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Abstract
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1 INTRODUCTION

1.1 Motivation for completed cohomology

This paper is motivated by the notion of reciprocity in the Langlands program. Let 𝐺∕ℚ be a
connected reductive group. Roughly speaking, reciprocity is the expectation that there should be
some precise relationship between

∙ algebraic automorphic representations 𝜋 of 𝐺(𝔸ℚ) and
∙ 𝑝-adic Galois representations 𝜌 ∶ Gal(ℚ∕ℚ) → 𝐿𝐺(ℚ𝑝) that are geometric in the sense of
Fontaine–Mazur.

For a more precise conjectural formulation of this relationship, we refer the reader to [4, 15].
While there are many partial results, the general problem of reciprocity seems very difficult to
attack, for (at least) two reasons.

(1) Algebraic automorphic representations are inherently of an archimedean/real-analytic
nature, whereas 𝑝-adic Galois representations are (of course) inherently 𝑝-adic.

(2) Algebraic automorphic representations are rigid, whereas 𝑝-adic Galois representations
naturally deform into positive-dimensional families.

These observations suggest that one should try to bridge the gap, by seeking a genuinely 𝑝-adic
variant of the notion of automorphic representation, which is flexible enough to accommodate
all 𝑝-adic Galois representations. At present, the most satisfactory theory of “𝑝-adic automorphic
representations” is the notion of completed (co)homology, introduced by Emerton [19].
Let us recall the key definitions; we refer the reader to the body of the paper for any unexplained

notation. Fix a connected reductive group 𝐺∕ℚ. Let 𝐴 ⊆ 𝐺 be the maximal ℚ-split central torus,
and let𝐾∞ ⊆ 𝐺(ℝ) be a maximal compact subgroup. Let𝑋𝐺 = 𝐺(ℝ)∕𝐴(ℝ)𝐾∞ be the (connected)
symmetric space for𝐺; wewrite𝑋 for𝑋𝐺 if𝐺 is clear. For any open compact subgroup𝐾 ⊆ 𝐺(𝔸𝑓),
we have the associated locally symmetric space 𝑋𝐾 = 𝐺(ℚ)+∖(𝑋 × 𝐺(𝔸𝑓))∕𝐾.

Definition 1.1. Let 𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
) be any open compact subgroup. Then we define completed

cohomology for 𝐺 with tame level 𝐾𝑝 as

�̃�∗(𝐾𝑝) = lim
←��
𝑛

lim
��→

𝐾𝑝⊆𝐺(ℚ𝑝)

𝐻∗(𝑋𝐾𝑝𝐾𝑝 , ℤ∕𝑝
𝑛).
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 3

Similarly, we define completed homology for 𝐺 with tame level 𝐾𝑝 as

�̃�∗(𝐾
𝑝) = lim

←��
𝐾𝑝⊆𝐺(ℚ𝑝)

𝐻∗(𝑋𝐾𝑝𝐾𝑝 , ℤ𝑝).

We also define compactly supported completed cohomology �̃�∗
𝑐 (𝐾

𝑝) and completed Borel–Moore
homology �̃�𝐵𝑀

∗ (𝐾𝑝) by the obvious variants on these recipes.

By construction, these spaces admit commuting actions of 𝐺(ℚ𝑝) and a “big” Hecke algebra
𝕋(𝐾𝑝), and the 𝐺(ℚ𝑝)-actions are continuous for the natural topologies. Moreover, these spaces
are not “too big.” In particular, they are all 𝑝-adically separated and complete with bounded 𝑝∞-
torsion. Additionally, �̃�∗ and �̃�𝐵𝑀

∗ are finitely generated as modules over the completed group
ring ℤ𝑝⟦𝐾𝑝⟧ for any open compact subgroup 𝐾𝑝 ⊆ 𝐺(ℚ𝑝), whereas �̃�∗(𝐾𝑝)[ 1

𝑝
] and �̃�∗

𝑐 (𝐾
𝑝)[ 1

𝑝
]

are naturally admissible unitary ℚ𝑝-Banach space representations of 𝐺(ℚ𝑝).
The main motivations for considering completed (co)homology are summarized in the follow-

ing conjecture, which we do not attempt to formulate precisely. For a more careful discussion, we
refer the reader to [12] and [22].

Hope 1.2. Let 𝜓 ∶ 𝕋(𝐾𝑝) → ℚ𝑝 be a system of Hecke eigenvalues occurring in �̃�∗(𝐾𝑝)[ 1
𝑝
].

Then there exists a continuous, odd, almost everywhere unramified Galois representation 𝜌𝜓 ∶
Gal(ℚ∕ℚ) → 𝐶𝐺(ℚ𝑝), which matches 𝜓 in the usual sense. Moreover, the 𝜓-isotypic part of
�̃�∗(𝐾𝑝)[ 1

𝑝
], as a ℚ𝑝-Banach space representation of 𝐺(ℚ𝑝), should (up to multiplicities) depend

only on 𝜌𝜓|Gal(ℚ𝑝∕ℚ𝑝).
Finally, every (suitable) continuous, odd, almost everywhere unramified Galois representation

𝜌 ∶ Gal(ℚ∕ℚ) → 𝐶𝐺(ℚ𝑝) should occur in this way.

Here 𝐶𝐺 denotes the 𝐶-group of 𝐺 as defined in [4], which is an extension of 𝐿𝐺. When
𝐺 = GL2∕ℚ, this is (an imprecise version of) a theorem of Emerton [21]. However, in general,
very little is known. As mentioned, the precise formulation of this conjecture should not be taken
too seriously. The reader wondering about the appearance of the 𝐶-group and what “suitable”
means might want to consider the case 𝐺 = PGL2∕ℚ.

1.2 Main results

In this paper, we study the qualitative properties of completed (co)homology, which are encap-
sulated in a beautiful conjecture of Calegari–Emerton. To state this conjecture, we need a small
amount of additional notation. If 𝐺∕ℚ is a connected reductive group, we define nonnegative
integers 𝑙0 = rank𝐺(ℝ) − rank𝐴(ℝ)𝐾∞ and 𝑞0 =

dim𝑋𝐺−𝑙0
2

. Roughly speaking, for semisimple
groups, 𝑙0 measures the failure of 𝐺(ℝ) to admit discrete series representations, whereas 𝑞0 is the
lowest degree in which the locally symmetric spaces 𝑋𝐾 should have “interesting” cohomology.

Conjecture 1.3 (Calegari–Emerton). Let 𝐺∕ℚ be a connected reductive group. Let 𝑞0 and 𝑙0 be the
invariants of 𝐺 defined above. Let 𝐾𝑝 ⊆ 𝐺(𝔸

𝑝

𝑓
) be any open compact subgroup. Then

(1) For all 𝑖 > 𝑞0, �̃�𝑖
𝑐(𝐾

𝑝) = �̃�𝑖(𝐾𝑝) = 0.
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4 HANSEN and JOHANSSON

(2) For all 𝑖 > 𝑞0, �̃�𝐵𝑀
𝑖

(𝐾𝑝) = �̃�𝑖(𝐾
𝑝) = 0, and �̃�𝐵𝑀

𝑞0
(𝐾𝑝) and �̃�𝑞0

(𝐾𝑝) are 𝑝-torsion-free.
(3) For any compact open pro-𝑝 subgroup 𝐾𝑝 ⊆ 𝐺(ℚ𝑝), the groups �̃�𝑖(𝐾

𝑝) and �̃�𝐵𝑀
𝑖

(𝐾𝑝) have
codimension ⩾ 𝑞0 + 𝑙0 − 𝑖 over the completed group ring ℤ𝑝⟦𝐾𝑝⟧ for any 𝑖 < 𝑞0.

(4) The groups �̃�𝑞0
(𝐾𝑝) and �̃�𝐵𝑀

𝑞0
(𝐾𝑝) have codimension exactly 𝑙0.

The individual portions of this conjecture are far from independent, and, in fact, there are nat-
ural implications (1) ⇒ (2) ⇒ (3). Amusingly, these implications are “asymmetric” in the sense
that (1) for �̃�∗ implies (2) for �̃�∗ implies (3) for �̃�𝐵𝑀

∗ , and similarly (1) for �̃�∗
𝑐 implies (2) for �̃�

𝐵𝑀
∗

implies (3) for �̃�∗.
Let us discuss what was previously known about this conjecture.

∙ For some groups of small rank (e.g., GL2, or Res𝐾∕ℚ GL2 for 𝐾∕ℚ quadratic, or GSp4), one can
prove Conjecture 1.3 by hand using various tricks involving the congruence subgroup prop-
erty, the cohomological dimension bounds of [9], Poincaré duality, and so on. However, these
methods quickly run out of steam.

∙ When 𝐺 is semisimple and 𝑙0 = 0, part (4) of the conjecture was proved by Calegari–Emerton
[11], as a consequence of Matsushima’s formula and limit multiplicity results for discrete series
representations.

∙ When 𝐺 admits a Shimura datum of Hodge type, Scholze proved part (1) of Conjecture 1.3,
but for �̃�∗

𝑐 only, by perfectoid methods [37]. Shen [39] later treated the case when 𝐺 admits a
compact Shimura variety of abelian type and satisfies 𝑙0(𝐺) = 0.

∙ For the unitary Shimura varieties treated in [17], Conjecture 1.3(1) for �̃�∗ follows from [17,
Theorem 2.6.2, Lemma 4.6.2]. We make some further comments in Remark 5.22.

The main result of this paper is the following theorem (cf. Theorems 4.4, 4.5, and 4.9).

Theorem 1.4. Let 𝐺∕ℚ be a semisimple group such that 𝑋 is a Hermitian symmetric space and
(𝐺, 𝑋) is a connected Shimura datum of preabelian type. Then Conjecture 1.3 is true for 𝐺.
More generally, let 𝐺∕ℚ be a connected reductive group such that 𝑍(𝐺) satisfies the Leopoldt con-

jecture and such that 𝐺𝑑𝑒𝑟 admits a connected Shimura datum of preabelian type. Then Conjecture
1.3 is true for 𝐺.
Moreover, there exists a (computable) 𝑗 ⩽ 𝑞0 such the natural maps �̃�𝑖

𝑐 → �̃�𝑖 and �̃�𝑖 → �̃�𝐵𝑀
𝑖

are
isomorphisms for all 𝑖 > 𝑗, and surjective in degree 𝑖 = 𝑗.

The assumptions on 𝐺 here guarantee that 𝑙0(𝐺𝑑𝑒𝑟) = 0, which allows us to prove part (4) of
Conjecture 1.3 by a fairly straightforward analysis combining the results of [11] with the Leopoldt
conjecture for 𝑍(𝐺). By our previous remarks, the whole conjecture now follows if we can prove
part (1). Note that when 𝑙0 = 0 and 𝑋 is a Hermitian symmetric domain, part (1) of the conjecture
simply asserts that �̃�𝑖

𝑐 = �̃�𝑖 = 0 for all 𝑖 > 𝑑 = dimℂ 𝑋. It is this vanishing conjecture which we
focus on.
Our proof of the vanishing conjecture builds on Scholze’s methods and combines them with

some new ideas. Roughly speaking, we first reduce to the case where (𝐺, 𝑋) is a connected
Shimura datum of preabelian type, and then proceed in two steps:
Step 1.We prove the vanishing of �̃�𝑖

𝑐 for 𝑖 > 𝑑 by pushing Scholze’s methods to their limit.
Step 2.We prove the vanishing of �̃�𝑖 for 𝑖 > 𝑑 by a careful analysis of boundary cohomology,

using Step 1 for 𝐺 and for various auxiliary almost direct factors of Levi subgroups related to the
boundary strata of the minimal compactification.
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 5

Let us now describe these steps in more detail.

1.3 Step 1: 𝒑-adic methods

As described above, the proof of Theorem 1.4 proceeds in two essentially distinct steps. In the first
step, we prove the vanishing of �̃�𝑖

𝑐(𝐾
𝑝) for 𝑖 above the middle degree, using the 𝑝-adic geometry

of Shimura varieties. For Shimura data of Hodge type, this is one of themain results of [37], where
it is deduced from the existence of perfectoid Shimura varieties of Hodge type (with infinite level
at 𝑝). We thus need to generalize the geometric results of [37] to a wider class of Shimura data. To
this end, we prove the following theorem.

