are then computed using FBA 
and a given suboptimal growth rate as constraint. Gene modifications are reverted, 
by changing the usage bounds of their enzymes back to the bounds predicted for a 
wild-type strain. If the removal of a genetic modification from the combined mutant 
strain does not affect in silico productivity levels, then the corresponding gene target 
is discarded from the list of candidates. Following this approach ensures that just the 
minimum set of modifications necessary for optimal production remain in the final 
list of targets. 
 
5.4 Prediction of gene engineering targets for increasing production of 102 
diverse chemicals in S. cerevisiae using the ecFactory method 
 
The ecFactory method was used to predict gene targets for enhanced production of 
102 different chemicals of industrial relevance, corresponding to diverse chemical 
families, in S. cerevisiae cells. This list of products is composed by 50 metabolites 
native to the S. cerevisiae’s network, while the other 52 are heterologous metabolites, 
present in other organisms. The classification of products by family is displayed in 
figure 26B. Heterologous production pathways were retrieved from the literature 
and incorporated into an ecGEM of S. cerevisiae (ecYeastGEM v8.3.4157). The 
method was successful at returning gene target predictions for all the 102 cases. 
Furthermore, the method proved to be effective at reducing the number of predictions 
in each of its sequential steps for all cases.  
 
Global analysis on the number of targets per product revealed that step 2 in the 
ecFactory method (classification targets according to enzymatic characteristics, 
discarding redundant and suboptimal targets) is the main contributor to the total 
reduction in the number of predicted targets. Overall, the sequence of steps in 
ecFactory reduced the average number of predicted targets by 73%, from 85 initial 
targets (28 OEs, 42 KDs and 15 KOs) to 21 targets per product (7 OEs, 9 KDs and 
5 KOs), as only optimal gene candidates, suitable for combination in a single strain, 
are kept in the final list of predictions. 
 
After extensive literature review it was found that production of 22 of these products 
has been reported in engineered S. cerevisiae cells. Comparison of predicted targets 
with those implemented in each of these 22 cases found experimental validation for 
28 different gene modifications across products. An interesting case was found in 
the predictions for increasing production of the alcohol 2-phenylethanol (used as a 
floral fragrance substitute), for which 7 out of the 12 predicted gene targets have 
been successfully implemented in highly producing strains of S. cerevisiae209, Y. 
lipolytica210 and K. marxianus211. 
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Figure 27.- Prediction of gene engineering targets for increasing production of 102 diverse 
chemicals in yeast using ecFactory. A) The ecFactory method and its three steps for prediction 
of gene engineering targets. B) Classification of 102 chemical products into 10 different 
chemical families. Numbers in each slice indicate the total number of products within a given 
family, numbers in parentheses indicate the amount of heterologous products in each family. 
C) Distribution of the number of predicted gene targets across the 102 chemicals after every 
step of the ecFactory method. OE.- overexpression, KD.- knock-down, KO.- knock-out. 
 

 
Figure 28.- Comparison between gene modifications implemented in vivo spermidine and 
ecFactory predictions for increasing spermine in S. cerevisiae. 
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Predictions of the ecFactory method were also able to capture 9 of the genetic 
modifications (overexpression of MAT, ODC, SPE2, SPDS, MEU1 APT2 and PRS, 
and deletion of CAR2 and FMS1) implemented in an engineered strain capable of 
producing high concentrations of spermidine in fed-batch cultures212. Engineering of 
this strain involved the coordination of modifications in several metabolic pathways, 
involving deletions, knock-downs and overexpression of native genes, and 
expression of heterologous pathways. Figure 28 shows a comparison between 
experimental gene modifications and predicted targets by ecFactory for this case. 
Interestingly, predicted modifications resemble the general strategy followed by the 
experimental study, consisting of overexpression of the ornithine cycle, a direct 
precursor, together with the Yang cycle and some steps in the pentose phosphate 
pathway (PPP) to increase S-adenosyl-L-methionine, another important precursor of 
polyamines.  
 
5.5 Evaluating the effects of enzyme capacity on bioproduction  
 
The production envelope for each of the 102 chemicals was computed using both 
YeastGEM and ecYeastGEM under two different levels of constraining, low and 
high glucose uptake rate (1 and 10 mmol/gDw h, respectively). Overall, it was 
observed that the predicted envelop by YeastGEM is independent of the glucose 
uptake for all cases, as expected from a purely stoichiometric model (shown by 
purple and yellow dotted lines in figure 29A).  
 
On the other side, production envelopes predicted by ecYeastGEM showed notable 
differences between high and low glucose uptake regimes for many of the modeled 
products (predictions for choline are shown as an example of this in figure 29B). In 
general, production yields for metabolites and biomass are negatively affected by 
high glucose uptake rates due to the tradeoff between substrate and protein utilization 
efficiencies characteristic of S. cerevisiae, which is caused by the kinetic differences 
between respiration (high protein burden and substrate efficiency) and fermentation 
(low protein burden and substrate efficiency).  
 
For a large subset of products, it was found that in low glucose uptake regime, the 
optimal line of the production envelope predicted by yeastGEM and ecYeastGEM 
coincided in a region limited to the highest values of biomass yield, but after a critical 
point the slope of the optimal line of ecYeastGEM decreases, creating an 
enzymatically unfeasible region (shown in grey in figure 29A. This effect was 
predicted mostly for heterologous products, which tend to be produced by pathways 
catalyzed by enzymes with low efficiency. The list of heterologous products is 
mostly composed by terpenes, aromatic compounds, alkaloids, and flavonoids, 
which are naturally produced by plants in very low concentrations and correspond 
to pathways outside of central carbon metabolism. Consequently, as biomass yield 
is compromised in order to increase production flux of heterologous metabolites, the 
total enzyme burden increases until a point in which the cell switches to mixed 
respiro-fermentative metabolism, protein efficient but less substrate efficient than 
pure respiration. 
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Figure 29.- Impact of enzyme capacity over production capabilities. A) Production envelope 
typical for a metabolite in a highly protein-constrained pathway. B) Production envelope for 
choline predicted by ecYeastGEM. C) Production envelope for putrescine predicted by 
ecYeastGEM. D) The landscape of production cost (substrate and protein cost) for chemical 
production in S. cerevisiae predicted by ecYeastGEM. AAs.- amino acids, alc.- alcohols, alk.- 
alkaloids, aro.- aromatic compounds, bio.- bioamines, FAL.- fatty acids and lipids, fla.- 
flavonoids, oAc.- organic acids, stb.- stilbenoids, ter.- terpenes. 
 
FBA simulations were used to calculate the minimal substrate and protein cost of 
production for each the 102 chemical products (i.e., how much substrate or 
intracellular protein mass is needed for production of a gram of product). For this, a 
low glucose uptake rate (1 mmol/gDw h) and a null growth rate were used as 
constraints, assuming that the whole amount of substrate could be converted into the 
product of interest. Two well differentiated groups of products were identified 
among these predictions (shown in figure 29D), those with low substrate (<10 
gglucose/gproduct) and protein (<1 gprotein/gproduct) costs, and those with the opposite trend 
(>10 gglucose/gproduct and (>10 gprotein/gproduct).  
 
FBA simulations showed that for all products of the high costs group, the flux of the 
glucose uptake reaction step did not reach its upper bound of 1 mmol/gDw h, 
however, the total demand of protein mass by metabolic enzyme was equal to the 
upper bound in ecYeastGEM. This means that the metabolic burden of the 
production pathways of these products is extremely high, so that the total mass of 
protein available for metabolic enzymes becomes the limiting resource, even at low 
glucose uptake rates. Furthermore, as increased protein demand of the production 
pathways demands additional substrate flux, due to the switch to mixed metabolism, 
the substrate cost for production of this group of compounds is increased beyond 
stoichiometric demands (i.e., production through pathways with very high protein 
demands induces additional substrate cost of production). The group of highly 
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constrained products is composed by 40 heterologous products and 5 native 
compounds in yeast, and especially enriched for terpenes. In contrast, the group of 
slightly constrained products (those with the lowest substrate and protein costs for 
production) was found to be composed mostly by native compounds (amino acids 
and organic acids).  
 
5.6 Common gene modifications across multiple products suggest the 
possibility of platform strains for diverse chemical production 
 
Genes predicted as candidate targets for more than one product were found among 
the 28 targets with experimental validation, mentioned in section 5.4, in particular, 
genes from the mevalonate pathway were predicted as targets for overexpression for 
increasing production of 9 different terpene compounds (table 1 in paper V).  
However, no common targets were found to be predicted for all of the 18 terpenes 
in this study, furthermore, the same case was found across all chemical families, 
except for flavonoids (catechin, genistein, naringenin, kaempferol and quercetin) for 
which 19 gene targets were identified as common to all these products (RNR4, 
RNR3, FAA1, ADO1, ARG5,6, CAR2, SAH1, ATP19, PPA2, RNR1, FDH1, IDP1, 
LPD1and MAE1, predicted as KO/KD targets, and MET6, FAA4, MDH2, ARG7 
and ARG8 for overexpression). This result indicates that construction of a combined 
mutant, predicted to increase production for all 5 flavonoids, might be attainable. 
Nonetheless, this is an expected result, as flavonoids explored in this study come all 
from the same pathway, therefore the same metabolic rewiring strategy can provide 
the necessary precursor and cofactor demands for all these products. 
 
In order to systematize the search for groups of products with shared gene targets, 
predictions were represented as a gene-product matrix, in which rows represent all 
the native genes in the S. cerevisiae network and columns represent the expression 
profile predicted for each product. Genes that are not predicted as targets for a 
product were assigned with a zero value, while KD targets as 0.25 (median gene 
score for KDs across all products) and OE targets a value of 4 (median gene score 
for OE targets across all products). Then, a series of t-SNE (t-distributed stochastic 
neighbor embedding) projections213, exploring all the range of allowable 
hyperparameter values (perplexity). This series of data projections revealed 8 
clusters of products with a tendency to group together despite the perplexity value, 
indicating high similarity in their predicted targets, this process of data 
representation is shown in figure 30. Furthermore, common targets were found for 
all clusters and are shown in table 7. 
 
The clustering of products, according to their predicted targets, showed that for some 
cases, products cluster together because they are produced by the same pathways, or 
need the same metabolic precursors (clusters 5, 6, 7 and 8), nevertheless, clusters 
composed by compounds that are produced by very different pathways (clusters 1 
and 2) where identified by this approach.  
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Table 7.- Common targets, per modification type, found across products in each of 
the identified clusters. 

 

Cluster 

 

Chemical Products 

Shared KO 

targets 

Shared KD 

targets 

Shared OE 

targets 

 

 

 

1 

betaxanthin, caffeic acid, 

vanillin b-glucoside, b-

ionone, glycyrrhetinic acid, 

miltiradiene, lycopene, 

taxadien-α-yl acetate, 

protopanaxadiol, genistein, 

quercetin, catechin, 

kaempferol, patchoulol, 

oleanolate, lupeol 

 

RNR1, 

RNR4, 

RNR3, 

CAR2. 

FAA4, 

FAA1, 

FDH1 

 

SAH1, 

ARG5,6, 

MET6, LPD1, 

ADO1, 

MAE1, 

ARG7, 

MDH2, 

ARG8, 

ATP19 

 

 

 

NA 

 

 

2 

b-carotene, 

cinnamoyltropine, ARA, 

DHA, EPA, astaxanthin, 

psilocybin, docosanol 

RNR1, 

RNR4, 

RNR3, 

CAR2. 

FAA4, 

FAA1, 

FDH1 

IDP1, 

ARG5,6, 

LPD1, MAE1, 

MDH1, 

ARG7, PPA2, 

MDH2, 

ARG8, 

ATP19 

 

 

NA 

 

3 

ergosterol, squalene, 

santalene, farnesene, 

amorphadiene, limonene, 

geraniol, artemisinic acid 

 

NA 

 

LPP1 

PDB1, 

PDA1, 

PDX1, 

ERG12, 

ERG8, 

LAT1, 

MVD1 

4 Itaconic acid, glutamine, 

proline, putrescine, 

spermine 

NA LPP1 PDB1, 

PDA1, 

PDX1, LAT1 
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5 valencene, nootkatone, 

linalool, b-amyrin 

NA ARG5,6, 

ARG8 

ERG12, 

ERG8, 

MVD1 

 

6 

tryptophan, adipic acid, cis-

muconate, 

hydroxymandelic acid 

 

MAE1 

 

LPP1 

 

ARO4 

 

7 

 

phenylalanine, 2-

phenylethanol, mandelic 

acid, cinnamate 

 

MAE1 

 

LPP1 

ARO4, 

ARO1, 

ARO2, 

SOL3, 

GND1, 

ZWF1, 

PHA2, 

ARO7 

 

 

8 

 

 

Free-fatty acids, oleate, 

palmitoleate 

 

 

NA 

 

LPP1, 

ARG5,6, 

MAE1, 

CAR2, ARG8 

CDC19, 

BPL1, SOL3, 

GND1, 

PDC1, 

ACS2, PPA2, 

ZWF1, 

ACC1, 

ALD6 

 
Further analysis revealed that clusters 1 and 2 are mostly composed by heterologous 
products, identified as highly-protein constrained, due to the high enzymatic 
demands of their final production pathways. A consequence of this is that several 
genes involved in nucleotide metabolism and fatty acid metabolism are predicted as 
common targets for deletion, together with shared gene targets for KD in amino acids 
metabolism and TCA cycle, indicating that for increased production of these 
products, a compromise with the robustness of biomass formation pathways needs 
to be induced through rewiring. 
 
Analysis of the demands of metabolic precursors and cofactors also revealed that 
increased demand of NADPH has an influence in the observed grouping of gene 
target profiles, as shown by the predicted OE targets in initial steps of pentose 
phosphate pathway (ZWF1, GND1 and SOL3) common to products in clusters 7 and 
8.  
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Figure 30.- Identification of similar predicted gene expression profiles across products. A) 
Gene target predictions were transformed into gene expression profiles for all products, the 
set of all predicted expression vectors formed a matrix suitable for numerical analysis. B) 
Iterations of t-SNE projections, spanning all allowable perplexity values and subject to 10,000 
iterations per step, enabled visual identification of 8 groups of products with shared targets. 
  
5.8 Summary 
 
In paper IV, a GEM for yeast metabolism was used to predict gene engineering 
targets to increase intracellular accumulation of heme. 76 gene modifications were 
implemented independently in S. cerevisiae strain, from which 40 caused clear 
increased heme production. Then, an enzyme-constrained model of yeast was used 
to refine predictions and aid in the process of discarding gene targets according to 
the kinetic characteristics of their corresponding enzymes. An approach for 
identifying gene modifications that can be combined in a viable mutant was 
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developed and predictions guided the construction of a mutant strains, including 11 
genetic modifications, that displayed the capability causing a 70-fold increase in 
heme accumulation in comparison to a reference strain.  
 
Based on the findings in paper IV, a structured method for prediction of a minimal 
combination of gene targets for reaching optimal production levels of a metabolite 
of interest, using ecGEMs, was developed. This approach is based on a combination 
of the FSEOF method, FVA applied on enzyme usage reactions and FBA simulations 
to test the effect of modified enzyme expression ranges in the model. The method 
proved to be effective for drastic reduction of the targets initially predicted by 
FSEOF across 102 different products in S. cerevisiae cells.  
 
A catalogue of metabolic engineering strategies for increased production of these 
102 diverse chemicals was produced and made publicly available in paper V. 
Experimental validation for 28 of these targets across 22 different products was 
found in the literature, moreover, comparison of the predicted metabolic strategies 
for 2-phenylethanol and spermidine production were compared to previously 
reported experimental studies in which complex strategies were developed 
rationally. Predictions showed to capture the essence of the rationally engineered 
strains, and showed that our method can pinpoint targets that induce a complex 
rewiring of metabolism, involving up and down regulation of multiple pathways. 
 
Finally, global analysis of the gene target profiles across the 102 products revealed 
the existence of multiple gene targets common to 8 specific groups of products. This 
finding suggests the utility of this approach for finding sets of genetic modifications 
that can be beneficial for the production of the necessary precursors and cofactors 
for groups of products, instead of designing product-specific strains. This approach 
can be leveraged for model-driven design of platform or chassis strains for 
diversified chemical production and accelerate the DBTL cycle in metabolic 
engineering and synthetic biology, both for industrial and scientific purposes.   
 
Further analysis enabled identification of three basic factors that dictate the choice 
of products to be produced by a platform strain: the need for common metabolic 
precursors, the protein burden of the final production pathways, and the NADPH 
demands of the products aimed to be produced. These factors indicate that metabolic 
flux towards a given product of interest is an emerging systems property, in which 
many cellular processes are involved, and that optimal metabolic engineering 
strategies should be able to rewire metabolism in global way, finding the enzyme 
nodes that can cause the optimal way of pushing a cell from an optimal grower to an 
optimal producer. 
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6.- Understanding regulation of metabolism beyond enzyme capacity 
 

To the memory of Stefan Hohmann. 
 
Incorporation of proteomics abundance data into ecGEMs as constraints for the 
usage of individual enzymes enabled exploration of the impact of different 
environmental conditions over the metabolism of budding yeasts in paper III. Flux 
distributions across conditions and species revealed differences in predictions from 
ecGEMs with and without proteomics constraints, at the pathway, reaction, and 
enzyme usage level.  
 
Flux distributions predicted without proteomics data represent the optimal flux and 
protein allocation profiles. However, it was shown that incorporation of data 
constraints induces expression and flux patterns that deviate from optimality. A 
limitation for the study of intracellular responses to changes in the environment with 
ecGEMs and proteomics data, is that the protein expression profile used as 
constraints is a systems property grounded in lower levels of causation, as 
transcriptional and translational processes regulate the state and expression level of 
proteins and metabolic enzymes. Therefore, a complete picture of the relation 
between the environment, the genotype, and the phenotype, remains elusive. 
 
Multiscale models, such as ME-models (metabolic and expression models)194,214 and 
resource balance analysis (RBA)215,216 offer a representation of the processes 
involved in expression of proteins and their connection to metabolic reactions. 
Nonetheless, accuracy of phenotype predictions is usually compromised due to the 
hundreds, even thousands of parameters needed to construct them. Furthermore, 
some of these parameters represent quantities that cannot be directly measured.  
 
Gene regulatory networks have been used for understanding the cascade of events 
that derive on control of transcription factors, and ultimately in the expression 
profile217,218. These models are usually represented as a network of Boolean 
interactions; thus, predictions are binary states of proteins and/or genes. 
Combination of Boolean models of gene regulatory networks and stoichiometric 
models have been implemented to refine the description of transcriptional regulatory 
mechanisms in S. cerevisiae cells, and for understanding the effects of hypoxia on 
the metabolism of Alzheimer’s disease219, among other applications. This hybrid 
approach enables study of the modulation of metabolic flux in cells under 
environmental or genetic perturbations.  
 
In paper VI, a Boolean model of gene regulation induced by nutrient signaling is 
combined with an enzyme-constrained model of central carbon metabolism of S. 
cerevisiae cells. The hybrid model is used to explore and understand the cascade of 
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regulatory events that modulate expression of enzymes due to changes in the 
availability of nutrients. 
 
6.1 Connection of an enzyme-constrained model with a gene regulatory 
network 
 
For this study, a model of central carbon and energy metabolism, accounting for 
glycolysis, PPP, TCA cycle, oxidative phosphorylation, galactose metabolism and 
anapletoric pathways154, was curated and extended with enzyme-constraints using 
the GECKO toolbox157. Using literature data available on gene regulation and 
nutrient-signaling in S. cerevisiae, a Boolean model for the main signaling pathways 
for carbon (PKA and SNF1) and nitrogen (mTOR), including crosstalk mechanisms 
between them, was also constructed.  
 
Glucose uptake rate is used as an upper bound constraint in the metabolic model to 
predict a reference flux distribution, applying bi-level optimization, maximizing for 
growth rate, and then minimizing the total protein demand of the metabolic network. 
Assuming that glucose uptake by the cell is proportional to its extracellular 
concentration, the glucose uptake rate is used as a proxy to impose a Boolean 
condition of low (0) or high (1) availability of glucose. A threshold value indicating 
high glucose is then dictated by the uptake rate predicted at the critical dilution rate 
of S. cerevisiae (i.e., growth rate at which yeast cells switch for pure respiration to a 
respiro-fermentative metabolism), corresponding to a value of 3.29 mmol/gDw h. 
Glucose availability (0 or 1) is fed into the Boolean regulatory network, which runs 
a series of synchronous updates until steady-state is reached. As an output, the 
regulatory network indicates enzymes that should be down or up regulated. This 
transcriptional regulation response is represented in the enzyme-constrained model 
as follows. For upregulations: 
 

𝑙𝑏2"
:9; =	𝑒*

87( + 𝜌T𝑒*!"# − 𝑒*!*5U  (eq. 6.1) 
 

And for downregulations: 
 

𝑢𝑏2"
:9; =	𝑒*

87( − 𝜌T𝑒*!"# − 𝑒*!*5U  (eq. 6.2) 
 

Where 𝑢𝑏9"
:9; and 𝑙𝑏9"

:9; represent the regulated upper and lower bounds for enzyme 
i; 𝑒*

87( is the enzyme usage value obtained for enzyme i in the reference optimal flux 
distribution; 𝜌 is a regulation factor (>0) and assumed to be the same across all 
enzymes; T𝑒*!"# − 𝑒*!*5U, indicates the variability range of the usage reaction for 
enzyme i, under the same conditions used to compute the reference flux distribution.  
 
After imposing these constraints, a new FBA problem is solved to obtain a flux 
distribution, once again maximizing for cellular growth, and relaxing the constraint 
on glucose uptake rate by 15% (which corresponds to the maximum error of 
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predicted glucose uptake rate under carbon-limited conditions, and in the range of 0-
0.4 h-1 of dilution rate, using a purely enzyme-constrained metabolic model of 
yeast156). Overall, this process assumes that the nutrient induced regulatory network 
modulates the expression of enzymes around a state of optimal allocation, enabling 
enzymes to be expressed outside of their optimal levels if required. 
 
6.2 The impact of regulation over predictions of enzyme demands 
 
The simulation setup described above was used to generate flux distributions of S. 
cerevisiae’s metabolism in the whole range from 0 to its maximum specific growth 
rate, using glucose as a carbon source. Predicted exchange fluxes of glucose, oxygen, 
and the byproducts CO2, ethanol, acetate, were compared against experimental 
measurements from chemostat cultures, over the whole range of dilution rates (0-4h-

1). Accuracy of exchange fluxes showed a median relative error of 9.82% across all 
exchanged compounds and dilution rates. Moreover, the hybrid model was able to 
predict the emergence of the Crabtree effect, switch from pure respiration to respiro-
fermentative metabolism, at a critical dilution rate of 0.285h-1, showing consistency 
with previous enzyme-constrained models and experimental measurements154,156,220.  
 
Due to its enzyme-constrained module, the hybrid model is also capable of predicting 
enzyme demands. These values were compared with protein abundance data from 
two independent studies in S. cerevisiae, one characterizing physiology under 
respiratory conditions (chemostat cultures at 0.1 h-1) and another one at high growth 
rates and mixed metabolism (batch cultures at 0.4 h-1 growth rate). Log-10 
transformed ratios between predicted demand of enzymes over the measured 
abundance (both in mmol/gDw h) were used as an error metric for comparison of 
each protein. This metric computes the error of prediction in orders of magnitude, in 
which the sign indicates under predicted (negative values) and overpredicted values 
(positive values).  
 
Figure 31A shows a significant decrease in the range of errors for predicted protein 
demands by incorporation of the regulatory layer into the ecModel. This error metric 
was reduced from 2.62 to 1.55 in respiration, and from 3.56 to 2.32 in mixed 
metabolism. Furthermore, in respiratory conditions, 40.83% of the enzymes in the 
hybrid model were predicted in the same order of magnitude as their experimental 
counterpart. This percentage rose to 65.51% for the fermentative conditions. The 
distributions of log-10 transformed ratio values (Figure 31A) showed that a pure 
ecModel tends to underpredict enzyme usages for a significantly larger number of 
enzymes, in contrast to the hybrid model. Further analysis of this trend revealed that 
the metabolic model predicts a zero usage for many enzymes in the model, which 
display non-zero abundance values in the experimental datasets. This is a 
characteristic feature of protein abundance predictions with enzyme-constrained 
models and FBA, as an optimal flux distribution uses just the optimal isoform for 
carrying the entire flux of reactions with enzymatic redundancy. 
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Figure 31C displays a qualitative comparison between protein expression between 
the enzyme-constrained model, the hybrid model, and experimental measurements 
for each protein in the models. It can be seen how the cell tends to overexpress 
multiple isoenzymes for its reactions with redundancy, especially under respiro-
fermentative metabolism. The hybrid model was successful at predicting a 
diversified usage of isoenzymes.  In respiratory conditions, the regulation layer 
improved the prediction of diversified isoenzyme expression in several steps of 
glycolysis and oxidative phosphorylation. In mixed metabolism, this effect was 
observed in predictions for enzyme usage across the whole network. Notably, the 
hybrid model was successful at predicting usage of the 4 different glucose 
transporters in the model under mixed metabolism, which is consistent with the data. 
 

 
Figure 31.- Comparison of protein allocation predictions by the hybrid and metabolic model 
in respiratory and mixed respire-fermentative metabolism. A) Boxplots for the distributions 
of log10 ratio between predicted and experimental abundance for enzymes in the enzyme-
constrained model module, with and without the regulation layer. Respiration conditions 
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correspond to cells growing in chemostats at 0.1h-1 dilution rate, fermentation condition 
corresponds to chemostat cultures at 0.4h-1 dilution rate. Whiskers indicate the position of the 
lower and upper quartiles; the boxes, the distribution of the data points within the interquartile 
region; and horizontal lines indicate the position of the median for each distribution. B) 
Evaluation of utilization of isoenzymes, comparing the pure enzyme-constrained and the 
hybrid model vs. experimental data on protein expression (presence/absence). FMI.- Fowlkes-
Mallows index. C) Comparison of predicted enzyme usages and protein expression data for 
each of the proteins in the pure enzyme-constrained and hybrid models. Black color indicates 
presence of a given protein. 
 
6.3 The impact of glucose signaling over metabolic flux 
 
The flux distributions used for comparison of protein predictions were mapped into 
network representations of the studied metabolic pathways. Reaction fold-changes 
between the predictions of the hybrid model and the pure enzyme-constrained model 
were computed in order to understand the points in metabolism that are affected by 
the regulatory and transcriptional layers. Larger regulatory effects were obtained in 
the low-glucose, respiratory condition, with an average flux fold-change of 1.85. A 
value of 0.46 was obtained for fermentation and high glucose availability condition, 
in contrast. This general trend reflects an overall effect of metabolic flux 
upregulation in conditions of low glucose, in comparison to an optimal flux 
distribution, whilst a general flux downregulation is induced under conditions of 
high glucose availability. This result was majorly caused by the number of reaction 
fluxes that are totally activated or deactivated by the regulatory layer (57 in low 
glucose and respiration, and 29 for high glucose fermentative conditions). 
 
Figure 32 shows that the most notable effects of regulation over metabolic flux in 
respiration, were found around the pyruvate node. Interestingly, this metabolite is 
the intersection of multiple pathways, being the end product of glycolysis, from 
which the carbon flux can go either into fermentative pathway producing ethanol 
and acetate, or towards the TCA cycle, for cellular respiration and production of 
metabolic building blocks. In parallel, the flux through the phosphoenolpyruvate 
carboxykinase, which regenerates phosphoenolpyruvate from oxaloacetate, a crucial 
reaction for gluconeogenesis, was found to be highly upregulated. These results 
suggest that under scarcity of glucose, S. cerevisiae activates reaction steps that are 
fundamental for metabolic switches that may require regeneration of glycolytic 
intermediates from non-fermentable carbon sources. 
 
Additionally, as the formalism used in the transcriptional layer of the hybrid model 
(equations 6.1 and 6.2) may force the use of enzymes that are not required to sustain 
an optimal flux distribution, an excess of enzyme mass is predicted to be available 
for several reactions in the network. This effect induces the emergence of futile 
fluxes (activation of some reaction steps in both the backwards and forwards 
reaction) across the network. In respiratory conditions, this is clearly observed in 
galactose metabolism, as all its constituent enzymes are expressed, resulting in a net 
flux of zero mmol. Other large futile fluxes arise in the two final steps of TCA cycle, 
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reactions in lower glycolysis, and in alcohol dehydrogenase (ADH). These futile 
fluxes indicate that the regulatory layer induces expression of excess enzyme mass 
in reaction steps that ensure the flux of carbon all the way down through glycolysis 
in combination with a clockwise functioning of the TCA cycle, which is known as 
cellular respiration, being the most efficient pathway for substrate utilization for 
energy production.  
 
Moreover, the futile fluxes through the ADH reaction and in galactose metabolism 
suggest that, under glucose limitations, the regulatory machinery of the cell ensures 
expression of the necessary enzymes for catabolizing other sugars or non-
fermentable carbon sources. Interestingly, futile fluxes that in TDH, PGK and ENO, 
together with upregulation of PCK could allow to run flux towards gluconeogenesis, 
additionally additional enzyme expression in the  TCA cycle favors their reversibility 
. These finding are also supported by expression data. Altogether, this behavior 
shows that S. cerevisiae cells have developed multi-responsive regulatory 
mechanisms that control flux through respiration, while expressing an enzymatic 
machinery that is ready to respond to changes in extracellular nutrients. 

 
Figure 32.- Computing the impact of regulatory layer in flux predictions of the hybrid model 
under respiratory and low glucose conditions. Nodes indicate metabolites and edges the 
reactions catalyzed by the enzymes. Edge thickness indicates the magnitude of net flux values, 
color indicates the fold-change in predicted flux the hybrid model over the one from the pure 
enzyme-constrained model. Purple arrows show predicted futile fluxes. Green circles indicate 
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enzymes that exert control over the overall glucose uptake in the pure enzyme-constrained 
model. Green squares indicate enzymes that exert control over the overall glucose uptake in 
the hybrid model. 
 
In respire-fermentative conditions at a high-glucose regime, an overall flux 
downregulation of the TCA cycle and oxidative phosphorylation pathways, together 
with upregulation of the fermentative fluxes were predicted by the hybrid model. 
Less futile fluxes are predicted to arise in this condition, nonetheless, several futile 
fluxes are predicted in glycolysis, with the highest one arising in the triose-phosphate 
isomerase reaction, known for its low equilibrium constant and its operation under 
near-to-equilibrium conditions87,221,222. Operation of biochemical reactions near to 
equilibrium creates conditions in which slight changes in intracellular metabolites 
can induce drastic changes in flux or even reverse the direction of the net flux, 
providing cells with metabolic robustness that can respond to environmental changes 
without the need of modulating translation rates of these enzymes14,222. Interestingly, 
the pattern of futile fluxes emerging due to regulation in respiratory metabolism, 
indicates that the cell is capable of adapting to galactose consumption, if needed, by 
expression of the Leloir pathway.  

 
Figure 33.- Computing the impact of regulatory layer in flux predictions of the hybrid 
model under mixed respire-fermentative metabolism and high glucose conditions.  
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In order to analyze the effect of enzyme levels over the control of metabolic flux, 
flux control coefficients, defined by MCA theory, were approximated by running 
sensitivity analysis of glucose uptake rate to small perturbations on individual 
enzyme activities under steady state. When the approximated control coefficients are 
calculated with the pure enzyme-constrained model, a very high value (close to 1) is 
obtained for the hexokinase reaction, despite the glucose availability level. In 
contrast, computation of these coefficients with the hybrid model predicts a null 
control exerted by hexokinase, therefore, glucose uptake control is spread across 
more enzymes in the network. In low-glucose conditions control is mostly governed 
by enzymes in oxidative phosphorylation. In high-glucose respiro-fermentative 
conditions, control is spread across reaction steps that connect different pathways 
(PFK, FBA and TDH, connecting glycolysis and the PPP; and PYK, PDC and PYC 
around the pyruvate node, which connects three different pathways). 
 
6.4 Summary 
 
In paper VI a hybrid model, representing the regulatory gene network induced by 
nutrient signaling and an enzyme-constrained network of central carbon and energy 
metabolism in S. cerevisiae cells was constructed. The model was used to investigate 
the effects of gene regulation over metabolic flux. 
 
Comparison of predictions between the pure enzyme-constrained model and the 
hybrid model revealed significant improvements in prediction of protein allocation 
to metabolic enzymes. This was mostly caused by diversified use of isoenzymes for 
multiple reaction steps in the hybrid model, in contrast to a pure enzyme-constrained 
model which predicts an optimal allocation of the protein and carbon resources. This 
finding is consistent with protein abundance data for respiratory and respire-
fermentative conditions in which multiple isoforms are found to be expressed 
simultaneously. 
 
The emergence of futile fluxes in different sectors of metabolism, especially under 
respiratory conditions, suggest that the regulation machinery might be able to 
leverage reactions operating near to equilibrium, in order to reduce the need for 
rapidly changing protein levels when nutrients are scarce. In contrast, the prediction 
of less futile fluxes and flux enzyme control spread across different pathways, 
predicted by the hybrid model under high glucose conditions, suggests that the 
regulatory machinery of yeast prioritizes metabolic control by modulating 
expression of key enzymes in situations of high protein demands. 
 
Overall, construction of a structured model of gene regulation enables connection of 
expression of individual enzymes to specific steps in the regulatory network, offering 
a tool for a more comprehensive study of allocation of limited resources in the cell.  
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Conclusions 
 
In this thesis I have explored how proteins constrain the metabolism and functioning 
of three different species of budding yeasts, S. cerevisiae, Y. lipolytica and K. 
marxianus. Different quantitative methods in systems biology were developed, 
extended, and implemented for generating an understanding of these constraints 
across different levels or scales of biological phenomena, such as evolution, 
metabolism, and regulation of protein expression. Moreover, a personal historical 
account of the evolution of systems biology and its core ideas and methods, was used 
as a mean to understand the possibilities, limitations, and implications of top-down 
and bottom-up approaches, both being used in this work. 
 
The findings in paper I offered an evolutionary perspective of the genome and 
proteome of budding yeasts. Top-down analysis of their transcriptome and proteome 
under different conditions of environmental stress, indicated that exploration of the 
sequence space, by differentiated expression of small and non-essential proteins has 
enabled their adaptation to diverse ecological niches.  
 
Top-down analyses can be used for understanding the presence and levels of gene 
products in cells. Bottom-up methods, such as metabolic modeling and simulation 
offer a quantitative overview of cellular processes. Integration of kinetic and protein 
abundance data into metabolic models has been used in this thesis to refine 
phenotype predictions across yeast species. Study of the protein abundance data into 
a metabolic context confirmed that, despite their phylogenetic relation, the high 
conservation of metabolism, and the common mechanism of stress adaptation, 
enzymatic limitations for long-term stress adaptation are different across these 
yeasts. Additionally, the enzyme limitations in metabolism under stress found with 
ecGEMs and proteomics data for these yeasts, showed to not correspond to their 
transcriptional responses, suggesting potential gene engineering targets for 
modulation of flux patterns. This can be leveraged for construction of robust strains 
for biotechnological processes, in which changing or stressful environments for cells 
are common.  
 
