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ECOLOGY

Disentangling the effects of vapor pressure deficit on
northern terrestrial vegetation productivity
Ziqian Zhong1, Bin He1*, Ying-Ping Wang2, Hans W. Chen3, Deliang Chen4, Yongshuo H. Fu5,
Yaning Chen6, Lanlan Guo7, Ying Deng8, Ling Huang9, Wenping Yuan10, Xingmin Hao6, Rui Tang1,
Huiming Liu11, Liying Sun12, Xiaoming Xie1, Yafeng Zhang1

The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged,
but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of
the influence of VPD on vegetation production across various climate zones. Here, we found a diverging re-
sponse of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and
SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on veg-
etation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems,
there occurs a pronounced shift in vegetation productivity’s response to VPD during the growing season when
VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the
role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle’s response
to global warming.
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INTRODUCTION
Atmospheric vapor pressure deficit (VPD), defined as the difference
between the saturated vapor pressure and actual vapor pressure, is
an important factor influencing stomatal conductance and there-
fore photosynthesis (1, 2). Plants close their stomata to prevent ex-
cessive water loss when VPD is high, and thus, the photosynthesis
and carbon uptake of plants are reduced (1–4). Several studies
showed that an increase in VPD substantially influenced vegetation
productivity (1–4), forest mortality (3, 5), crop yields (6, 7), and
global terrestrial carbon sinks (8). Considering the likely increase
in VPD under global warming, VPD will play an increasing role
in controlling global ecosystem, carbon, and water exchanges (2, 9).

Changes in VPD can be caused by moisture content in the air
and air temperature (T). Evapotranspiration is controlled by soil
moisture (SM) among other factors, providing an important
source of atmospheric moisture. Therefore, the impact of VPD on
vegetation productivity can be driven directly and indirectly
through SM and air T. Despite the wide attention given to the
effects of VPD on ecosystems, a question that remains open is to

what extent vegetation productivity at the regional scale and in dif-
ferent climate zones is influenced by VPD. The difficulty in answer-
ing this question lies in the fact that VPD is closely coupled to T and
SM, which also have strong influences on terrestrial vegetation pro-
ductivity. According to the Clausius-Clapeyron relation, the satu-
rated vapor pressure is determined entirely by T (10, 11);
therefore, the high correlation between VPD and T is expected. In
contrast to the generally negative impact of VPD on vegetation pro-
ductivity, the impact of T on vegetation productivity is more
complex (12, 13). SM is another factor strongly coupled with
VPD due to land-atmosphere interactions (14, 15), and can con-
strain plant photosynthesis directly because it determines the
amount of water that can be extracted by plant roots (16). Simulta-
neously, increased VPD associated with decreased SM also affects
photosynthesis by regulating the plant stomatal opening (17–19).
To date, the relative effects of VPD, T, and SM on vegetation pro-
duction remain debated and are difficult to disentangle, while iden-
tification of these effects is important to gain a better understanding
of the response of vegetation productivity to climate change and im-
proving terrestrial ecosystem models.

In this study, we analyzed the independent effects of VPD on
vegetation productivity over the Northern Hemisphere (NH) after
excluding the effects caused by T and SM. Satellite observation-
based contiguous solar-induced fluorescence (CSIF) and leaf area
index (LAI), as well as gross primary productivity simulated from
empirical models based on eddy covariance observational data
(GPP-FLUXCOM), were used as proxies for vegetation productiv-
ity. To quantify the independent influences of VPD, we first used
ridge regression analysis to eliminate the interactions between
VPD and T or SM and assessed the response of vegetation produc-
tivity to VPD at the interannual scale using growing-season mean
values. Here, T and VPD were sourced from the fifth generation
ECMWF reanalysis (ERA5) dataset (20), and SM was obtained
from the Global Land Evaporation Amsterdam Model (GLEAM)
dataset (21). The vegetation growing season was defined as those
months with an average T higher than 0°C (22). We then applied
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a structural equation model with the partial least square (PLS-SEM)
algorithm to disentangle the direct effect of VPD on vegetation from
the indirect effects of T or SM on vegetation via VPD.