Theorem 1.5. Let (𝐺, 𝑋) be a Shimura datum of preabelian type, with reflex field 𝐸. Fix a complete
algebraically closed field 𝐶∕ℚ𝑝 and an embedding 𝐸 → 𝐶. Fix any open compact subgroup 𝐾𝑝 ⊆

𝐺(𝔸
𝑝

𝑓
). For any open compact subgroup 𝐾𝑝 ⊆ 𝐺(ℚ𝑝), let ∗

𝐾𝑝𝐾𝑝
denote the adic space over Spa𝐶

associated with the base change of the minimal compactification Sh𝐾𝑝𝐾𝑝(𝐺, 𝑋)
∗ along 𝐸 → 𝐶. Then

there is a perfectoid space ∗
𝐾𝑝

such that

∗
𝐾𝑝 = lim

←��
𝐾𝑝⊆𝐺(ℚ𝑝)


∗,◊
𝐾𝑝𝐾𝑝

as diamonds over Spd𝐶. Moreover, the boundary of ∗
𝐾𝑝

is Zariski-closed.

Recall that a Shimura datum (𝐺, 𝑋) is of preabelian type if there exists a Shimura datum (𝐺′, 𝑋′)

of Hodge type admitting an isomorphism of connected Shimura data (𝐺𝑎𝑑, 𝑋+) ≃ (𝐺′𝑎𝑑, 𝑋′+).
This is slightly more general than the (somewhat more well-known) notion of a Shimura datum
of abelian type. While it is probably true that every tower of minimally compactified Shimura
varieties with infinite level at 𝑝 is perfectoid, we expect that Theorem 1.5 is themost general result
that can be proved via current technology. We also state and prove a similar result for connected
Shimura varieties, cf. Theorem 5.20.
We also note that it is not difficult to construct theHodge–Tate periodmap𝜋HT ∶ ∗

𝐾𝑝
→ F𝓁𝐺,𝜇

with all its expected properties, and, in fact, we did this in the first version of this paper. However,
during the revision process, we decided to remove this material, because it relied on an unpub-
lished argument of one of us (DH), and also because more general results are now available in
recent work of Boxer–Pilloni [7, Section 4.4].
While the idea behind the proof of Theorem 1.5 is clear, the argument is unfortunately

somewhat technical.† Roughly speaking, there are two key ingredients:

∙ “Perfectoidization results” à la Bhatt–Scholze, building in particular on [10, Theorem 1.16(1)].

Roughly speaking, these techniques let us prove that if (𝑋𝑖)𝑖∈𝐼
(𝑓𝑖)𝑖∈𝐼
→ (𝑌𝑖)𝑖∈𝐼 is a (pro-)finite

morphism between two reasonable inverse systems of rigid analytic spaces, and lim
←��𝑖∈𝐼

𝑌
◊
𝑖
is

perfectoid, then lim
←��𝑖∈𝐼

𝑋
◊
𝑖
is also perfectoid. For a precise statement, see Lemma 5.9.

∙ A new general and user-friendly existence result for quotients of perfectoid spaces by finite
groups, cf. Theorem 5.8.

†A glance at the proof of the key Proposition 5.19 should convince the reader of this.
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6 HANSEN and JOHANSSON

For open Shimura varieties of abelian type, the problem of proving perfectoidness at infinite
level was previously considered by Shen [39]. We remark that our method is more direct and uses
very little from the theory of Shimura varieties and their connected components.

1.4 Step 2: Topological methods

The second step is totally disjoint from the first, and does not use any 𝑝-adic geometry. We con-
tent ourselves with a somewhat impressionistic sketch here. In what follows, assume that 𝐺 is
a semisimple group such that (𝐺, 𝑋) is a connected Shimura datum of preabelian type, and set
𝑑 = dimℂ 𝑋 as before.
First, we prove an isomorphism of the form �̃�𝑖(𝐾𝑝) ≅ 𝐻𝑖(𝑋𝐾𝑝𝐾𝑝 ,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)) for any

choice of open compact subgroup 𝐾𝑝 ⊆ 𝐺(ℚ𝑝). Here Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝) denotes the 𝐾𝑝-module of
continuous ℤ𝑝-valued functions on 𝐾𝑝. This is essentially a version of Shapiro’s lemma, and goes
back to a paper of Hill [26]. Next, by standard properties of manifolds with boundary, this isomor-
phism induces an isomorphism �̃�𝑖(𝐾𝑝) ≅ 𝐻𝑖(𝑋𝐾𝑝𝐾𝑝

,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)), where 𝑋𝐾𝑝𝐾𝑝
denotes the

Borel–Serre compactification of 𝑋𝐾𝑝𝐾𝑝 .
By repeated use of excision for compactly supported cohomology, it now suffices to prove that

for some stratification 𝑋𝐾𝑝𝐾𝑝
= ∪𝑍∈𝑍, we have𝐻𝑖

𝑐(𝑍,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)|𝑍) = 0 for all 𝑖 > 𝑑 and all
𝑍 ∈ . The key idea can now be phrased as follows.
(†) If we take to be the stratification of𝑋𝐾𝑝𝐾𝑝

obtained by pulling back the usual stratification
of𝑋∗

𝐾𝑝𝐾𝑝
along themap 𝜋 ∶ 𝑋𝐾𝑝𝐾𝑝

→ 𝑋∗
𝐾𝑝𝐾𝑝

constructed by Zucker [40], then is a stratification
with the above property.
The idea that (†) is both true and provable is perhaps the most novel contribution of this paper;

we make some additional remarks on the use of this stratification in Remark 3.15. Let us give
a sketch of the key ideas. Let 𝑆 ⊆ 𝑋∗

𝐾𝑝𝐾𝑝
be a boundary stratum, with preimage 𝑍 = 𝜋−1(𝑆) ⊆

𝑋𝐾𝑝𝐾𝑝
. By the structure theory of theminimal compactification, the strata 𝑆 are indexed by (equiv-

alence classes of) pairs (𝑄, 𝛼)where𝑄 ⊆ 𝐺 is aℚ-rational parabolic subgroupwhose projection to
each simple factor 𝐺𝑖 of 𝐺𝑎𝑑 is either a maximal parabolic or equal to 𝐺𝑖 , and 𝛼 is some auxiliary
data depending on the level structure. (We will suppress all dependencies on level structures in
the following discussion.) Moreover, the parabolic 𝑄 comes equipped with a canonically defined
almost direct product decomposition 𝑄 = 𝑈 ⋅ 𝐿 ⋅𝐻. Here 𝑈 is the unipotent radical of 𝑄, 𝐿 is a
reductive group (the linear part), and𝐻 is a semisimple group whose associated symmetric space
is Hermitian (the Hermitian part); 𝐿 ⋅𝐻 is the full Levi subgroup of 𝑄.
In parallel with this decomposition of 𝑄, the stratum 𝑍 almost admits a direct product

decomposition𝑍 ≈ 𝑍𝑈 × 𝑍𝐿 × 𝑍𝐻 , where𝑍𝑈 is a compact nilmanifold,𝑍𝐿 is the Borel–Serre com-
pactification of a locally symmetric space for the group 𝐿, and 𝑍𝐻 ≅ 𝑆 is a locally symmetric space
for the group𝐻. The key idea now is that𝐻𝑖

𝑐(𝑍,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)|𝑍) can also be decomposed accord-
ingly, by a Künneth-like formula, into contributions coming from each of these three factors,
which can each be controlled.

∙ The contribution of 𝑍𝑈 is trivial, which follows from a well-known vanishing principle for
completed cohomology of unipotent groups.

∙ The contribution of 𝑍𝐻 can be expressed in terms of compactly supported completed
cohomology for𝐻, which can be controlled by Step 1.

∙ The contribution of 𝑍𝐿 can be expressed in terms of completed cohomology for 𝐿, which can
be controlled using the bounds in [9], or even using the trivial bound.
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 7

The critical observation here is that Step 1 gives such good control over the contribution of 𝑍𝐻
that we need very little control over the contribution of 𝑍𝐿.
In reality, the above sketch is somewhat oversimplified, because𝑍 does not really admit a direct

product decomposition; rather, it has the structure of an iterated fibration whose fibers are as
described above. This makes the proof somewhat more complicated. Nevertheless, the essential
idea follows the outline given above.
Let us briefly outline the contents of this paper. Section 2 collects some preliminaries on

topology and arithmetic groups that are needed for the computations in later section. Section 3
discusses completed (co)homology and the Calegari–Emerton conjectures, carrying out the core
of “Step 2” above. Section 4 introduces Shimura varieties and proves our main results on the
Calegari–Emerton conjectures, including Theorem 1.4. Section 5 carries out “Step 1,” proving
Theorem 1.5 and deducing the vanishing theorem for compactly supported completed cohomol-
ogy. We note that Section 5 is completely independent of the previous sections. Conversely, the
vanishing result Corollary 5.21 is the only part of Section 5 that gets used in previous sections.

2 PRELIMINARIES

In this section, we collect some facts and definitions from topology and algebraic groups that
we will need. We make no attempt to state results in maximal generality and none of them are
original, but we have often had difficulties locating the precise statements that we need in the
literature. We hope that collecting this material here is of sufficient aid to the reader to justify
its inclusion.
The topological spaces that we will work with will mostly be smoothmanifolds with boundary;

we will simply write “manifold with boundary” to mean a smooth manifold with boundary. Any
smooth manifold with boundary admits a combinatorial triangulation for which the boundary
is a subsimplicial complex (see, e.g., [32, Theorem 10.6]). We recall that if 𝑋 is a manifold with
boundary with interior 𝑋 and𝑈 ⊆ 𝑋 is an open subset containing 𝑋, then the inclusion 𝑗 ∶ 𝑈 →

𝑋 is homotopy equivalence by the global collar neighborhood theorem. In a very similar vein, if
 is a local system on 𝑋, a simple local calculation shows that 𝑅𝑗∗𝑗−1 =  . In particular, we
obtain canonical isomorphisms 𝐻𝑖(𝑈,) ≅ 𝐻𝑖(𝑋,) which we will often treat as equalities.
All actions of groups on topological spaces will be left actions in this section. Of course, all

results have natural analogues for right actions (and we will use them).

2.1 Local systems

Let 𝑋 be a topological space and let Γ be a group acting from the left on 𝑋. In this paper, most
of our actions will be free,† by which we mean that every point 𝑥 ∈ 𝑋 has an open neighborhood
𝑈 such that 𝑈 ∩ 𝛾𝑈 ≠ ∅ only if 𝛾 = 1. The quotient map 𝜋 ∶ 𝑋 → 𝑋Γ ∶= Γ∖𝑋 is then a covering
map, and we recall that any left Γ-module‡ 𝑀 defines a local system �̃� on 𝑋Γ given by

�̃�(𝑈) = Map𝑙𝑐,Γ(𝜋
−1(𝑈),𝑀),

† The most common terminology for this notion seems to be a free and properly discontinuous action, but we find this
terminology rather cumbersome.
‡ By which we always mean a (left) ℤ[Γ]-module, unless otherwise stated.
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8 HANSEN and JOHANSSON

where the right-hand side denotes the locally constant functions 𝑓 ∶ 𝜋−1(𝑈) → 𝑀 satisfying
𝑓(𝛾𝑥) = 𝛾.𝑓(𝑥) for all 𝛾 ∈ Γ and all 𝑥 ∈ 𝜋−1(𝑈). When 𝑋 is a manifold with boundary, this may
be written as

�̃�(𝑈) = MapΓ(𝜋0(𝜋
−1(𝑈)),𝑀),

whereMap simply denotes set-theoretic functions (as 𝜋0(𝜋−1(𝑈)) is discrete). The following the-
orem is well known, and follows directly from the fact that the singular chain complex 𝐶∙(𝑋) is a
resolution of ℤ by free Γ-modules.