In paper IV an ecGEM of S. cerevisiae was used to accelerate the design of a 
metabolic engineering strategy that increased intracellular accumulation of heme by 
70-fold in cell cultures. The learnings from this project facilitated the development 
of a method of prediction of optimal metabolic engineering strategies for increasing 
production of metabolites in cells, that can account for allocation of carbon flux and 
the limited protein machinery of the cell towards the desired goal. Study of predicted 
gene engineering targets for increasing production of 100 different chemicals in S. 
cerevisiae cells, revealed that the complexity of the rewiring strategy increases for 
production of metabolites that come from highly enzymatically constrained 
pathways. Demonstrating that the design of production strains should account for the 
optimal way of balancing metabolic precursors, cofactors and a limited catalytic 
machinery between cellular growth and the production pathways. 
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Integration of a gene regulatory network of nutrient signaling mechanisms, together 
with an enzyme-constrained model of central carbon metabolism of S. cerevisiae, 
was used to study how cells modulate their enzymatic landscape to respond to 
changing levels of glucose in the environment. It was found that S. cerevisiae 
displays regulatory mechanisms that induce protein expression patterns that deviate 
from kinetic optimality, in order to provide the cell with robustness to changes in 
nutrient availability. Study of flux distributions showed that robustness can be gained 
by expressing enzymes for utilization of alternative carbon sources; modulated 
expression of enzymes with high kinetic control over the flux of carbon; and 
expression of excess enzyme mass in order to operate key reactions near to their 
equilibrium, to minimize the need of changes in translation if the metabolome 
changes.   
 
The work in this thesis provides an overview of enzyme constraints in metabolism 
of budding yeast cells that can be described in a simple way by an analogy. The 
metabolic network is formed of interconnected “channels” (reactions) were nutrients 
flow. Different “turbines” are available in the network for generating the necessary 
energy for the maintenance and control of the flow through it. Several control 
systems exist for regulating the flow of nutrients through the network, “valves” can 
be opened, closed, or modulated in order to regulate the amount of flow through 
different sectors of the network of channels. These control systems can “sense” 
changes in the surroundings of the network, which is the source of the materials that 
flow through it.  
 
Drastic changes in the upcoming material from the exterior trigger a cascade of 
events that regulate the “valves” inside the network, so that the energy turbines keep 
on functioning, and the flow of material irrigates essential points in the network. 
New channels are added randomly in peripheral sectors of the network over time. 
The valves in the new channels can be operated in diverse ways, and some of these 
will provide the network with capabilities for enduring other external changes in its 
surroundings. The additions of new channels and new ways of regulating the valves 
in them may derive in a network that can fulfill more functions that it was originally 
designed for. Finally, the network of channels can be leveraged for reaching different 
operation goals, by rational modification of the channels and controlling valves in it.  
 
The use of different quantitative methods of systems biology in this thesis facilitated 
the identification of dual causality in biological processes. Cells modulate their gene 
expression according to the physico-chemical and environmental constraints that 
they are exposed to. Metabolic flux patterns that ensure survival of the cells under 
these environments, emerge as a property of the whole system, encompassing the 
changing exterior of the cell, and the modulated coordination of gene products in its 
interior (phenotype). Over long periods of time, these environmental changes can 
also perturb the genotype of the cell, which induces changes that translate in different 
and new accessible phenotypes.  
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In this thesis I have tried to demonstrate that systems biology provides a scientific 
framework for gaining novel understanding of biological processes, but also 
methodological tools that can be used for guiding rational manipulation of living 
cells for purposes of human interest, such as sustainable production of chemicals in 
microbial cells. 
 
The historical narrative in the initial chapter of this thesis has the objective of 
showing that the development of a scientific discipline is a non-linear path. Multiple 
ideas and methods came to the study of biological processes from diverse fields of 
science and engineering, accumulation of these incorporations resulted in a shift of 
understanding of causational chains in living systems. Additionally, this historical 
review has made me realize that systems biology is a discipline with its own 
methodological, epistemological, and ontological propositions. Furthermore, 
parallel development and advancements in molecular biology continue nourishing 
systems biology. The increase in the available knowledge of biological components 
can be weaved together by the integrative approaches of systems biology to refine 
our understanding of life. Altogether, this has expanded biology, from a purely 
descriptive science to a discipline that can also be predictive and used rationally for 
manipulation of nature, as has also happened in the history of physics and chemistry. 
 
The focus on mentioning specific names of scientists, their conceptual contributions 
to the history of systems biology, and their achievements, shows that a scientific 
discipline is something that evolves with time, by accumulation and interconnection 
of the work of multiple individuals and groups. Thus, the definition and description 
of a scientific field cannot be accomplished a priori and depends on an historical 
evolution process. 
 
Finally, I would like to mention that the products of the work in this thesis have not 
only been used for the projects described here, but also for the rest of publications 
that I have contributed to during my years as a doctoral student. Even more, the 
resources produced here, including metabolic models, simulation methods, software 
for metabolic modeling and data analysis, etc. provide an infrastructure for 
facilitating the scientific endeavors of other individuals and groups in biological 
sciences. 
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Future perspectives 
 
Systems biology has proven to be a powerful framework for integration of all the 
accumulated information and measurements of individual biological components 
into representations of living systems. Nevertheless, elucidation of biological 
functions from data analysis, or integration of data into models, depends largely on 
the prior knowledge on the function of genes. This results in difficulties for 
understanding the role of genetic components in higher-level functions. Different 
quantitative techniques should be combined to identify uncharacterized gene 
products, that are observed to be associated with emergent properties of living cells.  
 
The top-down methods used in this thesis offer an example of how data-driven 
approaches can be used for narrowing down the efforts of characterizing genes of 
unknown function. Results from this project, and the posterior integration of 
proteomics data into metabolic models of yeast, highlight the need for a change of 
perspective to lead gene characterization endeavors, from asking what is the function 
of a gene? To asking, what properties or biological functions arise by the presence 
of this gene and its products in the context of a living system? 
 
Mathematical modeling of cellular function, especially at genome-scale, is limited 
not just by the lack of knowledge in gene function, but also by the availability of 
kinetic and other physico-chemical parameters of gene products of known function. 
The advent of machine learning methods and its rapid integration into biological 
sciences has enormous potential for refinement of quantitative models in systems 
biology. Recently, multiple implementations of machine learning methods for 
prediction of kinetic parameters of enzymes have been developed. Extension and 
improvement of these methods will enhance the predictive power of enzyme-
constrained models across organisms and diverse environments. Moreover, this 
offers the possibility of parameterizing more complex mathematical models of cell 
function, such as those encompassing metabolic and gene and protein expression 
processes, or even aiding the parameterization of large-scale kinetic models based 
on ODEs.  
 
On parallel, further development of high-throughput techniques for facilitating and 
accelerating the measurement of physico-chemical parameters of gene products, is 
crucial for producing additional data to refine existing models, validate model 
predictions, and further enhance the training of machine-learning models for 
improved estimation of parameters.  
 
Together, machine learning and experimental characterization of kinetic parameters 
of enzymes will refine the prediction of metabolic engineering strategies that balance 
the use of nutrients and cellular resources for a desired objective. Rewiring of 
metabolism has the potential of improving cell factories for bioproduction, 
engineering living species for bioremediation or climate change adaptation, and for 
medical applications in metabolic human diseases. 
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Incorporation of regulatory constraints into metabolic and enzyme constrained 
models has been used to improve phenotype predictions and provide understanding 
of emergent biological phenomena. Nonetheless, this approach has limited potential, 
as the knowledge on gene regulatory networks is mostly at the qualitative level. This 
problem can be partially tackled by using these hybrid models for identification of 
the components of gene regulation with the highest impact over phenotype 
predictions. This information can be used for identifying crucial components in gene 
regulation that can be studied with more quantitative experimental techniques. 
Iterations in this process could result in construction of quantitative understanding 
of the interactions between metabolism and gene regulation.  
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Stress-induced expression is enriched
for evolutionarily young genes in diverse
budding yeasts
Tyler W. Doughty 1,2, Iván Domenzain 1,2, Aaron Millan-Oropeza 3, Noemi Montini4, Philip A. de Groot5,

Rui Pereira 1,2, Jens Nielsen 1,2, Céline Henry3, Jean-Marc G. Daran 5, Verena Siewers 1,2✉ &

John P. Morrissey 4✉

The Saccharomycotina subphylum (budding yeasts) spans 400 million years of evolution and

includes species that thrive in diverse environments. To study niche-adaptation, we identify

changes in gene expression in three divergent yeasts grown in the presence of various

stressors. Duplicated and non-conserved genes are significantly more likely to respond to

stress than genes that are conserved as single-copy orthologs. Next, we develop a sorting

method that considers evolutionary origin and duplication timing to assign an evolutionary

age to each gene. Subsequent analysis reveals that genes that emerged in recent evolutionary

time are enriched amongst stress-responsive genes for each species. This gene expression

pattern suggests that budding yeasts share a stress adaptation mechanism, whereby

selective pressure leads to functionalization of young genes to improve growth in adverse

conditions. Further characterization of young genes from species that thrive in harsh envir-

onments can inform the design of more robust strains for biotechnology.
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Yeasts in the Saccharomycotina subphylum, (budding yeasts),
have proven to be useful platforms for the production of
ethanol, flavors, nutritional supplements, biopharmaceu-

ticals, as well as other valuable chemicals1–3. At present, industrial
production using budding yeasts is dominated by the extensively
characterized species Saccharomyces cerevisiae. S. cerevisiae exhibits
common budding yeast phenotypes (e.g., efficient growth on some
simple sugars) as well as a less common adaptation amongst
budding yeasts, high ethanol tolerance4. Together, these traits
enable cost-effective production of 100 billion liters of ethanol
annually using S. cerevisiae as a platform1. Other budding yeasts
have adaptations that make them well-suited for production of
specific biomolecules, something that is possible due to the
improved strain engineering capacity following the emergence of
CRISPR/Cas95,6. Examples are Yarrowia lipolytica, which evolved
to tolerate hydrophobic environments and can produce high-yields
of fatty acids7,8, and Kluyveromyces marxianus, whose thermo-
tolerance is a beneficial feature for industrial processes6,9. Despite
progress in sequencing genomes and phenotypic characterization
of these and many other yeast species, the genes that underpin
adaptation to cope with harsh conditions remain enigmatic.

For the species above, adaptations to natural environments
enable robustness in industrial biotechnology processes.
Understanding the genes that influence these and other excep-
tional stress tolerances would enable the engineering of more
robust industrial strains, thereby reducing process costs and
increasing yields10,11. Although studies that sought to char-
acterize stress tolerances in S. cerevisiae have elucidated
mechanisms that influence robustness10,12,13, engineering more
robust S. cerevisiae strains without physiological trade-offs
remains challenging9. One complication is that stress exposure
often results in hundreds of significant transcriptional
changes13,14, most of which do not correlate with single gene
deletion changes in robustness11. These results suggest that
multiple genes from different gene families may contribute
additively to robustness and/or that stress genes may exist as
duplicates, as is the case for antifreeze protein genes in artic
yeasts15. Thus, researchers have employed systems biology to
characterize the transcriptome and/or proteome-wide stress-
induced changes13,14,16–18. These approaches have identified
biological processes that exhibit altered expression in response
to stress exposure, which builds upon and relates to previous
research into gene functions (e.g., GO term enrichment analy-
sis). These associations are possible due to extensive annota-
tions of S. cerevisiae genes that result from decades of
experimental analyses19. For most other yeast species, the
majority of gene functional information is acquired second
hand via homology search tools. This paradigm results in a large
portion of genes of unknown function, which is especially large
for species that are phylogenetically distant from extensively
characterized species like S. cerevisiae20. These uncharacterized
genes are difficult to integrate into omics analyses like GO term
enrichment, as they do not have a known function or locali-
zation. Because of this, gene functional analysis of poorly
characterized species is restricted to conserved genes, which
may not be the only genes that influence stress-tolerance phe-
notypes. Currently, hundreds of whole genome sequences are
available from diverse budding yeasts21, including several spe-
cies that are known to exhibit extreme stress tolerances22, but
many of the causative genes that enable yeast stress tolerances
remain elusive.

Here, we analyze stress conditions to assess gene expression
changes after stress adaptation in three diverse budding yeast
species, one of which is well characterized (S. cerevisiae), and two
that are less-well-characterized (K. marxianus and Y. lipolytica).
The goal of this analysis is to identify common systems-level

trends that are shared between each species stress responses. This
analysis discovers that each organism displays a consistent
response at the level of gene expression that is characterized
by the enrichment of stress responsive genes amongst certain
categories: namely, genes of unknown function and recently
(in evolutionary time) duplicated and taxonomically restricted
genes (young genes). The findings of this work suggest an evo-
lutionary mechanism that is biased for stress tolerance functio-
nalization and stress-induced expression of young genes. We
propose that the gene sorting method we developed provides a
path forward for more rapid identification of stress response
genes in environmentally robust yeast, thereby accelerating
understanding of niche adaption in budding yeasts.

Results
Conserved category enrichment of stress responsive genes. In
this work, S. cerevisiae, K. marxianus, and Y. lipolytica were
exposed to stress conditions that are present in natural envir-
onments, such as those caused by environmental temperature
variation and growth on sugar-rich or acidic substrates22. These
stress responses are also industrially-relevant, as they are caused
by feedstocks (high osmotic pressure and low pH) or process
conditions (elevated temperatures) during industrial fermenta-
tions11. Characterizing stress responses in these species is
valuable due to their phylogenetic diversity, which spans much
of the Saccharomycotina subphylum21. To minimize noise
caused by variable growth rate23, experiments were carried out
in steady-state chemostats at a fixed growth rate under standard
and stress conditions. This experimental setup allows strains to
adjust to the conditions imposed by sub-lethal stress before
sampling and analysis. Transcriptomic changes that occurred in
response these stress conditions were identified via differential
expression analysis (Fig. 1a).

To understand the function of stress responsive genes,
biological process annotations were acquired from Ensembl
(S. cerevisiae) or identified using BLAST2GO20 for (K. marxianus
and Y. lipolytica). BLAST2GO annotated gene functions to
otherwise unknown genes based on homology to an experimen-
tally characterized gene. This process failed to annotate 20% and
38% of the mRNAs measured by RNAseq in this study for K.
marxianus and Y. lipolytica, respectively (Supplementary Fig. 1A).
The lower frequency of gene annotation for Y. lipolytica was
expected, since this species is not closely related to extensively
characterized yeasts21. Comparison of gene annotations and
differential gene expression showed a higher percentage of genes
of unknown function that were stress responsive than would be
expected. For example, 38% of all protein-coding genes measured
in this study for Y. lipolytica lacked a functional annotation, while
50% of stress responsive genes were genes of unknown function
(Supplementary Fig. 1B).

This high proportion of stress-responsive genes of unknown
function suggested that the most broadly conserved genes, which
often have functional annotations, might be under-represented
amongst the stress responses. To assess this, orthologous proteins
shared between the three yeast species were inferred using
OrthoFinder, which enables proteome-wide matching based on
amino-acid sequence and chain length similarity in order to
predict proteins that descend from a common ancestor24. To
assess the fidelity of ortholog predictions, protein complexes and
enzymatic processes that were previously characterized as
conserved amongst budding yeasts as single-copy genes were
searched for amongst orthology inference results25. This analysis
found that orthology inference identified the majority of the
expected complex members and enzymes as orthologs (Supple-
mentary Fig. 2B), which supports the high fidelity of OrthoFinder
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predictions that was observed previously24. The results of the
orthology inference analysis were used to divide each protein into
one of three classes, single-core orthologous, multi-core ortho-
logous, and non-orthologous. These proteins were matched to
their corresponding genes for comparison to RNAseq differential
expression. Gene sorting examples are shown in Supplementary
Fig. 2A and the complete lists of genes for S. cerevisiae, K.
marxianus and Y. lipolytica are in Supplementary Data 1,
Supplementary Data 2 and Supplementary Data 3, respectively.

The results of orthology inference for S. cerevisiae are shown in
Fig. 1b as an example. Each measured protein-coding gene from
S. cerevisiae was identified as either (1) present as a single-copy
gene with an ortholog in K. marxianus and Y. lipolytica (black
Single-Core), (2) present as a duplicated gene with an ortholog in
K. marxianus and Y. lipolytica (gray Multi-Core), or (3) lacking
an ortholog in K. marxianus or Y. lipolytica (color Non-Core).
The resulting groups were compared to the observed differentially
expressed (DE) genes, which showed that multi-core and non-
core genes were significantly enriched amongst DE genes in each
stress condition tested (Fig. 1c). The same gene sorting regime
shows that K. marxianus and Y. lipolytica exhibited similar DE
gene enrichment for the multi-core and non-core gene groups
(Fig. 1c and Supplementary Fig. 3A). Similar results were found
amongst proteomics measurements for some stress conditions
(Supplementary Methods 2–5), but this analysis was hindered by
low detection of non-core proteins (Supplementary Fig. 3C).

The phenomenon depicted in Fig. 1C shows that single-core
genes, which are predicted to have descended from a last common
ancestor between the three yeast species (approximately 325 million
years ago21), were under-represented amongst stress responsive
genes for each stress and each organism. In contrast, genes that
have duplicated or emerged in more recent evolutionary time were

enriched amongst stress responsive genes. These observations
suggest that evolutionary events may predict differential expression
amongst these diverse yeast species (Fig. 1d).

S. cerevisiae stress response is enriched for young genes.
The results in Fig. 1 suggested a relationship between the genes
that exhibit differential expression in response to stress and
evolutionary events, like de novo gene emergence and gene
duplication. Further characterization of this relationship could
aid in understanding stress gene evolution and could help to
predict genes that enable stress tolerance. Thus, we sought to test
this relationship more stringently by dividing the protein-coding
genes of S. cerevisiae into more precise groups that collectively
represent a broad swath of eukaryotic evolution. The resulting
groups are referred to as gene age groups, which were determined
by ortholog presence at shared copy number in common ances-
tors that date from over 400 million years ago to 20 million years
ago21. A similar approach, phylostratigraphy, divides genes into
groups based on homology and has been used to infer gene ori-
gination events to identify periods in evolution that correlate with
adaptive events26. However, the results in Fig. 1c indicated that
an analysis procedure that considers both gene origin timing
(like phylostratigraphy) and gene duplication timing could pro-
vide insights into stress responsive gene expression.

Gene grouping based on gene age was assessed using
OrthoFinder24 and is described in detail in Supplementary
Method 1. Briefly, all S. cerevisiae genes were divided into three
initial subsets; (1) fixed duplicates from the whole-genome
duplication (WGD)27, (2) genes that are present as single-copy
genes, and (3) duplicate genes that arose outside of the
whole-genome duplication (non-WGD) (Supplementary Fig. 4A).

a c

d

b

Fig. 1 Stress adaptation responsive genes are enriched for duplicated and non-conserved genes. a S. cerevisiae, K. marxianus, and Y. lipolytica were
cultivated in chemostats in standard conditions or in the presence of stress (elevated temperature, low pH, or KCl). RNAseq was performed followed by
differential expression analysis. b The protein-coding genes of each organism were compared to infer orthology using OrthoFinder. The resulting gene
groups for S. cerevisiae are shown, with single-copy orthologous genes (Single-Core [black]), multi-copy orthologous genes (Multi-Core [gray]), and genes
that were not shared (Non-Core [blue]). c The number of differentially expressed (log2FC > 1, FDR < 0.01) mRNAs were divided by the total number of
detected mRNAs inside of each ortholog group. Values were normalized to the overall DE gene # divided by the total genes measured, p-values were
calculated using a two-sided Fisher’s exact test. d A simplified phylogenetic tree. Single Core orthologs are predicted to originate from a Last Common
Ancestor >325 million years ago. Multi- and Non-Core Genes are predicted to have duplicated or arisen de novo <325 million years ago.
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Ortholog inference was used to sort each of the 4351 single-copy
genes into a single bin based on the most distant ancestor with an
orthologous gene using the hierarchal approach shown in
Supplementary Fig. 4C. The multi-copy non-WGD gene groups
were sorted by the presence of orthologous genes with the
same copy number in a bottom-up approach in order to trace the
relative timing of gene duplication events (Supplementary
Fig. 4D). Finally, genes that were duplicated during the whole-
genome duplication were grouped together. This sorting method
matched each protein coding gene from S. cerevisiae to a single
group that reflects the timing of the emergence (single-copy
genes) or timing of duplication (multi-copy genes) of each gene,
which we refer to as gene age. The inherent limitation with this
approach is the availability of accurately annotated genome
sequences across the phylogenetic tree. In the future, more
phylogenetic information and additional gene matching algo-
rithms will improve the fidelity of gene age prediction and may
lead to some refining of the gene age categorization. Gene sorting
examples are shown in Supplementary Fig. 2A and the complete
list of genes can be found in Supplementary Data 4.

The gene groupings in Fig. 2b were compared to the stress
RNAseq data to determine the percentage of significantly
differentially expressed genes in each age group. This analysis
found a stepwise increase in the relative amount of differentially
expressed genes in progressively younger gene groups in S.
cerevisiae. Genes that were found to be conserved to filamentous
fungi (ancient genes from group I) were 4.2 to 6.6-fold less likely to
be differentially expressed after stress adaptation compared to S.
cerevisiae-specific genes (group V) (Fig. 2c). Similar trends were
observed when considering only upregulated or downregulated
genes, however, upregulated genes showed a more pronounced bias

towards young genes with 6.6 to 16.8-fold enrichment between
group I and group V genes (Supplementary Fig. 5). Analysis of the
expression pattern of young genes (those in groups IV and V)
showed that few genes exhibited significantly changed expression in
response to all stresses (Fig. 2d, e).

The findings in Fig. 2 were further tested by analyzing
additional stress adaptation experiments for S. cerevisiae exposed
to ethanol in a previous study28 or anaerobic stress (this study)
(Supplementary Fig. 6). In both cases, young genes were enriched,
and ancient genes were depleted amongst differentially expressed
genes in response to stress adaptation. A similar enrichment for
young genes was observed amongst varying amounts of ethanol
stress, despite a difference in the number of total significant gene
expression changes (Supplementary Fig. 6D). Together, these
observations suggest that the sorting algorithm presented in
Supplementary Fig. 4 is able to consistently identify a relationship
between gene age and stress gene expression for several types and
levels of stress in S. cerevisiae.

Shared gene enrichment pattern across the Saccharomycotina.
The findings in Fig. 2 showed an inverse correlation between gene
age and stress differential expression in S. cerevisiae. If these
findings were shared amongst other yeast species, they might
imply an underlying evolutionary mechanism that can predict the
genes that are more likely to be involved in stress adaptation. To
test for a relationship between differential expression and gene
age, we stratified the protein-coding genes of K. marxianus and
Y. lipolytica using the same sorting concept described above for S.
cerevisiae (Supplementary Fig. 4). The only modification to these
sorting approaches was the elimination of the whole-genome

a b

d

e

c

Fig. 2 Stress adaptation responsive genes in S. cerevisiae are enriched for young genes. a A simplified phylogenetic tree for S. cerevisiae showing
speciation events and the Whole Genome Duplication (magenta*). b The transcripts detected via RNAseq from this study were grouped based on ortholog
presence in the groups shown (described in detail in Supplementary Fig. 4). c Differentially expressed genes for S. cerevisiae were parsed by their grouping
shown in b, then normalized to the group size and the proportion of total Differentially Expressed (DE) genes per condition (dashed line). Transcripts in
groups IV and V were assessed for shared upregulated genes (D) or downregulated genes (E).
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duplication group, as neither of these species has undergone a
recent whole-genome duplication29,30.

Analysis of K. marxianus and Y. lipolytica gene groups in
relation to each stress condition showed similar patterns to S.
cerevisiae, with ancient genes exhibiting under-representation for
significant differential expression compared to young gene groups
(Fig. 3 and Supplementary Fig. 7). Also, as with S. cerevisiae, there
were few young differentially expressed genes that responded to
all stresses, suggesting that these expression changes were often
condition specific (Fig. 3d, e). These biases towards young genes
might explain the low observed overlap between significant
expression changes amongst 1:1:1 orthologs shared between the
three budding yeasts when exposed to the same type of stress
(Supplementary Fig. 8). Together, these findings showed that in
all three yeasts studied, young genes were enriched for long-term
stress-responsiveness, or adaptation, compared to ancient genes.
Further, since the species chosen for this analysis span much of
the diversity of the budding yeast subphylum21, these results may
be indicative of a shared stress adaptation mechanism, rather
than a shared response of specific genes, amongst budding yeasts.

Features of young genes are consistent with adaptive roles. To
understand the functions associated with the gene groupings
produced in this study, we assessed biological processes associated
with the ancient and young gene sets in S. cerevisiae, where ample
functional information is available. This analysis showed ancient
genes associated with fundamental biological processes including

primary metabolism, tRNA aminoacylation, and DNA strand
elongation, and 94% of these genes were annotated with at least
one biological process GO term. Conversely, young genes (groups
IV and V) were associated with more specialized functions like
maltose transport, vitamin biosynthesis, and aldehyde metabo-
lism, with many young genes lacking any biological process
annotations in S. cerevisiae (40%). K. marxianus and Y. lipolytica
also exhibited high percentages of young genes that were not
associated with a biological process (41% and 69%, respectively)
(Supplementary Fig. 9B). The fundamental nature of ancient gene
functional associations was reflected by their high likelihood of
being essential or required for optimal growth compared to young
genes. Conversely, the more specialized functions of young genes
were reflected by the 16-fold decrease in likelihood of growth
impairment upon deletion compared to ancient genes (Fig. 4c)31.
Analysis of cellular component enrichment showed that young
proteins (groups IV and V) were significantly enriched for loca-
lization to the plasma membrane, cell wall, and vacuole, which
was distinct from ancient proteins (group I) enrichment for
nuclear, cytoplasmic, and mitochondrial localization (Supple-
mentary Fig. 9B).

Further characterization of young protein-coding genes found
that they exhibited lower median gene expression and their
corresponding proteins were less frequently detected via mass
spectrometry in non-stress samples compared to ancient genes
(Figs. 4a, b). Previous works have shown that low expression and
non-essentiality correlate with increased adaptation rates32,33,

a

c d

e

b

Fig. 3 Stress adaptation responsive genes in K. marxianus are enriched for young genes. a A simplified phylogenetic tree for K. marxianus showing
speciation events and organisms used in orthology queries. b The transcripts detected via RNAseq from this study were grouped based on ortholog
presence in the groups shown (described in detail in Supplementary Fig. 4). c Differentially expressed genes for K. marxianus were parsed by their grouping
shown in a and b, then normalized to the group size and the total measured DE % (dashed line). Transcripts in groups IV and V were assessed for shared
upregulated genes (d) or downregulated genes (e).
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suggesting that young genes could adapt more rapidly compared
to ancient genes. To test this, amino acid sequence identity was
compared between homologous proteins from members of the
same genus using BLAST+. Analysis of each protein sequence
from groups I and IV allowed sequence identity changes to be
compared over the same span of evolutionary time to assess
adaptation rates. This analysis was adjusted to reflect the
estimated evolutionary time elapsed21 between each pair of
species and showed that the average frequency of amino acid
identity changes was higher for young protein groups compared
to ancient protein groups (Fig. 4d).

Discussion
Budding yeasts are attractive for industrial production of bio-
molecules, since they grow rapidly, utilize inexpensive substrates,
and are readily engineered to produce heterologous gene pro-
ducts1–3. However, stresses that result from feedstock composi-
tion, toxic products, and fluctuating reaction temperatures can

lower the cost-effectiveness of industrial processes by diminishing
productivity and yields11. Previous works have phenotypically
characterized yeasts exhibiting stress tolerant phenotypes22, and
whole genome sequencing data are available, but the genes that
have evolved in these yeasts to enable survival and growth under
unfavorable, stress-inducing conditions remain unclear. We now
identify an association between stress-induced gene expression
and gene age. We show that younger genes, namely, those that are
restricted to a genus or species, or have duplicated in recent
evolutionary time, are more likely to respond to different types of
long-term stress, such as those that were imposed in continuous
(chemostat) cultivation in this report. These stress-responsive
genes can also be considered adaptation or niche-specialization
genes as they have evolved to enable the yeasts carrying them
tolerate ongoing harsh conditions.

The findings that adaptation rates and stress gene expression
are biased toward young genes for three distantly related yeast
species suggests an underlying evolutionary mechanism. The

a b

d e

c

Fig. 4 Less expressed and often non-essential young genes adapt more rapidly than ancient genes. a Standard growth condition RNAseq reads were
normalized to the read depth and gene length to generate Transcripts per Million (TPM). Error bars at the 95% confidence interval of the median. b The
percentage of mRNAs measured compared to proteins measured via mass spectrometry by quantifying eXtracted Ion Chromatograms. c The percentage of
essential genes (black) and non-essential genes associated with slow growth (gray) is shown for S. cerevisiae ancient genes (I) and young genes (IV and V).
Essential and slow growth ORFs were obtained from Giaever 200220. d The percentage of amino acid identity changes for each protein in comparison to its
closest homolog from a member of the same genus. Results were adjusted to the percent amino acid change per million years (% Intentity (ID) lost/
MYear) using the estimated divergence time between pairs of organisms13. The median and 95% confidence interval is shown. Queries were performed
between S. cerevisiae/S. eubayanus, K. marxianus/K. lactis, or Y. lipolytica/Y. bubula. E. A model for evolution to intermittent stress where random mutations
occur amongst all genes (magenta arrows) followed by non-stress selection for benign mutants (magenta blocked arrow). Mutants that do not influence
growth are selected upon stress exposure for fitness benefits. Source data underlying Fig. 4a, c, and d are provided as a source data file.
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model in Fig. 4e suggests that during non-stress periods, ancient
and young gene mutations may occur at similar rates, however,
ancient genes may be subject to more stringent counter-selection
(magenta blocked arrow) due to their higher expression and
influence on growth (Fig. 4a, c). Conversely, non-synonymous
mutations amongst young genes might accumulate more rapidly
because these genes are rarely growth-related (Fig. 4c, d). The
resulting increase in sequence space that is sampled by young
genes would increase the probability of young mutants to enter
stress-growth competition, thus increasing the chances of select-
ing young gene adaptations to benefit stress tolerance. We suggest
that these events occur in a cyclical manner, enabling stress-
tolerance functionalization of young genes without diminishing
growth potential. This model could also apply to promoter
sequences, which would enable specialized genes to adapt
dynamic expression patterns in order to save resources during
non-stress growth. This mechanism would explain the higher
propensity of young genes to change expression in response to
stress. The model might also provide an insight as to why
improved stress tolerance in some laboratory-evolved strains
comes at a cost to growth under standard growth conditions34,35.
In this case, the relatively short, non-cyclical stresses applied
during adaptive laboratory evolution does not allow for the
counterselection of growth mutations.

In this work we found that young genes represented 4%, 5%,
and 14% of protein-coding genes in K. marxianus, S. cerevisiae,
and Y. lipolytica, respectively, which is in the same range as the
7-19% of genes in C. elegans, D. melanogaster, and H. sapiens that
lack recognizable homologs in other organisms26,36. Previous
works have linked some young genes to species and genus-
specific adaptations, including movement on the surface of fast
water in Rhagovelia water striders37, HIV-1 resistance in owl
monkeys38,39, and the concurrent evolution of antifreeze proteins
in several species40–42. Antifreeze protein genes are well-studied
examples of young genes that arose via de novo gene origin events
between 13 and 18 million years ago in codfishes and are present
at variable copy number in some species43. Concurrently, the
psychrophilic yeast G. antarctica, has evolved to encode nine
antifreeze protein genes whose expression levels are induced by
exposure to cold15,44. These attributes of antifreeze protein genes
are similar to the young genes in this study, which were stress
responsive, emerged in recent evolutionary time, and often exist
at variable copy number. It seems plausible that the young, stress
responsive genes described for K. marxianus could influence the
capacity of this species to grow at higher temperatures (45 °C)9

than other members of the Kluyveromyces genus, like K. lactis
(37 °C)45. Furthermore, the acquisition of this thermotolerant
phenotype in a short span of evolutionary time would be con-
sistent with the involvement of rapidly adapting young genes.

This study and previous stress tolerance investigations have
identified dozens to hundreds of significant gene expression
changes after stress exposure in budding yeasts13,16–18,28. Despite
analysis of such stress-responsive genes in multiple species,
rational engineering to further enhance robustness of industrial
yeast strains remains difficult. The findings of this work suggest
that considering the collective role of evolutionarily young stress-
responsive genes from stress tolerant species is a pragmatic path
forward towards achieving this goal. This suggestion is based on
two points; first, single gene perturbations often fail to reproduce
stress-response phenotypes13; and second, many mutations that
improve stress tolerance cause trade-off phenotypes10,34,35.
Establishing more robust industrial production strains may
require modification of multiple genes and/or expression of sev-
eral exogenous genes, while avoiding growth or physiological
perturbations. To accomplish this, knowledge-driven approaches
are needed to aid the identification of relevant genes that can be

manipulated to confer the desired trait without negative con-
sequences on growth. This goal is complicated by incomplete
gene function information, especially for many stress tolerant
yeast species. In this work, we present a gene sorting method that
identifies a class of genes that are likely to be enriched in response
to diverse stresses. By leveraging gene age information, it will be
possible to focus rational experimental designs on unpredicted
stress tolerance genes, which prior to this work fall into the
category of genes of unknown function. Identifying these genes
using this analysis methodology offers biotechnological potential
as well as the tools to understand the process of species diversi-
fication and niche adaptation in yeast.

Methods
Strains and cultivation conditions. Y. lipolytica (W29), K. marxianus (CBS6556),
and S. cerevisiae (CEN.PK113-7D) were grown in 30 mL synthetic media at 30 °C
for 24 h in shake flasks, followed by inoculation of bioreactors and an initial batch
growth phase. After the completion of the batch phase, chemostat cultivation was
started with a dilution rate of 0.1/h and a working volume of 500 mL (S. cerevisiae)
or 1 L (K. marxianus and Y. lipolytica). Stress conditions were achieved by altering
either temperature, pH, or osmotic pressure (KCl) for the duration of the culti-
vation, specific conditions are listed in Supplementary Fig. 8. Standard growth
temperature was adjusted to reflect organism specific tolerances. Cultivations
for were performed in synthetic medium (SM)46 containing 5 g L−1 (NH4)2SO4,
3 g L−1 KH2PO4, 0.5 g L−1 MgSO4·7H2O, 7.5 g L−1 glucose, trace elements and
vitamins with 1 g L−1 pluronic PE6100 to reduce foaming. Sample collection was
carried out after at least five volume changes (50 h) in steady state growth con-
ditions. At least three biological replicate experiments were performed for each
species and each condition in this work. Steady state growth was defined as less
than 5% deviation in biomass dry weight.