RESULTS
The independent effects of VPD on vegetation productivity
The independent effect refers to the impact of an independent var-
iable on the dependent variable after excluding confounding effects
of other independent variables (23, 24). In this study, the indepen-
dent effect of VPD onGPP represents themagnitude of GPP change
resulting from variations in VPD while controlling for the effects of
other environmental factors that may also influence GPP, such as T
and SM. High degrees of multicollinearity among VPD, SM, and T
have posed challenges to quantifying the independent effect of VPD
onGPP. Highmulticollinearity is evident in the notable correlations
between the average growing-season VPD and SM or T (fig. S1A
and B). In addition, high variance inflation factors (VIFs; see Ma-
terials and Methods) are found in most areas across the NH for a
multiple linear regression with an average growing-season SM, T,
VPD, and solar radiation (R) as independent variables and an
average growing-season CSIF as the dependent variable (fig. S1C),
reinforcing this issue. In this analysis, the effect of solar radiation on
vegetation productivity was considered as there is a direct correla-
tion between solar radiation and plant photosynthesis. These high
degrees of multicollinearity among independent variables have the
potential to result in substantial regression coefficient bias and mis-
leading statistical inferences (23, 25).

To reduce the impact of multicollinearity on the correct detec-
tion of the relationships, we performed a ridge regression analysis
(26) to assess the effect of the average growing-season VPD on CSIF.
Ridge regression is a linear regularization method and an effective
eliminator of multicollinearity. It improves upon the ordinary least
square regression model in scenarios where the independent vari-
ables are strongly correlated by introducing a penalty term in the
cost function, which penalizes large parameter values. Thus, it is ap-
propriate for analysis when there exists severe multicollinearity
among independent variables. As shown in fig. S1D, the VIFs of
the ridge regression model are much smaller than that of the orig-
inal multivariate linear model, indicating that the interactions
among SM, T, and VPD were minimized and that the regression
coefficients of the ridge regression model offered more reliable in-
formation about the influences of the independent variables than
that of the multiple linear regression model.

On the basis of the ridge regression analysis using average annual
growing-season values, a distinct contrast in the independent effect
of VPD on CSIF is observed between arid and humid zones (Fig. 1).
In most middle- and low-latitude regions, such as Central Asia,
western North America, and India, the CSIF was negatively corre-
lated with VPD, which is consistent with the negative responses of
surface conductance or photosynthesis to increases in VPD (2, 27).
In contrast, CSIF was positively correlated with VPD in some boreal
zones, such as northern Eurasia and northern North America.
Similar results were also found over the NH when using GPP-
FLUXCOM (1980–2018) and LAI–Moderate Resolution Imaging
Spectroradiometer (MODIS) (2001–2019) as proxies for vegetation
productivity instead of CSIF (fig. S2) or when substituting SM data
obtained from the ERA5 dataset instead of the GLEAM dataset (fig.
S3). To test the robustness of our analysis, we also applied an

additional statistical analysis called principal component regression
(28). Principal component regression produces principal compo-
nents (PCs) that are orthogonal (i.e., uncorrelated) to each other
in the regression, enabling optimal performance with highly corre-
lated predictor variables. This method reveals a consistent pattern in
the response of vegetation productivity proxies (CSIF, GPP-
FLUXCOM, and LAI-MODIS) to VPD, with a notable variation
found in the independent impact of VPD on productivity among
different climate zones (fig. S4). Both regression methods demon-
strate that vegetation productivity shows a negative response to
VPD changes in arid and semiarid zones while exhibiting neutral
or positive responses in humid zones.