Theorem 2.1. Let 𝑋 is a contractible manifold with boundary with a free action of Γ. Then

𝐻∗(𝑋Γ, �̃�) ≅ Ext∗
ℤ[Γ]

(ℤ,𝑀) ≅ 𝐻∗(Γ,𝑀)

canonically for every Γ-module𝑀.

We now consider a relative version of Theorem 2.1. Let 𝑝 ∶ 𝐸 → 𝐵 be a fiber bundle with con-
tractible fiber 𝐹 (all spaces are manifolds with boundary). Assume that we have a group Γ acting
(from the left) on both 𝐸 and 𝐵, making 𝑝 Γ-equivariant. We assume further that the action of Γ
is free on 𝐸, and that the action of Γ on 𝐵 factors through a quotient Δ that acts freely on 𝐵. Set
𝑁 = Ker(Γ → Δ); 𝑁 then acts freely on the fibers of 𝑝. Consider the induced map

𝑞 ∶ 𝐸Γ → 𝐵Δ

on quotients.

Corollary 2.2. Let𝑀 be a Γ-module and let 𝑖 ⩾ 0. Then 𝑅𝑖𝑞∗�̃� is the local system on 𝐵Δ given by
the Δ-module𝐻𝑖(𝑁,𝑀).

Proof. We begin by proving the case 𝑖 = 0. Write 𝜋𝐸 ∶ 𝐸 → 𝐸Γ and 𝜋𝐵 ∶ 𝐵 → 𝐵Δ for the quotient
maps and let 𝑈 ⊆ 𝐵 be open. From the definitions, one sees that

𝑞∗�̃�(𝑈) = Map𝑙𝑐,Γ(𝑝
−1𝜋−1𝐵 (𝑈),𝑀).

Since the fibers of 𝑝 are connected and the action of 𝑁 preserves the fibers, we have
Map𝑙𝑐,Γ(𝑝

−1𝜋−1
𝐵
(𝑈),𝑀) = Map𝑙𝑐,Δ(𝜋

−1
𝐵
(𝑈),𝑀𝑁), which is the desired statement.

This proves that the diagram of functors

commutes up to natural isomorphism, where the horizontal functors are the local systems func-
tors 𝑀 ↦ �̃�. The horizontal functors are exact (by looking at stalks), so it suffices to show that
𝑀 ↦ �̃� sends injective Γ-modules to 𝑞∗-acyclic sheaves on𝐸Γ (then the diagram above commutes
also after passing to derived categories and derived functors, which is what we want).
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 9

So, let 𝑀 be an injective Γ-module, and let 𝑖 ⩾ 1. 𝑅𝑖𝑞∗�̃� is the sheafification of the presheaf
𝑈 ↦ 𝐻𝑖(𝑞−1(𝑈), �̃�) on 𝐵Δ. There is a basis of open subsets 𝑈 of 𝐵Δ that are contractible and for
which the fiber bundle 𝑞 ∶ 𝑞−1(𝑈) → 𝑈 is trivial. In this case, 𝑞−1(𝑈) ≅ 𝑈 × 𝑁∖𝐹 and hence

𝐻𝑖(𝑞−1(𝑈), �̃�) ≅ 𝐻𝑖(𝑁,𝑀)

by Theorem 2.1. But𝑀 is an injective 𝑁-module because the restriction functor from Γ-modules
to 𝑁-modules has an exact left adjoint 𝑉 ↦ ℤ[Γ] ⊗ℤ[𝑁] 𝑉. Thus, 𝐻𝑖(𝑞−1(𝑈), �̃�) = 0 for all such
𝑈, and hence, 𝑅𝑖𝑞∗�̃� = 0 as desired. □

Wewill also use a (less precise but more general) version for pushforward with proper support.

Proposition 2.3. Let 𝑓 ∶ 𝑋 → 𝑌 be a fiber bundle of manifolds with boundary, with fiber 𝑍 (also a
manifold with boundary). Let  be a local system on 𝑋. Then, for any 𝑖 ⩾ 0, 𝑅𝑖𝑓! is a local system
on 𝑌 with fiber𝐻𝑖

𝑐(𝑍,).

Proof. Wewill use the commutation of derived pushforward with proper support with (arbitrary)
pullbacks; see [29, Proposition 2.6.7]. Let𝑈 ⊆ 𝑌 be a contractible open subset such that 𝑓 is trivial
over𝑈, that is, isomorphic to the canonical projection𝑝𝑈 ∶ 𝑈 × 𝑍 → 𝑈. These formanopen cover
of 𝑌, so since 𝑅𝑖𝑓! commutes with pullback, it suffices to show that 𝑅𝑖𝑝𝑈,! is a constant sheaf.
Since𝑈 is contractible, the restriction of  to 𝑈 × 𝑌  comes by pullback from a local system on
𝑌, which we will call 𝑍 . Consider the cartesian diagram

where 𝑝𝑡 denotes the point and 𝑓 and g are the canonical maps. Then we have

𝑅𝑖𝑝𝑈,! = 𝑅𝑖𝑝𝑈,!𝑝
−1
𝑍 𝑍 ≅ 𝑓−1𝑅𝑖g!𝑍.

In other words, 𝑅𝑖𝑝𝑈,! is the pullback of 𝐻𝑖
𝑐(𝑍,𝑍) via the canonical map 𝑈 → 𝑝𝑡. This proves

the proposition. □

Next, let 𝑋 be a manifold with boundary with a free left action of a group Γ, and assume that
Γ′ ⊆ Γ is a finite index subgroup. Consider the natural map 𝑞 ∶ 𝑋Γ′ → 𝑋Γ. If 𝑀 is a Γ′-module,
we put

IndΓ
Γ′
𝑀 = {𝑓 ∶ Γ → 𝑀 ∣ 𝑓(𝛾′𝛾) = 𝛾′.𝑓(𝛾) ∀𝛾′ ∈ Γ′, 𝛾 ∈ Γ},

which is a left Γ-module under right translation (𝛾.𝑓)(𝑥) = 𝑓(𝑥𝛾). We then have the following.

Proposition 2.4. With notation and assumptions as above, 𝑅𝑖𝑞∗�̃� = 0 for 𝑖 ⩾ 1, and 𝑞∗�̃� is the
local system attached to IndΓ

Γ′
𝑀.

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12799 by Statens B

eredning, W
iley O

nline L
ibrary on [24/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 HANSEN and JOHANSSON

Proof. The map 𝑞 is proper, so if 𝑥 ∈ 𝑋Γ, then (𝑅𝑖𝑞∗�̃�)𝑥 = 𝐻𝑖(𝑞−1(𝑥), �̃�) (by [29, Proposition
2.6.7]), and 𝑞−1(𝑥) has no higher cohomology since it is a finite set. This proves the first part. To
compute 𝑞∗�̃�, let 𝑈 ⊆ 𝑋Γ be open and write 𝜋 ∶ 𝑋 → 𝑋Γ for the quotient map. Unwinding the
definitions, we see that

𝑞∗�̃�(𝑈) = MapΓ′(𝜋0(𝜋
−1(𝑈)),𝑀),

and the right-hand side is easily seen to be equal toMapΓ(𝜋0(𝜋−1(𝑈)), Ind
Γ
Γ′
𝑀) functorially in𝑈,

as desired. □

Wemove on to results on the commutation of𝑀 ↦ �̃� with direct limits. First, let 𝑋 be a man-
ifold with boundary, with a free left action of a group Γ. Write 𝑋Γ ∶= Γ∖𝑋; we assume that 𝑋Γ

is compact, so it has a finite triangulation. Fix such a triangulation and pull it back to 𝑋; this
gives a triangulation whose corresponding complex of simplicial chains 𝐶Δ∙ (𝑋) is a bounded com-
plex of finite free ℤ[Γ]-modules. Let (𝑀𝑖)𝑖∈𝐼 be a directed system of Γ-modules with direct limit
𝑀 = lim

��→𝑖
𝑀𝑖 .

Lemma 2.5. The natural map

lim
��→
𝑖

𝐻∗(𝑋Γ, �̃�𝑖) → 𝐻∗(𝑋Γ, �̃�)

is an isomorphism.

Proof. The canonical map

𝑖 ∶ 𝐶Δ∙ (𝑋) → 𝐶∙(𝑋)

is Γ-equivariant and a quasi-isomorphism; since the terms of both complexes are projective ℤ[Γ]-
modules, the map is therefore a chain homotopy equivalence. This then gives us a commutative
diagram of complexes

where the vertical maps are induced by 𝑖 and the horizontal maps are the natural maps. The verti-
cal maps are then quasi-isomorphisms because they are induced from 𝑖, and the lower horizontal
map is an isomorphism because 𝐶Δ∙ (𝑋) is bounded complex of finite free ℤ[Γ]-modules. The top
horizontalmap is therefore a quasi-isomorphism aswell, and taking cohomology gives the desired
result. □

We can then prove the result in greater generality. With 𝑋 and Γ as above, let 𝑈 ⊆ 𝑋 be a
Γ-invariant open subset containing the interior of𝑋. Set𝑈Γ ∶= Γ∖𝑈,𝑍 ∶= 𝑋 ⧵ 𝑈 and𝑍Γ ∶= Γ∖𝑍.
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 11

Proposition 2.6. The natural map

lim
��→
𝑖

𝐻∗
? (𝑈Γ, �̃�𝑖) → 𝐻∗

? (𝑋Γ, �̃�)

is an isomorphism, for ? ∈ {∅, 𝑐}.

Proof. For ? = ∅, this reduces directly to Lemma 2.5 by our setup, so assume that ? = 𝑐. By
naturality of the excision sequence and exactness of direct limits, we have a commutative
diagram

with exact rows. The result then follows from Lemma 2.5 (since it is applicable to both𝑋Γ and 𝑍Γ)
and the five lemma. □

2.2 “Completed cohomology”

In this subsection, we make some definitions and recall a theorem of Hill which we will use to
handle completed cohomology later. To begin with, wemake the following general definition. Let
𝑅 = lim

←��𝑖
𝑅∕𝔞𝑛 be an adic ring, with 𝔞 a finitely generated ideal of definition.

Definition 2.7. Let (𝑋𝑖)𝑖∈𝐼 be an inverse system of topological spaces, with inverse limit 𝑋. We
define the completed cohomology groups �̃�∗

?
(𝑋, 𝑅) of (𝑋𝑖)𝑖∈𝐼 with coefficients in 𝑅, to be

�̃�∗
? (𝑋, 𝑅) = lim

←��
𝑛

lim
��→
𝑖

𝐻∗
? (𝑋𝑖, 𝑅∕𝔞

𝑛).

Here ? ∈ {∅, 𝑐}, that is, we consider either usual or compactly supported cohomology, when the
latter makes sense.

Remark 2.8. A few remarks on this definition are as follows.

(1) The notation is chosen for simplicity; wemake no assertion that �̃�∗
?
(𝑋, 𝑅) only depends on𝑋.

One weak form of independence is clear though: We may replace 𝐼 with a cofinal subsystem
𝐽. In particular, we may always assume that 𝐼 contains an initial element 0 ∈ 𝐼.

(2) We will almost exclusively work with discrete 𝑅, where the inverse limit in the definition of
�̃�∗
?
(𝑋, 𝑅) disappears.

We now recall the computation of completed cohomology as the cohomology of a “big” local
system at finite level in some circumstances, which first appeared in [26]. Let𝑋 be amanifoldwith
boundary, equipped with a left action of a group𝐺. We assume that there is a subgroup Γ ⊆ 𝐺 that
acts freely on 𝑋, and suppose that Γ = Γ0 ⊇ Γ1 ⊇ Γ2 ⊇ … is a sequence of finite index subgroups
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12 HANSEN and JOHANSSON

of Γ. Let 𝑋 ⊆ 𝑋 be a Γ-stable open subset containing the interior of 𝑋. Set

𝑋 ∶= lim
←��

(⋯→ Γ2∖𝑋 → Γ1∖𝑋 → Γ0∖𝑋),

and define

𝐾 = lim
←��
𝑖

Γ𝑖∖Γ;

this is a profinite set with a right action ofΓ. Assume that𝑋Γ is compact. Thenwe get the following
formula for completed cohomology of 𝑋 (cf. [26, Corollary 1]).