Ortholog prediction with OrthoFinder. For Fig. 1, proteome-wide homology
matching was executed using OrthoFinder24. Proteins were excluded from the core
genome (non-core) if orthology search predicted zero orthologous proteins in any
of the query species. Proteins were designated single-core if they were encoded by
single-copy genes in the species (e.g., S. cerevisiae HIS1) or multi-core if they were
duplicated in the species (e.g., S. cerevisiae GAL1 and GAL3) (Supplementary
Fig. 2). Protein groups were matched to their underlying genes for gene expression
analyses. This grouping strategy was carried out to sort each species protein-coding
genes into a single group. Results of these gene sorting analyses are shown in
Supplementary Data 1, Supplementary Data 2 and Supplementary Data 3. For
Figs. 2 and 3, and Supplementary Fig. 7, OrthoFinder was used to identify
orthologs between each yeast and a set of eukaryotic organisms. This is shown in
Supplementary Fig. 4 and is discussed in more detail in Supplementary Method 1.
The results of these gene sorting analyses are shown in Supplementary Data 4,
Supplementary Data 5 and Supplementary Data 6.

RNAseq preparation and mapping. RNA extractions were performed on samples
that were mechanically lysed with 0.5 mm acid-washed beads using an MP-
Biomedicals FastPrep-24 for three one-minute cycles. Further extraction was
performed using an RNeasy Kit from Qiagen. Libraries were prepared using the
TruSeq mRNA Stranded HT kit. Sequencing was carried out using an Illumina
NextSeq 500 High Output Kit v2 (75 bases), with a minimum of 8 million paired-
end reads per replicate. The Novo Nordisk Foundation Centre for Biosustainability
(Technical University of Denmark), performed the RNA sequencing and library
preparation. RNAseq read mapping was performed after analysis in FASTQC,
which identified one sample from K. marxianus as having overrepresented
sequences. This sample was excluded from the analysis herein. Analysis for TPM in
Fig. 4a was performed using Hisat2 v2.1.047 and StringTie v1.3.3b48. RNAseq
mapping for differential expression was mapped with STAR v2.7.049 and reads
were assigned with featureCounts v1.6.050. Differential expression results can be
found in Supplementary Data 1, Supplementary Data 2 and Supplementary Data 3.

Differential expression analysis. Differential expression results were generated
using limma v3.40.651 and edgeR v3.26.852 R packages and tidyverse v1.3.053 was
employed for various data rearrangements. Filtering was used to remove lowly
expressed genes/proteins, and each dataset was filtered to remove genes/proteins
for which the relative standard deviation was greater than 1 (RSD > 1) across
replicates for a given condition and organism. Differential expression was defined
by a significance cutoff of absolute log2FC > 1 and False Discovery Rate < 0.01 for a
stress condition compared to control. The data analysis pipeline is described in
Supplementary Method 6.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
Data supporting the findings of this work are available within the paper and
its Supplementary Information files. A reporting summary for this Article is available as
a Supplementary Information file. All mapped transcript data and protein detection data
generated in this work can be found at https://github.com/SysBioChalmers/OrthOmics.
RNAseq datasets of data generated in this study can be found using SRA accession
PRJNA531619 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA531619/]. Additional
RNAseq data analyzed in Supplementary Fig. 6 are available in the ArrayExpress
database with the dataset ID E-MTAB-4044 [https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-4044/]. Proteomics data is available via the PRIDE partner
repository with the dataset ID PXD011426 [http://proteomecentral.proteomexchange.
org/cgi/GetDataset?ID=PXD011426]. The source data underlying Figs. 4a, c, and d, as
well as Supplementary Figs. 1A, 2B, 3B, 3C, 6B, 6D, and 9 are provided as a Source
Data file.

Code availability
All custom tools and analysis scripts can be freely accessed at github repository [https://
github.com/SysBioChalmers/OrthOmics].
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ABSTRACT

Metabolic network reconstructions have become an important tool for probing cellular metabolism in the field of systems
biology. They are used as tools for quantitative prediction but also as scaffolds for further knowledge contextualization. The
yeast Saccharomyces cerevisiae was one of the first organisms for which a genome-scale metabolic model (GEM) was
reconstructed, in 2003, and since then 45 metabolic models have been developed for a wide variety of relevant yeasts
species. A systematic evaluation of these models revealed that—despite this long modeling history—the sequential process
of tracing model files, setting them up for basic simulation purposes and comparing them across species and even different
versions, is still not a generalizable task. These findings call the yeast modeling community to comply to standard practices
on model development and sharing in order to make GEMs accessible and useful for a wider public.

Keywords: genome-scale metabolic models; yeast species; systems biology; accessibility; usability; interoperability

INTRODUCTION

Genome-scale metabolic model reconstruction has been estab-
lished as one of the major modeling approaches for systems-
level metabolic studies (Gu et al. 2019). These models are mainly
built in a bottom-up approach, in which genome information is
combined with the accumulated knowledge about the metabolic

capabilities of a living organism to reconstruct a complete
metabolic map (Nielsen 2017). Another widely used approach
for model reconstruction consists of the use of one or multiple
well-curated networks as scaffolds, due to the high degree of
conservation of metabolism for phylogenetically close species.
Metabolic models have been proven to be useful as knowledge
databases (Herrgård et al. 2008), tools for contextualization of
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omics data (Kerkhoven et al. 2016) and for guiding metabolic
engineering projects (Meadows et al. 2016), enabling systematic
explorations of the relationship between genotypes and pheno-
types.

The metabolic model iFF708 (Förster et al. 2003) of Saccha-
romyces cerevisiae, the genome of which was the first eukaryotic
one to be sequenced (Goffeau et al. 1996), was the first published
GEM for its entire domain in 2003. This model has been used as a
scaffold for further network refinements (Duarte, Herrgård and
Palsson 2004; Kuepfer, Sauer and Blank 2005; Herrgård et al. 2006;
Nookaew et al. 2008), which has facilitated the development of
metabolic models for several other budding yeast species over
the years, due to their well evolutionarily-conserved metabolic
capabilities (Shen et al. 2018).

Multiple model reconstructions exist, not just for S. cerevisiae,
but for several other yeast species. These reconstructions have
usually been carried out by different research groups, resulting
in specific network improvements according to their scientific
interests, but at the same time yielding incompatible identifiers
for reactions and metabolites hampering any systematic com-
parison and evaluation across models (Herrgård et al. 2008).

As GEMs are valuable tools for a wide variety of applications,
their end users vary from academic researchers with different
backgrounds and levels of computational skills, to professionals
in the biotechnology and pharmaceutical industries. Therefore,
there is a strong need for computational metabolic models to be
accessible and published in a ready-to-use format, which facili-
tates their utilization by non-expert users. Additionally, the use
of consistent and standardized identifiers for their components
enables comparisons across models, thus simplifying the pro-
cess of finding the best model for a given application.

Latest developments on yeasts GEMs

The development, interconnections and applications of
metabolic models for different yeast species have been reviewed
extensively (Sánchez and Nielsen 2015; Lopes and Rocha 2017;
Castillo, Patil and Jouhten 2019; Chen, Li and Nielsen 2019) how-
ever, the list of yeast GEM models is continuously increasing
both in number of GEMs and encompassed species. Here we
briefly summarize the development history of all models for
diverse yeast species that are currently available in the scientific
literature. The validation strategies and main applications of
these models, as described in their original publications, are
provided in Table S3 (Supporting Information), indicating the
type of biological data and computational methods used for
each case.

S. cerevisiae is one of the most studied organisms in the
Eukarya domain, which has resulted in a long modeling his-
tory with 18 networks currently available. The models iND750
(Duarte, Herrgård and Palsson 2004), iLL672 (Kuepfer, Sauer
and Blank 2005) and iIN800 (Nookaew et al. 2008) were directly
derived from iFF708 (Förster et al. 2003) and subsequently used
as templates for iMH805/775 (Herrgård et al. 2006), iMM904 (Mo,
Palsson and Herrgård 2009), iAZ900 (Zomorrodi and Maranas
2010) and iTO977 (Österlund et al. 2013) reconstructions.

As these multiple reconstructions added new knowledge and
gap-fills to the network, a first attempt of unification was carried
out by the knowledge base Yeast1, published in 2008 (Herrgård
et al. 2008). The concept of standardized identifiers for reac-
tions and metabolites was first implemented in this reconstruc-
tion, but simulation capabilities were not achieved. Sequential
curation iterations were performed (Yeast2 and Yeast3) until
the publication of Yeast4, which notably increased the network

connectivity and the number of included metabolites, mak-
ing it a suitable model for simulation purposes (Dobson et al.
2010). Further updates to the consensus metabolic network have
shown to improve predictions on gene essentiality, induced aux-
otroph phenotypes and cellular growth on diverse environments
(Yeast5 (Heavner et al. 2012), Yeast6 (Heavner et al. 2013) and
Yeast7 (Aung, Henry and Walker 2013)). In 2019, a new ver-
sion of the consensus metabolic network, Yeast8, was published
(Lu et al. 2019), its reconstruction process combined informa-
tion from previous GEMs, different curated databases such as
KEGG (Kanehisa et al. 2016), SGD (Hellerstedt et al. 2017), Bio-
Cyc (Karp et al. 2019), Reactome (Fabregat et al. 2018) and UniProt
(The UniProt Consortium 2017) and experimental data on sub-
strate usage. Furthermore, Yeast8 provides an ecosystem of mul-
tilayer models suited for different kinds of phenotype predic-
tions, ranging from 1011 strain-specific models to incorpora-
tion of enzyme constraints (ecYeast8) and protein 3D structures
(proYeast; Lu et al. 2019).

In parallel with the development of the consensus net-
work, iSce926 (Chowdhury, Chowdhury and Maranas 2015) was
derived from Yeast7 (Aung, Henry and Walker 2013) in 2015,
incorporating gene essentiality and synthetic lethality informa-
tion to curate gene-reaction rules. The model iSc-AMRS-1 (Wich-
mann et al. 2016) was developed from iLL672 (Kuepfer, Sauer and
Blank 2005) in 2016, mainly by curation of proton balancing for
mitochondrial ATP production and reaction reversibility, aiming
to improve flux distribution predictions in order to investigate
production of isopropenoids.

The model SpoMBEL1693 for Schizosaccharomyces pombe, a
model organism for eukaryotic cell cycle studies, was devel-
oped in 2012 using annotated genes and reactions from the
KEGG database as a draft network (Sohn et al. 2012). iNX804,
a metabolic model for Candida glabrata, known as a platform
organism for pyruvate production, was reconstructed in 2013
and used for identification of gene targets for enhanced pro-
duction of pyruvate-derived fine chemicals (Xu et al. 2013). The
metabolism of Candida tropicalis, known as a promising host for
α, ω-dicarboxylic acids production, has been studied with the
model iCT646, reconstructed through the collection of multiple
database information in 2016 (Mishra et al. 2016). The model
iOD907, a metabolic network for Kluyveromyces lactis, a yeast
commonly used in the dairy industry, was published in 2014
(Dias et al. 2014). Its reconstruction process used iMM904, for
S. cerevisiae, as a scaffold and merged it with annotation for
metabolic genes and transporters from KEGG (Kanehisa et al.
2017) and TCDB (Saier et al. 2016), respectively. This model
was validated with data for growth on diverse carbon sources
and used to investigate phenotypic differences for single gene
knockout strains between K. lactis and S. cerevisiae (Dias et al.
2014).

Pichia pastoris is an established workhorse in biotechnology
for heterologous protein production, as it shows superior protein
secretion efficiency compared with other yeasts (Schmidt 2004).
Additionally, humanized N-glycosylation patterns for recom-
binant protein production can be obtained by engineering its
metabolism. The first two GEMs for P. pastoris, PpaMBEL1254
(Sohn et al. 2010) and iPP668 (Tomàs-Gamisans, Ferrer and Albiol
2016), were both developed in 2010 using genome annotation
information from databases and literature. In 2015, ihGlycopas-
toris (Irani et al. 2016) was specially developed for simulation of
recombinant protein production as a target, by combining the
previously established iLC915 (Caspeta et al. 2012) model with
humanized N-glycosylation pathways. This allowed the investi-
gation of the influence of N-glycosylation processes on protein

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

syr/article/21/1/foab002/6081089 by C
halm

ers Tekniska H
ogskola user on 30 M

ay 2023



Domenzain et al. 3

production and the model was used for the prediction of gene
overexpression targets for improving protein yields. The model
Kp.1.0 was published in 2017, in which 12 different biomass com-
positions were tested under different growth conditions, show-
ing minor effects on growth and gene essentiality predictions,
but drastic changes in flux distributions (Cankorur-Cetinkaya,
Dikicioglu and Oliver 2017). A total of three previous P. pastoris
reconstructions (Chung et al. 2010; Sohn et al. 2010; Caspeta
et al. 2012) were merged into iMT1026 (Tomàs-Gamisans, Fer-
rer and Albiol 2016), expanding the representation of fatty
acid and sphingolipid metabolism, intact N-glycosylation,
O-glycosylation and glycosylphosphatidylinositol(GPI)-anchor
pathways. iMT1026 was then curated to iMT1026.v3 in 2018,
leading to a refinement of predictions for cellular growth on
glycerol and methanol as carbon sources (Tomàs-Gamisans,
Ferrer and Albiol 2018). Additionally, the model iRY1243 was
created in 2017 by merging iPP668, PpaMBEL1254, iLC915 and
iMT1026, also incorporating curation of biosynthesis of vitamins
and cofactors, which added more than 200 metabolic genes to
the network. This model was validated with the use of RNAseq
data for different conditions, utilization of carbon and nitrogen
sources and 13C-labeled derived fluxomics, yielding an overall
high consistency of predictions for essential genes, flux distri-
butions and different mutant phenotypes (Ye et al. 2017).

The yeast Scheffersomyces stipitis (formerly known as Pichia
stipitis) has raised interest due to its great native potential for
xylose utilization. In 2012, three models were published for this
species: iTL885 (Liu et al. 2012) and iSS884 (Caspeta et al. 2012)
were derived from previous S. cerevisiae’s models, whilst iBB814
(Balagurunathan et al. 2012) was reconstructed from genome
annotation extracted from various databases. A modified ver-
sion of iBB814, the model iDH814, was published in 2016 and
used to elucidate the redox balance shift response to reduced
oxygen supply conditions (Hilliard et al. 2018). As these four
reconstructions just account for the cytoplasm, mitochondria
and peroxisome as cellular compartments, a fully compartmen-
talized model for this relevant organism is still missing.

The oleaginous yeast Yarrowia lipolytica, is another organism
for which multiple GEMs already exist. Its first model, iNL895
developed in 2012 (Loira et al. 2012) and other two following
models iMK735 (Kavšcek et al. 2015) and iYali4 (Kerkhoven et al.
2016), were derived from previous networks of the phyloge-
netically distant yeast S. cerevisiae, in contrast to iYL619 PCP
(Pan and Hua 2012), reconstructed directly from Y. lipolytica spe-
cific information available in public databases and literature. In
2018, iYLI647 (Mishra et al. 2018) was developed using a previous
reconstruction for the same species, iMK735 (Kavšcek et al. 2015),
as a scaffold and expanded to include the ω-oxidation path-
way that converts fatty acids to long-chain dicarboxylic acids
(DCAs), the subsequent fatty-acid degrading β-oxidation path-
way and branched-chain amino acid degradation pathways, in
order to guide simulation of metabolic engineering strategies for
enhanced DCA production.

During these years, other non-conventional yeasts have
gained more attention due to their fascinating and diverse phe-
notypes. Several GEMs have been constructed as an attempt
to understand their particular traits. Rhodotorula toruloides is
an oleaginous yeast, which can accumulate lipids up to 70%
of its dry mass (Ratledge and Wynn 2002). Previous modeling
approaches have explored the use of constraint-based meth-
ods together with a reduced metabolic network for this organ-
ism to assess lipid accumulation on different substrates (Bom-
mareddy et al. 2015; Castañeda et al. 2018), but its first genome-
scale model, rthoGEM (Tiukova et al. 2019), was published in

2019. Cell growth data using glucose, xylose and glycerol as sub-
strates were used to validate the model, while gene targets for
triacylglycerol and carotenoid production were predicted with
the use of the FSEOF algorithm (Choi et al. 2010). That same year,
iRhto1108 (Dinh et al. 2019), was developed using Yeast7 and
the Kbase fungal metabolic network (Arkin et al. 2018) as model
templates. This model increased the metabolic gene coverage in
comparison to rthoGEM (from 926 to 1108) and enabled growth
simulations using arabinose and cellobiose as carbon sources.

Zygosaccharomyces bailii has been described to have high tol-
erance towards acetic acid (Palma et al. 2017; Palma, Guerreiro
and Sá-Correia 2018). It has been suggested that the Zygosaccha-
romyces clade diverged from Saccharomyces ancestors just before
the whole genome duplication event (WGD; Kurtzman 2003),
which took place approximately 100 million years ago, mak-
ing the Zygosaccharomyces genus the closest pre-WGD ancestral
group of relatives to study the genome evolution of S. cerevisiae
(Hagman et al. 2013; Solieri et al. 2013). The model ZyPa1 (Fil-
ippo et al. 2018) was reconstructed using homology information
from 20 different yeasts belonging to the Saccharomycetaceae
family, and was then connected to the KEGG database to obtain
a draft network. Stoichiometry and localization information for
the reactions were extracted from the models Yeast7 (Aung,
Henry and Walker 2013) and iOD907 (Dias et al. 2014). ZyPa1 con-
tains 2413 genes, more than twice the number of genes in Yeast8
(Lu et al. 2019), being the metabolic model for a yeast species with
the highest number of genes. This GEM has been applied to the
study of cellular growth under co-consumption of lactate and
glucose.

Kluyveromyces marxianus is a thermotolerant yeast that can
even tolerate temperatures as extreme as 52◦C (Nonklang et al.
2008), making it a specially interesting organism host for indus-
trial bioproduction. The first GEM for K. marxianus, iSM996, was
built in 2019 (Marcišauskas, Ji and Nielsen 2019) by using a draft
model generated with the RAVEN Toolbox (Wang et al. 2018),
aided by the KEGG database and the models iOD907 (Dias et al.
2014) and Yeast7 (Aung, Henry and Walker 2013) as sources
for the network gap-filling process. iSM996 was validated using
data on carbon and nitrogen source usage, and transcriptome
datasets were integrated in order to simulate growth under dif-
ferent temperatures (Marcišauskas, Ji and Nielsen 2019).

Lachancea kluyveri is a weak Crabtree positive yeast of indus-
trial relevance due to its capabilities for ethyl-acetate secretion,
when cultivated in aerobic batch conditions, and usage of urea
and uracil as sole nitrogen sources for growth. In 2020, the model
iPN730 (Ghosh et al. 2020) was built on a Kbase workspace (Arkin
et al. 2018) using iMM904 (Mo, Palsson and Herrgård 2009) for S.
cerevisiae as a template network and other 13 fungi models as
references for homologous reactions searches. The model was
validated by simulating cellular growth on diverse environments
(Ghosh et al. 2020).

A repository for yeast species metabolic models

All aforementioned yeasts GEMs, together with the previously
published models, were used to query the literature using the
keyword ‘yeast’ together with ‘metabolic model’, ‘GSM’, ‘GEM’
or ‘GENRE’ (genome-scale network reconstruction). In total, 43
model files for 12 different organisms were found either as part
of publications in peer-reviewed journals, supplementary files
for preprint articles in bioRxiv, or in the yeastnet model database
(https://sourceforge.net/projects/yeast) when no specific publi-
cation about their reconstruction was found (as in the case of
Yeast2, Yeast3 and Yeast4). Most of these yeast species belong
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to the Saccharomycetales order in the Ascomycota phylum, but
some of them have been classified as part of other classes,
as Schizosaccharomyces pombe (Schizosaccharomycetes) or even
phyla, such as the Basidiomycota fungus Rhodotorula toruloides
(Table S1, Supporting Information).

As expected, S. cerevisiae is the yeast species for which the
most GEMs have been reconstructed, however multiple models
are also available for P. pastoris, Y. lipolytica and S. stipitis (Fig. 1A).
This collection of model files has been stored in a publicly avail-
able GitHub repository at https://github.com/SysBioChalmers/
YeastsModels, together with the necessary scripts for their fur-
ther analysis. The search and exploration processes for these
models pointed out several aspects that can be classified into
three main categories: accessibility, usability and interoperabil-
ity.

Model accessibility

The analyzed models in this review span more than 17 years of
active research, in which standards for file formats and shar-
ing practices in the field of systems biology have changed, mak-
ing the retrieval of their original files a time-consuming and
not automatable task. Even though the Systems Biology Markup
Language (SBML) was released in 2002 (Hucka et al. 2003), and
since then has evolved to become the standard file format for
metabolic modeling, 27% of the analyzed models were shared
in a different format in their original publications, such as .txt,
.XLS and .pdf (Fig. 1B and C), which limits scientific exchange
and reproducibility of results on different setups due to their
dependence on specific software applications (Ravikrishnan and
Raman 2015).

As not all models could be successfully obtained from their
original sources, models were also sought in other public repos-
itories such as Biomodels (Chelliah et al. 2015), Biomet (Garcia-
Albornoz et al. 2014) and openCOBRA models (Ebrahim et al. 2015;
Fig. 1D), which contain curated metabolic reconstructions not
just for yeast species but for all key phylogenetic groups (Monk,
Nogales and Palsson 2014). The models from the last decade
present in this catalogue reflect the trend of referring to unam-
biguous entries in such databases instead of uploading model
files as supplementary material to their respective journal web-
sites.

Notably, a novel methodology for model sharing and devel-
opment has been proposed by the Yeast8 project (Lu et al. 2019)
and the Memote model test suite (Lieven et al. 2020), which
with the aid of version control tools, such as Git and GitHub,
provides not just the final snapshot of a GEM but its whole
development history, offering also a web platform for open and
continuous development. These version control tools have also
been implemented for Y. lipolytica, K. marxianus and R. toruloides
GEMs (iYali4 (Kerkhoven et al. 2016), iSM996 (Marcišauskas, Ji
and Nielsen 2019), rthoGEM (Tiukova et al. 2019) and iRhto1108
(Dinh et al. 2019)), which represent 11% of the collected models
(Fig. 1E). More community-driven modeling efforts are expected
to emerge in the next years as a way to circumvent the draw-
back of having multiple independent reconstructions available
for some of these yeast species.

Model usability

In order to evaluate the complexity of the process of getting
started when utilizing a GEM, a testing pipeline was developed
using the RAVEN (Wang et al. 2018), COBRA (Heirendt et al. 2019)
and COBRApy (Ebrahim et al. 2013) toolboxes, which in a series

of sequential steps aims to obtain feasible flux balance anal-
ysis simulations (Orth, Thiele and Palsson 2010), with cellular
growth maximization as an objective function, assuming that no
prior knowledge about the model´s specific structure and identi-
fiers was available. In total, SBML files for 37 models were found
available in this study, and therefore analyzed by the mentioned
pipeline.

The first tested functionality was the importability of each
SBML model into a non-empty MATLAB structure (Table S2, Sup-
porting Information). This was satisfactorily achieved for the
majority of these models, 97%. The only non-loadable SBML file
was also tested with the COBRApy toolbox, but its import could
not be accomplished due to parsing errors. Secondly, a default
objective function was sought in the model structure by retriev-
ing any non-zero coefficient in the objective function field or so
called ‘c vector’. Of the analyzed models, 76% showed a prede-
fined objective function. Further exploration found that all of
these objectives are maximization of the growth rate, ‘biomass
exchange’ or ‘biomass formation’. Taking this into account,
traceability of a biomass pseudoreaction was also evaluated.
For doing so, the presence of the substrings ‘growth’, ‘biomass’
and ‘vgro’ was explored in the model.rxns and model.rxnNames
fields. In total 84% of the tested models contain a biomass pseu-
doreaction identifiable with the used patterns. This does not
imply that a biomass reaction is absent for the 16% remaining
models, but that the search for it would require a customized
manual procedure for each of them.

For all of these models, maximization of the found biomass
reaction was set as an objective function and all of their
exchange reactions were opened in both directions (lower and
upper bounds of −1000 and 1000 mmol/gDw h, respectively)
to check in silico cellular growth capabilities. In total, 76% of
the tested subset (28 models) showed a non-zero growth rate
when subject to these constraints. We consider these models as
available in a ready-to-use setup, as no further steps or manual
inspection was needed to simulate growth. Detailed information
for the evaluated metrics and features can be found in Table S2
(Supporting Information).

In order to assess the utilization of these models by the sci-
entific community, the total and average annual citations were
used as proxy metrics. Figure 2E shows that a larger proportion
of the cited models that were recently published (<5 years ago)
have been made available in a ready-to-use format (77%) in com-
parison to those that were published a longer time ago (62%). For
the S. cerevisiae network reconstructions, it is clear that older
models are on average more used or referred to in the scien-
tific literature. However, as time has passed more models have
become available and decays on citations for older models usu-
ally coincide with publication and rise of newer ones (Fig. 2F).
This might suggest that scientific interest shifts towards more
recent models as they accumulate the knowledge gathered by
previous reconstruction iterations.

Interoperability

As described above and repeatedly concluded (Dräger and Pals-
son 2014; Ebrahim et al. 2015; Heavner and Price 2015; Sánchez
and Nielsen 2015; Mendoza et al. 2019), the lack of identi-
fier consistency and connection to external databases for all
of the relevant components of GEMs (metabolites, reactions,
genes and cellular compartments) together with the use of
non-standardized file formats, are the main obstacles for direct
model comparison and assessment, even across reconstructions
for a single species.
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Figure 1. Accessibility of metabolic models for diverse yeast species. (A) Number of published models per species. (B) Number of published models per file format.
Models available in several formats are counted multiple times. ∗NA indicates model files that were not available in either their original publications or external model
repositories (C) Proportion of models provided as an SBML file in their original source or publication. (D) Proportion of yeast models stored in different public databases.

Models stored in several databases are just accounted as part of the one that uploaded them first. (E) Proportion of models with continuous development tracked on
public repositories.

In order to aid systematic model development, according to
community-agreed practices, a standardized set of metabolic
model tests (Memote) has recently been developed as an open-
source software suite (Lieven et al. 2020). Memote tests are
divided into organism- and model-specific ones, not applica-
ble to all reconstructions, and a section of independent tests,
which check for model consistency (in terms of mass and
charge balance, metabolite connectivity and stoichiometric con-
sistency), and annotation, or connection to external databases,
for metabolites, reactions, genes and SBO terms (systems biol-
ogy ontology terms; Courtot et al. 2011). This pipeline assigns a
numerical score, based on the specific model characteristics, to
each of the independent tests, relevant for comparing evolution
of particular model features across versions.

The 37 SBML model files analyzed above were furthermore
tested by the Memote suite. As this software relies on the lat-
est version of the SBML Level 3 Flux Balance Constraints pack-
age (Olivier and Bergmann 2018), not all of the models could be
tested due to parsing errors for those available in previous or
conflicting SBML versions (36%), as shown in Fig. 3A. Notewor-
thy, this is not an indicator of model quality or predictive perfor-
mance, but rather one of compliance with model format stan-
dards. Further details for all of the individual tests and com-
puted scores are available as HTML reports and also as part of
Table S2 (Supporting Information), both stored in the aforemen-
tioned GitHub repository.

The community-driven series of consensus metabolic net-
work reconstructions for S. cerevisiae has tried to overcome some
of the obstacles mentioned above by keeping consistency of
identifiers across the subsequent model refinement iterations.
However, this approach has not yet been applied to any of the
other yeast species models analyzed in this review. Such consis-
tency allows to interpret Memote standardized test results as an
evolution of the network in different regards, offering a system-
atic guidance for further development. Annotation of metabo-
lites, reactions and SBO terms has been improved throughout
the different versions of the S. cerevisiae model (Fig. 3B). Result-
ingly, Yeast8 shows the most complete degree of annotation for
all of these features, even though standardized gene identifiers
that are traceable to an external database are still missing.

CONCLUSIONS

Here we reviewed, collected and evaluated the usability of the
available GEMs for different yeasts species, offering a valuable
concentrated resource for the community. The model recollec-
tion process evidenced that not all of them are easily acces-
sible and multiple sources were needed to be queried. Even
though specialized databases for curated GEMs exist, connec-
tions between them are still missing, which might hamper large-
scale multi-species studies. We also found that GEM files have
been shared in a wide variety of file formats, making the uti-
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Figure 2. Model usability. (A) Proportion of tested SBML models successfully imported with the RAVEN, COBRA or COBRApy toolboxes (total = 37 models). (B) Proportion
of tested models with a default objective function. (C) Proportion of tested models with a biomass pseudoreaction identifiable with the substrings ‘biomass’, ‘growth’
or ‘vgro’. (D) Proportion of models yielding a non-zero growth rate according to the developed testing pipeline. (E) Citation landscape of models of yeasts metabolism.
Annual average citations vs elapsed time since publication per species, the proportion of ‘operative models’ (available in a ready-to-use format, according to the

developed testing pipeline) is indicated in the upper part for models that have been published more or less than 5 years ago. (F) Evolution of the annual citations for
models of S. cerevisiae metabolism. Citations were queried from Google scholar, accessed on September 4th, 2020.

Figure 3. Memote tests results. (A) Proportion of models for which the automated Memote test was accomplished. (B) Memote test scores for the consensus recon-

structions of the S. cerevisiae metabolic network. Scores for metabolites, reactions and SBO terms evaluate the degree of annotation for such components with external
databases identifiers that can facilitate the traceability of a component across different model versions. The Memote global score takes into account the structure,
consistency, annotation and functionality of metabolic models.

lization of some of them dependent on specific software tools.
Storing and sharing models using the latest version of the stan-
dard SBML format will facilitate scientific exchange and enable
reproducibility of results, avoiding platform dependent parsing
issues.

As part of this review, a simplified model test pipeline was
developed and run for all of the yeast GEMs with an available
SBML file. With the aim of obtaining feasible FBA simulations
with the minimal number of steps, we simulated the initial
familiarization process of a non-expert user with a new model.
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It was found that 28 of the tested models (representing 62%
of the models in this catalogue) were available in a ready-to-
use format, as in-silico growth was obtained without any further
knowledge or utilization experience on them. This result must
not be interpreted as a measurement of model quality, as bio-
logical meaningfulness or consistency of predictions were not
evaluated. More robust tests were performed with the aid of the
Memote suite. Nonetheless, this was not possible for all of the
analyzed models due to outdated file formats. For such cases,
update of their respective SBML files is recommended in order to
ensure compatibility with the latest modeling and analysis tools
and to facilitate further development. The results of the Mem-
ote standardized tests illustrated a progressive evolution con-
cerning the annotation of model components for the different
versions of the S. cerevisiae metabolic network, highlighting the
advantages of community-driven model development.

The total or partial lack of cross-references of model compo-
nents to widely used external databases is still a common trait of
the models in this catalogue. GEMs are usually described as valu-
able scientific resources not just for quantitative predictions but
as genome-scale knowledgebases of living organisms. However,
as their usability and exploration are still hindered by the lack
of format consistency, cross-references and continuous commu-
nity development, the full exploitation of their potential remains
restricted to expert users.
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Herrgård MJ, Lee BS, Portnoy V et al. Integrated analysis of regula-
tory and metabolic networks reveals novel regulatory mech-
anisms in Saccharomyces cerevisiae. Genome Res 2006, DOI:
10.1101/gr.4083206.
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Tomàs-Gamisans M, Ferrer P, Albiol J. Fine-tuning the P.
pastoris iMT1026 genome-scale metabolic model for
improved prediction of growth on methanol or glyc-
erol as sole carbon sources. Microb Biotechnol 2018;11:
224–37.
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Reconstruction of a catalogue of genome-scale
metabolic models with enzymatic constraints
using GECKO 2.0
Iván Domenzain 1,2, Benjamín Sánchez 3,4,9, Mihail Anton 1,5,9, Eduard J. Kerkhoven 1,2,

Aarón Millán-Oropeza6, Céline Henry 6, Verena Siewers 1,2, John P. Morrissey 7,

Nikolaus Sonnenschein3 & Jens Nielsen 1,2,8✉

Genome-scale metabolic models (GEMs) have been widely used for quantitative exploration

of the relation between genotype and phenotype. Streamlined integration of enzyme con-

straints and proteomics data into such models was first enabled by the GECKO toolbox,

allowing the study of phenotypes constrained by protein limitations. Here, we upgrade the

toolbox in order to enhance models with enzyme and proteomics constraints for any

organism with a compatible GEM reconstruction. With this, enzyme-constrained models for

the budding yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus

are generated to study their long-term adaptation to several stress factors by incorporation of

proteomics data. Predictions reveal that upregulation and high saturation of enzymes in

amino acid metabolism are common across organisms and conditions, suggesting the rele-

vance of metabolic robustness in contrast to optimal protein utilization as a cellular objective

for microbial growth under stress and nutrient-limited conditions. The functionality of GECKO

is expanded with an automated framework for continuous and version-controlled update of

enzyme-constrained GEMs, also producing such models for Escherichia coli and Homo sapiens.

In this work, we facilitate the utilization of enzyme-constrained GEMs in basic science,

metabolic engineering and synthetic biology purposes.
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Genome-scale metabolic models (GEMs) have become an
established tool for systematic analyses of metabolism for
a wide variety of organisms1–6. Their myriads of appli-

cations span from model-driven development of efficient cell
factories3,7–9, to their utilization for understanding mechanisms
underlying complex human diseases10–12. One of the most
common simulation techniques for enabling phenotype predic-
tions with these models is flux balance analysis (FBA), which
assumes that there is balancing of fluxes around each metabolite
in the metabolic network. This means that fluxes are constrained
by stoichiometries of the biochemical reactions in the network,
and that cells have evolved in order to operate their metabolism
according to optimality principles13,14. Quantitative determina-
tion of biologically meaningful flux distribution profiles is a major
challenge for constraint-based methods, as optimal phenotypes
can be attained by alternate flux distribution profiles15, caused by
the presence of network redundancies that provide organisms
with robustness to environmental and genetic perturbations. This
limitation is often addressed by incorporation of experimental
measurements of exchange fluxes (secretion of byproducts and
uptake of substrates) as numerical flux constraints for the FBA
problem. However, such measurements are not readily available
for a wide variety of conditions and organisms.

In order to overcome these limitations, the concept of enzy-
matic limitations on metabolic reactions has been explored and
incorporated by several constraint-based methods. Some of these
have modeled enzyme demands of metabolic reactions by con-
straining metabolic networks with kinetic parameters and phy-
siological limitations of cells, such as a crowded intracellular
volume16–18, a finite membrane surface area for expression of
transporter proteins19 and a bounded total protein mass available
for metabolic enzymes20–25. All of these modeling frameworks
have been successful at expanding the range of predictions of
classical FBA, providing explanations for overflow metabolism
and cellular growth on diverse environments for Escherichia
coli16–19,21,23,25, Saccharomyces cerevisiae22,25,26, Lactococus
lactis27, and even human cells20,24. However, these modeling
approaches were applied to metabolic networks of extensively
studied model organisms, which are usually well represented in
specialized resources for kinetic parameters such as the
BRENDA28 and SABIO RK29 databases. Furthermore, collecting
the necessary parameters for the aforementioned models was
mostly done manually; therefore, no generalized model para-
meterization procedure was provided as an integral part of these
methods.