The role of VPD in vegetation production
The above analysis suggests that VPD changes alone extensively af-
fected vegetation productivity during 2000–2019. In the real world,
however, VPD is considered the middle variable of T or SM varia-
tions affecting vegetation productivity. For example, rising T could
lead to higher VPD and thereby further limit plant photosynthesis.
In addition, when soil becomes wetter, the increasing evaporation
reduces VPD and further promotes plant transpiration and photo-
synthesis. These different processes imply simultaneously multiple
pathways for VPD to influence vegetation productivity by interact-
ing with other variables, such as T and SM. To further reveal how T
and SM have influenced vegetation production via VPD, a PLS-
SEM model (see Materials and Methods) was used to detect the
direct and indirect effects of average growing-season climatic vari-
ables and SM on vegetation productivity. Figure 2A shows all path-
ways of how the environmental variables (SM, T, VPD, and solar
radiation) can affect CSIF in the PLS-SEM model. Here, we used
goodness of fit (GoF), an index for assessing the overall prediction
performance of the model, to measure the model reliability
(Fig. 2B). Only grid cells with a GoF larger than 0.5 from the
PLS-SEM results were considered in the analyses following a previ-
ous study (29). The effect of environmental factors on vegetation
productivity was quantified using the derived influence coefficients
from the PLS-SEM model, where a high positive influence coeffi-
cient indicates a strong positive effect. The strengths of the direct
effects were given by the path coefficients, which represent the di-
rection and strength of the linear relationships between variables.
An indirect effect is the influence of one predictor on another re-
sponse variable by taking an indirect path, namely, adding the
product of all possible paths excluding the direct effect (29). The
total effect is defined as the sum of direct effects and indirect effects.

To detect what role VPD has played in affecting vegetation pro-
ductivity, we compared and quantified the direct effect of T on CSIF
with the indirect effect of T on CSIF via VPD during 2000–2019.
The interactions between the direct effect of average growing-
season T (Di.) and indirect effect of average growing-season T via
VPD (In.) on CSIF were divided into four categories: positive Di.
and In. (Di+ and In+), positive Di. and negative In. (Di+ and
In−), negative Di. and positive In. (Di− and In+), and negative
Di. and In. (Di− and In−). When the directions of direct and indi-
rect effects are the same, we call this an enhancing effect and oth-
erwise an offset effect. The degree of enhancing or offset effects
could be determined by the absolute value of the ratio (%) of the
In. to the Di. influence coefficient in the PLS-SEM model. Here,
T exerted a negative, indirect effect on CSIF via VPD across most
middle- and low-latitude regions, especially in arid and semiarid
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zones, while a positive indirect effect on CSIF via VPDwas observed
in the high-latitude region (Fig. 2D). Onemajor interaction was that
the negative effect of T on CSIF via VPD offset the positive effect of
T on CSIF (Di+ and In−), which accounted for 55.6% of the vege-
tation area and was mainly distributed in eastern Africa, Europe,
Central Asia, India, East Asia, and North America (Fig. 2E). In
these areas, vegetation productivity increased with increasing T,
while vegetation productivity may also have been supressed by the
higher VPD caused by a rising T. We focused on this most wide-
spread interaction and found that the negative effect of T on CSIF
via VPD offset had a median magnitude of 69.4% of the positive
effect of T on CSIF over the NH (Fig. 2F). This offset effect was
strongest in the arid zone (126.7%), followed by that in the semiarid
(112.2%), subhumid (62.5%), and humid (39.0%) zones. Here,
median values were used to minimize the impact of outliers.
Similar results were also found when using LAI-MODIS data that
covers a comparable time period (2001–2019) as a proxy for GPP
(fig. S5) or when substituting SM data obtained from the ERA5
dataset instead of the GLEAM dataset (fig. S6).