Proposition 2.9. With assumptions as above, let 𝑅 be a discrete ring and let ? ∈ {∅, 𝑐}. Then there
is a canonical isomorphism

�̃�∗
? (𝑋, 𝑅) ≅ 𝐻∗

?

(
𝑋Γ,

˜Map𝑐𝑡𝑠(𝐾, 𝑅)
)
,

where Γ acts onMap𝑐𝑡𝑠(𝐾, 𝑅) via right translation.

Proof. By Lemma 2.4 and the definition, we have

�̃�∗
? (𝑋, 𝑅) ≅ lim

��→
𝑖

𝐻∗
?

(
𝑋Γ,

˜Map(Γ𝑖∖Γ, 𝑅)
)
.

Our setup implies that we may apply Proposition 2.6 to the right-hand side, so it remains to show
that

lim
��→
𝑖

Map(Γ𝑖∖Γ, 𝑅) = Map𝑐𝑡𝑠(𝐾, 𝑅)

as Γ-modules. But this is immediate from the definition of 𝐾. □

We will also encounter local systems slightly bigger than the one appearing in Proposition 2.9.
We keep the notation and assumptions of Proposition 2.9, except thatwe forget the groups denoted
by 𝐾 and Γ𝑖 , 𝑖 ⩾ 1. Let 𝐺 be a profinite group with closed subgroups 𝐾 ⊆ 𝐻 ⊆ 𝐺, and assume that
𝐾 is normal in 𝐻. For simplicity, we assume that there is a countable basis of neighborhoods
of 1 ∈ 𝐺. Suppose that we have a group homomorphism Γ → 𝐻∕𝐾; then Map𝑐𝑡𝑠(𝐻∕𝐾, 𝑅) and
Map𝑐𝑡𝑠(𝐺∕𝐾, 𝑅) become left Γ-modules via right translation, and hence induce local systems on
the space 𝑋Γ. Then we have the following simple but useful lemma.

Lemma 2.10. Fix an integer 𝑞 ⩾ 0 and let ? ∈ {∅, 𝑐}.

(1) 𝐻𝑞
?
(𝑋Γ,

˜Map𝑐𝑡𝑠(𝐻∕𝐾, 𝑅)) = 0 if and only if𝐻𝑞
?
(𝑋Γ,

˜Map𝑐𝑡𝑠(𝐺∕𝐾, 𝑅)) = 0.
(2) 𝐻𝑞

𝑐 (𝑋Γ,
˜Map𝑐𝑡𝑠(𝐻∕𝐾, 𝑅)) → 𝐻𝑞(𝑋Γ,

˜Map𝑐𝑡𝑠(𝐻∕𝐾, 𝑅)) is injective (or surjective, or bijective) if
and only if 𝐻𝑞

𝑐 (𝑋Γ,
˜Map𝑐𝑡𝑠(𝐺∕𝐾, 𝑅)) → 𝐻𝑞(𝑋Γ,

˜Map𝑐𝑡𝑠(𝐺∕𝐾, 𝑅)) is injective (or surjective, or
bijective).

Proof. Choose a continuous splitting of the natural map 𝐺∕𝐾 → 𝐺∕𝐻 (the existence of which is
easy to prove using the assumption that 1 ∈ 𝐺 has a countable basis of neighborhoods); this gives
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 13

a homeomorphism

𝐺∕𝐾 ≅ 𝐺∕𝐻 × 𝐻∕𝐾

of right𝐻∕𝐾-spaces (where𝐻∕𝐾 acts on the right-hand side through the second factor). Then

Map𝑐𝑡𝑠(𝐺∕𝐾, 𝑅) ≅ Map𝑐𝑡𝑠(𝐺∕𝐻 × 𝐻∕𝐾, 𝑅) ≅ Map𝑐𝑡𝑠(𝐺∕𝐻, 𝑅) ⊗𝑅 Map𝑐𝑡𝑠(𝐻∕𝐾, 𝑅)

as 𝐻∕𝐾-modules (and hence as Γ-modules), where the action is trivial onMap𝑐𝑡𝑠(𝐺∕𝐻, 𝑅). Now
Map𝑐𝑡𝑠(𝐺∕𝐻, 𝑅) is a direct limit of finite free 𝑅-modules, so using Proposition 2.6, we have an
isomorphism

𝐻
𝑞
?
(𝑋Γ,

˜Map𝑐𝑡𝑠(𝐺∕𝐾, 𝑅)) ≅ Map𝑐𝑡𝑠(𝐺∕𝐻, 𝑅) ⊗𝑅 𝐻
𝑞
?
(𝑋Γ,

˜Map𝑐𝑡𝑠(𝐻∕𝐾, 𝑅)),

which respects the maps in part (2). The lemma follows from this (sinceMap𝑐𝑡𝑠(𝐺∕𝐻, 𝑅) is a free
𝑅-module). □

2.3 Arithmetic and congruence subgroups

Here we quickly recall some material on arithmetic and congruence subgroups. Let 𝐺 be a con-
nected linear algebraic group over ℚ. Congruence subgroups of 𝐺(ℚ) are subgroups of the form
𝐺(ℚ) ∩ 𝐾, where 𝐾 ⊆ 𝐺(𝔸𝑓) is a compact open subgroup and the intersection is taken inside
𝐺(𝔸𝑓). A subgroup in 𝐺(ℚ) is usually said to be arithmetic if it is commensurable with one
(equivalently any) congruence subgroup. In fact, one can require a slightly stronger condition.

Proposition 2.11. Any arithmetic subgroup in 𝐺(ℚ) is contained in a congruence subgroup.

Proof. Let Γ be an arithmetic subgroup, and let 𝐾1 ⊆ 𝐺(𝔸𝑓) be a compact open subgroup and
set Γ1 = 𝐺(ℚ) ∩ 𝐾1. The closure of Γ1 in 𝐺(𝔸𝑓) is compact since Γ1 ⊆ 𝐾1, and since Γ and Γ1 are
commensurable, this easily implies that the closure of Γ in 𝐺(𝔸𝑓) is a compact subgroup. Since
any compact subgroup of locally profinite group is contained in a compact open subgroup, we
deduce the existence of a compact open subgroup 𝐾2 ⊆ 𝐺(𝔸𝑓) with Γ ⊆ 𝐾2. It follows that Γ is
contained in the congruence subgroup 𝐺(ℚ) ∩ 𝐾2, as desired. □

Moving on, let 𝐻 be another connected linear algebraic group, and let Γ ⊆ 𝐺(ℚ) be an arith-
metic subgroup. If 𝐻 ⊆ 𝐺 is a subgroup, then directly from the definitions, we see that Γ ∩ 𝐻(ℚ)
is an arithmetic subgroup in 𝐻(ℚ), which is congruence if Γ is. If we instead have a surjection
𝑓 ∶ 𝐺 → 𝐻, then 𝑓(Γ) is an arithmetic subgroup (see [35, Theorem 4.1]); this will be important in
this paper and we will use it freely. Before moving on, we recall that group cohomology for any
torsion-free arithmetic subgroup Γ commutes with direct limits.
We recall the notion of neatness from [6, § 17.1]. An element 𝛾 ∈ 𝐺(ℚ) is called neat if there

is a faithful representation 𝑟 ∶ 𝐺 → GL(𝑉) such that the multiplicative group generated by the
eigenvalues of 𝑟(𝛾) (in one, or equivalently any, algebraically closed field containingℚ) is torsion-
free. A neat element cannot have finite order. An arithmetic subgroup Γ ⊆ 𝐺(ℚ) is called neat if
all its elements are neat; such subgroups are in particular torsion-free. From the definitions, we
see that if 𝐻 ⊆ 𝐺 is a connected linear algebraic subgroup and Γ ⊆ 𝐺(ℚ) is neat, then Γ ∩ 𝐻(ℚ)
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14 HANSEN and JOHANSSON

is neat. If an element 𝛾 is neat, then for any representation 𝜌 ∶ 𝐺 → 𝐺𝐿(𝑊), the subgroup gen-
erated by the eigenvalues of 𝜌(𝛾) is torsion-free [6, Corollaire 17.3]. An easy consequence of
this is that if 𝑓 ∶ 𝐺 → 𝐻 is a surjection of linear algebraic groups and Γ is neat, then 𝑓(Γ)

is neat.
For language reasons, let us also introduce notions of neatness for adelic and𝑝-adic groups. The

notion of neatness for an element g = (g𝑝)𝑝 ∈ 𝐺(𝔸𝑓) and a subgroup𝐾 ⊆ 𝐺(𝔸𝑓) is defined in [33,
§ 0.6]. For 𝑝-adic groups, we make the definition analogous to the case of arithmetic groups: An
element g ∈ 𝐺(ℚ𝑝) is called neat if there is a faithful representation 𝜌 ∶ 𝐺ℚ𝑝 → GL(𝑊) over ℚ𝑝
such that the multiplicative group generated by the eigenvalues of 𝜌(g) (in one, or equivalently
any, algebraically closed field containing ℚ𝑝) is torsion-free. Again, this is independent of the
choice of 𝜌. A subgroup 𝐾𝑝 ⊆ 𝐺(ℚ𝑝) is called neat if all of its elements are neat. We note the
following implications among these concepts: If 𝐾𝑝 ⊆ 𝐺(ℚ𝑝) is a neat compact open subgroup,
then 𝐾𝑝𝐾𝑝 ⊆ 𝐺(𝔸𝑓) is neat for any compact open 𝐾𝑝 ⊆ 𝐺(𝔸

𝑝

𝑓
). If a compact open 𝐾 ⊆ 𝐺(𝔸𝑓) is

neat, then Γ = Γ(ℚ) ∩ 𝐾 is a neat congruence subgroup of 𝐺.
We record the following version of the standard result that “sufficiently small” congruence

subgroups are neat; it will be important for us to be able to only impose congruence conditions at
a fixed prime 𝑝.

Proposition 2.12. Let 𝑝 be a prime. Then sufficiently small compact open subgroups of 𝐺(ℚ𝑝) are
neat. In particular, if 𝐾𝑝 ⊆ 𝐺(𝔸

𝑝

𝑓
) is compact open, then 𝐾 = 𝐾𝑝𝐾𝑝 and Γ = 𝐺(ℚ) ∩ 𝐾 are neat for

sufficiently small 𝐾𝑝 ⊆ 𝐺(ℚ𝑝).

Proof. By choosing a faithful representation 𝜌 ∶ 𝐺 → GL𝑛 (and remembering that any compact
subgroup of a locally profinite group is contained in a compact open subgroup), wemay reduce to
𝐺 = GL𝑛. In this case, set𝐾𝑟,𝑝 = Ker(GL𝑛(ℤ𝑝) → 𝐺𝐿𝑛(ℤ∕𝑝

𝑟)); wewill prove that if 𝑟 > 𝑛∕(𝑝 − 1),
then 𝐾𝑟,𝑝 is neat, so we assume this condition on 𝑟 from now on. To show neatness, it suffices to
show that if 𝛾 ∈ 𝐾𝑟,𝑝, then the group generated by the eigenvalues of 𝛾 is torsion-free. Let𝛼1, … , 𝛼𝑛
be the eigenvalues of 𝛾 (in some choice ofℚ𝑝, with valuation 𝑣𝑝 normalized so that 𝑣𝑝(𝑝) = 1). The
characteristic polynomial of 𝛾 reduces to (𝑋 − 1)𝑛 modulo 𝑝𝑟, so by looking at Newton polygons
𝑣𝑝(𝛼𝑖 − 1) ⩾ 𝑟∕𝑛 for all 𝑖. Thus, if 𝛼 is any element in the multiplicative group generated by the
𝛼𝑖 , 𝑣𝑝(𝛼 − 1) ⩾ 𝑟∕𝑛. In particular, since 𝑟 > 𝑛∕(𝑝 − 1), 𝛼 cannot be a nontrivial root of unity. This
finishes the proof of the proposition. □

We also recall another fact about “sufficiently small” congruence subgroups, and set up some
notation. For any real Lie group 𝐽, we write 𝐽+ for the identity component of 𝐽. The following is
[18, Corollaire 2.0.14].