Enzyme limitations have also been introduced into models of
metabolism by other formalisms, for instance, Metabolic and
gene Expression models (ME-models), implemented on recon-
structions for E. coli30–33, Thermotoga maritima34 and Lactococus
lactis35; and resource balance analysis models (RBA), on recon-
structions for E. coli36 and Bacillus subtilis36,37. These formalisms
succeeded at merging genome-scale metabolic networks together
with comprehensive representations of macromolecular expres-
sion processes, enabling detailed exploration of the constraints
that govern cellular growth on diverse environments. Despite the
great advances for understanding cell physiology provided by
these modeling formalisms, accuracy on phenotype predictions is
compromised by the large number of parameters that are
required (rate constants for transcriptional, translational, protein
folding and degradation processes), with most of these not being
readily available in the literature. Moreover, these models
encompass processes that differ radically in their temporal scales
(e.g., protein synthesis vs. metabolic rates) and their mathematical
representation (presence of non-linear expressions in ME-mod-
els), requiring the implementation of more elaborate techniques
for numerical simulation.

GECKO, a method for enhancement of GEMs with Enzy-
matic Constraints using Kinetic and Omics data, was developed
in 2017 and applied to the consensus GEM for S. cerevisiae,
Yeast738. This method extends the classical FBA approach by
incorporating a detailed description of the enzyme demands for
the metabolic reactions in a network, accounting for all types of
enzyme-reaction relations, including isoenzymes, promiscuous
enzymes and enzymatic complexes. Moreover, GECKO enables
direct integration of proteomics abundance data, if available, as
constraints for individual protein demands, represented as
enzyme usage pseudo-reactions, whilst all the unmeasured
enzymes in the network are constrained by a pool of remaining
protein mass. Additionally, this method incorporates a hier-
archical and automated procedure for retrieval of kinetic
parameters from the BRENDA database, which yielded a high
coverage of kinetic constraints for the S. cerevisiae network. The
resulting enzyme-constrained model, ecYeast7, was used for
successful prediction of the Crabtree effect in wild-type and
mutant strains of S. cerevisiae and cellular growth on diverse
environments and genetic backgrounds, but also provided a
simple framework for prediction of protein allocation profiles
and study of proteomics data in a metabolic context. Further-
more, the model formed the basis for modeling yeast growth at
different temperatures39.

Since the first implementation of the GECKO method38, its
principles of enzyme constraints have been incorporated into
GEMs for B. subtilis40, E. coli41, B. coagulans42, Streptomyces
coelicolor43 and even for diverse human cancer cell-lines2,
showing the applicability of the method even for non-model
organisms. Despite the rapid adoption of the method by the
constraint-based modeling community, there is still a need for
automating the model generation and enabling identification of
kinetic parameters for less studied organisms.

In this work, we updated the GECKO toolbox to its 2.0 version,
expanding its use it for building enzyme-constrained models
(ecModels) for more organisms. Among other improvements, we
generalized its structure to facilitate its applicability to a wide
variety of GEMs, and we improved its parameterization proce-
dure to ensure high coverage of kinetic constraints, even for
poorly studied organisms. Additionally, we incorporated simu-
lation utility functions, and developed an automated pipeline for
updating ecModels, named ecModels container. This container is
directly connected to the original sources of version-controlled
GEMs and the GECKO toolbox, offering a continuously updated
catalog of diverse ecModels.

Results
Community development of GECKO. To ensure wide applica-
tion and enable future development by the research community,
we established the GECKO toolbox as open-source software,
mostly encoded in MATLAB. It integrates modules for
enhancement of GEMs with kinetic and proteomics constraints,
automated retrieval of kinetic parameters from the BRENDA
database (python module), as well as simulation utilities and
export of ecModel files compatible with both the COBRA
toolbox44 and the COBRApy package45. The development of
GECKO has been continuously tracked in a public repository
(https://github.com/SysBioChalmers/GECKO) since 2017, pro-
viding a platform for open and collaborative development. The
generation of output model files in.txt and SBML L3V1 FBC246

formats enabled the use of the ecYeastGEM1 structure as a
standard test to track the effects of any modifications in the
toolbox algorithm through the use of the Git version control
system, contributing to reproducibility of results and backwards
compatibility of code.
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Interaction with users of the GECKO toolbox and the
ecYeastGEM model has also been facilitated through the use of
the GECKO repository, allowing users to raise issues related with
the programming of the toolbox or even about conceptual
assumptions of the method, which has guided cumulative
enhancements. Additionally, technical support for installation
and utilization of the toolbox and ecYeastGEM is now provided
through an open community chat room (available at: https://
gitter.im/SysBioChalmers/GECKO), reinforcing transparent and
continuous communication between users and developers.

New additions to the GECKO toolbox. The previous imple-
mentation of the GECKO method in GECKO 1.0 significantly
improved phenotype predictions for S. cerevisiae’s metabolism
under a wide variety of genetic and environmental
perturbations38. However, its development underscored some
issues, in particular that quantitative prediction of the critical
dilution rate and exchange fluxes at fermentative conditions are
highly sensitive to the distribution of incorporated kinetic para-
meters. Although S. cerevisiae is one of the most studied eukar-
yote organisms, not all reactions included in its model have been
kinetically characterized. Therefore, a large number of kcat
numbers measured for other organisms (48.35%), or even non-
specific to their reaction mechanism (56.03% of kcat values found
by introduction of wildcards into E.C. numbers) were needed to
be incorporated, in order to fill the gaps in the available data for
the reconstruction of the first S. cerevisiae ecModel, ecYeast7.
Moreover, detailed manual curation of kcat numbers was needed
for several key enzymes in order to achieve biologically mean-
ingful predictions.

As the BRENDA database47 is the main source of kinetic
parameters for GECKO, all of the available kcat and specific
activity entries for non-mutant enzymes were retrieved. In total,
38,280 entries for 4130 unique E.C. numbers were obtained and
classified according to biochemical mechanisms, phylogeny of
host organisms and metabolic context (Brenda kinetic data
analysis section in the Supplementary Information File 1), in
order to assess significant differences in distributions of kinetic
parameters. This analysis showed that not all organisms have
been equally studied. While entries for H. sapiens, E. coli, R.
norvegicus, and S. cerevisiae account for 24.02% of the total, very
few kinetic parameters are available for most of the thousands of
organisms present in the database, showing a median of 2 entries
per organism (Fig. 1a). The analysis also showed that kinetic
activity can differ drastically, spanning several orders of
magnitude even for families of enzymes with closely related
biochemical mechanisms (Fig. 1b). Finally, it was also observed
that kcat distributions for enzymes in the central carbon and
energy metabolism differ significantly from those in other
metabolic contexts across phylogenetic groups of host organisms
(life kingdoms, according to the KEGG phylogenetic tree48), even
without filtering the dataset for entries reported exclusively for
natural substrates, as previously done by other studies49 (Fig. 1c).

In the new version of the GECKO toolbox (GECKO 2.0), a
modified set of hierarchical kcat matching criteria was imple-
mented to address how kcat numbers depend on biochemical
mechanisms, metabolic context and phylogeny of host organisms.
The modified parameterization procedure enables the incorpora-
tion of kinetic parameters that have been reported as specific
activities in BRENDA when no kcat is found for a given query (as
the specific activity of an enzyme is defined as its kcat over its
molecular weight), adding 8,118 new entries to the catalog of
kinetic parameters in the toolbox. A phylogenetic distance-based
criterion, based on the phylogenetic tree available in the KEGG
database48, was introduced for cases in which no organism-

specific entries are available for a given query in the kinetic
parameters dataset. Specifically, where GECKO 1.0 chooses kcat
available in BRENDA regardless of organism, GECKO 2.0
chooses the values available in BRENDA for the phylogenetically
closest organism by iteratively introducing a wildcard into the
E.C. number, as exemplified in the Brenda kinetic data analysis
section in the Supplementary Information File 1 “EC3.x.x.x”, and
estimating the phylogenetic distance. The new kcat matching
algorithm, including the estimation of the phylogenetic distance,
and its comparison with the predecessor are shown in the
supplementary methods section in Supplementary File 1.

In order to assess the impact of the modified kcat assignment
algorithm on an ecModel, ecYeast7 was reconstructed using both
the first and GECKO 2.0. A classification of the matched kcat
values according to the new matching algorithm is provided in
Fig. 1d, showing the amount of values chosen from the
phylogenetically closest organisms. The incorporation of specific
activity values in the parameter catalog increased the number of
kinetic parameters matched to complete E.C. numbers (no added
wildcards) from 1432 to 2696 (Fig. 1e). Moreover, the
implementation of the phylogenetic distance-based criterion
yielded a distribution of kinetic parameters that showed no
significant differences when compared to the values reported in
BRENDA for all fungi species, in contrast to the kinetic profile
matched by the previous algorithm (P-values 2.1 × 10−11 and
3.9 × 10−8, when compared to the BRENDA fungi and S.
cerevisiae distributions, respectively, under a two-tailed
Kolmogorov–Smirnov test) (Fig. 1f). The quality of phenotype
predictions for the ecYeast7 model enhanced by GECKO 2.0 was
evaluated by simulation of batch growth in 19 different
environments, with an average relative error of 23.97% when
compared to experimental data (Fig. 1g); in contrast, its GECKO
1.0 counterpart yielded an average relative error of 32.07%.

The introduction of manually curated kcat numbers in a
metabolic network has been proven to increase the quality of
phenotype predictions for S. cerevisiae22,25,38; nevertheless, this is
an intensive and time-consuming procedure that is hard to
ensure for a large number of models subject to continuous
modifications. In order to ensure applicability of the GECKO
method to any standard GEM, a unified procedure for curation of
kinetic parameters was developed based on parameter sensitivity
analysis. For automatically generated ecModels that are not able
to reach the provided experimental value for maximum batch
growth rate, an automatic module performs a series of steps in
which the top enzymatic limitation on growth rate is identified
through the quantification of enzyme control coefficients. For
such enzymes, the E.C. number is obtained and then its
correspondent kcat value is substituted by the highest one
available in BRENDA for the given enzyme class. This procedure
iterates until the specific growth rate predicted by the model
reaches the provided experimental value.

Finally, as the first version of the toolbox relied on the structure
and nomenclature of the model Yeast7, its applicability to other
reconstructions was not possible in a straightforward way. In
order to provide compatibility with any other GEM, based on
COBRA44 or RAVEN50 formats, all of the organism-specific
parameters required by the method (experimental growth rate,
total protein content, organism name, names and identifiers for
some key reactions, etc.) can be provided in a single MATLAB
initialization script, minimizing the modifications needed for the
generation of a new ecModel.

ecModels container is an automatically updated repository.
Several GEMs that have been published are still subject to con-
tinuous development and maintenance1–3,5,6, this renders GEMs
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to be dynamic structures that can change rapidly. In order to
integrate such continuous updates into the enzyme-constrained
version of a model in an organized way, an automated pipeline
named ecModels container was developed.

The ecModels container is a continuous integration imple-
mentation whose main functionality is to provide a catalog of
ecModels for several relevant organisms that are automatically
updated every time a modification is detected either in the
original GEM source repository or in the GECKO toolbox, i.e.,
new releases in their respective repositories. The pipeline
generates ecModels in different formats, including the standard
SBML and MATLAB files, and stores them in a container
repository (https://github.com/SysBioChalmers/ecModels) in a
version-controlled way, requiring minimal human interaction
and maintenance. The GECKO toolbox ensures the creation of
functional and calibrated ecModels that are compatible with the
provided experimental data (maximum batch growth rate, total
protein content of cells, and exchange fluxes at different dilution
rates as an optional input). This whole computational pipeline is
illustrated in Fig. 2. Further description of the ecModels container
pipeline functioning is included in the “Methods” section.

A catalog of new ecModels. Following the aforementioned
additions to the GECKO toolbox, that have allowed its

generalization, we used the toolbox for the reconstruction of four
new ecModels from previously existing high-quality metabolic
network reconstructions: iYali4, for the oleaginous yeast Yarrowia
lipolytica5; iSM996, for the thermotolerant yeast Kluyveromyces
marxianus6; iML1515, for the widely studied bacterium E. coli4;
and Human1, being the latest and largest network reconstruction
available for studying H. sapiens metabolism2. For the microbial
models, all model parameters were calibrated according to the
provided experimental data, generated by independent
studies4,51–53, yielding functional ecModels ready for simulations.
Size metrics for these models can be seen in Table 1.

These ecModels, together with ecYeastGEM, are hosted in the
ecModels container repository for their continuous and auto-
mated update every time that a version change is detected either
in the original model source or in the GECKO repository. In the
case of microbial species, two different model structures are
provided: ecModel, which has unbounded individual enzyme
usage reactions ready for incorporation of proteomics data; and
ecModel_batch in which all enzyme usage reactions are connected
to a shared protein pool. This pool is then constrained by
experimental values of total protein content, and calibrated for
batch simulations using experimental measurements of max-
imum batch growth rates on minimal glucose media, thus
providing a functional ecModel structure ready for simulations.

Fig. 1 kcat distributions in BRENDA and ecYeast7. a Number of kcat entries in BRENDA per organism. b kcat distributions for closely related enzyme
families. Sample size and median values (in s−1) are shown after each family identifier. c kcat distributions for enzymes in BRENDA by metabolic context
and life kingdoms. Median values are indicated by red dots in each distribution, statistical significance (under a one-sided Kolmogorov–Smirnov test) is
indicated by red stars for each pair of distributions for a given kingdom. CEM—central carbon and energy metabolism; ALM—Amino acid and lipid
metabolism; ISM—intermediate and secondary metabolism. Computed P-values are 2.8 × 10–27 for animals; 3.85 × 10–5 for archaea; 1.62 × 10–92 for
bacteria; 1.024 × 10–30 for fungi; 2.36 × 10–16 for plants and 4.75 × 10–21 for protists. d Number of kcat matches in ecYeast7 per assignment category
(GECKO 2.0). e Comparison of the number of kcat matches for E.C. numbers with 0, 1, 2, and 3 introduced wildcards by GECKO 2.0 and GECKO kcat
matching algorithms. f Cumulative kcat distributions for: all S. cerevisiae entries in BRENDA, all entries for fungi in BRENDA, ecYeast7 enhanced by GECKO
and ecYeast7 enhanced by GECKO 2.0. Colored points and vertical dashed lines indicate the median value for each distribution. Statistical significance
under a two-sided Kolmogorov–Smirnov test of the matched kcat distributions when compared to all entries for S. cerevisiae and fungi, is shown with red
circles and stars, respectively. P-values below 1 × 10−2 are indicated with red. Computed P-values are 0.538 for the comparison between GECKO2 vs. all
fungi, 2.7 × 10−3 for GECKO2 vs. S. cerevisiae, 3.9 × 10−8 for GECKO vs. all fungi and, 2.1 × 10−11 for GECKO vs. the S. cerevisiae entries. g Prediction of batch
maximum growth rates on diverse media with ecYeast7 enhanced by GECKO 2.0. Glu—glucose, Fru—fructose, Suc—sucrose, Raf— raffinose, Mal—
maltose, Gal—galactose, Tre—trehalose, Gly—glycerol, Ace—acetate, Eth —ethanol. Source data are provided in Source Data: Data Source file 1.
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For ecHumanGEM just the unbounded ecModel files are
provided, as this is a general network of human metabolism,
containing all reactions from any kind of human tissue or cell
type for which evidence is available, and therefore not suitable for
numerical simulation. As H. sapiens is the most represented
organism in the BRENDA database, accounting for 11% of the
total number of available kcat values (Brenda kinetic data analysis
section in the Supplementary Information File 1), kinetic
parameters from other organisms were not taken into account
for its enhancement with enzyme constraints. ecHuman1

provides the research community with an extensive knowledge
base that represents a complete and direct link between genes,
proteins, kinetic parameters, reactions and metabolites for human
cells in a single model structure, subject to automated continuous
update by the ecModels container pipeline.

Visualization of GECKO simulations in the Caffeine platform.
We implemented simulations with ecModels in Caffeine, an
open-source software platform for cell factory design. Caffeine,
publicly available at http://caffeine.dd-decaf.eu, allows user-

Fig. 2 Extending utilization of ecModels. a ecModels container: Integrated pipeline for continuous and automated update of ecModels. b Implementation
of GECKO simulations in the Caffeine platform (https://caffeine.dd-decaf.eu/) for visualization of enzyme usage. The color of the arrows corresponds to
the value of the corresponding fluxes. Genes or reactions connected to enzymes with a usage above 90% are highlighted with a glow around the
corresponding text or arrow, respectively. The chosen usage threshold to highlight can be tuned with the slider on the right.
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friendly simulation and visualization of flux predictions made by
genome-scale metabolic models. Several standard modeling
methods are already included in the platform, such as 13C
fluxomics data integration, and simulation of gene deletion and/
or overexpression, to interactively explore strain engineering
strategies. In order to allow for GECKO simulations, we added a
new feature to the platform for uploading enzyme-constrained
models and absolute proteomics data. Additionally, we added a
simulation algorithm that recognizes said models, and overlays
the selected proteomics data on them, leaving out data that makes
the model unable to grow at a pre-specified growth rate. After
these inclusions to the platform, enzyme usage can now be
computed on the fly and visualized on metabolic maps (Fig. 2b),
to identify potential metabolic bottlenecks in a given condition.
The original proteomics data can be visualized as well, to identify
if the specific bottleneck is due to a lack of enzyme availability, or
instead due to an inefficient kinetic property. This will suggest
different metabolic engineering strategies to the user: if the pro-
blem lies in the intracellular enzyme levels, the user can interpret
this as a recommendation for overexpressing the corresponding
gene, whereas if the problem lies in the enzyme efficiency, the
user could assess introducing a heterologous enzyme as an
alternative.

GECKO simulation utilities. As ecModels are defined in an
irreversible format and incorporate additional elements such as
enzymes (as new pseudo-metabolites) and their usages (repre-
sented as pseudo-reactions), they might sometimes not be directly
compatible with all of the functionalities offered by currently
available constraint-based simulation software44,45,50,54,55. We
therefore added several new features to the GECKO toolbox that
allow the exploration and exploitation of ecModels. These include
utilities for: (1) basic simulation and analysis purposes, (2)
accessible retrieval of kinetic parameters, (3) automated genera-
tion of condition-dependent ecModels with proteomic abundance
constraints, (4) comparative flux variability analysis between a
GEM and its ecModel counterpart, and (5) prediction of metabolic
engineering targets for enhanced production with an imple-
mentation of the FSEOF method56 for ecModels. Detailed infor-
mation about the inputs and outputs for each utility can be found
on their respective documentation, available at: https://github.
com/SysBioChalmers/GECKO/tree/master/geckomat/utilities. All
of these utilities were developed in MATLAB due to their
dependency on some RAVEN toolbox functions50.

Predicting microbial proteome allocation in multiple envir-
onments. In order to test the quality of the phenotype predictions
of an ecModel automatically generated by the ecModels container
pipeline, batch growth under 11 different carbon sources was
simulated with eciML1515 for E. coli. Figure 3a shows that, for all
carbon sources, growth rates were predicted at the same order of
magnitude as their corresponding experimental measurements,
with the most accurate predictions obtained for growth on D-
glucose, mannose and D-glucosamine. Furthermore, batch
growth rate and protein allocation predictions, using no exchange
flux constraints, were compared between eciML1515 and the
iJL1678 ME-model32, the latter accounting for both metabolism
and macromolecular expression processes. The sum squared error
(SSE) for batch growth rate predictions across the 11 carbon
sources using eciML1515 was 0.27, a drastic improvement when
compared to the 1.21 SSE of iJL1678 ME-model predictions32.
Figure 3b shows the predicted total proteome needed by cells to
sustain the provided experimental growth rates for the same 11
environments. Notably eciML1515 predicts values that lie within
the range of predictions of the iJL1678 ME-model (from the
optimal to the generalist case) for 10 out of the 11 carbon sources
(see “Methods” for simulation details). This shows that the new
version of the GECKO toolbox ensures the generation of func-
tional ecModels that can be readily used for simulation of
metabolism, due to its systematic parameter flexibilization step,
which reduces the need of extensive manual curation for new
ecModels. Furthermore, iML1515 is a model available as a static
file at the BiGG models repository57; therefore, its integration to
the ecModels container for continuous update demonstrates the
flexibility of our pipeline, regarding compatibility with original
GEM sources, which can be provided as a link to their git-based
repositories or even as static URLs.

Proteomics constraints refine phenotype predictions for mul-
tiple organisms and conditions. The previously mentioned
module for integration of proteomics data generates a condition-
dependent ecModel with proteomics constraints for each condi-
tion/replicate in a provided dataset of absolute protein abun-
dances [mmol/gDw]. Even though absolute quantification of
proteins is becoming more accessible and integrated into systems
biology studies58–62, a major caveat of using proteomics data as
constraints for quantitative models is their intrinsic high biolo-
gical and technical variability63, therefore some of the incorpo-
rated data constraints need to be loosened in order to obtain
functional ecModels. When needed, additional condition-

Table 1 Size metrics summary for the ecModels catalog.

Original GEMs

Organism S. cerevisiae Y. lipolytica K. marxianus E. coli H. sapiens
Model ID yeastGEM_8.3.3 iYali4 iSM996 iML1515 Human1
Reactions 3963 1924 1913 2711 13101
Metabolites 2691 1671 1531 1877 8400
Genes 1139 847 996 1516 3628

Enzyme-constrained GEMs
Model ID ecYeastGEM eciYali eciSM996 eciML1515 ecHumanGEM
Reactions 8028 3881 5334 6084 46259
Metabolites 4153 1880 2064 2334 12191
Enzymes 965 647 716 1259 3224
Enzyme coverage 84.72% 76.39% 71.89% 83.05% 88.86%
Reactions w/kcat 3771 1586 2891 2562 27014
Reactions w/
Isoenzymes

504 205 532 456 3791

Promiscuous Enzymes 572 324 469 673 2184
Enzyme complexes 252 75 27 383 756
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dependent exchange fluxes of byproducts can also be used as
constraints in order to limit the feasible solution space. A detailed
description of the proteomics integration algorithm implemented
in GECKO is given in the supplementary methods section in the
Supplementary Information File 1.

The new proteomics integration module was tested on the
three ecModels for budding yeasts available in ecModels
container (ecYeastGEM, eciYali, eciSM996). We measured
absolute protein abundances for S. cerevisiae, Y. lipolytica and
K. marxianus, grown in chemostats at 0.1 h−1 dilution rate and
subject to several experimental conditions (high temperature, low
pH and osmotic stress with KCl)64, and incorporated these data
into the ecModels as upper bounds for individual enzyme usage
pseudo-reactions. Then, exchange fluxes for CO2 and oxygen
corresponding to the same chemostat experiments were used as a
comparison basis to evaluate quality of phenotype predictions.
For each organism- condition pair, 3 models were generated and
compared in terms of predictions: a pure stoichiometric
metabolic model, an enzyme-constrained model with a limited
shared protein pool, and an enzyme-constrained model with
proteomics constraints. It was found that the addition of the
enzyme pool constraint enables major reduction of the relative
error in prediction of gaseous exchange fluxes in some of the
studied conditions. Additionally, the incorporation of individual
protein abundance constraints improves even further the
predictive accuracy of gaseous exchanges, for 5 out of the 11
evaluated cases (Fig. 4a–c). Although only a trend and not a
significant improvement, it would be of interest, in the future, to
run further analyses that include more proteomics datasets.

The impact of incorporating enzyme and proteomics constraints
on intracellular flux predictions was further assessed by mapping
all condition-dependent flux distributions from the tested
ecModels to their corresponding reactions in the original GEMs.
In general, metabolic flux distributions showed high similarity
when comparing ecModel to GEM predictions (Supplementary
Fig. 1), as 70–90% of the active reaction fluxes were predicted

within the interval of 0.5 < fold-change < 2 FC ¼ vecModel
i

vGEMi

� �
across

all conditions (Supplementary Fig. 2A–C, Source Data: Data
Source File 2). In addition, principal component analysis on

absolute enzyme usage profiles predicted by ecModels revealed
that, at low dilution rates, predictions of enzyme demands are
mostly defined by the selected set of imposed constraints (shared
protein pool vs. proteomics constraints) rather than by environ-
mental condition, i.e., exchange fluxes (Supplementary Fig. 2D–F).
However, more straightfroward comparison of the models’
predictions, by pairwise comparison of predicted absolute enzyme
usage profiles, showed that 60–80% of the predicted enzyme usages
lie within a range of 0.5 < fold-change < 2, when comparing
ecModels predictions with and without proteomics constraints,
across organisms and conditions (Fig. 4d, Supplementary Fig. 2G–I,
and Data Source File 2). It was observed that the incorporation of
proteomics constraints induces a drastic differential use for a
considerable amount of enzymes, as 12–21% of enzyme usages
were predicted as either enabled or disabled by these constraints
across all the simulated conditions, showing slight enrichment for
enabled alternative isoenzymes for already active reactions (Data
Source File 2). This suggests that upper bounds on enzyme usages
induce differentiated utilization of isoenzymes, reflecting well why
isoenzymes have been maintained throughout evolution.

The explicit inclusion of enzymes into GEMs by the GECKO
method enables prediction of enzyme demands at the protein,
reaction and pathway levels. Total protein burden values
predicted by ecModels for several relevant metabolic superpath-
ways (central carbon and energy metabolism, amino acid
metabolism, lipid and fatty acid metabolism, cofactor and vitamin
metabolism and nucleotide metabolism, according to the
KEGG metabolic subsystems48), showed that central carbon
and energy metabolism is the most affected sector in the
ecYeastGEM network by integration of proteomics constraints,
as protein burden predictions were higher, at least by 20%, for 3
out of the 4 simulated conditions when compared with
predictions of the ecYeastGEM without proteomics data (Fig. 4e).

Relative enzyme usages, estimated as predicted absolute
enzyme usage over enzyme abundance for all of the measured

enzymes in an ecModel ei
Ei½ �

� �
, can be understood as the

saturation level of enzymes in a given condition. In order to
analyze the metabolic mechanisms underlying long-term adapta-
tion to stress in budding yeasts, relative enzyme usage profiles

Fig. 3 Comparison of predictive capabilities between eciML1515 and ME-iJL1678 for E. coli. a Maximum batch growth rate predictions on minimal media
with diverse carbon sources, with an average relative error for eciML1515 of 34,43%, and an R2 of 0.196. The sum of squared errors when compared to
experimental values are 0.2785 for eciML1515 and 1.21 for ME-iJL1678. b Prediction of total protein content in the cell by eciML1515 and ME-iJL1678 using
the optimal and generalist approaches. Source data are provided in Source Data: Data Source file 1.
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were computed from all the previous simulations of ecModels
with proteomics constraints. Enzymes that display fold-changes
higher than 1 for both absolute abundance and their saturation
level, when comparing predicted usage profiles between stress and
reference conditions, suggest regulatory mechanisms on indivi-
dual proteins that contribute to cell growth on the anlyzed stress
condition. Figure 4f shows all of the enzymes that were identified
as responsive to environmental stress in this study, displaying
enrichment for enzymes involved in biosynthesis of diverse
amino acids and folate metabolism.

A further mapping of all enzymes in these ecModels to a list of
2,959 single copy protein-coding gene orthologs across the three
yeast species64 found 310 core proteins across these ecModels.
Principal component analysis revealed that variance on absolute
enzyme usages and abundance profiles for these core proteins is
mostly explained by differences in the metabolic networks of the
different species rather than by environmental conditions
(Supplementary Fig. 3B, C), reinforcing previous results

suggesting that, despite being phylogenetically related, their
long-term stress responses at the molecular level have evolved
independently after their divergence in evolutionary history64.

Exploring the solution space reduction. A major limitation in
the use of GEMs is the high variability of flux distributions for a
given cellular objective when implementing flux balance analysis,
as this requires solving largely underdetermined linear systems
through optimization algorithms15,65. This limitation has usually
been overcome with incorporation of measured exchange fluxes
as constraints. However, these data are typically sparse in the
literature. Previous studies explored the drastic reduction in flux
variability ranges of ecModels for S. cerevisiae and 11 human cell-
lines when compared to their original GEMs due to the addition
of enzyme constraints1,2,38. However, the irreversible format of
ecModels (forward and backwards reactions are split in order to
account for enzyme demands of both directions) hinders their
compatibility with the flux variability analysis (FVA) functions

Fig. 4 Evaluation of proteomics-constrained ecModels. Comparison of median relative error in prediction of exchange fluxes for O2 and CO2 by GEMs,
ecModels and proteomics-constrained ecModels across diverse conditions (chemostat cultures at 0.1 h−1 dilution rate) for a S. cerevisiae, b K. marxianus,
c Y. lipolytica. d Comparison of absolute enzyme usage profiles [mmol/gDw] predicted by ecYeastGEM (ecM) and ecYeastGEM with proteomics
constraints (ecP) for several experimental conditions. The region between the two dashed gray lines indicates enzyme usages predicted in the interval 0.5
� EecPi =EecMi � 2, the region between the two dashed black lines indicates enzyme usages predicted in the interval 0.1 � EecPi =EecMi � 10, when comparing
the two ecModels. e Protein burden for different superpathways predicted by ecYeastGEM (ecM) and ecYeastGEM with proteomics constraints (ecP).
f Highly saturated enzymes at different stress conditions for S. cerevisiae, K. marxianus, and Y. lipolytica predicted by their corresponding ecModels
constrained with proteomics data. Yellow cells indicate condition-responsive enzymes (relative usage ≥ 0.95). Red asterisks indicate enzymes conserved
as single copy orthologs across the three yeast species. Std—Reference condition, HiT—high-temperature condition, LpH—Low pH condition, Osm—

Osmotic stress condition, AA—amino acid metabolism, NUC—nucleotide metabolism, CEM—central carbon and energy metabolism, CofVit—cofactor and
vitamin metabolism, Lip—lipid and fatty acid metabolism. Source data are provided in Source Data: Data Source File 2.
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already available in COBRA44 and RAVEN50 toolboxes. As a
solution to this, an FVA module was integrated to the utilities
repertoire in GECKO, whose applicability has been previously
tested on studies with ecModels for S. cerevisiae1 and human cell
lines2. This module contains the necessary functions to perform
FVA on any set of reactions of an ecModel, enabling also a direct
comparison of flux variability ranges between an ecModel and its
GEM counterpart in a consistent way (supplementary methods
section in the Supplementary Information File 1).

The FVA utility was applied on three different ecModels of
microbial metabolism and their correspondent GEMs (iML1515,
iYali4, and iSM996). In all cases the FVA comparisons were
carried out for both chemostat and batch growth conditions in
order to span different degrees of constraining of the metabolic
networks (0.1 h−1 dilution rate and minimal glucose uptake rate
fixed for chemostat conditions; biomass production fixed to
experimental measurements of μmax and unconstrained uptake of
minimal media components, for batch conditions). Cumulative
distributions for flux variability ranges for all explored ecModels
and GEMs are shown in Fig. 5, in which it can be seen that
median flux variability ranges are much reduced for all ecModels
and conditions, especially at high growth rates where enzyme
constraints reduce the variability range 5–6 orders of magnitude
when compared to pure GEMs. The cumulative distributions also
show a major reduction in the amount of totally variable fluxes
(reactions that can carry any flux between −1000 to 1000mmol/
gDwh), which are an indicator of undesirable futile cycles present
in the network due to lack of thermodynamic and enzyme cost
information66–68. For high growth rates, the amount of totally
variable fluxes accounts for 3–12% of the active reactions in the
analyzed GEMs, in contrast to their corresponding ecModels in
which such extreme variability ranges are completely absent.

Further analysis of the FVA results revealed that a reduction of
at least 95% of the variability range was achieved for more than
90% of all fluxes of active reactions at high growth rates in all

ecModel. Interestingly, the aforementioned flux variability
metrics were overall improved even for the chemostat conditions,
despite a higher degree of constraining (fixed low growth rate and
optimal uptake rate), which restrains these models to an energy
efficient respiratory mode (Data Source File 3).

Discussion
Here, we demonstrated how enzyme-constrained models for
diverse species significantly improve simulation performance
compared to traditional GEMs. Furthermore, to enable the
community to easily adapt this modeling approach, we upgraded
the GECKO toolbox for enhancement of genome-scale models
with enzyme and omics constraints to its version 2.0. Major
improvements on the kcat matching algorithm were incorporated
into the toolbox, based on phylogenetic distance between the
modeled organism and the host organisms for data queries, and
an automated curation of kcat numbers for over-constrained
models were incorporated into the toolbox. Major refactoring of
the GECKO toolbox enabled a generalization of the method,
allowing the creation of high-quality ecModels for any provided
functional GEM with minimal need for case-specific introduction
of new code. Additionally, several utility functions were inte-
grated into the toolbox in order to enable basic simulation pur-
poses, accessible retrieval of enzyme parameters, integration of
proteomics data as constraints, flux variability analysis and pre-
diction of gene targets for enhanced production of metabolites.
Overall, it was shown that these enhancements to the GECKO
toolbox improve the incorporation of kinetic parameters into a
metabolic model, yielding ecModels with biologically meaningful
kinetic profiles without compromising accuracy on phenotype
predictions.

Two major limitations of the first version of the GECKO
toolbox were its specific customization to the S. cerevisiae model,
Yeast7, and the need of extensive manual curation for generating
an ecModel suited for FBA simulations; thus, its applicability to

Fig. 5 Cumulative distributions of flux variability ranges for iSM996, iYali4 and iML1515 compared to their respective enzyme-constrained versions at
low and high growth rates. Source data are provided in the Source Data: Data Source File 3.
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other GEMs was not a straightforward procedure. To overcome
these limitations, we generalized the code with the aim of making
GECKO a model-agnostic tool. The development of a procedure
for automatic curation of kinetic parameters enabled the gen-
eration of functional ecModels with minimal requirements for
experimental data. Recently, ecModels for 11 human cancer cell-
lines were generated with this automated procedure, using
Human1 as a model input and RNAseq datasets together with the
tINIT algorithm10 to generate cell-line specific networks2. These
ecModels were used for the prediction of cellular growth and
metabolite exchange rates at different levels of added constraints,
resulting in remarkable improvements in accuracy when com-
pared with predictions of their original GEMs. This highlights
one of the main advantages of ecModels: their capability of
yielding biologically meaningful phenotype predictions without
an excessive dependency on exchange fluxes as constraints.