In parallel to the direct and indirect effects of T on CSIF, the
direct effect of SM on CSIF and the indirect effect of SM on CSIF
via VPD during 2000–2019 were also recognized, as shown in Fig. 3.
SM exerted a positive indirect effect on CSIF via VPD across most
regions. In contrast to the counteraction between the direct and in-
direct effects of T on CSIF, the direct positive effect of SM and in-
direct positive effect of SM via VPD on CSIF (Di+ and In+)
reinforced each other in arid and semiarid zones, which respectively
accounted for 63.6 and 60.8% of the total vegetated area in these
zones, respectively. The process by which SM positively affected
CSIF via VPD can be explained by the fact that increased SM
could have reduced VPD through increased evaporation and
further restrained the negative effects on vegetation brought by
high-VPD conditions. The interactions between Di. and In. in

humid and semihumid zones were complex (Fig. 3C). Vegetation
in these zones was not limited by water availability; therefore, the
positive Di. or In. was not prevalent in these areas. Similar results
were also found when using LAI-MODIS data as a proxy for GPP
during the period 2001 to 2019, as well as when substituting SM
data obtained from the ERA5 dataset instead of the GLEAM
dataset, as demonstrated by figs. S7 and S8, respectively. The
above findings reveal the strong counteraction between the direct
effect of T and T-associated VPD effect on CSIF and the enhance-
ment of the direct effect of SM and SM-associated VPD effect
on CSIF.

The threshold of VPD sensitivities of vegetation
productivity
The results above show diverging sensitivities of productivity to
VPD across different climate zones. The shift from a positive to a
negative influence of VPD on productivity indicates that there is a
VPD threshold that determines the direction of the effect of VPD on
vegetation productivity. We hypothesize that VPD positively influ-
enced photosynthesis during the growing season up to a certain
VPD threshold, beyond which a shift in the response direction of
vegetation productivity to VPD occurred with the increase of
VPD. To test this hypothesis, we focused on the interannual effect
of VPD on the GPP in high-latitude Eurasia (0° to 180°E, 50° to
85°N), where we detected the positive effect of VPD on vegetation
productivity based on the ridge regression analysis (Fig. 1A) and
PLS-SEM analysis (Fig. 2D). As depicted in the insets of Fig. 4,
we investigated the ridge regression coefficient (R.c) between
VPD and interannual variations of GPP-FLUXCOM or CSIF
during the growing season. The median of R.c changed modestly
at first and declined significantly above a certain VPD threshold.
The average growing-season VPD threshold, which was defined as
breakpoints (BPs) of the medians in Fig. 4, was identified by the

Fig. 1. The independent effect of VPD on vegetation productivity over the NH. (A) Ridge regression coefficient (R.c) of VPD to CSIF during the growing season from
2000 to 2019. The inset shows themean value of the R.c over arid, semiarid, subhumid, and humid zones. (B) R.cs for VPD, solar radiation (R), air T, and SM in the regression
with CSIF over the different climate zones, visualized with a boxplot. The height of each box indicates the interquartile range, the notch of each box indicates the median,
and the bottom and top of the box indicate the first and third quartiles, respectively. The whiskers that extend to the most extreme regression coefficient are not con-
sidered outliers, which is a value that is more than 1.5 times the interquartile range away from the bottom or top of the box. Only the grid cells with the regression result
that passed the test of significance (P < 0.05) were analyzed and are shown.
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nonparametric Pettitt breakpoint test (30) as 3.50 hPa (P < 0.01) and
3.96 hPa (P < 0.01) derived from the GPP-FLUXCOM and CSIF
data, respectively. Above the VPD threshold, the positive sensitivity
of vegetation productivity declined substantially. Similar results
were also found when ridge regression analysis was performed
using the SM data obtained from the ERA5 dataset instead of the
GLEAM dataset (fig. S9) or when the independent effect of VPD

on vegetation productivity proxy was estimated by principal com-
ponent regression (fig. S10).

DISCUSSION
In this study, we found that there were differences in the sensitivity
of productivity to VPD across different climate zones, although it is