Proposition 2.13. Let 𝐺 be a connected reductive group overℚ. Then there exists a congruence sub-
group Γ ⊆ 𝐺(ℚ) that is contained in 𝐺(ℝ)+. In particular, if Δ ⊆ 𝐺(ℚ) is any congruence subgroup,
then Δ ∩ 𝐺(ℝ)+ is also a congruence subgroup.

We remark that, unlike neatness, the condition Γ ⊆ 𝐺(ℝ)+ cannot be enforced only by congru-
ence conditions at a single prime (chosen independently of 𝐺). For a simple example, consider
𝐺 = Res𝐹

ℚ
𝔾𝑚 with 𝐹 ∶= ℚ(

√
3), and consider the totally negative unit 𝛼 = −2 +

√
3 ∈ 𝐹. One

checks easily that 𝛼3𝑛 ≡ 1modulo 3𝑛 for all 𝑛 but all the 𝛼3𝑛 are totally negative. For an example
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 15

with a semisimple 𝐺, consider 𝐺 = Res𝐹
ℚ
PGL2 and the matrices

(
𝛼3

𝑛
0

0 1

)
, 𝑛 ⩾ 1;

again these tend to the identity 3-adically but they all lie in a nonidentity component because they
have totally negative determinant.

2.4 Cohomology of unipotent groups

From now on, we fix a prime number 𝑝. Let𝑁 be a unipotent algebraic group over ℚ. The goal in
this subsection is to prove the following theorem (we remark that𝑁 satisfies strong approximation
and that all arithmetic subgroups of 𝑁(ℚ) are congruence subgroups).

Theorem 2.14. If Γ ⊆ 𝑁(ℚ) is a congruence subgroup with closure 𝐾𝑝 ⊆ 𝑁(ℚ𝑝) and 𝑉 is a smooth
𝐾𝑝-representation over 𝔽𝑝, then the natural map

𝐻𝑖
𝑐𝑡𝑠(𝐾𝑝, 𝑉) → 𝐻𝑖(Γ, 𝑉)

is an isomorphism for all 𝑖.

We start with some recollections. First, in the situation above, Γ = 𝑁(ℚ) ∩ 𝐾 for some open
compact subgroup 𝐾 ⊆ 𝑁(𝔸𝑓), and Γ is dense in 𝐾 by strong approximation for 𝑁. In particular,
𝐾𝑝 is the image of 𝐾 under the projection map 𝑁(𝔸𝑓) → 𝑁(ℚ𝑝), and hence open. We have a
natural forgetful functor

Mod𝑠𝑚(𝐾𝑝, 𝔽𝑝) → Mod(Γ)

and if 𝑉 ∈ Mod𝑠𝑚(𝐾𝑝, 𝔽𝑝), then 𝑉Γ = 𝑉𝐾𝑝 by smoothness of 𝑉 and density of Γ in 𝐾𝑝. In light
of this, Theorem 2.14 follows directly from the following special case, which is in fact all we will
need.

Proposition 2.15. Let 𝑉 be an injective smooth 𝐾𝑝-representation over 𝔽𝑝 . Then 𝐻𝑖(Γ, 𝑉) = 0 for
all 𝑖 ⩾ 1.

Wewill prove this by induction on dim𝑁. Before the main argument, we will discuss the struc-
ture of injective 𝐾𝑝-representations. Let 𝑊 be any 𝔽𝑝-vector space, which we give the discrete
topology. We can form Map𝑐𝑡𝑠(𝐾𝑝,𝑊), where 𝐾𝑝 acts by right translation. This is the smooth
induction of𝑊, viewed as a representation of the trivial group, to𝐾𝑝. Since smooth induction has
an exact left adjoint (restriction),Map𝑐𝑡𝑠(𝐾𝑝,𝑊) is injective for any𝑊.Wewill refer to these repre-
sentations as “standard injectives.” Now if 𝑉 ∈ Mod𝑠𝑚(𝐾𝑝) is arbitrary, there is a 𝐾𝑝-equivariant
injection

𝑉 → Map𝑐𝑡𝑠(𝐾𝑝, 𝑉)
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16 HANSEN and JOHANSSON

given by 𝑣 ↦ (𝑘 ↦ 𝑘𝑣), where 𝐾𝑝 acts on Map𝑐𝑡𝑠(𝐾𝑝, 𝑉) by right translation. Thus, there
are enough standard injectives, and any injective is a direct summand of a standard injec-
tive. In particular, it suffices to prove Proposition 2.15 for standard injectives. Moreover, since
group cohomology of Γ commutes with direct limits, it suffices to prove Proposition 2.15 for
Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝).
We now begin the induction. First assume that dim𝑁 = 1, that is, that 𝑁 = 𝔾𝑎. Then

(up to isomorphism) Γ = ℤ and 𝐾𝑝 = ℤ𝑝. There are a number of ways of proving that
𝐻𝑖(ℤ,Map𝑐𝑡𝑠(ℤ𝑝, 𝔽𝑝)) = 0 for 𝑖 ⩾ 1. For example, by Proposition 2.9,

𝐻𝑖(ℤ,Map𝑐𝑡𝑠(ℤ𝑝, 𝔽𝑝)) = lim
��→
𝑛

𝐻𝑖(ℝ∕𝑝𝑛ℤ, 𝔽𝑝) = lim
��→
𝑛

𝐻𝑖(𝑆1, 𝔽𝑝),

where on the right, the transition maps come from pullback along the maps 𝑆1 → 𝑆1, 𝑧 ↦ 𝑧𝑝. All
groups are 0 for 𝑖 ⩾ 2, and for 𝑖 = 1, one easily sees that the transitionmaps are all 0, so this proves
Proposition 2.15 for 𝑁 = 𝔾𝑎.
Wemove on to the induction step. By the structure of unipotent groups, we can choose a proper

nontrivial normal subgroup 𝑈 ⊆ 𝑁. Set 𝐻 = 𝑁∕𝑈 and let 𝑓 ∶ 𝑁 → 𝐻 denote the natural map.
Put Γ𝑈 = Γ ∩ 𝑈(ℚ), Γ𝐻 = 𝑓(Γ), 𝐾𝑈,𝑝 = 𝐾𝑝 ∩ 𝑈(ℚ𝑝), and 𝐾𝐻,𝑝 = 𝑓(𝐾𝑝) ⊆ 𝐻(ℚ𝑝). Then 𝐾𝑈,𝑝 is
the closure of Γ𝑈 in 𝑈(ℚ𝑝) and 𝐾𝐻,𝑝 is the closure of Γ𝐻 in 𝐻(ℚ𝑝). Let 𝑉 be an injective smooth
𝐾𝑝-representation over 𝔽𝑝. We have the Hochschild–Serre spectral sequence

𝐻𝑖(Γ𝐻,𝐻
𝑗(Γ𝑈, 𝑉)) ⇒ 𝐻𝑖+𝑗(Γ, 𝑉).

The restriction of 𝑉 to 𝐾𝑈,𝑝 is still injective by [20, Proposition 2.1.11]. Thus, by the induction
hypothesis, 𝐻𝑗(Γ𝑈, 𝑉) = 0 for 𝑗 ⩾ 1, and hence, the spectral sequence degenerates to 𝐻𝑖(Γ, 𝑉) =

𝐻𝑖(Γ𝐻, 𝑉
Γ𝑈 ). By above, 𝑉Γ𝑈 = 𝑉𝐾𝑈,𝑝 , which is an injective† 𝐾𝐻,𝑝-module. By the induction

hypothesis again, we get

𝐻𝑖(Γ, 𝑉) = 𝐻𝑖(Γ𝐻, 𝑉
𝐾𝑈,𝑝 ) = 0

for 𝑖 ⩾ 1, as desired. This finishes the proof of Proposition 2.15, and hence the proof of
Theorem 2.14.

3 COMPLETED COHOMOLOGY OF LOCALLY SYMMETRIC SPACES

We continue to fix a prime number 𝑝.

3.1 Locally symmetric spaces

In this section, we recall some material on locally symmetric spaces and their Borel–Serre com-
pactifications. Let 𝐺 be a connected linear algebraic group over ℚ, let 𝐴 = 𝐴𝐺 ⊆ 𝐺 be a maximal
torus in the ℚ-split part of the radical of 𝐺, and let 𝐾∞ = 𝐾𝐺,∞ ⊆ 𝐺(ℝ) be a maximal compact

†𝑀 ↦ 𝑀𝐾𝑈,𝑝 preserves injectives, because inflation from 𝐾𝐻,𝑝 to 𝐾𝑝 provides an exact left adjoint.
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 17

subgroup. We will work with the (connected) symmetric space

𝑋 = 𝑋𝐺 ∶= 𝐺(ℝ)+∕𝐴(ℝ)+𝐾+
∞ = 𝐺(ℝ)∕𝐴(ℝ)𝐾∞,

which is the symmetric space part of any space of type 𝑆 − ℚ for 𝐺, in the terminology of [9]. If
Γ ⊆ 𝐺(ℚ) is a torsion-free arithmetic subgroup, then Γ acts freely on 𝑋 and the quotient Γ∖𝑋 is a
locally symmetric space. If 𝐾 ⊆ 𝐺(𝔸𝑓) is a compact (not necessarily open) subgroup, we will set

𝑋𝐺
𝐾 ∶= 𝐺(ℚ)+∖𝑋 × 𝐺(𝔸𝑓)∕𝐾,

where 𝐺(ℚ)+ ∶= 𝐺(ℚ) ∩ 𝐺(ℝ)+ and 𝐾 and 𝐺(𝔸𝑓) carry their usual adelic topologies. When
𝐾 is additionally open and g ∈ 𝐺(𝔸𝑓), set Γg = Γg ,𝐾 ∶= 𝐺(ℚ)+ ∩ g𝐾g−1; these are congruence
subgroups by Proposition 2.13. We have the following decomposition as topological spaces:

𝑋𝐺
𝐾 ≅

⨆
g∈𝐺(ℚ)+∖𝐺(𝔸𝑓)∕𝐾

Γg∖𝑋,

where the set Σ𝐾 ∶= 𝐺(ℚ)+∖𝐺(𝔸𝑓)∕𝐾 is finite by [5, Theorem 5.1]. If 𝐾 is neat, then all the Γg

are neat and in particular torsion-free, so 𝑋𝐺
𝐾
is a (possibly disconnected) manifold of dimension

dimℝ 𝑋.
Recall the Borel–Serre bordification 𝑋 = 𝑋

𝐺
of 𝑋 = 𝑋𝐺 from [9]. 𝑋 has a natural structure of

a manifold with corners, with interior 𝑋. We write 𝜕𝑋 = 𝑋 ⧵ 𝑋. The action of 𝐺(ℚ) on 𝑋 extends
to an action of 𝑋, and again, any torsion-free arithmetic subgroup Γ ⊆ 𝐺(ℚ) acts freely on 𝑋. As
a set,

𝑋 =
⨆
𝑄

𝑋𝑄,

where 𝑄 runs through the (rational) parabolic subgrups of 𝐺. The closure of 𝑋𝑄 inside 𝑋 is 𝑋
𝑄
=⨆

𝑃′⊆𝑄 𝑋
𝑃′ .Write𝐶𝑄 for the set of parabolics𝑄′ of𝐺which are conjugate to𝑄 (overℚ);𝐶𝑄 carries a

(tautological) left𝐺(ℚ)-action by conjugation. Fix aminimal parabolic𝑃 of𝐺 overℚ for simplicity.
We can then write

𝑋 =
⨆
𝑄

𝑋𝑄 =
⨆
𝑄⊇𝑃

⨆
𝑄′∈𝐶𝑄

𝑋𝑄′ ,

and the subsets𝑋𝐺,𝑄 =
⨆
𝑄′∈𝐶𝑄

𝑋𝑄′ are stable under𝐺(ℚ). If g ∈ 𝐺(ℚ), then g𝑋𝑄′ = 𝑋g𝑄′g−1 and
hence the stabilizer of 𝑋𝑄′ is 𝑄′(ℚ). In particular, if Γ ⊆ 𝐺(ℚ) is an arithmetic subgroup, we see
that

Γ∖𝑋 =
⨆
𝑄⊇𝑃

⨆
𝑄′∈𝐶𝑄,Γ

Γ𝑄′∖𝑋
𝑄′ ,

where𝐶𝑄,Γ = Γ∖𝐶𝑄 and Γ𝑄′ = Γ ∩ 𝑄′(ℚ). If Γ is neat, then Γ𝑄′ is neat for all𝑄′. The space Γ∖𝑋 is a
compactmanifoldwith corners, which in particular implies that it is homeomorphic to amanifold
with boundary [9, Appendix], so the results of § 2 apply to it.
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18 HANSEN and JOHANSSON

3.2 The vanishing conjecture for completed cohomology

In this subsection, we assume that 𝐺 is reductive. Fix a compact open subgroup 𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
). Let

𝑅 be an adic ring with finitely generated ideal of definition 𝐼. We define completed cohomology
of 𝐺 (with respect to 𝐾𝑝) to be

�̃�∗
? (𝐾

𝑝, 𝑅) ∶= �̃�∗
? (𝑋𝐾𝑝 , 𝑅) = lim

←��
𝑛

lim
��→
𝐾𝑝

𝐻∗
?