In order to further showcase the functionality of the GECKO
toolbox 2.0, a family of new high-quality ecModels were gener-
ated for E. coli, Y. lipolytica, K. marxianus and H. sapiens, based
on the original GEMs iML1515, iYali4, iSM996 and Human1,
respectively. Furthermore, we generated a self-hosted pipeline for
continuous and automated generation and update of ecModels,
ecModels container, so that each of the currently available
ecModels (ecYeastGEM, eciML1515, eciYali, eciSM996, and
ecHuman1) are integrated to it, providing a version-controlled
and continuously updated repository for high-quality ecModels.
Moreover, the implemented automation facilitates the application
of the GECKO method to other organisms for which sufficient
data is available.

Absolute proteomics measurements for the budding yeasts S.
cerevisiae, K. marxianus and Y. lipolytica grown under multiple
environmental conditions, were incorporated as constraints into
their ecModels by using the proteomics integration module added
to the GECKO toolbox. Analysis of metabolic flux distributions
revealed that net reaction fluxes predicted by GEMs are not sig-
nificantly affected by the incorporation of kinetic and proteomics
constraints, however, the explicit integration of enzymes into
ecModels extends the range of predictions of classical FBA and
enables computation of enzyme demands at the reaction and
pathway levels. It was found that incorporation of proteomics
constraints does not affect enzyme demand predictions sig-
nificantly for most of the active enzymes at low dilution rates
across the simulated conditions. However, we observed that a
diversified utilization of isoenzymes, enforced by proteomics
constraints, increases the predicted total protein mass allocated to
central carbon and energy metabolism, in comparison to optimal
enzyme allocation profiles. This result suggests the relevance of
metabolic robustness in contrast to optimal protein utilization for
microbial growth under environmental stress and nutrient-
limited conditions.

Incorporation of proteomics data allows the use of ecModels as
scaffolds for systems-level studies of metabolism, providing a tool
for uncovering metabolic readjustments induced by genetic and
environmental perturbations, which might be difficult to eluci-
date by purely data-driven approaches, specially at conditions of
relatively low changes at the transcript69 and protein levels64. For
all studied stress conditions in this study, we identified upregu-
lated proteins (increased abundance) that are needed to operate at
high saturation levels in stress conditions, while showing low
usage at reference conditions, creating lists of potential gene
amplification targets for enhancing stress tolerance in three
industrially relevant yeast species (Source Data: Data Source
File 2). Upregulation and high saturation of enzymes in amino
acid and folate metabolism were found to be common across the
studied organisms and stress conditions (Supplementary Fig. 3D
and Source Data: Data Source File 2). These results suggest that

yeast cells display enzyme expression profiles that provide them
with metabolic robustness for microbial growth under stress and
nutrient-limited conditions, in contrast to an optimal protein
allocation strategy that prioritizes expression of the most efficient
and non-redundant enzymes.

Our results on drastic reduction of median flux variability
ranges and the number of totally unbounded fluxes for eciYali,
eciSM996, and eciML1515, together with previous studies1,2,38,
suggest that a major reduction of the solution space of metabolic
models to a more biologically meaningful subspace is a general
property of ecModels. However, flux variability is an intrinsic
characteristic of metabolism; therefore, metabolic models with
highly constrained solution spaces may exclude some biological
capabilities of organisms, which are not compatible with the set of
constraints used for the analysis (exchange fluxes, growth rates
and even profiles of kinetic parameters, considered as condition-
independent in ecModels).

Here, the predictive capabilities of eciML1515 and iJL1678
ME-model (both for E. coli) for cellular growth and global protein
demands on diverse environments were compared. The major
improvement in predicted maximum growth rates, together with
a comparable performance on quantification of protein demands,
shown by eciML1515 suggest that, despite its mathematical and
conceptual simplicity, the GECKO formalism is a suitable fra-
mework for quantitative probing of metabolic capabilities, com-
patible with the widely used FBA method and without the need of
excessive complexity or computational power. Nevertheless, ME-
models provide a much wider range of predictions that explore
additional processes in cell physiology with great detail. Direct
comparison between the predictions of these modeling formal-
isms, suggest that ME-models performance can be improved by
incorporation of either curated or systematically retrieved kinetic
parameters that are suitable for the modeled organisms.

Simpler modeling frameworks that account for protein or
enzyme constraints in metabolism, such as flux balance analysis
with molecular crowding (FBAwMC)16,17, metabolic modeling
with enzyme kinetics (MOMENT)23, and constrained allocation
flux balance analysis (CAFBA)21, have also been developed and
used to explore microbial cellular growth16,17,21 and overflow
metabolism16,23. These methods have overcome the lack of
reported parameters for some specific reactions either by incor-
poration of proteomics measurements and prior flux
distributions23, manual curation and sampling procedures16,17 or
even by lumping protein demands by functionally related pro-
teome groups. In contrast, the new version of the GECKO tool-
box provides a systematic and robust parameterization procedure,
leveraging the vastly accumulated knowledge of biochemistry
research stored in public databases, ensuring the incorporation of
biologically meaningful kinetic parameters even for poorly stu-
died reactions and organisms.

The applicability of these other simple modeling formalisms to
models for diverse species is limited as none of these methods has
been provided as part of a generalized model-agnostic software
implementation. Recently, a simplified variant of the MOMENT
method (sMOMENT) was developed and embedded into an
automated pipeline for generation and calibration of enzyme-
constrained models of metabolism (AutoPACMEN)70. The pipeline
was tested on the generation of an enzyme-constrained version of
the iJO1366 metabolic reconstruction for E. coli, which also showed
consistency with experimental data. This work represented a step
forward in the field of constrain-based metabolic modeling, as it
contributed to standardization of model generation and facilitating
their utilization and applicability to other cases. However, due to the
intrinsic trade-off between model simplicity and descriptive repre-
sentation, a limitation of the sMOMENT method is its simplifica-
tion of redundancies in metabolism, which just accounts for the
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optimal way of catalyzing a given biochemical reaction, discarding
the representation of alternative isoforms that might be relevant
under certain conditions. In GECKO ecModels, all enzymes for
which a gene-E.C. number relationship exists are included in the
model structure. As traditional FBA simulations rely on optimality
principles one could, in principle, expect the same predicted flux
distributions by sMOMENT and GECKO ecModels. Nonetheless,
the explicit incorporation of all enzymes in a metabolic network
enables explanation of protein expression profiles that deviate from
optimality in order to gain robustness to changes in the environ-
ment, as it has been recently shown by the integration of a reg-
ulatory nutrient-signaling Boolean network together with an
ecModel for S. cerevisiae’s central carbon metabolism71.

In conclusion, GECKO 2.0 together with the development of the
automated pipeline ecModels container facilitates the generation,
standardization, utilization, exchange and community development
of ecModels through a transparent version-controlled environment.
This tool provides a dynamic, and potentially increasing, catalog of
updated ecModels trying to close the gap between model developers
and final users and reduce the time-consuming tasks of model
maintenance. We are confident that this will enable wide use of
ecModels in basic science for obtaining novel insight into the
function of metabolism, as well as in synthetic biology and meta-
bolic engineering for design of strains with improved functionalities,
e.g., for high-level production of valuable chemicals.

Methods
Automation pipeline and version-controlled hosting of the ecModels con-
tainer. The ecModels repository is used to version-control the pipeline code and
the resulting models. The pipeline is restricted to 2 short Python files, whose role is
to decide when models need to be updated based on a configuration file config.ini,
and to consequently invoke the use of GECKO for each model. Updates are
deemed necessary when either the underlying dependencies (i.e., GECKO, RAVEN
and COBRA toolboxes, the Gurobi solver, and libSMBL) or the source GEMs are
independently updated to a new version (release) in their respective repositories.

The pipeline is designed be automatic and to not require supervision. It was
developed to work with both version-controlled GEMs and GEMs downloadable
from a URL, updating the version in the configuration after a new ecModel is
obtained. For easy review, the pipeline log is publicly available under the Actions
tab of the GitHub repository. The computation is performed through a self-hosted
GitHub runner, further leveraging the transparent nature of the GitHub platform
and the git version- control system. The resulting ecModel and updated
configuration are committed to the repository, with the changes being made
available for review through a pull request. Additionally, the GECKO output is also
replicated in the pull request body. The ecModels container thus continues the
transparency and reproducibility of the source models.

Quantification of absolute protein concentrations for S. cerevisiae, Y. lipolytica
and K. marxianus. Total protein extraction for the strains Saccharomyces cerevisiae
CEN.PK113-7D (standard, low pH, high temperature, osmotic stress), Kluyveromyces
marxianus CBS6556 (standard, low pH, high temperature, osmotic stress) and Yar-
rowia lipolytica W29 (standard, low pH, high temperature) was conducted as
described in the supplementary methods section in the Supplementary Information
File 1. Three reference samples (hereafter, ‘bulk’ samples), one per strain, were con-
structed by pooling 5 µg of each experimental sample. Aliquots of 15 µg of total
protein extract from each sample (3 strains x 4 conditions x 3 replicates) and the three
bulks were separated on one- dimensional sodium dodecyl-sulfate–polyacrylamide gel
electrophoresis short-migration gels (1 × 1 cm lanes, Invitrogen, NP321BOX). Yeast
proteins digestion was performed on excised bands from gel gradient and digested
peptides of UPS2 (Sigma) were used as external standards for absolute protein
quantification (more details in the supplementary methods section in the Supple-
mentary Information File 1). Four microliters of the different peptide mixtures
(800 ng for yeast peptides and 949 ng for bulks) were analyzed using an Orbitrap
Fusion™ Lumos™ Tribrid™ mass spectrometer (Thermo Fisher Scientific).

Protein identification was performed using the open-source search engine X!
Tandem pipeline 3.4.472. Data filtering was set to peptide E-value < 0.01 and
protein log(E-value) < –3. Relative quantification of protein abundances was
carried out using the Normalized Spectral Abundance Factor (NSAF)73 and the
NSAF values obtained from UPS2 proteins in bulk samples were used to determine
the suitable regression curves that allowed the conversion from relative protein
abundance into absolute terms. The regression curves parameters for protein
abundance quantification are shown in the supplementary methods section in the
Supplementary Information File 1.

Simulation of condition-dependent flux distributions. Simulation of cellular
phenotypes for conditions of environmental stress at low dilution rates with GEMs
were performed by first setting bounds on measured glucose uptake and byproduct
secretion rates according to experimental data from previous studies on
chemostats64. Then the biomass production rate was constrained (both upper and
lower bounds) with the experimental dilution rate (0.1 h−1). Maximization of the
non-growth associated maintenance pseudo-reaction was set as an objective
function for the parsimonious FBA problem as a representation of the additional
energy demands for regulation of cellular growth at non-optimal conditions. The
same procedure was followed for simulations with ecModels constrained by a total
protein pool. For the case of ecModels with proteomics constraints, the same set of
constraints was used but the objective function was set as minimization of the total
usage of unmeasured proteins, assuming that the regulatory machinery for stress
tolerance is represented by the condition-specific protein expression profile.

Prediction of microbial batch growth rates. Batch cellular growth was simulated
by allowing unconstrained uptake of all nutrients present in minimal mineral
media, enabling a specific carbon source uptake reaction for each case while
blocking the rest of the uptake reactions and allowing unconstrained secretion rates
for all exchangeable metabolites. Maximization of the biomass production rate was
used as an objective function for the resulting FBA problem. For prediction of total
protein demands on unlimited nutrient conditions, media constraints were set as
expressed above and experimental batch growth rate values were fixed as both
lower and upper bounds for the biomass production pseudo-reaction. The total
protein pool exchange pseudo-reaction was then unconstrained and set as an
objective function to minimize, assuming that when exposed to unlimited avail-
ability of nutrients the total mass of protein available for catalyzing metabolic
reactions becomes the limiting resource for cells. The solveLP function, available in
the RAVEN toolbox (v2.4.3), was used for solving all FBA problems in this study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Mass spectrometry raw data that support the findings of this study have been deposited
in PRIDE database74 with the dataset identifier PXD012836. The processed proteomics
datasets are available in our GitHub repository at: https://github.com/SysBioChalmers/
GECKO2_simulations/tree/v1.0.1/data/proteomics. All collected kinetic data for the
study presented in Supplementary Information File are available at: https://github.com/
SysBioChalmers/Enzyme-parameters-analysis/tree/master/data. The generated
computational models used for this study are available at: https://github.com/
SysBioChalmers/ecModels/tree/v1.0.0. Data for reproduction of all main and
supplementary figures are provided in the Sournce Data: Data Source file 1, Data Source
File 2, and Data Source File 3. Source data are provided with this paper.

Code availability
The source code of the updated GECKO toolbox is available at: https://github.com/
SysBioChalmers/GECKO/releases/tag/v2.0.275. The source code for ecModels container
can be accessed at: https://github.com/SysBioChalmers/ecModels/tree/v1.0.076. All
custom scripts for simulations included in this study can be found at: https://github.com/
SysBioChalmers/GECKO2_simulations/releases/tag/v1.0.177. All the necessary scripts for
reproducing the kcat parameters analysis in the Supplementary Information File 1 are
available at: https://github.com/SysBioChalmers/Enzyme-parameters-analysis/releases/
tag/v1.0.078. All of these repositories are public and open to collaborative continuous
development.
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intracellular heme production in Saccharomyces cerevisiae
Olena P. Ishchuka,1 , Iv�an Domenzaina,b , Benjam�ın J. S�ancheza,b,c,d , Facundo Mu~niz-Paredesa , Jos�e L. Mart�ıneza,c ,
Jens Nielsena,b,e , and Dina Petranovica,b,1

Edited by Costas Maranas, The Pennsylvania State University, University Park, PA; received May 1, 2021; accepted June 7, 2022 by
Editorial Board Member Stephen J. Benkovic

Heme is an oxygen carrier and a cofactor of both industrial enzymes and food additives.
The intracellular level of free heme is low, which limits the synthesis of heme proteins.
Therefore, increasing heme synthesis allows an increased production of heme proteins.
Using the genome-scale metabolic model (GEM) Yeast8 for the yeast Saccharomyces
cerevisiae, we identified fluxes potentially important to heme synthesis. With this
model, in silico simulations highlighted 84 gene targets for balancing biomass and
increasing heme production. Of those identified, 76 genes were individually deleted or
overexpressed in experiments. Empirically, 40 genes individually increased heme pro-
duction (up to threefold). Heme was increased by modifying target genes, which not
only included the genes involved in heme biosynthesis, but also those involved in
glycolysis, pyruvate, Fe-S clusters, glycine, and succinyl-coenzyme A (CoA) metabolism.
Next, we developed an algorithmic method for predicting an optimal combination of
these genes by using the enzyme-constrained extension of the Yeast8 model, ecYeast8.
The computationally identified combination for enhanced heme production was evalu-
ated using the heme ligand-binding biosensor (Heme-LBB). The positive targets were
combined using CRISPR-Cas9 in the yeast strain (IMX581-HEM15-HEM14-HEM3-
Δshm1-HEM2-Δhmx1-FET4-Δgcv2-HEM1-Δgcv1-HEM13), which produces 70-fold-
higher levels of intracellular heme.

genome-scale modeling j heme j Saccharomyces cerevisiae j metabolic engineering j
heme ligand-binding biosensor

Heme is a cofactor of essential enzymes for aerobic life within the three domains of life
(archaea, bacteria, and eukarya). The heme molecule consists of a porphyrin ring that
surrounds an iron atom, which alternates between its ferric and ferrous states in the
oxidation and reduction reactions. Heme-containing proteins (HCPs) have several
functions. For example, HCPs transport electrons in the respiratory chain in mitochon-
dria and are crucial for energy production, transport molecular oxygen in globin pro-
teins (e.g., hemoglobin in humans), and protect cells from oxidative damage (1–4).
The heme biosynthetic pathway is conserved and tightly regulated to supply heme at
levels to meet cellular demands. The cotranslational incorporation of heme into heme
proteins governs their folding process (5, 6). The intracellular availability of heme is
crucial for the production of heme proteins, which denature and lose their function
without heme.
Because of their biological importance, heme and HCPs are a central topic in molec-

ular cell biology, with basic research occurring together with applications in medicine
and technology. The production of heme and heme proteins has been a focus of
research in microbial metabolic engineering. For example, research on blood substitutes
focuses on human hemoglobin (7, 8), and plant-derived hemoglobin provides vegetar-
ian protein (artificial meat with a lower carbon footprint) (9). Heme was used to
improve charging of lithium batteries (10) and in the bioremediation of sulfite waste
(11). Cytochromes and their new mutant forms catalyze novel chemical reactions with
silicon (12) and were evolved to perform novel chemical reactions (13). The heterolo-
gous production of heme proteins is, however, challenging due to the limited amount
of free heme and the complexity of the metabolic network in the cell.
While a heme-biosynthesis pathway is conserved in nature, the precursor

5-aminolevulinic acid (5-ALA) is synthesized distinctly in different organisms. In the
C4 pathway, the precursor 5-ALA is produced from glycine and from succinyl-
coenzyme A (CoA) (the C4 intermediate of the tricarboxylic acid [TCA] cycle) in yeast,
birds, mammals, and purple nonsulfur photosynthetic bacteria. In contrast, in the C5
pathway, the precursor 5-ALA is produced from alpha-ketoglutarate (the C5 intermedi-
ate of the TCA cycle) in algae, plants, and bacteria such as Escherichia coli (14).

Significance

Heme availability in the cell
enables the proper folding and
function of enzymes, which carry
heme as a cofactor. Using
genome-scale modeling, we
identifiedmetabolic fluxes and
genes that limit heme production.
Our study experimentally
validates ecYeast8 model
predictions. Moreover, we
developed an approach to predict
gene combinations, which
provides an in silico design of a
viable strain able to overproduce
the metabolite of interest. Using
our approach, we constructed a
yeast strain that produces 70-fold-
higher levels of intracellular heme.
With its high-capacity metabolic
subnetwork, our engineered strain
is a suitable platform for the
production of additional heme
enzymes. The heme ligand-
binding biosensor (Heme-LBB)
detects the cotranslational
incorporation of heme into the
heme-protein hemoglobin.
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In E. coli, heme production has been increased by metabolic
engineering of the pathways for 5-ALA synthesis, both native
(C5) and heterologous (C4). The metabolic engineering studies
using the C4 pathway increased heme production by overex-
pression of the Rhodobacter sphaeroides hemA gene (encoding
ALA synthase), which produces the 5-ALA precursor; by over-
expressing the native coaA gene (encoding pantothenate kinase),
which produces CoA; and by overexpression of genes for heme
biosynthesis. This engineering strategy yielded 3.3 μmol/L (15)
and 9.1 μmol/gcell (16) of heme. By overexpressing genes for
heme production via the C5 pathway and by deleting genes of
competing pathways, 51.5 mg/L total heme was produced (17).
In the same strain, metabolic engineering of a heme-secretory
pathway and feed-control optimization of substrates in fed-
batch cultivation increased the production of total heme to
239 mg/L (17).
In the unicellular eukaryote and established yeast cell-factory

Saccharomyces cerevisiae, heme is synthesized through the C4
pathway (14). To improve the production of heme and heme
proteins in S. cerevisiae, metabolic engineering studies have
overexpressed genes encoding the known rate-limiting enzymes
for heme biosynthesis (18–21) and have engineered oxygen
sensing involved in heme biosynthesis regulation (22). To
increase the production of the first intermediate of the heme
pathway, 5-ALA, the HEM1 and ACO2 genes were overex-
pressed (23). However, the contribution of overall metabolism
to heme production has not been analyzed.
The impressive development of heme production in E. coli,

however, has had some limitations, such as weak tolerance to
acidic pH and phage sensitivity. As E. coli produces endotoxins,
it is difficult to use E. coli directly in food production. In con-
trast, the S. cerevisiae yeast has greater tolerance for acidic pH
and has been used for food production for millennia.
The S. cerevisiae has been analyzed with genome-scale metabolic

models (GEMs) (24). For S. cerevisiae, GEM analysis has guided
the construction of strains with optimized yields of industrial mol-
ecules (e.g., bioethanol, sesquiterpenes, vanillin, 2,3-butanediol,
fumaric acid, succinate, amorphadiene, 3-hydroxypropionate,
β-farnesene, and dihydroxyacetone phosphate [DHAP]) (24, 25).
The measurement of metabolic compounds in screening has facili-
tated the development of new biosensors that can be used for
novel applications in other organisms (26).
For S. cerevisiae, the consensus GEM (version 7.6) informed

the engineering of strains with increased production of acetyl-
CoA and malonyl-CoA in 2019 (27). The updated consensus
Yeast8 model was followed by ecYeast8, which has additional

constraints on the metabolic fluxes, representing enzymatic
abundances. Enzyme-constrained GEMs improved the predic-
tion of specific phenotypes (28, 29).

Studies of heme production have explored the modification of
genes and their expression, improving our knowledge of particu-
lar pathways. Using metabolic GEMs to maximize the produc-
tion of heme is the focus of this study. We used the 2019
enzyme-constrained ecYeast8 (29) to identify metabolic fluxes
that are important for heme biosynthesis. Our systems-biology
analysis and modification of the gene expression guided the opti-
mization of a heme strain with 58 genes in silico. The sequential
strain engineering increased intracellular heme production
70-fold. In optimization of sequentially accumulated gene modi-
fications, we developed a heme biosensor, which detects heme
availability and the incorporation of heme into hemoglobin pro-
tein. This heme ligand-binding biosensor (Heme-LBB), like ear-
lier genetically encoded ratiometric heme sensors (30), is likely
useful for heme detection in other organisms.

Our results are striking in terms of the dramatic increase in
heme production and as a showcase of model-assisted synthetic
biology. More importantly, our case study is one of the most
rigorous in terms of evaluation of model-predicted targets for
the widely used cell factory S. cerevisiae. As several of the
model-predicted targets resulted in improved production, our
paper represents a significant milestone in terms of a wider use
of model-based design of yeast cell factories.

Results

Yeast8 Simulations of Metabolic Fluxes Impacting Heme
Production. As an initial screening, we quantified the fluxes
impacting heme production using flux balance analysis (FBA)
tools available for S. cerevisiae at the start of our study. Using
Yeast8 (29), we computed the theoretical biomass yield on glucose
to be 0.1168 gDW/g for batch cultures, which is very close to the
experimentally validated value of our strain (0.122 gDW/g). We
followed a published approach (27, 31), which is the adaptation
of the flux scanning based on enforced objective flux (FSEOF)
method (32). To simulate physiologically relevant conditions and
analyze heme production at suboptimal growth yields, we ran sev-
eral simulations on glucose as the single carbon source, varying
the biomass yield from half of the experimental yield to twice the
value (Fig. 1). In each simulation, the objective function was to
maximize heme production, computing for each biomass-yield
condition an optimum solution. In these simulation-generated
optimal solutions, the number of active fluxes was reduced by

A B

Fig. 1. The Yeast8 genome-scale model was used to find fluxes important for heme production to enable the construction of a heme yeast cell factory.
(A) The structure of heme b, which is protoporphyrin IX with ferrous iron. (B) Simulations of heme production using S. cerevisiae Yeast8.0.1 model.
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parsimonious FBA (33). From these simulations, scores were
computed for each metabolic reaction in the network to detect
which fluxes were consistently either increasing or decreasing as
the biomass requirements decreased, an established strategy (27,
31, 32). Finally, using known reaction-gene associations, we con-
verted those flux scores to gene scores, which indicate whether a
gene has a monotonic behavior—that is, the flux scores selected
genes that are consistently upregulated (score > 1), downregulated
(0 < score < 1), or completely silenced (score = 0) (Fig. 1). This
scoring predicted that 84 genes had a monotonic effect, including
62 genes being overexpressed and 8 genes deleted. Additionally,
14 genes were downregulated (among them, 6 were essential or
required additional growth supplements when deleted: OLE1,
FAS1, FAS2, RNR2, CDS1, and CHO1) (Dataset S1).

Validation of Individual Gene Targets Predicted by Yeast8.
The gene targets predicted by Yeast8 were experimentally tested
for their impact on heme production by modifying genes one
at a time and by measuring intracellular heme concentration.
As gene downregulation requires more fine tuning (e.g., by pro-
moter modifications or gene silencing approaches), we tested
the effect of gene deletions first by using the deletion strains
from the yeast knockout (YKO) collection (34). We analyzed
16 S. cerevisiae BY4741 strains carrying single gene deletions:
8 strains from the downregulation group (Δrnr1, Δrnr3, Δrnr4,
Δcho2, Δopi3, Δpsd1, Δgpt2, Δale1) and 8 deletion strains from
the deletion group (Δshm1, Δslc1, Δpro1, Δpro2, Δsfc1, Δyhm2,
Δidh1, Δidh2) (Fig. 2A and Dataset S1). The Δrnr3 strain grew
poorly and was excluded from further experimental analysis.
The heme production of 15 strains was measured in two bio-
logical replicates after 24 h of cultivation in yeast extract-
peptone-dextrose (YPD) medium (Fig. 2A).
Deletion of five out of the seven tested genes in the downre-

gulation group (OPI3 [encoding methylene-fatty-acyl-phospho-
lipid synthase], CHO2 [encoding phosphatidylethanolamine
methyltransferase], RNR1 [encoding major isoform of large
subunit of ribonucleotide-diphosphate reductase], RNR4
[encoding ribonucleotide-diphosphate reductase small subunit],
and ALE1) validated the model predictions and increased heme
production up to 70% compared to the BY4741 control strain
(Fig. 2A). The deletion of two genes, GPT2 (encoding glycerol-
3-phosphate/DHAP sn-1 acyltransferase) and PSD1 (encoding
phosphatidylserine decarboxylase of the mitochondrial inner
membrane), decreased heme production ∼10 to 50% compared
to the BY4741 control strain (Fig. 2A).
Deletion of three out of the eight genes (identified to be

deleted by Yeast8) increased heme production (Fig. 2A). The
deletion of SHM1 (encoding mitochondrial serine hydroxylme-
thyltransferase) resulted in a ∼11.5% increase in heme produc-
tion, the deletion of the ALE1 gene (encoding broad-specificity
lysophospholipid acyltransferase) resulted in a ∼13% increase,
and the deletion of SFC1 (encoding mitochondrial succinate-
fumarate transporter) resulted only in a ∼4% increase (Fig.
2A). On the other hand, the deletion of SLC1 (encoding 1-
acyl-sn-glycerol-3-phosphate acyltransferase) and YHM2
(encoding citrate and oxoglutarate carrier protein), did not
result in a significant increase in heme production compared
with BY4741 (Fig. 2A and Dataset S1). Deletions of PRO1
(encoding gamma-glutamyl kinase), PRO2 (gamma-glutamyl
phosphate reductase), and IDH1 and IDH2 (encoding subunits
of mitochondrial NAD [+]-dependent isocitrate dehydroge-
nase) genes decreased heme production, contrary to the model
predictions (Fig. 2A and Dataset S1). Both PRO1 and PRO2
gene deletions resulted in proline auxotrophy, and the resulting

strains grew poorly in YPD. In summary, among the 15 tested
gene candidates identified to be deleted or downregulated,
8 genes increased heme production.

We evaluated the overexpression of 61 of the 62 model gene
targets (we could not amplify the HMG2 gene) in the S. cerevisiae
CEN.PK.113–11c strain background (Fig. 2B). For this purpose,
we cloned the open reading frames (ORFs) of the 61 genes into
the centromeric expression plasmid pRS316+prTEF1-terADH1
under control of strong constitutive promoter TEF1. Two trans-
formants with expression cassettes for each of the 61 model target
genes (predicted to be overexpressed) were used to evaluate heme
production (Fig. 2B and Dataset S1). The highest heme produc-
tion (∼300% average increase) was observed upon the overex-
pression of the HEM13 (encoding coproporphyrinogen III
oxidase) heme biosynthetic gene (Fig. 2B). Under normal condi-
tions, the HEM13 is transcriptionally repressed by Rox1 (22, 35),
and expressing it under the promoter TEF1 will increase the pro-
tein abundance independent of the oxygen and heme levels.
Overexpressing other heme biosynthetic genes—such as HEM14
(encoding protoporphyrinogen oxidase), HEM2 (encoding ami-
nolevulinate dehydratase), HEM15 (encoding ferrochelatase),
HEM3 (encoding porphobilinogen deaminase), and HEM12
(encoding uroporphyrinogen decarboxylase)—also increased
heme production from ∼20 to 70%, respectively (Fig. 2 B
and C). The HEM2, HEM3, and HEM12 genes have been
reported to be rate-limiting steps in heme biosynthesis (18–20).
Overexpression of HEM1 (encoding 5-aminolevulinate synthase)
did not improve heme production at 48 h of fermentation (Fig.
2B), and the overexpression of HEM4 (encoding uroporphyrino-
gen III synthase) resulted in substantially reduced yeast growth.
We speculate this was caused by the accumulation of uropor-
phyrinogen III, which is toxic when oxidized (36). In addition to
heme-biosynthetic genes, the overexpression of single genes
involved in iron homeostasis and Fe-S cluster proteins (YAH1
and ARH1), glutamate biosynthesis (GLT1), pyruvate metabolism
and its transport (PYC1, PYC2, MPC1, MPC2, MPC3), fuma-
rate reductase (FRD1), malate dehydrogenase (MDH2), glycolysis
(PFK1, PFK2, TDH1, TDH2, TDH3), amino acids, iron, pro-
tons, and water transport (AGC1, FET4, FET3, PMA1, PMA2,
AQY1, and AQY2) increased heme production up to 40% com-
pared to the control strain carrying the empty vector pRS316
(Fig. 2 B and C). In summary, among the 61 overexpression
targets tested, 32 increased heme production (Fig. 2C), which is a
52% success rate of model predictions.

Refining the Simulations of Heme Production Fluxes Using
ecYeast8. We used the enzyme-constrained version of the Yeast8
model (ecYeast8) to refine model simulations and to evaluate the
combinatorial effects of the gene targets (Fig. 3A and SI
Appendix). The ecYeast8 model accounts for the activity of meta-
bolic enzymes as constraints on the reactions in the network.
These constraints are limited by the total amount of available pro-
tein mass, yielding a drastic reduction of the variability of the met-
abolic fluxes and notable improvements on phenotype predictions
for S. cerevisiae’s metabolism (28, 29). Simulations for optimiza-
tion of heme production using ecYeast8 were performed following
the same procedure as with the Yeast8 model; in this case, candi-
date gene targets for downregulation (0 < gene score ≤ 1) were
discarded. Additionally, as enzyme-constrained models enable a
direct assessment of the effects of enzyme activity perturbations,
the enzyme usage variability analysis and mechanistic simulations
for the individual gene modifications were implemented for heme
production (Fig. 3B and SI Appendix). This allowed the prediction
of 80 gene targets (Dataset S2) by ecYeast8. Comparing the target
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lists of both models (Datasets S1 and S2), 40 genes were found to
overlap between Yeast8 and ecYeast8, 44 genes were detected
exclusively by Yeast8, and 40 genes were detected exclusively by
ecYeast8 (Fig. 3C). The genes exclusive to ecYeast8 were heme

A synthase (COX15), nucleoside triphosphate pyrophosphohydro-
lase (HAM1), pentose phosphate pathway (TKL1, RPE1), alcohol
dehydrogenase (ADH1), glucose uptake (YRL446W, HXK1,
HXK2, GLK1, EMI2), isoprenoids and sterol biosynthesis

A

D

B C

Fig. 2. Experimental validation of Yeast8 gene targets. (A) Heme production (fold-change) of 15 gene KO strains from the YKO collection (BY4741 strain
background). BY4741 strain served as a control to normalize data (shown in green). Two replicates were used in the analysis. Heme was extracted from
eight OD600 of cells. The gene targets where heme production was higher than the control are highlighted in red. The gene targets where heme production
was lower than the control are highlighted in blue. (B) Heme production (fold-change) of strains carrying 61 model genes overexpressed under control of
the TEF1 promoter using a centromeric plasmid in CEN.PK113-11C strain background. Heme was extracted from eight OD600 of cells. CEN.PK113-11C carry-
ing empty vector served as a control to normalize data (shown in green). Two replicates were used in the analysis. (C) Heme production of strains with
gene modifications that improved heme production the most. Average value of two replicates was used. Heme was extracted from eight OD600 of cells.
(D) Schematic overview of metabolism with Yeast8 targets, which experimentally improved heme production.
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(ERG12), pyruvate metabolism (PDA1, PDB1, PDC1, PDX1,
LAT1, MAE1), TCA cycle (CIT1, MDH1, FUM1), glyoxylate
cycle (ICL1), glycine biosynthesis (GLY1, AGX1), glycine cleavage
system (GCV1, GCV2, GCV3), fatty acids synthesis (FAA1,
FAA4), L-lysine degradation (KGD1, KGD2), L-threonine metab-
olism (HOM2, HOM3, HOM6, THR1, THR4), phosphatase
(YOR283W), polyphosphate metabolism (PPN1), formate dehy-
drogenase (FDH1), carbonic anhydrase (NCE103), and aromatic
amino acids synthesis (ARO9) (Fig. 3C). Interestingly, among
genes common to both Yeast8 and ecYeast8, PRO1 was predicted
to be downregulated by Yeast8, whereas it was predicted to be
overexpressed by the ecYeast8 simulations. Experimental valida-
tion showed that deletion of this gene reduced the heme produc-
tion drastically (Fig. 2A).
The small portion of positive Yeast8 genes (including OPI3,

CHO2, SLC1, PMA2, MPC3, MDH2, GLT1, FRD1, AQY1,
AQY2, ALE1, SFC1, and AGC1) were not detected by
ecYeast8. However, these genes proved to improve heme pro-
duction by the engineering genes one at a time (Fig. 2). These
data can also be used for further improvement of the ecYeast8
model predictions.

Predicting Compatible Gene Combinations for Improved Heme
Production. The list of genetic targets in Dataset S2 represents
individual strategies for enhancing heme production, and we next
used ecYeast8 to assess the viability of combining these strategies
in silico. First, metabolic function redundancy was assessed by
identification of identical genes in a genes-metabolites network
(i.e., a bipartite graph that connects a metabolite with a gene if
they are both involved in the same reaction). This allowed classi-
fication of gene targets in groups, where each gene group contains
genes that are linked to the same metabolites according to the
model. This grouping allowed a further reduction of the total

number of candidates by discarding all genes that did not fit into
any of the following categories: 1) gene target candidates with a
unique metabolic function; 2) genes encoding for enzymes with
the highest specific activity in a given group of redundant candi-
dates for overexpression, due to their lower impact on the total
protein burden for the cell; and 3) all gene candidates for deletion
whose enzymes did not carry any flux in a reference flux distribu-
tion for optimized heme production (SI Appendix). Overall, this
filtering procedure reduced the number of candidates from 80 to
71 genes.

We ranked the remaining modification targets according to
the categories described above. Within each category, the fold-
change in heme production was predicted for each individual
target. An optimal mutant strain was then constructed in silico
by implementing the remaining modifications in a sequential
and cumulative way. Gene modifications that decreased the
optimal production yield when compared to the previous itera-
tion were discarded. This allowed us to obtain a list of
“compatible” 58 gene target modifications that, according to
the ecYeast8 model simulations, should yield a viable strain
with enhanced heme production capabilities if they are com-
bined (Dataset S3).