Fig. 2. The offset effect of the influence of VPD
on vegetation productivity compared to the air
T effect on vegetation productivity. (A) Con-
ceptual model depicting hypothesized direct and
indirect effects of T, SM, R, and VPD on vegetation
productivity, which was represented by CSIF.
Double-headed gray arrows indicate covariance
between the variables, and single-headed black
arrows indicate the hypothesized direction of
causation. (B) GoF of PLS-SEM with CSIF as the
vegetation productivity proxies during the
growing season from 2000 to 2019. The dots in-
dicate the pixels with a GoF of PLS-SEM larger than
0.5. (C) Direct effect of T on CSIF (Di.) and (D) the
indirect effect of T on CSIF via VPD (In.) during the
growing season from 2000 to 2019. The effects
were quantified using the derived influence
coefficients (I.cs) from the PLS-SEM model, which
were visualized with a boxplot. The width of each
box indicates the interquartile range of I.c for all
grid points, the red line in each box indicates the
median, and the left and right edges of the box
indicate the first and third quartiles, respectively.
(E) Interaction between positive or negative Di.
(Di+ or Di−) and positive or negative In. (In+ or
In−) on CSIF. The insets show the area proportion
(%) of different categories of interaction over the
whole NH and different climate zones. (F) Degree
of offset effect (ratio) between Di+ and In−. Only
the regions in (E) with Di+ and In− were selected
and analyzed. The insets show the median of the
ratio in the grid points over different
climate zones.
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well known that increasing VPD alone reduces stomatal conduc-
tance and further inhibits photosynthesis under conditions of
high VPD. By contrast, however, some leaf-scale studies have sug-
gested that the stomatal conductance of leaves increases with in-
creasing VPD (31, 32) and thus leads to an increased
photosynthetic rate under conditions of low VPD (33, 34). When
VPD is low and the stomata are fully open, the leaf guard cells
sense the increased rate of transpiration through the stomatal
pores and induce stomatal opening (35). As a result of this “feed-
back” response (36), with an increase of VPD, the transpiration
rate increases and the nutrient (such as nitrogen, phosphorus,
and potassium) uptake from the soil is promoted (37–40), which
is beneficial for vegetation growth. Moreover, some field

experiments performed in northern Europe where the positive
effect of VPD on vegetation productivity was detected (Fig. 1A) re-
vealed adverse effects of an increase in atmospheric humidity (or
decrease in VPD) on photosynthetic capacity and growth rate in
vegetation. The adverse impact includes reducing branch and
stem wood density and diminishing nutrient supply to foliage
(34), reducing glandular trichome density (39), and reducing intrin-
sic water-use efficiency, which could expose plants to a greater risk
of dehydration under water stress (41). These factors could explain
the neutral or even positive effects of VPD on vegetation in regions
with generally low VPD, such as northern Eurasia.

The varying responses of vegetation productivity to VPD in dry
and moist regions result in a rapid shift toward negative responses

Fig. 3. The enhancing effect of the influence of VPD on vegetation productivity to the influence of SM on vegetation productivity. (A) Direct effect of SM on CSIF
(Di.) and (B) the indirect effect of SM on CSIF via VPD (In.) during the growing season from 2000 to 2019. The effects were quantified using the derived I.cs from the PLS-
SEM model, which were visualized with a boxplot. The width of each box indicates the interquartile range of I.c for grid points, the red line in each box indicates the
median, and the left and right edges of the box indicate the first and third quartiles, respectively. (C) Interaction between positive or negative Di. (Di+ or Di−) and positive
or negative In. (In+ or In−) on CSIF. The inset shows the area proportion (%) of different categories of interaction over thewhole NH and different climate zones. (D) Degree
of enhancing effect (ratio) between Di+ and In+. Only the regions in (C) with Di+ and In+ were selected and analyzed. The inset shows the median of the ratio in the grid
points over different climate zones.
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once the atmospheric aridity level surpasses a critical threshold at
the vegetation location. This study identifies a VPD threshold spe-
cific to high-latitude ecosystems, which is strongly correlated with
the local climatic conditions in the vegetation region. In addition,
this finding suggests that there may be differences in vegetation sto-
matal responses to VPD in various levels of atmospheric dryness. To
investigate the potential mechanism behind this VPD threshold, we
conducted ridge regression analysis using average growing-season
VPD, SM, T, solar radiation, wind speed, and GPP-FLUXCOM as
independent variables as well as average growing-season transpira-
tion rate as the dependent variable in the northern Eurasia region
(fig. S11). Here, we examined the relationship between VPD and
transpiration rate because the rate of transpiration is directly
related to stomatal conductance (42–45). When the average VPD
during the growing season was below the threshold of 3.85 hPa,
the transpiration rate showed a positive sensitivity to VPD, and
the sensitivity value slightly increased with the increase of environ-
mental VPD. This suggests that plant stomata were fully open, in
accordance with previous studies that also observed stomatal
opening under low VPD conditions (46, 47). Consequently, it is
possible that photosynthesis was not barely restricted by VPD.
Above the VPD threshold, the positive sensitivity of transpiration
rate declined considerably. This indicates that leaf stomatal conduc-
tance was starting to be substantially limited by VPD, leading to a
corresponding inhibition of photosynthesis. The threshold effect of
stomatal conductance in response to VPD has been documented in
previous experimental studies (31, 48, 49). Nonetheless, it should be
noted that the threshold may vary considerably among different