(
𝑋𝐾𝑝𝐾𝑝 , 𝑅∕𝐼

𝑛
)
,

where ? ∈ {∅, 𝑐} and 𝐾𝑝 runs through the compact open subgroups of 𝐺(ℚ𝑝). We recall the
quantities

𝑙0 = 𝑙0(𝐺) ∶= rank(𝐺(ℝ)) − rank(𝐴(ℝ)𝐾∞)

and

𝑞0 = 𝑞0(𝐺) ∶=
dimℝ 𝑋 − 𝑙0

2
,

where rank denotes the rank as a Lie group. With these preparations, we may state the main
vanishing conjecture of Calegari–Emerton.

Conjecture 3.1. Let ? ∈ {∅, 𝑐}. Then �̃�𝑛
?
(𝐾𝑝, ℤ𝑝) = 0 for all 𝑛 > 𝑞0.

Remark 3.2. While Conjecture 3.1 is not explicitly stated in [12], it is a direct consequence of [12,
Conjecture 1.5(5)–(8) and Theorem 1.1(3)]. We will discuss [12, Conjecture 1.5] in § 3.4.

We will focus on the following equivalent version, which is also implicit in [12].

Conjecture 3.3. Let ? ∈ {∅, 𝑐}. Then �̃�𝑛
?
(𝐾𝑝, 𝔽𝑝) = 0 for all 𝑛 > 𝑞0.

Proposition 3.4. Conjecture 3.1 is equivalent to Conjecture 3.3.

Proof. That Conjecture 3.1 implies Conjecture 3.3 follows from [12, Theorem 1.16(5)]. For the
converse, note first that we have long exact sequences

⋯→ �̃�𝑖
?(𝐾

𝑝, ℤ∕𝑝𝑟−1) → �̃�𝑖
?(𝐾

𝑝, ℤ∕𝑝𝑟) → �̃�𝑖
?(𝐾

𝑝, 𝔽𝑝) → …

coming from the corresponding long exact sequences at finite level, so by induction on 𝑟, we see
that Conjecture 3.3 implies that �̃�𝑖

?
(𝐾𝑝, ℤ∕𝑝𝑟) = 0 for all 𝑟 and 𝑛 > 𝑞0. Conjecture 3.1 then follows

since �̃�𝑖
?
(𝐾𝑝, ℤ𝑝) = lim

←��𝑟
�̃�𝑖
?
(𝐾𝑝, ℤ∕𝑝𝑟). □

As usual in the Langlands program, adelic double quotients have the advantage that they make
the Hecke actions and group actions transparent. These actions will, however, play essentially no
role in this paper, and we found it simpler to work nonadelically. The rest of this subsection will
discuss a version of Conjecture 3.3 in this language that we will treat. Let Γ ⊆ 𝐺(ℚ) be an arbitrary
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 19

arithmetic subgroup and set

𝐶𝑝 = 𝐶𝑝(Γ) ∶= {Γ ∩ 𝐺(𝔸
𝑝

𝑓
)𝐾𝑝 ∣ 𝐾𝑝 ⊆ 𝐺(ℚ𝑝) compact open}.

Informally, this is the set of arithmetic subgroups of Γwhere we shrink the level at 𝑝. Armed with
this definition, we set

𝑋 = 𝑋(Γ) = 𝑋𝐺(Γ) ∶= lim
←��
Γ′∈𝐶𝑝

Γ′∖𝑋.

We let 𝐺(ℝ)+ denote the preimage of 𝐺𝑎𝑑(ℝ)+ under the natural map 𝐺(ℝ) → 𝐺𝑎𝑑(ℝ); we also
set 𝐺(ℚ)+ = Γ(ℚ) ∩ 𝐺(ℝ)+. We can then state the following conjecture.

Conjecture 3.5. Let ? ∈ {∅, 𝑐} and assume that Γ ⊆ 𝐺(ℚ)+ is an arithmetic subgroup. Thenwe have
�̃�𝑛
?
(𝑋, 𝔽𝑝) = 0 for all 𝑛 > 𝑞0.

This is the conjecture that we will focus on. The restriction to Γ ⊆ 𝐺(ℚ)+ seems unnatural but
this condition will feature in all our unconditional theorems, so we have included for the sake
of easy referencing. A priori, (the natural generalization of ) Conjecture 3.5 is slightly stronger
than Conjecture 3.3 because we allow arbitrary arithmetic subgroups as our “base level” instead
of just congruence subgroups inside the identity component 𝐺(ℝ)+ of 𝐺(ℝ). Let us give a general
discussion of the passage between disconnected spaces and their components, and formalize the
implication relevant to this paper. To simplify notation, we drop the notation �̃� used in § 2 to
denote the local system associated with a representation𝑀, simply writing𝑀 for the local system
as well in the rest of this paper.
First, for any compact subgroup 𝐾 ⊆ 𝐺(𝔸𝑓), define

𝔛𝐾 ∶= 𝔛𝐺
𝐾 ∶= 𝐺(ℚ)+∖𝑋 × 𝐺(𝔸𝑓)∕𝐾,

where we now give 𝐺(𝔸𝑓) the discrete topology. Note that 𝔛𝐾 = 𝑋𝐾 when 𝐾 is open. In general,
𝔛𝐾 is a manifold when 𝐾 is neat. If 𝐾1 ⊆ 𝐾2 are neat, with 𝐾1 normal in 𝐾2, then 𝐾2∕𝐾1 acts
freely on 𝔛𝐾1

with quotient 𝔛𝐾2
. We similarly define 𝔛𝐾 , replacing 𝑋 by 𝑋. In particular, using

𝔛𝐾𝑝 and𝔛𝐾𝑝 , we may apply Theorem 2.9 to deduce that

�̃�𝑖
?(𝐾

𝑝, 𝔽𝑝) ≅ 𝐻𝑖
?(𝑋𝐾,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)),

where 𝐾 = 𝐾𝑝𝐾𝑝 with 𝐾𝑝 neat. Using the decomposition into connected components, we see
that

�̃�𝑖
?(𝐾

𝑝, 𝔽𝑝) ≅
⨁

g∈𝐺(ℚ)+∖𝐺(𝔸𝑓)∕𝐾

𝐻𝑖
?(Γg∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)).

Here, the right 𝐾𝑝-module Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝) (action via left translation) becomes a right Γg =

𝐺(ℚ)+ ∩ g𝐾g−1-module via the composition Γg → 𝐾 → 𝐾𝑝 where the first map is conjugation
by g−1 and the second is the projection, and then a left Γg -module by inversion. In particular, we
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20 HANSEN and JOHANSSON

have an isomorphism

Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝) ≅ Map𝑐𝑡𝑠(g𝑝𝐾𝑝g
−1
𝑝 , 𝔽𝑝)

of Γg -modules (with the obvious Γg -structure on the right-hand side). Then, note that the left
Γg -module Map𝑐𝑡𝑠(g𝑝𝐾𝑝g−1𝑝 , 𝔽𝑝), where the action is via inverting the left translation action, is
isomorphic to the left Γg -module Map𝑐𝑡𝑠(g𝑝𝐾𝑝g−1𝑝 , 𝔽𝑝) where the action is the right translation
action (the isomorphism is given by inversion on g𝑝𝐾𝑝g−1𝑝 ). This proves the following.

Proposition 3.6. Fix 𝑖 and 𝐾𝑝. Choose 𝐾𝑝 sufficiently small to make 𝐾 = 𝐾𝑝𝐾𝑝 neat. For
any other 𝐾′ ⊆ 𝐺(𝔸𝑓) compact open, set Γ′ = 𝐺(ℚ)+ ∩ 𝐾′. Then �̃�𝑖

?
(𝐾𝑝, 𝔽𝑝) = 0 if and only if

𝐻𝑖
?
(Γ′∖𝑋,Map𝑐𝑡𝑠(𝐾

′
𝑝, 𝔽𝑝)) = 0 for all conjugates𝐾′ of𝐾 in𝐺(𝔸𝑓), where Γ′ acts onMap𝑐𝑡𝑠(𝐾′

𝑝, 𝔽𝑝))

either via right translation or by inverting the left translation action.

As a corollary, we get the implication between Conjecture 3.5 and Conjecture 3.3.

Proposition 3.7. Let ? ∈ {∅, 𝑐}. Then Conjecture 3.5 for ? implies Conjecture 3.3 for ?.

Proof. Let 𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
) be compact open and let 𝑛 > 𝑞0. We first show that

𝐻𝑛
?
(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)) = 0 for some (any) sufficiently small𝐾𝑝, where Γ = 𝐺(ℚ)+ ∩ 𝐾𝑝𝐾𝑝 acts

on Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)) via right translation. Consider 𝑋 = 𝑋(Γ). By Conjecture 3.5, �̃�𝑛
?
(𝑋, 𝔽𝑝) = 0.

By Theorem 2.9,

𝐻𝑛
? (Γ∖𝑋,Map𝑐𝑡𝑠(𝐻, 𝔽𝑝)) = �̃�𝑛

? (𝑋, 𝔽𝑝) = 0,

where𝐻 is the closure of Γ in𝐾𝑝 and Γ acts onMap𝑐𝑡𝑠(𝐻, 𝔽𝑝) via right translation. An application
of Lemma2.10 then gives that𝐻𝑛

?
(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)) = 0, as desired.Now the argument applies

equally well when replacing 𝐾𝑝𝐾𝑝 by any conjugate of it inside 𝐺(𝔸𝑓), so by Proposition 3.6, we
deduce that �̃�𝑖

?
(𝐾𝑝, 𝔽𝑝) = 0. □

3.3 The case of Hermitian symmetric domains

In this subsection, we assume that 𝐺 is semisimple and that 𝑋 is a Hermitian symmetric domain.
In this case, 𝑙0 = 0 and 𝑞0 = (dimℝ 𝑋)∕2 = dimℂ 𝑋; we will simply write 𝑑 for this quantity. We
briefly recall some material from the theory of hermitian symmetric domains and their boundary
components; some references for this material are [1, 3, 25]. We do not assume that 𝐺 has no
ℝ-anisotropic ℚ-simple factors.
First, let us recall that an element g ∈ 𝐺(ℝ) acts holomorphically on𝑋 if and only if g ∈ 𝐺(ℝ)+;

see [3, Proposition 11.3] (note that𝐺 is assumed to be adjoint in this reference). The space𝑋 = 𝑋𝐺

has a bordification𝑋∗ = 𝑋𝐺,∗ obtained by adding the rational boundary components of𝑋, see [3].
To describe it, wemake a definition. If𝐺 isℚ-simple, let us call a parabolic subgroup𝑄 admissible
if there is no parabolic subgroup 𝑄′ with 𝑄 ⊊ 𝑄′ ⊊ 𝐺. For general 𝐺, we will call a parabolic sub-
group 𝑄 admissible if its projection to every ℚ-simple factor is admissible in the previous sense.
Let 𝑄 be such an admissible parabolic subgroup of 𝐺; we write 𝑁𝑄 for its unipotent radical and
𝑀𝑄 for its Levi quotient.𝑀𝑄 decomposes into an almost direct product𝑀𝑄 = 𝑀𝑄,𝓁𝑀𝑄,ℎ; see [1,
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 21

Item (5), p. 142] (in the notation of that reference, we take𝑀𝑄,𝓁 = G𝓁 and𝑀𝑄,ℎ = Gℎ ⋅ M ).𝑀𝑄,𝓁
is called the linear part; it is a connected reductive group.𝑀𝑄,ℎ is called theHermitian part and it
is a semisimple group whose symmetric space is a Hermitian symmetric domain. Ourmain result
in the topological part of this paper is the following.