Constructing Compatible Gene Combinations for Improved
Heme Production. We used the CRISPR-Cas9 toolbox devel-
oped for S. cerevisiae (37) to combine positive gene targets,
which were predicted by the ecYeast8 model to yield higher pro-
duction of intracellular heme, resulting in a viable strain. From
our list of 58 compatible genes (Dataset S3), we overexpressed
the HEM13 gene first, as this gene had the maximum experi-
mental effect (Fig. 2). The choice of the sequential targets to be
combined with HEM13 gene was evaluated experimentally. If
the individual gene modification did not increase the output,

A

C

B

44 4040

Fig. 3. The ecYeast8 model was used to find new targets for improved heme production. (A) Following use of the Yeast8, simulation using the enzyme-
constrained model ecYeast8 was performed for increased heme production. (B) Following the adapted FSEOF approach (19, 22, 23), the enzyme usage vari-
ability analysis and mechanistic genetic manipulations for the individual gene modifications were used to refine the heme target list. (C) In simulations, the
Yeast8 model identified 84 targets, and the ecYeast8 model identified 80 targets. Of the gene targets identified by the two models, 40 genes overlapped
between Yeast8 and ecYeast8; 44 genes were identified by only the Yeast8 model, and 40 genes were identified by only the ecYeast8 model.
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then it was declared a failure at that time (but kept as a possible
modification for later experimentation with a new gene combi-
nation). Plasmids expressing single guide RNAs (sgRNAs) target-
ing different genomic loci were constructed (using the pMEL10
plasmid vector as a base; ref. 37) and used to integrate the
expression cassettes of gene targets (as described in SI Appendix).
The sequential gene modifications, which lead to sequential
increases in heme production, are presented in Fig. 4A. The
HEM13 gene was expressed from centromeric plasmid under
promoter TEF1 of S. cerevisiae (Fig. 4A and SI Appendix, Fig.
S1). The effects of introduced strain modifications were verified
both by heme production measurement and by using Heme-
LBB (Fig. 5 and SI Appendix, Figs. S9–S12). The Heme-LBB is
a fusion protein of green fluorescent protein (GFP) and hemo-
globin alpha-gamma subunits (SI Appendix) and was expressed
under the copper-inducible promoter CUP1 of S. cerevisiae. The
biosensor fluorescence was designed to reflect the intracellular

heme amount. Hemoglobin is a HCP, and heme incorporation
during its translation determines correct folding (5, 6). Thus, we
inferred that greater intracellular heme is associated with an
increase in correctly folded GFP-hemoglobin protein that can be
measured by the biosensor’s activity (Fig. 5A). As the Heme-
LBB is a new biosensor, it was used in parallel with direct heme
measurement to study its response.

In the CEN.PK.113–11c strain background, the overexpres-
sion of the HEM13 gene resulted in an average ∼threefold
increase in heme production (Fig. 2C). In contrast, the HEM13
overexpression in IMX581 strain resulted in only 1.5-fold-higher
heme production (SI Appendix, Fig. S1). Next, we integrated five
heme biosynthetic genes (HEM15, HEM14, HEM3, HEM2,
HEM1) into different genome loci step by step using CRISPR-
Cas9, and this resulted in increased heme production (SI
Appendix, Figs. S1 and S2). Our initial test using Heme-LBB
with 5-ALA (which is the product of Hem1) in the medium
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Fig. 4. CRISPR-Cas9 genome engineering for increased heme production. (A) The IMX581 strain carrying CRISPR-Cas9 gene integrated in the genome was
used to carry the combinatorial engineering of heme gene targets deduced by Yeast8 and ecYeast8 genome-scale model. The gene integrations and dele-
tions were performed using the gRNA constructs targeting different genome loci. The gene HEM13 was overexpressed from the centromeric plasmid. The
HEM13 expression cassette was integrated into the genome in the final strain. Absolute heme (mg/L) was extracted from the entire biomass of the strains.
(B) Heme production, CDW, and glucose consumption in different strains at 24, 48, and 72 h of cultivation in buffered SD ura- or SD with 2% glucose,
100 mM glycine supplemented with 0.1 mM Fe3+. Four biological replicates (transformants) were used in the experiment. Error bars represent the SD.
Commercial hemin was used to calibrate data. Strains: IMX581 carrying an empty vector; IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1
carrying the HEM13 centromeric plasmid; IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 carrying HEM13 expression cassette inte-
grated into genome. Statistical analysis was performed using one-way ANOVA (*P ≤ 0.02741, **P ≤ 0.00594, ****P ≤ 0). (C) The culture, cells, and cell
extracts (obtained with oxalic acid treatment) of engineered strain IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 HEM13 had a red
color. Increasing the glycine amount from 100 to 300 mM resulted in a further increase in heme production. Statistical analysis was performed using one-
way ANOVA (****P ≤ 0.00007). (D) Spectral analysis of yeast extracts (obtained with oxalic acid treatment) shows the presence of the Soret peak (at 400 nm)
characteristic to heme in IMX581/HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 HEM13 strain. Hemin (2.5, 10, 20, and 100 μM) spectra
were used in comparison.
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showed a response in the IMX581 strain carrying the HEM15
gene expression cassette but no response in the control strain (SI
Appendix, Fig. S14A). On the other hand, the biosensor activity
increased with the engineered model targets that increase heme
production (SI Appendix, Figs. S9, S11, S12, and S14B). The
deletion of the SHM1 gene combined with overexpression of
heme genes (HEM15, HEM14, HEM3) resulted in a strain pro-
ducing ∼fivefold more heme than the IMX581 control (SI
Appendix, Fig. S2). The overexpression of ACH1 did not result in
improvement of heme production (SI Appendix, Fig. S3). Addi-
tional deletion of FAA4, FDH1, and YLR446w resulted only in a
small improvement of heme production (SI Appendix, Figs. S4
and S5). The deletion of GCV2 improved heme production in
combination with only some genes (SI Appendix, Figs. S2, S4,
and S7). The gene encoding the heme oxygenase (HMX1), which
is responsible for heme degradation (38), was the integration
locus we used for expression cassettes of the FET4, ADH1, and
ARH1 genes. The overexpression of FET4 and deletion of
HMX1 was a better combination for heme improvement than
overexpression of either ADH1 or ARH1 and deletion of HMX1
(SI Appendix, Figs. S6 and S11). Further deletions of the GCV2
and GCV1 genes and integration of the HEM1 and HEM13 genes
substantially improved heme production, resulting in the strain
turning red (Fig. 4C) and the highest GFP fluorescence of the
heme biosensor (Fig. 5 and SI Appendix, Fig. S12). Further evalua-
tion of this production strain (IMX581 HEM15 HEM14 HEM3
Δshm1 HEM2 Δhmx1 FET4 Δgcv2 HEM1 Δgcv1 HEM13) using
direct heme extraction and fluorescence measurement showed that
it produced 53.5 mg heme per liter of the culture at 24 h of culti-
vation, which was 35.6 times higher than that of the initial strain,
IMX581 (Fig. 4B). When normalized by the cell dry weight
(CDW) (Fig. 4B), the constructed strain produced 70-fold more
heme when compared to the initial strain. When the heme was
extracted from the same amount of biomass, the production strain
(IMX581 HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4

Δgcv2 HEM1 Δgcv1 HEM13) contained 74.4 times more intracel-
lular heme at 72 h of cultivation compared to the control strain,
IMX581 (SI Appendix, Fig. S15). The fluorescence of the biosensor
protein in the constructed strain was also the highest and was
∼20-fold higher than that of initial strain IMX581 (Fig. 5 and SI
Appendix, Fig. S12). The best-performing strain also accumulated
less biomass and consumed less glucose (Fig. 4B). Its growth rate
was reduced by 40% (Fig. 4B and SI Appendix, Fig. S13), and its
heme titer was 35-fold greater (Fig. 4B).

To test the possibility of a further increase in heme produc-
tion, we studied heme produced in the IMX581 strain with
genotype HEM15 HEM14 HEM3 Δshm1 HEM2 Δhmx1 FET4
Δgcv2 HEM1 Δgcv1 HEM13 when cultured with elevated
amounts of the glycine, the substate of Hem1 (Fig. 4C). As
shown in Fig. 4C, the cell extracts of cultures grown on the
medium supplemented with 200 or 300 mM glycine had a 25 or
20% greater heme, respectively. This was also accompanied with
a darker red color of the yeast extracts (Fig. 4C). While both
media with 200 or 300 mM glycine resulted in significantly
higher heme production than the medium with 100 mM glycine
(ANOVA, ****P ≤ 0.00007), the difference in heme production
between cultures grown in media with 200 or 300 mM glycine
was not significant (ANOVA, P ≤ 0.19484) (Fig. 4C). Unlike
the control strain, the extracts of the production strain displayed
a characteristic of heme Soret peak (at 400 nm) similarly to
hemin, which was used as standard (Fig. 4D). Future studies
should optimize heme production using glycine in fed-batch bio-
reactors and introduce the remaining gene modifications deduced
by the model to improve heme production further.

Discussion

Heme is a cofactor of heme proteins and enzymes crucial for aero-
bic cell physiology (1). Free heme, heme proteins, and heme
enzymes have been used in emerging technologies, such as flavoring

A

B

Fig. 5. Heme biosensor in engineered strains. (A) Heme-LBB is a fusion construct of GFP (highlighted in green) and hemoglobin (Hb, highlighted in orange).
Heme (highlighted in red) is cotranslationally incorporated into the hemoglobin part of the biosensor polypeptide and promotes its correct folding. Heme-
less biosensor molecules are misfolded and subjected to degradation. GFP-Hb fusion bound with heme is active and fluorescent. An increase in heme
supply by the strain engineering will subsequently increase the number of correctly folded Heme-LBB molecules and, therefore, increase the strain’s fluores-
cence. (B) Yield of Heme-LBB fluorescence per biomass with sequential heme-modeling targets engineered. Genes modified: 1: HEM15; 2: HEM15, HEM14; 3:
HEM15, HEM14, HEM3; 4: HEM15, HEM14, HEM3, Δshm1; 5: HEM15, HEM14, HEM3, Δshm1, HEM2; 7: HEM15, HEM14, HEM3, Δshm1, HEM2, Δhmx1, FET4; 8:
IMX581, HEM15, HEM14, HEM3, Δshm1, HEM2, Δhmx1, FET4, Δgcv2; 9: HEM15, HEM14, HEM3, Δshm1, HEM2, Δhmx1, FET4, Δgcv2, HEM1; 11: HEM15, HEM14, HEM3,
Δshm1, HEM2, Δhmx1, FET4, Δgcv2, HEM1, Δgcv1, HEM13. Quantile regression with nondecreasing shape constraint (49) was used to estimate the biosensor
response. To calculate the yield, the fluorescence of the Heme-LBB and the growth of each strain was monitored using a BioLector.
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agents for artificial meat (39), blood substitutes (40), lithium-air
batteries (10), and recently discovered chemical reactions (12, 13).
High levels of intracellular heme are toxic to cells. Cytosolic heme
is between 20 and 40 nM. Mitochondria tolerate higher concentra-
tions of heme, roughly 30 μM (30). Higher levels of heme increase
the production of hemoglobin and of P450 enzymes, which is
apparently because the heme group insertion is essential for the
proper folding and conformational stability of heme proteins (5, 6,
19, 41, 42). On the other hand, the overexpression of HCPs
depletes the cellular heme pool and stresses the cell (18).
Recent advances in the GEM of S. cerevisiae (27–29) facili-

tate genome-scale identification of metabolic fluxes active in
heme production, which can then be optimized to increase
heme production. Linear and quadratic programming are
needed for computing optimal, basic, feasible solutions and
optimal interior solutions. Solving such problems is usually
beyond the scope of humans.
Like E. coli, the yeast S. cerevisiae has GEMs of proven

research supported by international communities of researchers
(29, 43–45). In our study, to increase the cellular heme pool in
the yeast S. cerevisiae, we used a metabolic modeling approach
on the genome scale to maximize heme production by genetic
modifications with in silico predictions and in vivo confir-
mation. Using FBA with Yeast8 and then enzymatically con-
strained ecYeast8 models (27, 29), we identified 84 gene as
candidates to increase heme production. Our modeling sug-
gested overexpressing 62 genes, downregulating 14 genes, and
deleting 8 genes.
In the experimental phase of the study, several strategies

were used. The strong constitutive promoter TEF1 was used
for overexpression of candidate genes. For the deletion and
downregulation of genes, we used mutants from a collection of
YKOs. Our one-gene-at-a-time experiments increased heme
production by many interventions: strengthening glycolysis;
improving the transport of pyruvate into mitochondria;
improving the flow of acetyl-CoA into TCA cycle; overexpress-
ing genes of the TCA cycle; modifying glycine-serine metabo-
lism; and improving the transport of iron, water, and amino
acids.
Then, additional modeling was performed to optimize com-

binations of gene modifications. Building on previous
approaches to the prediction of gene overexpression targets
(32, 46, 47), our study developed a procedure to identify some
gene combinations that are compatible with the specified set of
growth rates. With optimization approaches, increasing the flux
for a reaction (or fluxes for reactions) allows other fluxes to
change unless additional constraints are introduced to fix their
values. FBA approaches have had difficulty accounting for, for
example, protein burden, potential inhibitions by reaction
products, and regulatory feedback loops.
In the first round of simulations with Yeast8, we identified

genes that individually influence heme production. In the
second round with ecYeast8 (with enzyme constraints), we
developed in silico a viable mutant strain with improved heme
production that had accumulated many positive modifications,
successively added after having increased heme production
above the previous maximum. In our model, we blocked the
enzyme usage reactions for deletion targets, and for the overex-
pression targets, we doubled the enzyme usage. In laboratory
experiments, the identified target combination was then engi-
neered using CRISPR-Cas9. Our constraint-based model and
our algorithm produced a list of 58 compatible genes. Thereaf-
ter, our implementation of changes sequentially chose the larg-
est increase predicted by the model. If the individual gene

modification did not increase the output, then it was declared a
failure at that time (but kept as a possible modification for later
experimentation). The first deletion of the GCV2 gene did not
increase output; at a later stage (after having introduced
successful modifications), GCV2 reappeared as a gene with
maximum predicted increase, and it was (per our method) rein-
troduced, this time successfully. Increased heme production
was positively and strongly associated with an increased activity
of the newly developed Heme-LBB, as expected; the predicted
increase in heme availability improves the cotranslational incor-
poration into hemoglobin. The Heme-LBB response to
increased heme productivity was found to be dose dependent
and sigmoidal, which is typical for biosensors. The developed
biosensor provided the opportunity to measure heme in vivo
without the need to extract heme for measurements. The bio-
sensor activity in the constructed strains also assessed the
expression of heme protein, which is useful for future work on
the production of heme proteins using these strains.

With linear programming algorithms, our approach gener-
ated very interesting findings, which were not noticed previ-
ously in the literature. For example, our model found that
heme biosynthesis is tightly coupled to central carbon metabo-
lism with 80 genes, whose expression affects the heme produc-
tion. Also, unexpectedly, the model implied that improved
heme production could be achieved by reducing the lipid and
deoxyribonucleotide triphosphates (dNTPs) biosynthesis and
by increasing the activity of pentose phosphate pathway.

Our enzyme-constrained GEMs enabled us to develop a yeast
strain with 70-fold more intracellular heme compared to the con-
trol strain when normalized per biomass. Our engineered strain
produced 53.5 mg/L heme. Zhao et al. (17) achieved the intracel-
lular production of 51.5 mg/L in E. coli, which is comparable with
our yeast strain producing 53.5 mg/L total heme. Improving heme
output by an order of magnitude in our strain required the simul-
taneous modification of 11 genes, which were selected through
GEM simulation and laboratory experimentation. Our strain over-
expressed the heme-biosynthetic genes HEM15, HEM14, HEM3,
HEM2, HEM1, and HEM13, and it also overexpressed the low-
affinity Fe (II) transporter of the plasma-membrane gene (FET4).
In addition, we deleted the mitochondrial serine hydroxymethyl-
transferase gene (SHM1), the heme oxygenase gene (HMX1), and
the two genes encoding subunits of the mitochondrial glycine
decarboxylase complex (GCV1 and GCV2). The constructed strain
with 11 genetic modifications can be further engineered with the
58 genetic modifications predicted to be beneficial. However, the
introduction of numerous genetic modifications in one strain risks
off-target mutations, and the 11 implemented modifications
already increased heme production by 70 times.

Materials and Methods

All the materials and methods are detailed in SI Appendix. These include prelim-
inary target selection using Yeast8; reference flux distribution using ecYeast8;
gene target selection using ecYeast8; identification of an optimal combination of
targets using ecYeast8; media and growth conditions; genome engineering;
determination of glucose concentration; CDW analysis; determination of heme
concentration; and heme biosensor. Briefly, the Yeast8 metabolic model of
S. cerevisiae was used to identify preliminary gene targets using FBA. Then, the
ecYeast8 allowed the incorporation of enzyme constraints and informed the
selection of gene targets. Intracellular heme was extracted with oxalic acid (18).
For the cell dry weight (CDW), cells were collected on 0.45 μm cellulose-acetate
filter paper (Satorius Biolabs). We developed the Heme-HBB as a synthetic fusion
protein (consisting of α-globin, γ-globin, and GFP) to detect heme in vivo, vali-
dating its increasing response experimentally. The Heme-HBB construct was
expressed under the control of the copper-inducible promoter CUP1.
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Statistical Analysis. The statistical programs R (48) and Minitab 18.1 were
used to analyze the data. The biosensor response was studied with quantile
regression with a nondecreasing shape constraint (49, 50).

Data Availability. All the necessary scripts for model prediction and analysis
used in this study have been deposited to GitHub and are available at https://
github.com/SysBioChalmers/heme_production_ecYeastGEM/releases/tag/v1.0 (51)
or through Zenodo at https://doi.org/10.5281/zenodo.6792435 (52).
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Abstract  

Development of efficient cell factories that can compete with traditional chemical production processes is 

complex and generally driven by case-specific strategies, based on the product and microbial host of 

interest. Despite major advancements in the field of metabolic modelling in recent years, prediction of 

genetic modifications for increased production remains challenging. Here we present a computational 

pipeline that leverages the concept of protein limitations in metabolism for prediction of optimal 

combinations of gene engineering targets for enhanced chemical bioproduction. We used our pipeline for 

prediction of engineering targets for 102 different chemicals using Saccharomyces cerevisiae as a host. 

Furthermore, we identified sets of gene targets predicted for groups of multiple chemicals, suggesting the 

possibility of rational model-driven design of platform strains for diversified chemical production. 

 

One sentence summary:  

Novel strain design algorithm ecFactory on top of enzyme-constrained models provides unprecedented 

chances for rational strain design and development. 
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Introduction 

The accelerated rise of metabolic engineering, the rewiring of cells metabolism for enhanced production of 

metabolites1, and synthetic biology, the assemble of novel synthetic biological components and their 

integration into cells2, has enabled the development of microbial strains with increased production 

capabilities of chemicals from renewable feedstocks. These engineered microbes, also known as microbial 

cell factories (MCF), have been generated for production of multiple specialized compounds, such as 

pharmaceuticals3,4, biofuels5,6, food additives7,8  and platform chemicals9. Most of these cases have relied 

on use of the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae as platform cell factories. 

Despite success in development of many processes, complete development of MCFs usually takes several 

years of research and costs USD50M, on average, in order to bring a proof-of-concept strain forward for 

commercial production10.  

 

As metabolism is a complex and highly interconnected network, the time and resource intensive process of 

MCF development can be alleviated by the use of genome-scale metabolic models (GEMs) together with 

computational algorithms, aiming to find non-intuitive gene engineering targets for enhanced production11. 

Several methods for MCF design have been developed in past years and used to drive metabolic engineering 

projects such as production of lycopene12,13 and lactate14 in E. coli, and drug precursors in S. cerevisiae 

cells15. However, the most widely used methods for MCF design (MOMA16, FSEOF12, optKnock17 and 

optForce18) tend to predict extensive lists of gene target candidates, and modelers often find themselves in 

need of imposing custom criteria to delimit the number of candidate gene targets to be tested, in order to 

reduce the amount of experimental work. Additionally, state-of-the-art GEMs tend to overpredict metabolic 

capabilities of cells due to the lack of kinetic and regulatory information in their formulation, hindering 

their applicability for further quantitative evaluation and comparison of predicted metabolic engineering 

strategies. Kinetic models have also been used for the development of strain design algorithms, such as k-

OptForce19, however, the limited size of this kind of models impedes prediction of metabolic gene targets 

in a genome-scale20. 

 

Here we present a computational method (ecFactory) for prediction of optimal metabolic engineering 

strategies, that circumvents the problem of arbitrary selection of the number of gene candidates by 

leveraging the vast amount of enzymatic capacity data, together with the improved phenotype prediction 

capabilities, of enzyme-constrained metabolic models (ecModels, generated by the GECKO toolbox)21. The 

performance of ecFactory was systematically tested and evaluated by comparing the predictions with 

experimental data for multiple study cases. Using this method we identified gene targets for increased 

production of 102 different chemicals in S. cerevisiae, enabling identification of gene targets common to 
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multiple groups of products, suggesting the opportunity for development of platform strains that can be 

used for diverse chemical production. Moreover, our analysis quantitative estimation of enzyme- and 

substrate- limitations for production of the 102 studied chemical products. To enable wider utilization of 

these results by the community, we established a web-based resource for accessible query and visualization 

of the gene target predictions in the context of Metabolic Atlas, and we expect this resource to facilitate 

significant advancements in development of yeast MCFs through metabolic engineering. 

 

Results and discussion 

 

Modelling production of 102 chemical products in yeast 

 

A list of 102 industrially relevant natural products, whose metabolic production pathways are known and 

reported in the literature, was collected. Products were grouped into 10 different families according to their 

chemical characteristics: amino acids (26), terpenes (22), organic acids (15), aromatic compounds (9), fatty 

acids and lipids (9), alcohols (8), alkaloids (6), flavonoids (5), bioamines (2) and stillbenoids (1). From 

these, 50 products were found to be native metabolites in S. cerevisiae, whilst 52 products were identified 

as heterologous, according to an enzyme-constrained metabolic model for yeast (ecYeastGEM v8.3.4)21. A 

summary of the chemical classification of products is shown in Fig. 1A and supp. table S1. Production 

pathways were reconstructed for all these heterologous products and incorporated into ecYeastGEM, taking 

energy and redox requirements as well as reported kinetic data into account (see Materials and Methods). 

All of the 53 reconstructed heterologous pathways are described in supp. table S2. 

 

In silico assessment of production capabilities for 102 chemicals in yeast using metabolic modeling 

with enzyme constraints 

 

The production capabilities of S. cerevisiae were quantitatively explored, using both YeastGEM and 

ecYeastGEM, by computing optimal production yields for all of the 102 studied chemicals, constrained by 

low and high glucose consumption regimes (1 mmol/gDw h; and 10 mmol/gDw h) and biomass production 

rates spanning the range between zero and a maximum attainable value, using flux balance analysis (FBA) 

simulations22. 

 

As FBA relies on optimality principles, usually assuming maximization of cellular growth as a cellular 

objective23, there is a trade-off between biomass formation and accumulation or secretion of products of 

interest. Yeast has evolved the ability to switch to mixed respiro-fermentative metabolic regimes when 
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nutrients are available in excess, favoring enzymatic efficiency over biomass yield on substrate24–27. As 

ecModels account for a limited enzymatic machinery in cells, different production capabilities are predicted 

when changing from low to high glucose uptake rate, in contrast to classic GEMs, that solely rely on 

stoichiometric constraints. This additional constraint results in a different production phase-plane as 

illustrated by Fig. 1B, i.e., instead of the standard linear trade-off between product formation and biomass 

formation there will be a regime where the product formation is limited by the protein constraint. 

Furthermore, the phase-plane becomes dependent on the glucose-uptake rate, such that at high glucose 

consumption the ecModel predicts a protein-limited regime of production, yielding lower production levels 

and biomass formation per unit of glucose. Protein limitations may also arise at low glucose consumption 

levels, for cases in which the production pathways for the chemical of interest involve inefficient enzymes 

(low specific activity). This introduces enzymatically unfeasible regions in the production space of a cell, 

indicated by the grey region in Fig. 1B. A typically protein-constrained production landscape with a region 

of difference between YeastGEM and ecYeastGEM predictions in the low glucose regime is shown for the 

alkaloid choline in Fig. 1C. In contrast, a production landscape solely governed by stoichiometric 

constraints at low glucose levels is shown in Fig. 1D for the polyamine putrescine. Additional examples of 

yield plots for chemicals belonging to all studied families can be found in Fig. S1.  

 

Highly protein-constrained products were found by identifying those chemicals whose maximum 

production level demands the totality of the available enzyme mass in the model, at low levels of glucose 

consumption. In total, 40 out of the 53 analyzed heterologous products were found to be highly protein-

constrained, in comparison to production of native metabolites, for which just 5 products were classified as 

part of the same group (Fig. S2A). Furthermore, strong protein limitations arise often for groups of 

heterologous chemicals derived from a native pathway with high enzymatic demands, such as terpenes and 

flavonoids, derived from the mevalonate pathway. On the other hand, few strongly protein-limited products 

were found amongst families connected to native biosynthetic processes, such as amino acids, organic acids 

and diverse alcohols (Fig. S2B). Protein constrained models offer the possibility of computing optimal costs 

of chemical production both in terms of substrate and required protein mass. Minimal protein and substrate 

mass costs per unit mass of product were computed for each of the 102 products (see Materials and 

Methods for further details), as has been previously suggested by other computational work28. Fig. 1E 

shows that a positive correlation between these two production costs exists, allowing the identification of 

slightly and highly constrained groups of products, with an overrepresentation of native products (amino 

acids, organic acids and some alcohols) in the former group, and heterologous chemicals (terpenes, 

flavonoids and some aromatic compounds) in the latter. This plot shows that for heterologous products, it 

is usually necessary to invest on improving enzyme properties, i.e., increase their catalytic efficiency, 
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whereas for native products it is predominantly stoichiometric constraints that should be considered for 

minimizing costs. Moreover, it was found that slightly constrained products tend to be lighter, in terms of 

molecular weight, than those in the highly constrained group. This is also suggested by substrate costs, as 

larger organic molecules require more carbon to be formed, notwithstanding, this also suggests that a 

heavier enzymatic burden is needed for assembly of large molecules, as it is likely that additional, and less 

efficient, enzymatic steps are involved in their synthesis. 

 

The effect of increasing enzyme catalytic efficiency for improving production levels was explored with 

FBA simulations with ecYeastGEM at different activity levels of rate-limiting enzymes. For highly protein-

constrained products, such as the alkaloid psilocybin, a monotonic linear decrease of the substrate cost is 

observed when decreasing the total production protein cost by enhancing the activity of the heterologous 

tryptamine 4-monooxygenase (P0DPA7). Fig. S3A shows that when the P0DPA7 catalytic efficiency is 

increased by 100-fold, the total oxygen consumption is predicted to increase by 75%, which suggests that 

reducing the protein burden of the psilocybin biosynthetic pathway releases protein mass that can be used 

by the cell to meet its energy demands by an increased respiratory rate. Overall, this metabolic rewiring 

shifts the psilocybin production space in a direction of higher product yields (Fig. S3B). However, the 

product yield is still low indicating that other enzymes in the pathway may have to be improved to further 

increase yield. A similar behavior was obtained for the case of valencene, a moderately protein-constrained 

terpenoid, by increasing activity levels of the sole heterologous limiting enzyme, terpene synthase 

(S4SC87), from 1 to a 100-fold. A positive correlation was also observed between substrate and protein 

costs for this product (Fig. S3C), however, lower slopes in the production cost space were obtained for 

higher activity values of S4SC87. Fig. S3D illustrates that increased activity of this limiting enzyme reduces 

the enzymatically unfeasible region of the valencene production space, bringing its optimal production line 

closer to the stoichiometrically constrained limit (blue and dark red lines).  

 

In sum, model predictions indicate that heavily protein-constrained biosynthetic pathways could result in 

the increase of protein and substrate costs of production. This kind of pathways require resources from the 

limited cellular enzymatic machinery, hence, the substrate-efficient respiratory pathway for energy 

production is compromised in favor of substrate-inefficient fermentative pathways, which reduces the 

protein burden necessary for sustaining cellular energy levels. 

 

An integrative constraint-based method for prediction of metabolic engineering strategies 
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The flux scanning with enforced objective function algorithm (FSEOF)12 has been extensively used for 

identification of metabolic engineering targets in yeast, due to its implicit consideration of the tradeoff 

between biomass and metabolite production. It is of particular interest to explore this method in the context 

of ecModels as variable energetic and biosynthetic requirements may induce a complete change of the 

cellular behavior. Therefore, engineering strategies that minimize the substrate and protein costs for optimal 

bio production can be predicted, furthermore, predictions have boosted heme accumulation in yeast cells 

by 70-fold29. In order to ensure predictive robustness and minimizing the number of false positives among 

predictions, we revised and systematized this approach and developed ecFactory, a multi-step constrained-

based method for prediction of engineering gene targets for enhanced biochemical production, based on the 

principles of FSEOF and on the ability of ecModels to compute enzyme demands for biochemical reaction, 

providing systematic criteria to predict an optimal minimal set of modifications for increasing production 

of target metabolites. 

 

In summary, ecFactory consists of three basic steps: 1) prediction of gene expression scores, indicating 

intensity and directionality of genetic modifications; 2) discard gene targets encoding for unfavorable 

enzymes (redundant, low efficiency) and; 3) Obtention of a minimal combination of modifications required 

for driving cells from optimal biomass formation to a metabolic production regime. The overall objective 

of this method is to obtain a reduced list of gene targets, focusing on the optimal strategies for enhanced 

production by taking enzyme allocation and connectivity into account. All the constituent steps of the 

ecFactory method are illustrated in Fig. 2 and explained in detail in the Materials and Methods section of 

the Supplementary Materials.  

 

Furthermore, the classification of targets according to the characteristics of their respective enzymes 

(illustrated by Fig. S4), facilitates a deeper understanding of the predicted optimal metabolic engineering 

strategies. The list of 12 gene targets for 2-phenylethanol (Table S4) suggests that, in order to increase 

production of this chemical, enzymes that are optimal for providing the necessary metabolic precursors and 

cofactors are predicted as targets for overexpression. Knock-down and knock-out targets aim to direct the 

metabolic flux towards optimal production while reducing the formation of biomass precursors in excess 

(glycerolipids in this case). 

 

Enzyme constraints enable identification of optimal combinations of genetic modifications for 102 

chemicals in yeast 
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The ecFactory method was used to predict gene targets for enhanced production of each of the 102 

chemicals. The method proved to be effective at returning predictions for all cases, while reducing the 

number of candidate gene targets at each of its sequential steps. The distributions of the predicted number 

of gene targets per product (shown in Fig. 3A) shows the major contribution of classifying targets according 

to their enzymatic characteristics (step 2) at reducing the number of predicted OEs, KDs and KOs. On 

average the first step of the method (FSEOF), running on ecYeastGEM, predicted 85 gene targets per 

product (28 OEs, 42 KDs and15 KOs), the number of targets is then reduced by the following steps by 73%, 

as only optimal candidates are returned by the ecFactory algorithm (7 OEs, 9 KDs and 5 KDs per product, 

on average). Notably, predictions reveal that increasing production of protein-limited and heterologous 

chemicals require significantly more genetic modifications, compared to substrate-limited and native 

products (p-values = 1.16x10-5 and 2.3x10-3, respectively, under a one-sided two-sample Kolmogorov-

Smirnov test) as shown in Fig. S5. These differences are caused by the large number of gene knock-downs 

and knock-outs that are required to change the energy production strategy from cellular respiration to a 

fermentative metabolism, so that the limited cellular enzyme capacity can be optimally allocated to the final 

production reaction steps, which tend to be inefficient for these kinds of products. A more detailed 

presentation of results, by chemical family, method steps, and target types, is available in supp. table S3. 

 

Overall, 150 endogenous genes in yeast are predicted as OE target for at least one of the modeled products; 

88 different genes are predicted as KD targets and 129 as KO targets. More than 50% of the targets predicted 

for OE, KD and KO are specific to one or two of the 102 products (Fig.3B, Fig. S6A and Fig. S6C).  

Nonetheless, small sets of genes are predicted as targets for a high number of products (promiscuous 

targets), spanning almost all chemical classifications in this study. Genes encoding for reaction steps in the 

pentose-phosphate pathway and pyruvate metabolism, together with PFK2 in the glycolysis pathway, are 

predicted as the most common OE targets across products; the most common KD and KO gene targets 

encode for enzymes in the TCA cycle, oxidative phosphorylation and synthesis of biomass precursors 

(steroids, glycerolipids, nucleotides and amino acids), as shown in Fig. 3C, Fig. S6B and Fig. S6D, 

suggesting a global strategy of redirecting carbon flux into heterologous pathways and alternative energy 

production mechanisms. 

 

In silico predictions capture successful metabolic engineering strategies in yeast  

 

It was found that 7 out of the 12 predicted gene targets to increase 2-phenylethanol have been previously 

engineered in S. cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus strains with enhanced 2-

phenylethanol production levels30–32 (Table S4), indicating that ecFactory predictions can be capable of 
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capture targets proposed by rational engineering approaches. As another example of experimentally 

validated predictions, the case of spermine is of particular interest. In this case, the ecFactory method was 

able to capture 9 of the implemented targets (MAT, ODC, SPE2, SPDS, MEU1 APT2 and PRS for OE; 

FMS1 and CAR2 for KO) in a successfully engineered strain for spermidine production, an immediate 

precursor of spermine33. It was also found that the experimental implementation of a heterologous cytosolic 

ornithine cycle was resembled by a general predicted overexpression of its native mitochondrial version.  

 

These particular results suggest that the method is able to capture the underlying logic of highly complex 

rational engineering approaches that require the coordination of multiple sectors of metabolism, as shown 

by Fig. S7. Overall, the predicted gene modifications aim to increase spermine biosynthesis by 

overexpression of the whole ornithine cycle, a direct precursor, together with the Yang cycle and some 

steps in the pentose phosphate pathway (PPP) in order to increase S-adenosyl-L-methionine, another 

important precursor of polyamines. Interestingly, when focusing on the final predictions for this product 

(targets in step 3), just 5 of the 8 aforementioned genes were classified as optimal targets for spermine 

production (SPDS, ARG8 andARG5,6 OEs, together with FMS1 and CAR2 KO). This suggests that, 

according to enzyme capacity and metabolic connectivity, it is possible to reduce complex rational 

metabolic engineering strategies, to fewer modifications on crucial reaction steps in pathways that need to 

be rewired and coordinated, one of the purposes for which this method was designed. 