plant species. This variation could be attributed to differences in
stomatal regulation capacity, which varies among species (50–53).

We further investigated how water stress affected the sensitivity
of GPP to VPD by exploring the relationship between GPP and
VPD under different average growing-season VPD and SM condi-
tions (fig. S12). Above a greater VPD threshold, negative GPP re-
sponse to VPD was observed under conditions of higher SM.
Under conditions of increasing VPD, sufficient SM enables vegeta-
tion to maintain high transpiration efficiency, which can reduce the
impact of VPD on leaf stomatal conductance and vegetation photo-
synthesis. These findings support the notion that plants balance
various costs, such as productivity and leaf T regulation during
drought, by operating stomata at the edge of the supply capacity
of the plant’s hydraulic system (54–56). However, we found that
the pattern of GPP sensitivity to VPD varied more substantially
with changes in the average growing-season VPD overall compared
to the influence of SM. Negative GPP response to VPD is common
when the average VPD during the growing season is 4 hPa or higher,
regardless of SM conditions. This pattern highlights the critical role
of VPD background values in determining the response of GPP
to VPD.

Our hemispheric-scale analysis of the influence of VPD as an in-
dependent variable on vegetation productivity was an attempt to
identify what role VPD in isolation plays in influencing vegetation
production and to what extent it affects vegetation production. We
found that VPD in isolation had a strong impact on vegetation pro-
ductivity and revealed the strong counteraction between the direct
effect of T and T-associated VPD effect on vegetation productivity
and the enhancing effect of the direct effect of SM and SM-

Fig. 4. The thresholds in the relationship between VPD and the sensitivity of vegetation productivity to VPD for high-latitude ecosystems. The R.c of average
growing-season VPD to average growing-season vegetation productivity proxies, which were (A) GPP-FLUXCOM (during 1980–2018) and (B) CSIF (during 2000–2019) as a
function of multiyear growing-season average VPD in high-latitude Eurasia (0° to 180°E, 50° to 85°N). The blue points and error bars represent the median and SD of R.c in
each bin, respectively (see Materials and Methods). The nonparametric Pettitt test was used to detect the occurrence of BPs in the medians, which are shown as black
points and heavy lines. The red dotted line represents the line-fitting curve of medians below or above the BP. The insets show the spatial pattern of the regression
coefficient of VPD to vegetation productivity proxies during the growing season. Only the grid cells with the regression result that passed the test of significance (P < 0.05)
were analyzed and shown.
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associated VPD effect on the vegetation productivity in most parts
of the NH. In addition, we proposed and accepted a hypothesis that
there exists an average growing-season VPD threshold of the sensi-
tivity of vegetation productivity to VPD, which led to the positive
response of vegetation productivity to VPD in low VPD regions,
such as high-latitude ecosystems, and the negative response of veg-
etation productivity to VPD in other parts of the NH with higher
VPD. Our findings provide insights into the role VPD plays in ter-
restrial ecosystems, disentangle the interaction between VPD and T
or SM on vegetation productivity, and reveal the potential threat of
prospective increasing VPD under global warming (2, 57) in high-
latitude ecosystems.