Theorem 3.8. With assumptions as above, assume that Conjecture 3.5 holds for 𝑀𝑄,ℎ for all
admissible parabolics 𝑄 of 𝐺 (including 𝑄 = 𝐺) and ? = 𝑐. Then Conjecture 3.5 holds for 𝐺 and
? = ∅.

The proof will occupy the rest of this subsection. Let us now describe the bordification 𝑋∗. Set
theoretically,

𝑋∗ =
⨆

𝑄 admissible
𝑋𝑀𝑄,ℎ =

⨆
𝑄⊇𝑃 admissible

𝑋𝐺,𝑀𝑄,ℎ ,

where𝑋𝐺,𝑀𝑄,ℎ ∶=
⨆
𝑄′∈𝐶𝑄

𝑋𝑀𝑄′,ℎ andwe recall that 𝑃 is a fixed choice of aminimal parabolic sub-
group. The action of 𝐺(ℚ) on 𝑋 extends to an action on 𝑋∗, but torsion-free arithmetic subgroups
will no longer act freely (in general). The spaces 𝑋𝐺,𝑀𝑄,ℎ are stable under 𝐺(ℚ). If Γ ⊆ 𝐺(ℚ)+ is
a torsion-free arithmetic subgroup, then Γ∖𝑋∗ has a canonical structure of a projective algebraic
variety over ℂ. Let us now assume that Γ is in addition neat, and let Γ𝑀𝑄′,ℎ

be the image of Γ𝑄′ in
𝑀𝑄′,ℎ(ℚ); this is a neat arithmetic subgroup. We have a stratification

Γ∖𝑋∗ =
⨆

𝑄⊇𝑃 admissible

⨆
𝑄′∈𝐶𝑄,Γ

Γ𝑀𝑄′,ℎ
∖𝑋𝑀𝑄′,ℎ

of the quotient. By construction, Γ𝑀𝑄′,ℎ
acts holomorphically on 𝑋𝑀𝑄′,ℎ , so Γ𝑀𝑄′,ℎ

⊆ 𝑀𝑄′,ℎ(ℚ)+.
In [40], Zucker constructs a 𝐺(ℚ)-equivariant continuous map 𝜋 ∶ 𝑋 → 𝑋∗ that we will make

use of.† With 𝑄 as above, let us write 𝑌(𝑄) = 𝜋−1(𝑋𝑀𝑄,ℎ ). By [40, (3.8), Proposition], we have a
natural homeomorphism

𝑌(𝑄) ≅ 𝑋𝑀𝑄,ℎ × 𝑋
𝑀𝑄,𝓁

× 𝑋𝑁𝑄

and the projection maps

𝑌(𝑄) → 𝑌(𝑀𝑄) ∶= 𝑋𝑀𝑄,ℎ × 𝑋
𝑀𝑄,𝓁

→ 𝑋
𝑀𝑄,𝓁

are 𝑄(ℚ)-equivariant (and fiber bundles). Write 𝐿𝑄 = 𝑀𝑄,𝓁∕(𝑀𝑄,𝓁 ∩𝑀𝑄,ℎ); the natural map
𝑀𝑄,𝓁 → 𝐿𝑄 is a central isogeny and 𝑋

𝑀𝑄,𝓁
= 𝑋

𝐿𝑄 . Then we remark that, in the displayed equa-
tion above, 𝑄(ℚ) acts via the projection map 𝑄(ℚ) → 𝑀(ℚ) on 𝑌(𝑀𝑄) and via the projection
map 𝑄(ℚ) → 𝐿𝑄(ℚ) on 𝑋

𝑀𝑄,𝓁 . In particular, we note that 𝑌(𝑄) is contractible and that if Γ is
torsion-free, then Γ𝑄 acts freely on 𝑌(𝑄).

† It is, strictly speaking, not necessary for us to use minimal compactifcations and Zucker’s work [40], as all we need is the
resulting stratification of the Borel–Serre compactification which one may describe directly. Nevertheless, we have opted
to include the minimal compactification in our discussion as it gives a conceptual way of understanding the stratification
that we use, and why we use it.
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22 HANSEN and JOHANSSON

We now begin the proof of Theorem 3.8. Fix an arithmetic subgroup Γ ⊆ 𝐺(ℚ)+. Our goal is to
understand �̃�∗(𝑋, 𝔽𝑝) = �̃�∗(

ˆ
𝑋, 𝔽𝑝) in terms of the �̃�∗

𝑐 (𝑋
𝑀𝑄,ℎ , 𝔽𝑝), where 𝑋 = 𝑋𝐺(Γ) and

ˆ
𝑋 = lim

←��
Γ′⊆𝐶𝑝(Γ)

Γ′∖𝑋.

By Proposition 2.12, we may assume that Γ is neat without changing 𝑋 and ˆ𝑋. Let 𝑆 denote the
closure of Γ in 𝐺(ℚ𝑝). Proposition 2.9 then gives us the following description of �̃�∗(

ˆ
𝑋, 𝔽𝑝).

Proposition 3.9. We have a canonical isomorphism

�̃�∗(
ˆ
𝑋, 𝔽𝑝) ≅ 𝐻∗(Γ∖𝑋,Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)).

The “stratification” (𝑌(𝑄))𝑄 of 𝑋 induces a finite stratification (Γ𝑄∖𝑌(𝑄))𝑄 of Γ∖𝑋 into locally
closed subsets, parameterized by Γ-conjugacy classes of admissible parabolic subgroups 𝑄. By
repeated use of the excision sequence, it suffices for us to prove that

𝐻𝑖
𝑐(Γ𝑄∖𝑌(𝑄),Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)) = 0

for 𝑖 > 𝑑 and for all 𝑄. From now on, we fix 𝑄 and drop the subscripts −𝑄 from all associated
algebraic groups for simplicity. Consider the proper map 𝑓 ∶ Γ𝑄∖𝑌(𝑄) → Γ𝑀∖𝑌(𝑀), which is a
fiber bundle with fiber Γ𝑁∖𝑋𝑁𝑄 . Here Γ𝑁 = 𝑁(ℚ) ∩ Γ𝑄 and Γ𝑀 is the image of Γ𝑄 under 𝑄(ℚ) →
𝑀(ℚ). Set 𝑆𝑁 = 𝑆 ∩ 𝑁(ℚ𝑝); by strong approximation, this is the closure ofΓ𝑁 in𝑁(ℚ𝑝) (and hence
open). Then we have

𝐻∗
𝑐 (Γ𝑄∖𝑌(𝑄),Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)) = 𝐻∗

𝑐 (Γ𝑀∖𝑌(𝑀), 𝑅𝑓∗ Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)).

Since Γ ∩ 𝑆𝑁 = Γ𝑁 , Γ𝑀 = Γ𝑄∕Γ𝑁 acts by right translation on 𝑆∕𝑆𝑁 .

Proposition 3.10. 𝑓∗ Map𝑐𝑡𝑠(𝑆, 𝔽𝑝) = Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝) with Γ𝑀 acting by right translation, and
𝑅𝑖𝑓∗ Map𝑐𝑡𝑠(𝑆, 𝔽𝑝) = 0 for all 𝑖 ⩾ 1.

Proof. By Corollary 2.2, 𝑅𝑖𝑓∗ Map𝑐𝑡𝑠(𝑆, 𝔽𝑝) is the local system on Γ𝑀∖𝑌(𝑀) corresponding to
the Γ𝑀-representation 𝐻𝑖(Γ𝑁,Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)). When 𝑖 = 0, the description is clear since Γ𝑁 is
dense in 𝑆𝑁 . In general, choose a continuous section 𝑆 → 𝑆𝑁 of the inclusion, which gives a
homeomorphism 𝑆 ≅ 𝑆∕𝑆𝑁 × 𝑆𝑁 of right 𝑆𝑁-spaces. Arguing as in Lemma 2.10, we see that

𝐻𝑖(Γ𝑁,Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)) ≅ Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝) ⊗𝔽𝑝
𝐻𝑖(Γ𝑁,Map𝑐𝑡𝑠(𝑆𝑁, 𝔽𝑝)).

By Proposition 2.15 and the injectivity of Map𝑐𝑡𝑠(𝑆𝑁, 𝔽𝑝) (discussed in § 2.4), the right-hand side
is 0 when 𝑖 ⩾ 1. □

So, we are down to computing 𝐻∗
𝑐 (Γ𝑀∖𝑌(𝑀),Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝)), for which we use the fiber

bundle

g ∶ Γ𝑀∖𝑌(𝑀) → Γ𝐿∖𝑋
𝐿
,
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 23

with fiber Γℎ∖𝑋𝑀ℎ . Here Γℎ = 𝑀ℎ(ℚ) ∩ Γ𝑀 and Γ𝐿 = 𝑟(Γ𝑀), where 𝑟 ∶ 𝑀 → 𝐿 denotes the canon-
ical map. We remark that Γℎ acts holomorphically on 𝑋𝑀ℎ , and hence, Γℎ ⊆ 𝑀ℎ(ℚ)+. The Leray
spectral sequence reads

𝐻𝑖(Γ𝐿∖𝑋
𝐿
, 𝑅𝑗g! Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝)) ⇒ 𝐻

𝑖+𝑗
𝑐 (Γ𝑀∖𝑌(𝑀),Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝)).

The key is then the following.

Proposition 3.11. 𝑅𝑗g! Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝)) is a local system on Γ𝐿∖𝑋
𝐿
and vanishes for 𝑗 >

dimℂ 𝑋
𝑀ℎ .

Proof. 𝑅𝑗g! Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝)) is a local system with fiber 𝐻𝑗
𝑐 (Γℎ∖𝑋

𝑀,ℎ,Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝)) by
Proposition 2.3. Consider the closure 𝑇ℎ of Γℎ in 𝑀ℎ(ℚ𝑝), which we may also view as the clo-
sure of Γℎ in 𝑆∕𝑆𝑁 . Write 𝑆ℎ for the preimage of 𝑇ℎ under 𝑆 → 𝑆∕𝑆𝑁 . 𝑆ℎ is a group containing 𝑆𝑁
as a normal subgroup, and 𝑇ℎ = 𝑆ℎ∕𝑆𝑁 . Applying Lemma 2.10 with 𝐺 = 𝑆,𝐻 = 𝑆ℎ, 𝐾 = 𝑆𝑁 , and
Γ = Γℎ,𝐻

𝑗
𝑐 (Γℎ∖𝑋

𝑀,ℎ,Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝)) vanishes if

𝐻
𝑗
𝑐 (Γℎ∖𝑋

𝑀ℎ ,Map𝑐𝑡𝑠(𝑇ℎ, 𝔽𝑝)).