 

In order to validate the quality of the ecFactory predictions, we searched the literature for independent 

experimental studies in S. cerevisiae that have been successful at increasing production levels of chemicals 

included in our list. Gene modifications validated for diverse chemicals were found to be predicted as 

optimal gene targets by ecFactory, shown in Table 1. Interestingly, several of these targets are common to 

multiple products. In total, 28 predicted different gene targets were found as experimentally validated across 

22 products, which are also part of different chemical classes. The most repeated genes among these targets 

correspond to overexpression in the ergosterol, mevalonate, shikimate and polyamine biosynthesis 

pathways.  

 

Table 1.- Predicted gene targets with experimental validation. 

Product Chemical class Validated overexpressions Validated KD/KOs 

amorphadiene34 terpene HMG1,ERG8,ERG12,MVD1,ERG20 
 

artemisinic acid3 terpene HMG1 
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β-amyrin35 terpene ERG9,ERG20,ERG20,ERG9,HMG1,

ERG8,ERG13,ERG12,MVD1 

 

β-ionone36 terpene BTS1 
 

Cinnamoyl-tropine37 alkaloid SPE1 
 

cis,cis-muconate38 organic acid SPE1 ZWF1 

α-farnesene39 terpene HMG1,ERG20 
 

geraniol40 terpene HMG1 
 

glutathione41 amino acid GSH1 
 

Hydroxy-mandelic 

acid42 

aromatic ARO1 
 

malate43 organic acid MDH2 
 

mandelic acid42 aromatic ARO1 
 

miltiradiene44 terpene BTS1 
 

nootkatone45 terpene ERG20,HMG1 
 

ornithine46 amino acid GDH1 
 

2-phenylethanol30–32 alcohol ARO2,PHA2,ARO10,ARO1,ARO4,

ARO7,ZWF1 

 

pyruvate47 organic acid 
 

PDC5,PDC6 

2,3 R-R-butanediol48 alcohol PDC1 
 

santalene39 terpene HMG1,ERG20 
 

spermine33 bioamine GDH1,SPE2,SPE3,MEU1 FMS1,CAR2 

squalene49 terpene HMG1,ERG20,ERG9,ERG8,ERG12,

MVD1 

 

valencene50 terpene HMG1,ERG8,ERG12,ERG20,MVD1 
 

 

These similarities at the gene and pathway level among predictions for different chemical products, suggest 

the existence of metabolic engineering strategies capable of providing the necessary precursors for 

increasing production of groups of chemicals. This kind of strategies have been sought in experimental 

metabolic engineering, following rational approaches, and have proved to be successful for the development 

of platform yeast strains  for production of different groups of molecules such as opioids4 and other 

alkaloids51,52, polyketides53 and terpenes39,54. Furthermore, cumulative combination of individual genetic 

modifications in a production strain is needed for achieving meaningful flux towards the desired chemical29, 

therefore, it is desirable to identify multiple gene targets, encompassing multiple metabolic pathways, that 

constitute the chassis for robust and diversified chemical production.  
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Gene targets common to all products in a given chemical family were sought for all cases in this study. The 

only chemical family with common predicted targets was found to be flavonoids, with 9 KDs (ADO1, 

ATP19, IDP1, LPD1, MAE1, MDH2 MET6, PPA2 and SAH1) and 7 KOS (CAR2, FAA, FAA4, FDH1, 

RNR1, RNR3 and RNR4). This combination of targets reveals an engineering strategy that decreases the 

TCA cycle and respiratory fluxes, the amount of carbon going towards acetyl-CoA and posterior fatty acid 

synthesis, synthesis of amino acids derived from 2-oxoglutarate and nucleotides biosynthesis. Altogether, 

this shows an optimal way of allocating carbon flux and the limited enzymatic machinery of yeast for the 

biosynthetic pathways producing catechin, genistein, kaempferol, naringenin and quercetin. Nevertheless, 

the impact of these modifications on other biological processes, such as regulatory networks, is not 

accounted for in the metabolic model and should be further assessed. 

 

Model-driven design of platform strains for diverse chemical production 

As highly promiscuous gene targets, for all kind of modifications, were found to be predicted for products 

present in most of the studied chemical families, other sets of targets common to groups of multiple products 

may exist among the ecFactory predictions. In order to systematize the analysis of gene target profiles 

across products, the 102 lists of targets were represented as mathematical vectors (see Materials and 

Methods section of the Supplementary Materials and Figure 4A for further details). Highly similar gene 

expression vectors were identified using the t-distributed stochastic neighbor embedding method (t-SNE), 

which is suited for visualization and identification of clusters in high dimensional datasets55. Two-

dimensional representation of t-SNE results facilitated identification of 8 different clusters of target vectors, 

representing different groups of products. Product clusters are shown in Figure 4B. Notably, gene targets 

common to all products in a group were found for all clusters (Table 2). 

 

Table 2.- Shared gene targets within each cluster of products. 

 

Cluster 

 

Chemical Products 

Shared KO 

targets 

Shared KD 

targets 

Shared OE 

targets 

 

 

 

1 

betaxanthin, caffeic acid, vanillin -

glucoside, -ionone, glycyrrhetinic 

acid, miltiradiene, lycopene, 

taxadien-α-yl acetate, 

protopanaxadiol, genistein, 

quercetin, catechin, kaempferol, 

patchoulol, oleanolate, lupeol 

 

RNR1, RNR4, 

RNR3, CAR2. 

FAA4, FAA1, 

FDH1 

 

SAH1, ARG5,6, 

MET6, LPD1, 

ADO1, MAE1, 

ARG7, MDH2, 

ARG8, ATP19 

 

 

 

NA 
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2 

-carotene, cinnamoyltropine, ARA, 

DHA, EPA, astaxanthin, psilocybin, 

docosanol 

RNR1, RNR4, 

RNR3, CAR2. 

FAA4, FAA1, 

FDH1 

IDP1, ARG5,6, 

LPD1, MAE1, 

MDH1, ARG7, 

PPA2, MDH2, 

ARG8, ATP19 

 

 

NA 

 

3 

ergosterol, squalene, santalene, 

farnesene, amorphadiene, limonene, 

geraniol, artemisinic acid 

 

NA 

 

LPP1 

PDB1, PDA1, 

PDX1, ERG12, 

ERG8, LAT1, 

MVD1 

4 Itaconic acid, glutamine, proline, 

putrescine, spermine 

NA LPP1 PDB1, PDA1, 

PDX1, LAT1 

5 valencene, nootkatone, linalool, -

amyrin 

NA ARG5,6, ARG8 ERG12, ERG8, 

MVD1 

 

6 

tryptophan, adipic acid, cis-

muconate, hydroxymandelic acid 

 

MAE1 

 

LPP1 

 

ARO4 

 

7 

 

phenylalanine, 2-phenylethanol, 

mandelic acid, cinnamate 

 

MAE1 

 

LPP1 

ARO4, ARO1, 

ARO2, SOL3, 

GND1, ZWF1, 

PHA2, ARO7 

 

 

8 

 

 

Free-fatty acids, oleate, palmitoleate 

 

 

NA 

 

LPP1, ARG5,6, 

MAE1, CAR2, 

ARG8 

CDC19, BPL1, 

SOL3, GND1, 

PDC1, ACS2, 

PPA2, ZWF1, 

ACC1, ALD6 

 

In general, these clusters are composed by products that belong to different chemical families, with the 

exception of cluster 3 and 5, composed mostly by terpenes, and cluster 8, formed just by lipid compounds. 

Mapping product origin (native or heterologous) and protein limitations information into the clustering 

results showed that, clusters 1 and 2 are composed by heterologous and highly protein-constrained products 

belonging to different compound classes; terpenes whose production is constrained by substrate availability 

tend to group together, in cluster 3; and most native products, despite their protein limitations, do not fall 

into the identified clusters. Altogether, this shows that metabolic engineering strategies for the different 

product clusters are defined by gene modifications that are related with redirecting flux and energy from 

central metabolism to the final specific heterologous pathways. This suggests that shared molecular 

characteristics between products (i.e., chemical classification of products) might not be the most decisive 

aspect when designing genetic modification strategies for enhanced production of multiple chemicals 

(platform or chassis strains).  
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In order to understand the particular metabolic rewiring required by each platform strain designed with the 

aid of the cluster analysis, turnover rates were calculated for the 12 main precursor metabolites in central 

carbon metabolism (D-glucose-6-phopshate, D-fructose-6-phosphate, ribose-5-phosphate, erythrose-4-

phosphate, glyceraldehyde-3-phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, acetyl-CoA, 

2-oxoglutarate, succinyl-CoA and oxaloacetate)11 using FBA simulations for different scenarios, optimal 

biomass formation and optimal production of each of the studied chemicals. Fold-changes were then 

computed for each of the precursor turnover rates, by comparing the optimal production flux distributions 

to their optimal biomass formation counterpart, for all 102 production scenarios. In this way fold-changes 

higher than one indicate that, for increased production, the overall flux towards a precursor should be 

upregulated, in comparison to a wild-type metabolic state, while fold-changes lower than one imply that 

the flux towards a precursor needs to be down-regulated (see Materials and Methods section in the 

Supplementary Materials).  

 

Figure 4C shows that significant upregulation of flux towards erythrose-4-phosphate (E4P) and pyruvate, 

moderate upregulation of phosphoenolpyruvate (PEP), a drastic decrease in ribose-5-phosphate (R5P) and 

α-ketoglutarate (AKG) turnover rates and, a moderate down-regulation of the flux towards oxaloacetate 

(OXO), acetyl-CoA and succinyl-CoA should be combined to achieve optimal production levels of the 

products in clusters 1 and 2. Additionally, it can be seen that fluxes towards precursors located downstream 

from pyruvate (TCA cycle intermediates and acetyl-CoA) are needed to be downregulated for products in 

these clusters. This can be explained by a lower demand of building blocks, due to the decrease of biomass 

formation rate in a production scenario. Moreover, as all products in these clusters were found to be protein-

limited, a predicted coordinated down-regulation of the lower section of central carbon metabolism suggests 

that forcing a fermentative regime, in which most of the energy is produced by glycolysis to minimize the 

protein burden induced by cellular respiration, thus, leaving room for expression of inefficient heterologous 

enzymes, offers the optimal conditions (metabolic mode) for production of these chemicals. 

 

For the case of products in cluster 3, predictions indicate that a metabolic rewiring that induces significant 

upregulation of R5P, E4P and pyruvate production, and intense down-regulation of the flux towards and α-

ketoglutarate is needed to improve production of these terpene compounds (Figure 4D), suggesting that an 

increased supply of NADPH (produced in the first steps of the pentose phosphate pathway, preceding 

ribose-5-phosphate) is needed for these products. The gene target profiles for the bioamines putrescine and 

spermine were found to cluster together with their precursor amino acids proline and glutamate, as well as 

itaconic acid (cluster 4). Figure S7A shows that genetic modifications common to all products in this cluster 
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cause only moderate changes in the turnover rate of central carbon metabolism precursors, mostly for those 

in lower glycolysis, indicating that the optimal production mode for these products does not differ 

significantly from a wild-type optimal growing metabolic strategy. A strong requirement for increased flux 

towards E4P was found to be common to all terpenes, despite the protein limitations involved in their 

production pathways, as shown by Figures 4C, 4D and S7B. 

 

Production of native and heterologous products derived from the shikimate pathway, those in clusters 6 and 

7, were found to require an increase of flux towards the immediate precursors E4P and PEP, together with 

enhanced NADPH supply, provided by an increased flux to R5P, and a reduction of the metabolic turnover 

of precursors located downstream of PEP, in order to maximize carbon conversion (Figure S7C). Finally, 

significant increase of acetyl-CoA turnover, together with a moderate upregulation of the pentose-

phosphate pathway for increased NADPH flux, was found to be the optimal reprogramming strategy for 

production of free fatty acids, oleate and palmitoleate (Figure S7D), resembling previous successful work 

in yeast cells56. 

 

The set of common target predictions for a given cluster of products provides a modulated gene expression 

program capable of rewiring central carbon metabolism for increased production of key precursor 

metabolites. Implementation of these predictions in yeast cells can be used to drive the development of 

platform strains, specialized in providing the production scaffold for multiple chemicals. Platform strains 

can then be transformed into product-specific ones by introducing the necessary heterologous genetic 

components. This platform-based procedure will potentially reduce the resources and efforts involved in 

the development of next-generation cell factories. 

 

Web-based resources for exploration of metabolic engineering targets in S. cerevisiae 

 

Predicted gene targets for increased production of the chemicals in this study were incorporated into 

metabolic atlas for visualization in a metabolic network context. Figure 5 shows the gene modifications 

for improved patchoulol production in the central carbon metabolism of yeast as an example, where genes 

indicated for OE, KD and KO can be found. Furthermore, metabolic maps for other pathways, even in 

secondary and intermediate metabolism, are also available. Visualization options for the 102 products can 

be found at: www.dev.metabolicatlass.org. Additionally, in order to facilitate the utilization of the 

ecFactory method, interactive tutorials for prediction of engineering targets for 2-phenylethanol and heme 

production in yeast are available as MATLAB live scripts at: 

https://github.com/SysBioChalmers/ecFactory/tree/main/tutorials. 
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Conclusions  

 

Here we demonstrated that, by accounting for enzyme limitations, the use of metabolic models for 

quantitative prediction in metabolic engineering can be extended and improved. Enzyme-constrained 

models enabled assessment of the impact of enzyme capacity on the total protein and substrate costs of 

chemical production in cell factories, and reduction of the number of gene engineering targets for 

increased production predicted by stoichiometric constraint-based methods to a minimal optimal set of 

modifications. The model ecYeastGEM was used to predict gene engineering targets for enhanced 

production of 102 chemical products with yeast cells, including native and heterologous biochemicals 

with distinct chemical characteristics. Predictions showed to resemble complex engineering strategies that 

involve coordinated modulation and coordination of multiple pathways. Notably, supportive experimental 

evidence was found in the literature to verify the gene target predictions in 22 of the studied chemicals.  

 

Sets of gene targets common across products were identified for 8 different groups of chemicals, inferred 

with a clustering algorithm. Flux balance analysis simulations indicate that, these core genetic 

modifications represent the expression tunning profiles, needed to rewire the central carbon metabolism 

of yeast towards increased production of the main metabolic precursors required by groups of valuable 

chemicals. By visualizing the 8 different rewiring schemes we learned that clustering of products 

according to their gene target predictions obeys to combinations of these three basic factors: 1) protein 

burden induced by the specific production pathways and its impact on energy production; 2) the 

metabolic precursor that provides the main carbon flux for final product formation; 3) products that 

require increased NADPH flux levels. Thus, the presented approach suggests the advantages of using of 

enzyme-constrained models for design and understanding of platform strains optimized for diverse 

chemical production. Nonetheless, expanding the scope and number of chemicals and host organisms for 

this kind of large-scale studies might help to unveil additional core principles for rationally engineering of 

metabolism.  

 

We envision that the tools and methodology developed in this study will contribute to accelerate 

development of robust and efficient microbial strains both for specialized and also versatile production of 

valuable chemicals, promoting the conversion from petrol a bio-based economy.  
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Main Figures 

 

 
Figure 1.- Exploration of chemical production in yeast using enzyme-constrained metabolic 

modeling. A) Chemical classification of 102 chemicals for in silico prediction. Numbers within 

parenthesis indicate number of native products in the different families, those outside the 

parenthesis indicate the total number of products in the family. B) Production landscape 

predicted by a metabolic model with and without enzyme constraints at low and high glucose 

uptake levels. C) Production yield plot for the highly protein-constrained product choline. D) 

Production yield plot for the substrate-limited putrescine. E) Predicted substrate and protein cost 

of chemical production in yeast. Product origin, chemical classification and molecular weights 

are indicated by the characteristics of the 102 markers.  

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.01.31.526512doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526512
http://creativecommons.org/licenses/by-nd/4.0/


 

 
 

Figure 2.- Prediction of metabolic engineering targets with ecFactory. A metabolic model with 

enzyme constraints is used for (1) prediction of gene targets for rewiring flux towards increased 

production. (2) Gene targets are classified and filtered according to enzymatic efficiency and 

connectivity. (3) A minimal combination of targets for sustaining optimal production levels is 

obtained. 
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Figure 3.- Prediction of gene engineering targets for increased production of 102 chemicals in 

yeast. A) Distribution of the number of gene targets per product predicted at different steps in the 

ecFactory pipeline. Level1, FSEOF-based prediction; Level2, filtering by enzyme characteristics; 

Level3, obtention of minimal set of targets for optimal production. B) Distribution of product 

specificity of gene targets across 102 chemicals. C) Representation of the presence of the top 10 

most common predicted overexpression targets across products and families. 
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Figure 4.- Model-driven design of platform strains for diverse chemical production. A) 

representation of gene targets for optimal production as mathematical vectors. B) Identification of 

clusters of products with similarities in their predicted engineering targets using t-SNE. Chemical 

families are indicated as AA, amino acids; Alc, alcohols; Alk, alkaloids; Aro, aromatics; Bio, 

bioamines; FAL, fatty acids and lipids; fla, flavonoids; oAc, organic acids; stb, stillbenoids; ter, 

terpenes. C) FBA predicts cluster-specific metabolic rewiring strategies. Fold-change in turnover 

rate of the main metabolic precursors, compared to wild-type, necessary for optimal production of 

the products in clusters 1, 2 and 3. 
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Figure 5.- Map of S. cerevisiae’s central carbon metabolism from metabolic atlas. Gene targets 

for increased production of the terpene patchoulol are shown in red, for overexpressions; yellow 

for down-regulated targets; and gene for predicted gene deletions. 
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Abstract

The interplay between nutrient-induced signaling and metabolism plays an important role in

maintaining homeostasis and its malfunction has been implicated in many different human

diseases such as obesity, type 2 diabetes, cancer, and neurological disorders. Therefore,

unraveling the role of nutrients as signaling molecules and metabolites together with their

interconnectivity may provide a deeper understanding of how these conditions occur. Both

signaling and metabolism have been extensively studied using various systems biology

approaches. However, they are mainly studied individually and in addition, current models

lack both the complexity of the dynamics and the effects of the crosstalk in the signaling sys-

tem. To gain a better understanding of the interconnectivity between nutrient signaling and

metabolism in yeast cells, we developed a hybrid model, combining a Boolean module,

describing the main pathways of glucose and nitrogen signaling, and an enzyme-con-

strained model accounting for the central carbon metabolism of Saccharomyces cerevisiae,

using a regulatory network as a link. The resulting hybrid model was able to capture a

diverse utalization of isoenzymes and to our knowledge outperforms constraint-based mod-

els in the prediction of individual enzymes for both respiratory and mixed metabolism. The

model showed that during fermentation, enzyme utilization has a major contribution in gov-

erning protein allocation, while in low glucose conditions robustness and control are priori-

tized. In addition, the model was capable of reproducing the regulatory effects that are

associated with the Crabtree effect and glucose repression, as well as regulatory effects

associated with lifespan increase during caloric restriction. Overall, we show that our hybrid

model provides a comprehensive framework for the study of the non-trivial effects of the

interplay between signaling and metabolism, suggesting connections between the Snf1 sig-

naling pathways and processes that have been related to chronological lifespan of yeast

cells.
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Author summary

Elucidating the complex relationship between nutrient-induced signaling and metabolism

represents a key in understanding the onset of many different human diseases like obesity,

type 3 diabetes, cancer, and many neurological disorders. In this work we proposed a

hybrid modeling approach, combining Boolean representation of signaling pathways, like

Snf1, TORC1, and PKA with the enzyme constrained model of metabolism linking them

via the regulatory network. This allowed us to improve individual model predictions and

elucidate how single components in the dynamic signaling layer affect steady-state metab-

olism. The model has been tested under respiration and fermentation, revealing novel

connections and further reproducing the regulatory effects that are associated with the

Crabtree effect and glucose repression. Finally, we show a connection between Snf1 sig-

naling and chronological lifespan.

Introduction

Biological systems are of complex nature comprising numerous dynamical processes and net-

works on different functional, spatial and temporal levels, while being highly interconnected

[1]. The field of systems biology faces the great challenge of elucidating how these interconnec-

ted systems work both separately and together to prime organisms for survival. One such phe-

nomenon is the cells’ ability to sense and respond to environmental conditions such as

nutrient availability. To coordinate cellular metabolism and strategize, the cell needs an exact

perception of the dynamics of intra- and extracellular metabolites [2]. Simultaneously, nutri-

ent-induced signaling plays a pivotal role in numerous human diseases like obesity, type 2 dia-

betes, cancer and aging [3–6]. Therefore, unraveling the role of nutrients as signaling

molecules and metabolites as well as their interconnectivity may provide a deeper understand-

ing of how these conditions occur.

Yeast has long been used as a model organism for studying nutrient-induced signaling [7].

Two major classes of nutrients include carbon and nitrogen. Carbon-induced signaling acts

mainly through the PKA and SNF1 pathway while nitrogen-induced signaling acts through

the mTOR pathway. The PKA pathway plays a major role in regulating growth by inducing

ribosome biogenesis genes and inhibiting stress response genes [8]. The SNF1 pathway is

mainly active in low glucose conditions where it promotes respiratory metabolism, glycogen

accumulation, gluconeogenesis, and utilization of alternative carbon sources but it also con-

trols cellular developmental processes such as meiosis and aging [7, 9, 10]. The strongly con-

served TORC1 pathway plays a crucial role in promoting anabolic processes and cell growth in

response to nitrogen availability [8]. Active TORC1 induces ribosomal protein and ribosome

biogenesis gene expression [11, 12] and represses transcription of genes containing STR and

PDS elements in their promoter region [11]. Even though Snf1, TORC1, and PKA pathways

belong to the most well-studied pathways [2], there is still a lack of understanding both in the

dynamics and the interactions leading to change in gene expression. It has been shown, that

glucose signaling is related to metabolism however the nature of this relationship remains

unknown [13]. Numerous crosstalk mechanisms between these pathways have been described

[14], and depending on their activity, they may influence the overall effect of the signaling pro-

cess and thus the interaction with the metabolism [15]. To better understand the impact of cell

signaling on metabolism, a systems biology approach is often implemented [16].
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Typically, Boolean models have been developed to study the crosstalk between the Snf1

pathway and the Snf3/Rgt2 pathway [17] as well as the Snf1, cAMP-PKA, and Rgt2/Snf3 path-

ways [15]. In mammalian cells, Boolean models have been used to evaluate the conflicting

hypothesis of the regulation of the mTOR pathway [18] and to study crosstalk between mTOR

and MAPK signaling pathways [19]. Since, signaling systems are not always strictly Boolean in

its nature, where location, combinations of post-translational modifications as well as other

interaction play a role, alternative Boolean frameworks for handling these complex interac-

tions have been developed [15, 20]. In contrast, metabolism, also in itself a complex process, is

often studied using Flux Balance Analysis (FBA), which enables prediction of biochemical

reaction fluxes, cellular growth on different environments, and gene essentiality even for

genome-scale metabolic models [21–23]. A major limitation of the use of GEMs together with

FBA is the high variability of flux distributions for a given cellular objective [24], as FBA solves

largely underdetermined linear systems through optimization methods. To overcome this

problem, experimentally measured exchange fluxes (uptake of nutrients and secretion of

byproducts) are incorporated as numerical constraints, however, such measurements are not

readily available for a wide variety of organisms and growth conditions.

The concept of enzyme capacity constraints has been incorporated into FBA to reduce the

phenotypic solution space (i.e. exclusion of flux distributions that are not biologically mean-

ingful) and diminish its dependency on condition-dependent exchange fluxes datasets [25–

30]. Notably, a method to account for enzyme constraints, genome-scale models using kinetics

and omics (GECKO; Sánchez et al., 2017) has been developed. GECKO incorporates con-

straints on metabolic fluxes given by the maximum activity of enzymes, which are also con-

strained by a limited pool of protein in the cell. This method has refined predictions for

growth on diverse environments, cellular response to genetic perturbations, and even pre-

dicted the Crabtree effect in S. cerevisiae’s metabolism, but also proven to be a helpful tool for

probing protein allocation and enabled the integration of condition-dependent absolute prote-

omics data into metabolic networks [28, 30].

Following the holistic view of systems biology, hybrid models allow us to take the next step

and combine different formalisms to study the interconnectivity and crosstalk spanning differ-

ent scales and/or systems. For example, to quantify the contribution of the regulatory con-

straints of an Escherichia coli genome-scale model, a steady-state regulatory flux balance

analysis (SR-FBA) has been developed [31]. Furthermore, the diauxic shift in S. cerevisiae has

been studied by the CoRegFlux workflow, integrating metabolic models and gene regulatory

networks [32]. To bypass the need for kinetic parameters, a FlexFlux tool has been developed

where metabolic flux analyses using FBA have been constrained with steady-state values result-

ing from the regulatory network [33]. This strategy has also been used in a hybrid model of

Mycobacterium tuberculosis where the gene regulatory network was used to constrain the met-

abolic model to study the adaptation to the intra-host hypoxic environment [34]. However, to

further study the impact of signaling on metabolism, the complexity of the signaling systems

itself and the crosstalk between interacting pathways need to be represented coherently.

To better understand the complex relationship between metabolism and signaling path-

ways, we created a hybrid model consisting of a Boolean module integrating the PKA, TORC1,

and the Snf1 pathways as well as the known crosstalk between, together with an enzyme-con-

strained module of S. cerevisiae’s central carbon and energy metabolism (Fig 1). The backbone

of the presented model is a framework for utilizing the complex Boolean representation of

large-scale signaling systems to further constrain an enzyme-constrained model (ecModel) of

the central carbon metabolism. With the glucose level as input, transcription factor activities,

resulting from the Boolean module are mapped to a regulatory network. The bounds of the

solution space, calculated using enzyme usage variability analysis on the genes affected by the

PLOS COMPUTATIONAL BIOLOGY Yeast hybrid model
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transcription factors, are altered depending on up- or down- regulation and used to constrain

an ecModel of the central carbon metabolism (for details see Method section). The predictions

of protein allocation, at the individual enzyme level for respiratory and fermentative condi-

tions, are considerably improved by the incorporation of the regulatory layer into the hybrid

model, in comparison with its pure enzyme-constrained counterpart. Moreover, the predicted

enzyme usage profiles display a diversified utilization of isoenzymes, which is supported by

proteomics data, but previous constraint-based methods have failed to capture. Additionally,

the proposed hybrid model is capable of reproducing the regulatory effects that are associated

with the Crabtree effect and glucose repression and have further showed a connection between

glucose signaling and chronological lifespan by the regulation of NDE and NDI usage in

respiring conditions. Finally, the model showed that during fermentation, enzyme utilization

is the more important factor governing protein allocation, while in low glucose conditions

robustness and control are prioritized.

Results

Implemented Boolean signaling network reproduces the general dynamics

caused by glucose and nitrogen addition to starved cells

To verify the constructed Boolean model of nutrient-induced signaling pathways (Fig 2), cells

were simulated from nitrogen- and glucose-starved conditions to nutrient-rich conditions.

We also simulated the model from nutrient-rich conditions to nutrient depletion. The

Fig 1. Schematic representation of the hybrid model. The hybrid model consists of a vector-based Boolean module of nutrient

signaling and an enzyme constrained module of the central carbon metabolism. The Boolean module is a dynamic module including

Snf1, PKA, and TORC1 pathway as well as crosstalk between them. The dynamic module reaches a steady-state and the activity of the

transcription factors acts as input in a regulatory network constraining the enzyme constraint model of the central carbon metabolism.

The solution is used to determine the activity of the Boolean input.

https://doi.org/10.1371/journal.pcbi.1008891.g001
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simulated results were compared to the literature concerning both dynamics and steady-state

outcome. An in-depth literature review of the known mechanisms and its implementation and

interpretation in the model as well as a graphical representation of the simulated dynamics are

available in S1 Text, S1 Fig, and S1 Table. The PKA pathway was activated upon glucose abun-

dance via the small G proteins Ras and Gpa2. These proteins, in turn, activated the adenylate

cyclase (AC) that induced the processes leading to the activation of the catalytic subunit of

PKA. Active PKA phosphorylated and therefore inactivated Rim15, thus the transcription fac-

tors Gis1, Msn2, and Msn4 became inactive. Our result pinpointed PKA as the main regulator

of Rim15 (for details see S1 Text), while previous experimental studies showed that Sch9 is the

major regulator of Rim15 [35]. Further, simulations from high to low nutrient conditions are

in agreement with the literature on dynamics and steady-states (S1 Fig). When glucose is

depleted Ira becomes active and sequentially Cdc25 gets inactivated which results in Ras inac-

tivation. Simultaneously Gpr1 gets inactivated, turns off Gpa2 relieving the inhibitory effect on

Krh activity. This inactivates AC and in turn PKA. Pde and Rim15 get dephosphorylated and

Rim15 can phosphorylate Gis1 and Msn2/4.

The SNF1 pathway is active when glucose is limited, while the addition of glucose causes

Snf1 inactivation resulting in the activation of the transcriptional repressor Mig1 and the deac-

tivation of Adr1, Cat8, and Sip4. However, the inactivation of Adr1 happened before Snf1

inactivation. This is due to the implemented crosstalk with the PKA pathway, where activated

PKA inhibits Adr1 activity [36]. This crosstalk has a similar effect on the dynamics of Adr1

activation in simulations from high to low nutrient conditions. Snf1 is phosphorylated by the

upstream kinases when glucose is depleted and then phosphorylates Mig1, Cat8, Sip4, Adr1,

and Reg1. Cat8 and Sip1 become active while Adr1 activation occurs two iterations later due

to the crosstalk implementation between the PKA and SNF1 pathway (for details see S1 Text).

Fig 2. The Boolean module is a dynamic module including Snf1, PKA, and TOR pathway as well as crosstalk between

them. Crosstalk events between the pathways are depicted in grey. Unknown mechanisms are represented by dashed lines.

https://doi.org/10.1371/journal.pcbi.1008891.g002
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First, when PKA gets inactive the inhibitory effect it has on Adr1 releases. Mig1 gets inacti-

vated and the phosphorylation of Reg1 activates Glc7.

Nutrient availability activates the TOR complex 1 which in turn phosphorylates Sch9 and Sfp1

resulting in the repression of Rim15 phosphorylation and the expression of ribosomal genes

respectively. No change was observed in the activity of PP2A-regulated transcription factors Rtg1,

Rtg3, Gat2, and Gln2. However, during the 8th iteration, PP2A was active. In addition, Sch9 was

not the main regulator of Rim15 activity in our simulations since PKA was activated before Sch9

and acted independently to regulate Rim15, either due to a gap in the model or a lack of complex-

ity in our understanding of the signaling system (S1 Text). When glucose is depleted the EGO

complex loses activity which transmits to the TORC1 complex and in turn to Sch9 and Sfp1.

The Boolean model reveals interconnectivity and knowledge gaps in

nutrient signaling pathways

To further investigate the impact of nutrient conditions on the crosstalk between pathways in

the Boolean model, knockouts of main components of each pathway (Snf1, Reg1, Tpk1-3, and

Tor1,2) were simulated and compared to the wildtype in glc|nitr = 1|1 and glc|nitr = 0|0 (S2

Fig). In nutrient-depleted conditions, only the Snf1 knockout had a significant impact. In the

Snf1 pathway, Snf1 knockout affected all downstream targets leading to a transcription factor

activity pattern that is usually observed in wildtype strains when glucose is available [7]. It has

been previously described that the phenotype of Snf1 mutants resembles the phenotype

observed when the cAMP/PKA pathway is over-activated [37]. Although activation of the ade-

nylate cyclase (AC) could be observed in the simulated knockout, PKA and the downstream

targets were inactive due to the activity of the Krh proteins that inhibit PKA if no glucose is

present in the Boolean model (S1 Text). The Snf1 mutant showed defects in the TOR pathway

upon glucose depletion leading to the activation of the PP2A phosphatase. The resulting acti-

vation of NCR and RTG genes and deactivation of ribosomal genes correspond to the pheno-

type one would expect if glucose but not nitrogen is available [38] thus stressing the role of

Snf1 in imparting the glucose state to the other nutrient-signaling pathways.

Under high nutrient availability, the Reg1 knockout showed almost the same effect on the

SNF1 and TORC1 pathway as nutrient depletion. Only Adr1 activity was not affected which

opposes the observations by Dombek and colleagues [39], that described constitutive ADH2

expression in Reg1 mutant cells (S1 Text).

An almost similar effect on the SNF1 and TORC1 pathways could be observed when Tpk1-

3 knockout was simulated. This redundant effect was expected since impaired PKA activity

was described to be associated with increased SNF1 activity[40]. Nevertheless, PKA knockout

additionally induced Adr1 activation when SNF1-mediated activation could no longer be

inhibited by PKA. The PKA knockout simulation showed strong effects on all three simulated

pathways and may explain why strains lacking all three Tpk isoenzymes are inviable [41].

The effects of Tor1 and 2 knockouts only affected the TORC1 signaling pathway. The simu-

lated phenotype equaled the phenotype that is expected upon nitrogen depletion and glucose

abundance and was therefore similar to the phenotype observed when simulating the Snf1

knockout in nutrient-starved cells. Besides, experimental observations revealed that impairing

Tor1 and 2 function results in growth arrest in the early G1 phase of the cell cycle, as well as

inhibition of translation initiation which are characteristics of nutrient, depleted cells entering

stationary-phase [42]. The fact that inactivation of TORC1 results in the inactivation of Sfp1

that regulates the expression of genes required for ribosomal biogenesis could be an indicator

of this observation; however other TORC1-associated signaling mechanisms inducing transla-

tion initiation may likely be involved [42].
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The hybrid model improves protein allocation predictions by showing a

diversified use of isoenzymes

To verify the performance of the ecModel layer, predicted exchange fluxes at increasing dilu-

tion rates on glucose-limited conditions were compared against experimental data [43] (S3

Fig), predictions showed a median relative error of 9.82% in the whole range of dilution rates

from 0 to 0.4 h-1, spanning both respiratory and fermentative metabolic regimes. The hybrid

model, including regulation, was further compared with the ecModel in its ability to compute

protein demands by comparing the predicted enzyme usages to protein abundance data from

the literature, in both respiratory and fermentative conditions [44, 45]. Analysis of results

revealed that, in respiration, 40.83% of the proteins in the model are predicted in the same

order of magnitude as their experimental values, and 31.66% are predicted with an error

between one and two orders of magnitude, yielding an average absolute log10 fold-change

between predictions and measurements of 1.55. For the fermentative condition, 65.51% of the

proteins are predicted within the same order of magnitude as their experimental measure-

ments, showing an average absolute log10 fold-change of 2.32 (S1 Data and S2 Text). Further-

more, two-sample Kolmogorov-Smirnov tests did not show statistically significant differences

between the hybrid model predictions and the available proteomics datasets.