Note that, however, the extent to which VPD affects ecosystems
is still highly uncertain due to the possible carryover effect (58) of
climatic factors on terrestrial ecosystems. More in-depth studies
using datasets with different time scales are needed in the future
to more accurately assess the impact of VPD on vegetation produc-
tivity. In addition, station-based analysis is needed to further detect
more exact values of the VPD threshold for different ecosystems and
to further reveal the mechanism for the positive response of vege-
tation productivity to VPD under wetter conditions (59). Continu-
ous monitoring and dedicated experiments could improve our
understanding of the role of VPD in terrestrial ecosystems.

MATERIALS AND METHODS
Vegetation productivity
The CSIF dataset (60), LAI-MODIS dataset, and GPP derived from
empirical models based on flux tower observations (FLUXCOM)
were used to indicate vegetation productivity in this study. The
clear-sky condition CSIF dataset was generated at moderate spatio-
temporal resolutions (0.05° × 0.05° and 4 days) and over the 2000–
2019 period by training a neural network with surface reflectance
from the MODIS reflectance dataset (MCD43C4 V006) and SIF
from the Orbiting Carbon Observatory-2 (OCO-2). The CSIF not
only shows high accuracy when validated against the satellite-re-
trieved OCO-2 SIF but also exhibits a strong correlation with
GPP estimated from flux towers. The MOD15A2H Version 6
MODIS combined with LAI and fraction of photosynthetically
active radiation product is an 8-day composite dataset with a 500-
m pixel size available from 2000. The algorithm chooses the “best”
pixel available from all acquisitions of the Terra sensor within the 8-
day period. The FLUXCOM GPP with a spatial resolution of 0.5° ×
0.5° is a monthly dataset simulated from empirical models forced by
eddy covariance data, remote sensing data, and climate data (61).
The empirical models were trained by random forests, artificial
neural networks, and multivariate adaptive regression spline algo-
rithms. Here, the FLXUCOM carbon fluxes data driven by the
ERA5 climate reanalysis from 1980 to 2018 were used. All datasets
were aggregated to a spatial resolution of 0.5° before analysis.

Climate, SM, and transpiration data
The monthly root-zone SM and transpiration at a spatial resolution
of 0.25° were obtained from the Global Land Evaporation Amster-
damModel (GLEAM) version 3.5 datasets, which is a global dataset
spanning the 41-year period from 1980 to 2020 and based on satel-
lite and reanalysis data. The monthly 2-m air T, dew point T, 10-m
wind speed, and SM were obtained from the ERA5 for the global
climate and weather with a spatial resolution of 31 km. Here, SM

content between 0 and 1mwas calculated by summing up the mois-
ture content for each layer and weighting it by the thickness of the
layer (16). The monthly surface net downward shortwave radiation
at a spatial resolution of 0.625° × 0.5° was obtained from the
Modern-Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) datasets beginning in 1980 (62). According
to the Clausius-Clapeyron relation, we used monthly 2-m T and
dew point data to calculate VPD based on the ERA5 dataset (27).
All datasets were aggregated to a spatial resolution of 0.5°.

Aridity index
The aridity index (AI), defined as the ratio of annual precipitation to
annual potential evapotranspiration, was used to identify global
climate zones. Under this quantitative indicator, the NH was clas-
sified into arid (AI < 0.2), semiarid (0.2 ≤ AI < 0.5), subhumid (0.5
≤ AI < 0.65), and humid (AI ≥ 0.65) subtypes. The AI was obtained
from the Global Aridity Index and Potential Evapotranspiration
(ET0) Climate Database v2 (63).

Pearson’s correlation analysis
Pearson’s correlation analysis between VPD and SM or T was used
to determine the coupling between VPD and SM and T. The signifi-
cance of Pearson’s correlations was assessed at P < 0.05.

Ridge regression analysis
To account for multicollinearity among VPD, T, and SM, we per-
formed a ridge regression analysis to verify the effect of VPD on
vegetation productivity. Ridge regression is a widely used linear reg-
ularization method and independent statistical test commonly used
in plant physiology and ecophysiology, which improves the mean
square error of estimation by introducing a penalty term in the min-
imized residual equation, and substantially increases the reliability
of the estimates in cases of strong multicollinearity. Because the ad-
vantage of ridge regression, it is widely used in the research of the
response of the ecosystem to changes in climate variables, especially
in the regression analysis when there exists severe multicollinearity
among climate variables [e.g., severe multicollinearity among
daytime warming and night-time warming (24) or seasonal mean
T and precipitation (64)]. The VIF, which assesses how much the
variance of an estimated regression coefficient increases when pre-
dictors are correlated, is used to detect the severity of multicolli-
nearity in the regression analysis. When notable multicollinearity
issues exist, the VIF will be very large for the variables involved.

In the regression analysis, all variables were normalized with z
score and detrended using a linear model to focus on the interan-
nual relationship between VPD and vegetation productivity.
Because we focused on the relationship among environmental
factors, SM, and vegetation, to eliminate the interference of mis-
leading relationships in bare land, only the regions with multiyear
(during 2000–2019) average CSIF values larger than 0.006 mWm−2

nm−1 sr−1 were selected for the ridge regression analysis following
(60). The significance of the ridge regression analysis was assessed
using an F test at a significance level of 0.05.

Principal component regression analysis
We also used the principal component regression analysis (28) to
verify the effect of VPD on vegetation productivity. The principal
component regression transforms the original dataset into a new
set of orthogonal (i.e., uncorrelated) variables, which are called
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PCs. After transformation, a least square regression on this reduced
set of PCs was performed. The principal component regression
avoids collinearity of climatic variables because PCs are uncorrelat-
ed to each other. The low-variance PCs indicate collinearity among
original predictors and thus should be excluded in the regression
step. Here, the PCs that explain less than 5% of the overall variance
of climatic variables were excluded from the regression (64). Only
the regions with multiyear average annual CSIF values larger than
0.006 mW m−2 nm−1 sr−1 were selected for the regression analysis.
The significance of the principal component regression analysis was
assessed using an F test at a significance level of 0.05.

PLS-SEM
PLS-SEM is a multivariate statistical analysis technique for path
analysis that requires previous knowledge to establish the relation-
ships among the variables. In contrast to the common structural
equation modeling, which is based on maximum likelihood, PLS-
SEM requires neither a large sample size nor a specific assumption
on the distribution of the data and works well with missing data.
When the sample size and data distribution do not conform to
the requirements of common SEMs, for example, when long-term
observations are not available, PLS-SEM has a more functional ad-
vantage. Here, we ran our PLS-SEMmodel using 1000 bootstraps to
validate the estimates of path coefficients and the coefficients of de-
termination. The degree of direct effect, indirect effect, and total
effect can be quantified by the direct influence coefficient, indirect
influence coefficient, and total influence coefficient, respectively.
Models with different input variables were evaluated using the
GoF statistic. GoF assesses the overall prediction performance of
the model by considering the commonality and R2 coefficients.
All variables were standardized before conducting the path analysis
and were detrended using a linear model in the path analysis to
focus on the interannual relationship between environmental
factors and vegetation productivity. Only the regions with multiyear
(during 2000–2019) average CSIF values larger than 0.006 mWm−2

nm−1 sr−1 were selected for the PLS-SEM analysis.

VPD threshold
To detect the threshold in the relationship between VPD and the
sensitivity of vegetation productivity to VPD, all grid points were
firstly sorted into

ffiffiffi
n
p

(rounded to the nearest integer) bins, where
n is the number of grid points, according to the ascending order of
average growing-season VPD. Then, the VPD threshold, which was
defined as BPs of the medians of the groups, was quantified by the
nonparametric Pettitt breakpoint test (30), which has been widely
used to detect abrupt changes in observed climatic and hydrological
series (65, 66).

Supplementary Materials
This PDF file includes:
Figs. S1 to S12
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