Pathway enrichment analysis of the proteins miss-predicted by more than one order of

magnitude by the hybrid model was performed using a hypergeometric distribution test and

the Holm-Bonferroni correction method for multiple testing. Results showed that the super-

pathway of glucose fermentation was significantly enriched for underpredicted proteins on

both respiratory and fermentative conditions (p-value of 1.39x10-7 and 7x10-5, respectively);

additionally, TCA and glyoxylate cycles showed significant enrichment for underpredicted

proteins uniquely in fermentation (p-values of 3x10-2). On the other hand, the super-pathways

of aerobic fermentation and electron transport chain were significantly enriched for overpre-

dicted proteins in the fermentative condition (p-value = 2.85x10-23). The pentose phosphate

pathway and glucose-6-phosphate biosynthesis showed significant enrichment for underpre-

dicted proteins just in the respiratory condition (p-values of 2.86x10-4 and 1.95x10-2, respec-

tively). A detailed comparison between the model predictions and in-depth results from the

protein predictions are available in S1 Data, S2 Table, and S2 Text.

Comparison with the pure enzyme-constrained model showed that, by adding the regula-

tion layer, prediction of protein demands are improved by more than one order of magnitude,

on average, as the aforementioned log10-transformed ratio is reduced from 2.62 to 1.55, in res-

piration, and from 3.56 to 2.32 for fermentation. This large improvement is predominantly

resulting from the utilization of more than one isoform for some reactions in the hybrid

model in contrast to a pure ecModel, in which just the most efficient enzyme for a given reac-

tion is used, due to its reliance on optimality principles.

Utilization of isoenzymes was assessed by comparing predicted non-zero enzyme usages,

for different isoforms in a given metabolic reaction, to their presence in the datasets for both

conditions, returning confusion matrices for the ecModel and hybrid model in each condition

(S1 Data). Fig 3 provides a detailed comparison of isoenzymes presence in unregulated and

regulated model predictions and proteomics datasets. Predictive performance was then evalu-

ated by computing sensitivity, specificity, precision, accuracy and the Fowlkes-Mallow index,

which takes into account all the pair of points in which two clusters of data agree or disagree,

approaching the value of one for highly similar clusters [46]. Overall, these metrics revealed

that the hybrid model outperforms the ecModel in its ability to predict utilization of expressed

isoenzymes in both respiration and fermentation conditions. Further details on predictive per-

formance assessment are shown in Fig 3B.
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The hybrid modeling framework reveals a connection between regulation

and chronological aging as well as fundamental strategies of enzyme

utilization

To better understand which pathways and reactions are most affected by regulation, the meta-

bolic flux distributions predicted by the hybrid model and the ecModel were compared. Larger

flux differences arose for respiratory conditions, in which the average relative change in flux

was 1.85 in contrast to 0.46 in fermentation (S2 Data), this result is heavily influenced by the

amount of totally activated or deactivated fluxes by the hybrid model, 57 for respiration and 29

for fermentation (Fig 4 and S2 Data). In the ecModels formalism reversible metabolic reactions

are split, creating separate reactions for the forward and backward fluxes, thus distributions of

Fig 3. (A) Absolute log10-transformed ratio between predicted and measured protein abundance values in respiration

and fermentation for the purely enzyme-constrained and hybrid models. (B) Evaluation of isoenzymes utilization

predictions, comparing the ecModel and hybrid model on respiratory and fermentative conditions against

experimental data on protein expression (absence/presence). FMI—Fowlkes-Mallows index. (C) Comparison of

individual isoenzymes utilization between models’ predictions and experimental data. Color indicates presence or

absence of a given protein in the predictions of the ecModel, hybrid model and experimental data on protein

expression.

https://doi.org/10.1371/journal.pcbi.1008891.g003
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net metabolic fluxes were also obtained and compared among models and conditions. As

some enzymes are upregulated by the hybrid model even to levels that exceed the flux capacity

of certain pathways (for a fixed growth rate), futile fluxes are expected to arise across the meta-

bolic network.

Increased exchange fluxes for glucose, oxygen, and acetate were observed in the respiration

phase (S2 Data). Additionally, an increase in the overall flux through the pentose phosphate

pathway as well as an induced use of NDE instead of only NDI, allowing for the utilization of

cytosolic NADH to reduce oxygen demands in the oxidative phosphorylation pathway was

detected and has previously been associated with chronological aging [47]. Increased flux on

PCK, PDC, ALD2, and ACS, around the pyruvate branching point, led to an overall increased

flux through the TCA cycle (Fig 4 and S2 Data). To balance the increased production of AMP

by ACS the ADK reaction is also upregulated. Futile fluxes are induced by regulation in galac-

tose metabolism (GAL7 and GAL10), lower glycolysis (TDH, PGK, and ENO), TCA cycle

(FUM and MDH), as well as TKLa and PGM in the pentose phosphate pathway and ADH (Fig

4 and S2 Data) in respiration.

In the fermentation state, futile fluxes also occur in galactose metabolism (GAL7) as well as

glycolysis (PGI, PGK, TPI, and GPM), TAL1 in the pentose phosphate pathway, and ACO in

the TCA cycle (S4 Fig and S2 Data). Down-regulation of oxidative metabolism increased

uptake of glucose, and increased flux through glycolysis was observed, which is consistent with

the changes that have been attributed to glucose-induced repression during the long term

Crabtree effect [48] (Fig 4).

The control exerted by each enzyme on the global glucose uptake rate was investigated

through the calculation of flux control coefficients (FCCs), allowing comparison of the

Fig 4. The core reactions in the metabolism under (A) respiration and (B) fermentation are shown. The fluxes are represented by the width of the connectors

where dotted lines represent zero flux. The color of the connectors represents the change in flux from the unregulated ecModel compared to the regulated

hybrid model. The FCCs are represented in the figure where the unregulated case is depicted by circles and compared to the regulated case depicted in squares.

https://doi.org/10.1371/journal.pcbi.1008891.g004
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distribution of metabolic control between the pure enzyme-constrained and hybrid model. In

both conditions the FCCs obtained for hexokinases by the ecModel (YLR446W for respiration

and HXK1 in fermentation) showed a value equal to 1, the highest value in their respective dis-

tributions, indicating that the overall glucose uptake rate is mostly governed by the activity of

this enzymatic reaction step. In contrast, the constraints applied by the hybrid model distribute

the control over the glucose uptake flux in a more even way across different enzymes and path-

ways, yielding FCCs of 0 for the different HXK isoforms in both metabolic regimes.

As a general trend, more FCCs with a high value (FCC>0.05) are obtained for fermentative

conditions than for respiration, despite the use of the ecModel or hybrid model (Fig 4 and S3

Data). In the respiratory condition, the highest FCCs are concentrated in the oxidative phos-

phorylation pathway as well as around the branching point of pyruvate and PFK in glycolysis,

whose activity is related to the connections between glycolysis and PP pathway. Moreover, the

absence of glucose uptake control by lower glycolytic enzymes, and the prevalence of a non-

zero FCC for PFK in both the ecModel and the hybrid model agrees with experimental evi-

dence for mouse cell-lines in respiratory conditions [49]. For the fermentative condition, the

highest FCCs are concentrated in the TCA cycle. Similarly to the respiration case, non-zero

FCCs are present in the reaction steps surrounding the connecting points of different path-

ways, such as PFK, FBA, and TDH connecting glycolysis with the pentose phosphate pathway

and reactions around pyruvate, which connect glycolysis with fermentation and the TCA cycle

(Fig 4), this trend might indicate that in these branching points kinetic control is still a relevant

mechanism governing fluxes.

Deletion of the Snf1 in the hybrid model shows the importance of the Snf1

pathway in low glucose conditions and a connection between Snf1

regulation and chronological aging

To investigate how the individual signaling pathways contribute to changes in metabolic

fluxes, the main component of each signaling pathway was deleted and flux changes were com-

pared between the wild-type hybrid model and the knockout versions (S4 Data).

The Snf1 deletion was the only deletion showing any effect on the net fluxes in the respira-

tory condition (S4 Fig) while the Reg1, PKA and TOR deletions showed effects in fermentation

conditions, consistent with the deletion experiments done with the Boolean model. The differ-

ent mutants in fermentation do not induce major changes in net fluxes, however, the enzyme

usage profile differs across the different mutants. Notably, the largest changes in terms of futile

fluxes were observed in the TPI reaction, repressed in respiration by the Snf1 pathway and

activated in fermentative conditions by either the PKA or Reg1 pathways. In respiration, Snf1

is also responsible for the futile fluxes through GPM, PGI and reduces the futile fluxes through

FUM, MDH, PGM, and GAL10. The model simulations show a less diverse use of isoenzymes

in all knockouts, which is most likely due to the reduction in the complexity of the regulatory

layer. Considering the inherent property of flux balance analysis, any reduction in the regula-

tory network will be closer to the optimal distribution in which just the most efficient isoforms

are used.

The Snf1 deletion exhibits an overall decrease in the flux towards respiration and a large

decrease in flux through PPP, showing also a relatively strong downregulation of enzymatic

steps surrounding pyruvate. The most significant changes are observed in NDE and PCK that

are turned off and ALD6 which is turned on, implying that the Snf1 pathway is responsible for

changing the acetate production via ALD6 to acetate production via ALD2, resulting in

increased production of cytosolic NADH to the expense of the NADPH, which is compensated

by increasing the flux through the pentose phosphate pathway as well as the additional use of
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NDE. The use of ACS1 is abolished in the Snf1 deletion but not in other deletions, in the same

manner as NDE. ACS1 has been shown to be upregulated in long-lived cells exposed to caloric

restriction [50]. We compared the expression in our deletion simulations to experimental data

of differentially expressed genes having a positive effect on chronological lifespan [51]. Out of

17 differentially expressed genes covered by our model, 6 were significant at a p-value = 0.05.

Of those, 5 were also expressed in our model (S4 Data). RPE1 and CIT3 were upregulated in

calorically restricted conditions. CIT3 is upregulated in our model by the Snf1 pathway while

RPE1 is regulated by two mechanisms, one visible as a differential expression in the regulated

WT compared to the ecModel, and one acting through the SNF1 pathway. RPE1 is also upre-

gulated in the long-lived ade4 mutant strain together with the ADH5 gene. In our model

ADH5 is not expressed in the ecModel, the hybrid model, or any of the simulated mutants.

Cells treated with concentrates of media from cells grown under caloric restriction show an

upregulation of PFK2. This is also shown in cells grown with the drug isonicotinamide

(INAM) in which also PGK1 and ENO2 are upregulated. In the hybrid model, PGK1 and

ENO2 are upregulated compared to the ecModel and none of the mutant strains showed any

differential expression from the hybrid model of the WT. PFK2 similarly to RPE1 shows an

upregulation by two mechanisms, one where the gene is upregulated in the hybrid model com-

pared to the ecModel, and one where the Snf1 deletion shows a differential expression com-

pared to the hybrid WT. The specific matrix of the gene regulatory network indicates that the

mechanism is not related to a specific pathway. The regulation, of PFK2 and RPE1, is gener-

ated through a general regulatory effect caused by the network and not by regulation specifi-

cally acting on the gene itself.

Discussion

The effects of nutrient-induced signaling on metabolism play an important role in maintaining

organismal homeostasis and consequently understanding human disease and aging. To gain a

better understanding of the interconnectivity between nutrient signaling and metabolism, we

have developed a hybrid model by combining a Boolean and an enzyme-constrained model of

metabolism, using a regulatory network as a link. More specifically, we have implemented a

Boolean signaling network that is responsive to glucose and nitrogen levels and an ecModel of

yeast’s central carbon metabolism. The proposed framework has been validated using available

experimental data resulting in an increased predictive power on individual protein abundances

in comparison to individual models alone. Further, we were able to characterize the cells’ devi-

ation from optimal protein allocation and flux distribution profiles. The model is capable of

reproducing the regulatory effects that are associated with the Crabtree effect and glucose

repression. In respiratory conditions, the model showed regulation of genes known to be dif-

ferentially expressed in long-lived cells. This regulation was shown by the hybrid model to act

via both Snf1 dependent and independent mechanisms. In addition, the model showed that

during fermentation, enzyme utilization is the more important factor governing protein allo-

cation, while in low glucose conditions robustness and control are prioritized.

The integration of regulatory constraints is resulting in a highly constrained hybrid model.

The downside of this approach is connected to the lack of information regarding the regula-

tory effects of transcription factors activation. In this work we assume a uniform proportional

action for all gene targets, together with the other constraints of the model, resulting in a rather

low effect on the regulatory action. Despite this, the hybrid model shows improved predictive

power for individual enzyme demands and can qualitatively reproduce regulatory effects asso-

ciated with glucose repression in fermentation conditions, suggesting that with this framework

we can gain novel insight into the interplay between signaling pathways and metabolism.
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Another limitation is the inclusion of only the central carbon metabolism, a potential exten-

sion of this work would include the addition of other pathways responsive to glucose signaling,

like glycerol metabolism and fatty acid synthesis, enabling also the study of the regulatory

effect on these pathways specifically with relatively few modifications in the hybrid model.

The current state-of-the-art methods for absolute quantification of protein abundance typi-

cally yield high experimental errors, spanning even over orders of magnitude, when measuring

external standards with proteins of known concentration [52–54]. Such measurement errors

are comparable to the average error in prediction of individual enzyme levels by the hybrid

model. Further comparison of enzyme usage profiles against proteomics datasets revealed that,

incorporation of a regulatory layer over an ecModel induces a diversified isoenzymes utiliza-

tion profile, supported by experimental evidence, in contrast to a purely optimality-based

approach (pure ecModel) in which this is rarely observed, especially in non-protein limited

conditions (cellular respiration at low dilution rates).

The hybrid model shows that under regulation the NADH to support the electron transport

chain is partly coming from the cytosol with the help of the mitochondrial external NADH

dehydrogenase, NDE2. Overexpression of NDI1, in contrast to NDE1, causes apoptosis-like

cell death which can be repressed by growth on glucose-limited media [47]. In our model regu-

lation acts on both NDE and NDI which will lower the need for NDI1 expression and thus

causing apoptosis-like cell death. The hybrid model gives the ability to determine that the Snf1

pathway alone is responsible for the shift to the additional use of NDE and NDI instead of only

NDI. Snf1 is active in glucose-limited media and thus would help mitigate the phenotype of

overexpressed NDI1. With our approach, we can attribute this effect to the Snf1 pathway spe-

cifically which a metabolic model alone would not be able to predict. Further, connecting Snf1

with the respiration-restricted apoptotic activity described previously [47], hybrid model con-

tributes to the understanding of the role of Snf1 in chronological aging [50]. Additionally, the

hybrid model could also predict the additional use of ACS1, not predicted by the ecModel or

the SNF1 deletion, by increasing the flux through the ACS reaction. This phenotype of Snf1

has been indicated as an important factor in caloric restriction related extension of chronologi-

cal lifespan in yeast [50]. When comparing differentially expressed genes in cells with extended

chronological life span with genes affected by regulation in the hybrid model, both genes dif-

ferentially expressed in caloric restriction conditions were regulated by the Snf1 pathway in

the hybrid model, further strengthening the Snf1 mediated mechanism of extended chronolog-

ical lifespan after caloric restriction. RPE1 and PFK2 were found in two different conditions

leading to extended chronological lifespan and also showed two mechanisms of regulation in

the hybrid model through systems biology effects, one general and one mechanism working

through the SNF1 pathway. Interestingly all caloric restriction related conditions show at least

one mechanism of the regulation working via the SNF1 pathway. This exemplifies how we can

confirm known and possibly predict novel connections between signaling and metabolism

when combined in a coherent framework.

Futile fluxes in the cell have been examined previously within the constraints of osmotics,

thermodynamics, and enzyme utilization [55], where the osmotics are putting a ceiling on the

allowed metabolite concentrations in the cell while thermodynamics govern the net fluxes

through reactions. The induced futile fluxes can be explained by the fact that regulation

included in the hybrid model will force the cell to use some enzymes even above its pathway

flux requirements, adding robustness of metabolism to a constantly changing environment.

The increase in flux in both forward and backward directions (i.e the increased futile flux

through reactions) implies that these enzymes are working closer to their equilibrium and thus

have a low flux control over the pathway flux, while enzymes with a strong forward flux have

large flux control [56]. This feature is also displayed by our hybrid model, in which all
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enzymatic steps with induced futile fluxes exert null control over glucose uptake (FCCs = 0).

More enzymes in a pathway working close to their equilibrium results in robustness against

perturbations as well as allow the pathway to be controlled and regulated through a few

enzymes, however, this happens at the expense of inefficient utilization of enzymes as the cell

needs to spend more resources to sustain a pool of enzymes that are carrying both forward and

backward fluxes [55, 57]. Our predictions of several glycolytic steps forced to operate closer to

their equilibrium by regulation (high futile fluxes induced for TDH, PGK, and ENO in respira-

tion, and TPI, PGK, and GPM in fermentation) agree with experimental studies on E. coli,
iBMK cells and Clostridia cellulyticum, which have suggested the utility of near-equilibrium

glycolytic steps not just for providing robustness to environmental changes but also for

enhancing metabolic energy yield [58].

Computation of FCCs showed that in respiration the glucose flux is tightly dependent on

the activity of the enzymatic steps in oxidative phosphorylation, a high-energy yield pathway.

In contrast, in the fermentative condition flux control is split between PFK, PYK, PDC, and

several steps in the TCA cycle. Interestingly, the FCCs in the TCA cycle are decreased by

around half, after applying the regulatory constraints in the hybrid model, providing hints of

the importance of enhancing robustness in this pathway at high growth rates due to increased

demand for biomass precursors. The prevalence of the highest FCCs in fermentation for PFK,

PYK, and PDC (for both the ecModel and the hybrid model) indicates their important role as

modulators of flux balance between glycolysis, PPP, and fermentative pathways at highly

demanding conditions, suggesting that when entering fermentation, the cell sacrifices robust-

ness to favor efficient enzyme utilization.

Comparison of enzyme usage and flux distributions between models and across conditions

reveals that the effects of regulation are generally stronger for the respiratory condition, caus-

ing the arisen of more and higher futile fluxes; turning on reaction steps that are not required

by optimal metabolic allocation (purely ecModel) and inducing higher upregulation of fluxes.

These findings suggest that metabolic phenotypes are majorly shaped by regulatory constraints

in low glucose conditions, whilst enzymatic constraints play a major role when glucose is not

the limiting resource.

It was also found that the regulatory layer diminishes the strong flux control that hexoki-

nase isoforms have over glucose consumption in both low and high glucose conditions to 0.

The hexokinases in yeast, specially HXK2, have a central role in glucose signaling. It works

both as an effector in the Snf1 pathway and also actively participates in the repression complex

together with Mig1 in glucose repression during high glucose conditions [59]. Intuitively, it

would be practical if an enzyme having these central and diverse tasks in the cell would not

have such a high FCC as can be seen with the ecModel. When small perturbations in enzyme

activity or concentration have large effects on glucose consumptions, allocating this enzyme to

other parts of the cell such as the nucleus, participating in the repression complex, would be

energetically expensive. Given the central role of hexokinase in glucose signaling, this would

be of interest for further investigation and future studies.

Overall, in this work, we have shown how the hybrid modeling framework integrating

nutrient-sensing pathways and central carbon metabolism can not only improve individual

model predictions but can also elucidate how single components in the dynamic signaling

layer affect metabolism at steady-state. We tested our model against both respiring and fer-

menting conditions and could not only predict known phenomena but also find novel connec-

tions. This methodology can be used to connect both original and readily available models in

yeast to look at the interactions between signaling and metabolism. This can be applied to

genome-scale and on different subsystems of metabolism and for different signaling systems

(e.g. macronutrients or osmotic stress sensing). The availability of genome-scale models for
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different organisms is constantly growing and with our increasing understanding of signaling

systems and regulatory networks, the methodology developed in the course of this work can be

adapted to many other organisms. Hybrid models, like the one proposed here, also provide a

framework for hypothesis testing, as we demonstrated by knocking out several components of

the nutrient-induced signaling network. In summary, we developed a methodology to investi-

gate intrinsically different systems, such as signaling and metabolism, integrated into the same

model, gaining insight into how the interplay between them can have non-trivial effects.

Materials and methods

Boolean model of nutrient-induced signaling pathways

Based on an extensive literature review, a detailed topology of the nutrient-induced signaling

pathways TORC1, SNF1 and PKA accounting also for their crosstalks was derived and formal-

ized as a Boolean network model using a vector-based modelling approach [15] TORC1: [8,

60–74]; SNF1: [75–101]; PKA: [7, 8, 12, 38, 102–115]; crosstalks: [36, 38, 40, 109, 116, 117].

The model consists of four different components: metabolites, target genes, regulated

enzymes, and proteins. For the regulated enzymes, presence and phosphorylation state were

considered whereas metabolites and target genes were only described by a single binary value

indicating their presence and transcriptional state respectively. The state vectors were trans-

lated into a single binary value indicating the components’ activity, allowing a better graphical

depiction. In total, the model comprises 5 metabolites, 10 groups of target genes, 6 enzymes

whose activity is altered upon nutrient signaling, and 46 proteins belonging to PKA/cAMP,

the SNF1, and the TORC1 pathway, for detailed description, see S1 Text and S1 Table.

The availability of glucose and nitrogen was used as an input to the model and is imple-

mented as one vector of binary values for each nutrient. This input enables to simulate the

induction of signaling under different nutrient conditions, for instance, the addition of glucose

and nitrogen to starved cells is represented by the vector 0|1 for both nutrients respectively.

Here, 0 represents the starved or low nutrient condition and 1 the nutrient-rich condition.

Based on this input and the formulation of the Boolean rules, a cascade of state transitions is

induced. The simulation was conducted using a synchronous updating scheme meaning that

at each iteration, the state vectors are updated simultaneously. The algorithm stops if a Boolean

steady state is reached at which no operation causes a change in the state vectors. This process

is repeated for each pair of glucose and nitrogen availabilities whereby the reached steady state

for each nutrient condition serves as an initial condition for the next nutrient condition.

Since for many of the included processes, no information on the mechanisms causing

reversibility was available, especially a lack in knowledge on phosphatases reverting phosphor-

ylation was observed [15], gap-filling was conducted by including else-statements. This

ensures that a component’s state vector changes again e.g. if the conditions causing its phos-

phorylation are not fulfilled anymore. This gap-filling process guarantees the functionality of

the Boolean model in both directions, meaning the simulation of state transitions occurring

when nutrients (glucose and nitrogen) are added to nutrient-depleted cells as well as when

cells are starved for the respective nutrients. Crosstalk mechanisms between the pathways were

formulated as if-statements and can be switched off (0) or on (1). Furthermore, a simulation of

knockouts of the pathways’ components is possible by setting the value indicating their pres-

ence to 0.

Enzyme-constrained metabolic model

A reduced stoichiometric model of Saccharomyces cerevisiae’s central carbon and energy

metabolism, including metabolites, reactions, genes, and their interactions accounting for
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glycolysis, TCA cycle, oxidative phosphorylation, pentose phosphate, Leloir, and anaerobic

excretion pathways, together with a representation of biomass formation, was taken as a net-

work scaffold[29]. The metabolic model was further enhanced with enzyme constraints using

the GECKO toolbox v1.3.5 [30], which considers enzymes as part of metabolic reactions, as

they are occupied by metabolites for a given amount of time that is inversely proportional to the

enzyme’s turnover number (kcat). Therefore, enzymes are incorporated as new “pseudo metabo-

lites” and usage pseudo reactions are also introduced in order to represent their connection to a

limited pool of protein mass available for metabolic enzymes. Moreover, all reversible reactions

are split into two reactions with opposite directionalities in the ecModel, in order to account for

the enzyme demands of backward fluxes. Several size metrics for the Boolean model, the meta-

bolic network, and its enzyme-constrained version (ecModel) are shown in Table 1.

As the obtained ecModel has the same structure as any metabolic stoichiometric model, in

which metabolites and reactions are connected by a stoichiometric matrix, the technique of flux

balance analysis (FBA) can be used for quantitative prediction of intracellular reaction fluxes

[118]. FBA assumes that the metabolic network operates on steady-state, i.e. no net accumula-

tion of internal metabolites, due to the high turnover rate of metabolites when compared to cel-

lular growth or environmental dynamics [119], therefore, by setting mass balances around each

intracellular metabolite a homogenous system of linear equations is obtained. The second major

assumption of FBA is that metabolic phenotypes are defined by underlying organizational prin-

ciples, therefore an objective function is set as a linear combination of reaction fluxes which

allows for obtaining a flux distribution by solving the following linear programming problem

max : Z ¼ CTv

Subject to

S � v ¼ 0

lb � v � ub

Table 1. Size metrics for the Boolean, original metabolic model, and its enzyme-constrained version.

Boolean model

Metabolites 5

Target gene groups 10

Enzyme PTMs 6

Proteins 46

Metabolic model

Reactions 90

Metabolites 81

Genes 130

Cellular compartments 4

ecModel

Reactions 324

Metabolites 111

Enzymes 127

Promiscuous enzymes 41

Reactions with isoenzymes 30

Enzyme complexes 11

Reactions w/Kcat 115

https://doi.org/10.1371/journal.pcbi.1008891.t001
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Where CT, is a transposed vector of integer coefficients for each flux in the objective func-

tion (Z); v, is the vector of reaction fluxes; S, is a stoichiometric matrix, representing metabo-

lites as rows and reactions as columns; lb and ub are vectors of lower and upper bounds,

respectively, for the reaction fluxes in the system. Additionally, the incorporation of enzyme

constraints enables the connection between reaction fluxes and enzyme demands, which are

constrained by the aforementioned pool of metabolic enzymes

vi ¼
X

j
kcatij � ej

Xp

j
Mwj � ej � f � s � Ptot

Where kcatij is the turnover number of the enzyme j for the i-th reaction, as in some cases

several enzymes can catalyze the same reaction (isoenzymes); ej, is the usage rate for the

enzyme j in mmol/gDw h-1; Mwj, represents the molecular weight of the enzyme j, in mmol/g;

Ptot, is the total protein content in a yeast cell, corresponding to a value of 0.46 gprot/gDw

[120]; f, is the fraction of the total cell proteome that is accounted for in our ecModel, 0.1732

when using the integrated dataset for S. cerevisiae in paxDB as a reference [121]; and σ being

an average saturation factor for all enzymes in the model.

This simple modeling formalism enables the incorporation of complex enzyme-reaction

relations into the ecModel due to its matrix formulation, such as isoenzymes, which are differ-

ent enzymes able to catalyze the same reaction; promiscuous enzymes, enzymes that can cata-

lyze more than one reaction; and enzyme complexes, several enzyme subunits all needed to

catalyze a given reaction.

ecModel curation

As the ecModel was generated by the automated pipeline of the GECKO toolbox, several of its

components were curated to achieve predictions that are in agreement with experimental data

at different dilution rates. Data on exchange reaction fluxes at increasing dilution rates, span-

ning both respiration and fermentative metabolic regimes [43] was used as a comparison

basis. Additionally, all unused genes in the original metabolic network were removed and gene

rules for lactose and galactose metabolism were corrected according to manually curated

entries for S. cerevisiae available at the Swiss-Prot database [122]. Gene rules and metabolites

stoichiometries (P/O ratio) in the oxidative phosphorylation pathway were also corrected

according to the consensus genome-scale network reconstruction, Yeast8 [21].

The average saturation factor for the enzymes in the model was fitted to a value of 0.48,

which allows the prediction of the experimental critical dilution rate (i.e. the onset of fermen-

tative metabolism) at 0.285 h-1. ATP requirements for biomass production were fitted by mini-

mization of the median relative error in the prediction of exchange fluxes for glucose, oxygen,

CO2 and ethanol across dilution rates (0–0.4 h-1), resulting in a linear relation depending on

biomass formation from 18 to 25 mmol per gDw for respiratory conditions and from 25 to 30

mmol per gDw for the fermentative regime.

Hybrid model

A hybrid model consists of the Boolean model connected with the ecModel through a tran-

scriptional layer that regulates its constraints on protein allocation (Fig 1). The active tran-

scription factors act on the upper or lower bounds of the enzyme usage pseudo reaction

depending on down- or up- regulation, respectively. The magnitude of the induced

PLOS COMPUTATIONAL BIOLOGY Yeast hybrid model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008891 April 9, 2021 16 / 27

https://doi.org/10.1371/journal.pcbi.1008891


perturbations is calculated according to previously calculated enzyme usage variability ranges,

subject to a given growth rate and optimal glucose rate, expressed as

Upregulation:

lbregei ¼ eopti þ RF � ðemaxi � e
min
i Þ

Downregulation:

ubregei ¼ eopti � RF � ðemaxi � e
min
i Þ

Where lbregei and ubregei represent the lower and upper bounds for the usage pseudo reaction

of enzyme i in the regulated model; eopti , is a parsimonious usage for enzyme i for a given

growth and glucose uptake rates; RF, corresponds to a regulation factor between 0 and 1; emaxi

and emini are the maximum and minimum allowable usages for enzyme i under the specified

conditions.

A distribution of parsimonious enzyme usages is obtained by applying the rationale of the

parsimonious FBA technique [123], which explicitly minimizes the total protein burden that

sustains a given metabolic state (i.e. fixed growth and nutrient uptake rates).

To connect the transcription factor activity with gene regulation we extracted regulation

information from YEASTRACT and set a regulation level of 5% of the enzyme usage variabil-

ity range for the simulations. When several transcription factors affect the same gene, the

effects are summed up and the resulting sum is used as a basis for constraint. For example, if a

gene is downregulated by two transcription factors (-2) and upregulated by one transcription

factor (+1), the net sum would be (-1), thus the gene will be downregulated. In our model, an

absolute sum higher than 1 will not cause a stronger regulation, as this additive process is just

implemented to define the directionality of a regulatory effect.

2.5 Enzyme usage variability analysis

As metabolic networks are highly redundant and interconnected, the use of purely stoichio-

metric constraints usually leads to an underdetermined system with infinite solutions [124], in

a typical FBA problem it is common that even for an optimal value of the objective function,

several reactions in the network can take any value within a “feasible” range, such ranges can

be explored by flux variability analysis [24].

In this study, enzyme usage variability ranges for all of the individual enzymes are calcu-

lated by fixing a minimal glucose uptake flux, for a given fixed dilution rate, and then running

sequential maximization and minimization for each enzyme usage pseudo reaction.

enzyme usage variability range ¼ emaxi � e
min
i

Subject to:

vGlcIN ¼ lbGlcIN ¼ ubGlcIN ¼ vGlcIN

vbio ¼ lbbio ¼ ubbio ¼ Drate

This approach allows the identification of enzymes that are either tightly constrained,

highly variable, or even not usable at optimal levels of biomass yield.
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Simulations

Cellular growth on chemostat conditions using minimal media with glucose as a carbon

source, at varying dilution rates from 0 to 0.4 h-1, was simulated with the multiscale model by

the following sequence of steps:

1. Initially, the desired dilution rate is set as both lower and upper bounds for the growth

pseudo reaction and the glucose uptake rate is minimized, assuming that cells maximize

biomass production yield when glucose is limited [125, 126]

min : vGlcIN

Subject to

Drate � vbio � Drate

2. The obtained optimal uptake rate (vminGlcIN
) is then used as a basis to estimate a range of uptake

flux to further constrain the ecModel.

vminGlcIN
� vGlcIN � ð1þ SFÞ � v

min
GlcIN

As vminGlcIN
represents the minimum uptake rate allowed by the stoichiometric and enzymatic

constraints of the metabolic network, possible deviations from optimal behavior may be

induced by regulatory circuits. To allow the Boolean model to reallocate enzyme levels a

suboptimality factor (SF) of 15% was used to set an upper bound for vGlcIN .

3. The ecModel is connected to the glucose-sensing Boolean model through the glucose

uptake rate. At the critical dilution rate, the glucose uptake rate obtained by the ecModel is

3.2914 mmol/gDw h, this value is used as a threshold to define a “low” or “high” glucose

level input in the Boolean model, represented as 0 and 1, respectively. For each dilution

rate, the initial value of vminGlcIN
is calculated and fed to the regulatory network, which runs a

series of synchronous update steps until a steady-state is reached.

4. At steady state, the regulatory network indicates the enzyme usages that should be up and

downregulated, for which new usage bounds are set as described above.

5. A final FBA simulation is run by minimizing the glucose uptake rate, subject to a fixed dilu-

tion rate, and the newly regulated enzyme usage bounds.

Gene deletions can also be set in the Boolean module and will result in activation or inacti-

vation of transcription factors which then affect the constraints on the FBA model. We ran

four simulations of deletion strains as follows: TOR1 and TOR2 (TOR deletion), Snf1 (SNF1

deletion), Tpk1, Tpk2, and Tpk3 (PKA deletion), and Reg1(Reg1 deletion).

Proteomics analysis

Protein abundance data on respiratory and fermentative conditions were compared to protein

usage predictions by the hybrid model to assess its performance. For the respiration phase,

absolute protein abundances were taken from a study of yeast growing under glucose-limited

chemostat conditions at 30˚C on minimal mineral medium with a dilution rate of 0.1 h−1 [44].

For the fermentation phase, a proteomics dataset was taken from a batch culture using min-

imal media with 2% glucose and harvested at an optical density (OD) of 0.6 [45]. The dataset
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given as relative abundances was then rescaled to relative protein abundances in the whole-cell

according to integrated data available for S. cerevisiae in PaxDB [127], and finally converted to

absolute units of mmol/gDw using the “total protein approach” [128].

We used three metrics for comparing the simulations with the proteomics data, the Pearson

correlation coefficient (PCC), two-sample Kolmogorov-Smirnov (KS) test, and the mean of

the absolute log10-transformed ratios between predicted and measured values (r). The PCC

and the significance of the PCC were determined by a permutation test of n = 2000. The path-

way enrichments were done using YeastMine [129] with the Holm-Bonferroni test correction

and a max p-value of 0.05.

Flux control coefficients

To investigate the relationship between enzyme activities and a given metabolic flux, control

coefficients can be calculated for each enzyme in the model according to the definition given

by metabolic control analysis (MCA) [56]:

FCCij ¼
ai
vj

@vj
@ai

In which ai ¼ kcatij ei represents the activity of the i-th enzyme and vj is the flux carried by

the j-th reaction. These coefficients represent the sensitivity of a given metabolic flux to pertur-

bations on enzyme activities, providing a quantitative measure on the control that each

enzyme exerts on specific fluxes.

As ecModels include enzyme activities explicitly in their structure, flux control coefficients

can be approximated by inducing small perturbations on individual enzyme usages:

FCCij �
kcatij ei
vj

Dvj
Dðkcatij eiÞ

In our hybrid model, perturbations on individual enzyme usages (ei) are induced in relation

to a parsimonious usage (e�i ) which is compatible with a given set of constraints

FCCij ¼
e�i
v�j

Dvj
Dðei � e�i Þ

Perturbations equivalent to 0.1% of the parsimonious usage are used for each enzyme. For

those cases in which the previously applied constraints do not allow such modification in a

given enzyme usage, their activity is then perturbed by operating on the corresponding turn-

over number for the enzyme-reaction pair (k�catij ¼ 0:001 � kcatij) to simulate a perturbation in

their overall activity.
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