But 𝐻𝑗
𝑐 (Γℎ∖𝑋

𝑀,ℎ,Map𝑐𝑡𝑠(𝑇ℎ, 𝔽𝑝)) is compactly supported completed 𝔽𝑝-cohomology for 𝑀ℎ by
Proposition 2.9, so this vanishes for 𝑗 > dimℂ 𝑋

𝑀ℎ by assumption. □

Before we put everything together, we need to relate 𝑑 to dimℂ 𝑋
𝑀ℎ and dimℝ 𝑋

𝐿. Recall that
𝐴𝐿 is the maximal ℚ-split torus in the center of 𝐿, and write 𝑍(𝑁) for the center of 𝑁. The result
is then the following.

Lemma 3.12. dimℂ 𝑋
𝑀ℎ + dimℝ 𝑋

𝐿 = 𝑑 − 1

2
(dim𝑁 − dim𝑍(𝑁)) − dim𝐴𝐿.

Proof. The symmetric space 𝑋𝐺 has a decomposition

𝑋𝐺 ≅ 𝑋𝑀ℎ × 𝐶(𝐿) × 𝑁(ℝ)

as real manifolds† by [1, Equation (4.1)]. This gives

dimℂ 𝑋
𝑀ℎ = 𝑑 −

1

2
(dimℝ 𝐶(𝐿) + dim𝑁).

The space 𝐶(𝐿), called 𝐶(𝐹) in [1], is an open subset of 𝑍(𝑁)(ℝ) and diffeomorphic to 𝐿(ℝ)∕𝐾𝐿,∞
by [1, Theorem 4.1(2)], where 𝐾𝐿,∞ denotes a maximal compact subgroup of 𝐿(ℝ). Thus,
dimℝ 𝑋

𝐿 = dimℝ 𝐶(𝐿) − dim𝐴𝐿 and dimℝ 𝐶(𝐿) = dim𝑍(𝑁). Combining this with the displayed
equation above and rearranging gives the desired result. □

Wemay now put everything together to prove amore precise version of Theorem 3.8. Fromnow
on, we let 𝑄 denote an arbitrary admissible parabolic of 𝐺 again, and set

† This is written as𝐷 ≅ 𝐹 × 𝐶(𝐹) ×𝑊(𝐹) in [1]; with respect to our notation𝐷 = 𝑋𝐺 , 𝐹 = 𝑋𝑀ℎ ,𝐶(𝐹) = 𝐶(𝐿), and𝑊(𝐹) =

𝑁(ℝ).
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24 HANSEN and JOHANSSON

𝛾(𝑄) =
1

2

(
dim𝑁𝑄 − dim𝑍(𝑁𝑄)

)
+ dim𝐴𝐿𝑄 + ss.rankℚ(𝐿𝑄)

whenever 𝑄 ≠ 𝐺. Here ss.rankℚ(𝐻), for 𝐻 a reductive group over ℚ, denotes the ℚ-rank of the
derived group of 𝐻 (the “semisimple ℚ-rank” of 𝐻). Note that 𝛾(𝑄) is nonnegative and only
depends on the conjugacy class of 𝑄. In fact, dim𝐴𝐿𝑄 , and hence 𝛾(𝑄), is always positive. This
follows, for example, from [9, § 4.2, Equation (2)], upon noting that dim𝐴𝐿𝑄 = dim𝐴𝑄. More pre-
cisely, this shows that dim𝐴𝐿𝑄 is equal to the number of ℚ-simple adjoint factors of 𝐺 → 𝐻 in
which the projection of 𝑄 is not equal to 𝐻.

Theorem 3.13. Assume that Conjecture 3.5 holds for 𝑀𝑄,ℎ for all admissible parabolics 𝑄 of 𝐺
(including 𝑄 = 𝐺) and ? = 𝑐. Then the natural map

𝐻𝑖
𝑐(𝑋, 𝔽𝑝) → 𝐻𝑖(𝑋, 𝔽𝑝)

is an isomorphism when 𝑖 > 𝑑 + 1 − inf𝑄≠𝐺 𝛾(𝑄), and surjective for 𝑖 = 𝑑 + 1 − inf𝑄≠𝐺 𝛾(𝑄). In
particular, Conjecture 3.5 holds for 𝐺 and ? = ∅, and𝐻𝑑

𝑐 (𝑋, 𝔽𝑝) → 𝐻𝑑(𝑋, 𝔽𝑝) is surjective.

Proof. This merely summarizes the work done above, so we will be rather brief. By Propo-
sition 3.9 and repeated use of the excision sequence, it suffices to show that, for all 𝑄 ≠ 𝐺,
𝐻𝑖
𝑐(Γ𝑄∖𝑌(𝑄),Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)) = 0 for 𝑖 > 𝑑 − 𝛾(𝑄). Propositions 3.10 and 3.11 then give us a spectral

sequence

𝐻𝑗(Γ𝐿∖𝑋
𝐿
, 𝑅𝑘g! Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝))⟹ 𝐻

𝑗+𝑘
𝑐 (Γ𝑄∖𝑌(𝑄),Map𝑐𝑡𝑠(𝑆, 𝔽𝑝))

and shows that 𝑅𝑘g! Map𝑐𝑡𝑠(𝑆∕𝑆𝑁, 𝔽𝑝) is a local system that is 0 for 𝑘 > dimℂ 𝑋
𝑀ℎ . By [9,

Corollary 11.4.3], the cohomology of local systems on Γ𝐿∖𝑋
𝐿
vanishes in degrees > dimℝ 𝑋

𝐿 −

ss.rankℚ(𝐿), so we see that 𝐻𝑖
𝑐(Γ𝑄∖𝑌(𝑄),Map𝑐𝑡𝑠(𝑆, 𝔽𝑝)) = 0 for 𝑖 > dimℂ 𝑋

𝑀ℎ + dimℝ 𝑋
𝐿 −

ss.rankℚ(𝐿). Finally, by Lemma 3.12, this quantity is equal to 𝑑 − 𝛾(𝑄) as desired, finishing the
proof. □

Remark 3.14. When inf𝑄≠𝐺 𝛾(𝑄) ⩾ 2,𝐻𝑑
𝑐 (𝑋, 𝔽𝑝) → 𝐻𝑑(𝑋, 𝔽𝑝) is an isomorphism. This is typically

the case, and it is relatively straightforward to check in any given case. However, there are exam-
pleswhere inf𝑄≠𝐺 𝛾(𝑄) = 1, such as𝐺 = SL2∕𝐹 with𝐹 totally real. In the example𝐺 = SL2∕𝐹 , note
that the map𝐻𝑑

𝑐 (𝑋, 𝔽𝑝) → 𝐻𝑑(𝑋, 𝔽𝑝) is not an isomorphism when 𝐹 = ℚ. When 𝐹 ≠ ℚ, the map
should be an isomorphism (which can be proved by using Waldschmidt’s bound on the Leopoldt
defect in the proof above instead of [9, Corollary 11.4.3]).

Remark 3.15. The reader familiar with the Borel–Serre compactification may wonder if one could
not have used the “usual” stratification, indexed by all rational parabolic subgroups of 𝐺. This is
possible, but it simply amounts to amore complicated version of the analysis above. Let us explain
this briefly. The strata in the usual stratification are locally symmetric spaces for rational parabol-
ics 𝑃 of 𝐺, and we would want to prove vanishing results for compactly supported cohomology
on these strata of the same local system as above. If 𝑀 is the Levi quotient of 𝑃, the analog of
Proposition 3.10 goes through in the same way and essentially reduces us to compactly supported
completed cohomology of𝑀. No trivial boundwill be sufficient, and, in general,𝑋𝑀 would not be
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 25

Hermitian, so we are forced to try to find an almost direct factor of𝑀 whose symmetric space is
Hermitian (just like for admissible 𝑃) to get a better bound. It is not so hard to see (e.g., by looking
at Dynkin diagrams) that there is a canonical admissible 𝑄 whose Hermitian part is an almost
direct factor of 𝑀, and using this, one can push through the analysis. The strata of the coarser
stratification that we use are simply the unions of the 𝑋𝑃 for all 𝑃 that have the same Hermitian
part, that is, which are associated with the same admissible 𝑄 by the procedure above, and they
fit together in such way that it is much better to analyze them together rather than separately.

3.4 The Calegari–Emerton conjectures on completed homology

We return to the setting of § 3.2. We recall from [12] that completed homology of𝐺 with tame level
𝐾𝑝 ⊆ 𝐺(𝔸

𝑝

𝑓
) values in an adic ring 𝑅 is defined as

�̃�𝑖(𝐾
𝑝, 𝑅) ∶= lim

←��
𝐾𝑝

𝐻𝑖(𝑋𝐾𝑝𝐾𝑝 , 𝑅),

where𝐾𝑝 runs through the compact open subgroups of𝐺(ℚ𝑝). One may define completed Borel–
Moore homology �̃�𝐵𝑀

𝑖
(𝐾𝑝, 𝑅) similarly (again see [12]). Let ? ∈ {∅, 𝐵𝑀}. For any compact open

subgroup 𝐾𝑝 ⊆ 𝐺(ℚ𝑝), �̃�?
𝑖
(𝐾𝑝, ℤ𝑝) is a finitely generated right module for the Iwasawa algebra

ℤ𝑝⟦𝐾𝑝⟧, which is an Auslander–Gorenstein ring and has well-defined codimension (or grade)
function on its finitely generated right modules, defined by

𝑐𝑑(𝑀) = inf {𝑗 ∣ Ext
𝑗

ℤ𝑝⟦𝐾𝑝⟧(𝑀,ℤ𝑝⟦𝐾𝑝⟧) ≠ 0}.

We refer to [2, § 2.5] for more details on the properties of the codimension function. In particular,
we remark that by general properties, 𝑐𝑑(�̃�?

𝑖
(𝐾𝑝, ℤ𝑝)) is independent of the choice of 𝐾𝑝. Recall

the quantities 𝑞0 and 𝑙0 from § 3.2. We may then state a slightly weaker version of [12, Conjecture
1.5]. For simplicity, from now on we write �̃�?

𝑖
for �̃�?

𝑖
(𝐾𝑝, ℤ𝑝).

Conjecture 3.16 (Calegari–Emerton). Let ? ∈ {∅, 𝐵𝑀}. Then the following holds.

(1) If 𝑖 < 𝑞0, then 𝑐𝑑(�̃�?
𝑖
) ⩾ 𝑞0 + 𝑙0 − 𝑖.

(2) �̃�?
𝑞0
has codimension 𝑙0.

(3) �̃�?
𝑞0
is 𝑝-torsion free.

(4) �̃�?
𝑖
= 0 for 𝑖 > 𝑞0.

The difference between this conjecture and [12, Conjecture 1.5] is that the latter predicts
𝑐𝑑(�̃�?

𝑖
) > 𝑞0 + 𝑙0 − 𝑖 when 𝑖 < 𝑞0. Completed (Borel–Moore) homology is closely related to com-

pleted (compactly supported) cohomology via [12, Theorem 1.1]. Moreover, completed homology
and completed Borel–Moore homology are related via the two Poincaré duality spectral sequences

𝐸
𝑖𝑗
2
= Ext𝑖

𝐴
(�̃�𝑗, 𝐴)⟹ �̃�𝐵𝑀

𝐷−𝑖−𝑗;

𝐸
𝑖𝑗
2
= Ext𝑖

𝐴
(�̃�𝐵𝑀

𝑗 , 𝐴)⟹ �̃�𝐷−𝑖−𝑗,

where 𝐴 = ℤ𝑝⟦𝐾𝑝⟧ and 𝐷 = dimℝ 𝑋 = 2𝑞0 + 𝑙0; see [12, § 1.3]. We have the following relation
between Conjectures 3.1 and 3.16.
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26 HANSEN and JOHANSSON

Proposition 3.17. Conjecture 3.1 for compactly supported completed cohomology implies Conjec-
ture 3.16(3)–(4) for completedBorel–Moore homology andConjecture 3.16(1) for completed homology.
Similarly, Conjecture 3.1 for completed cohomology implies Conjecture 3.16(3)–(4) for completed
homology and Conjecture 3.16(1) for completed Borel–Moore homology.

Proof. The first part is essentially [37, Corollary 4.2.3]; the proof there works verbatim (note that
there is a small typo in that proof; the quantity 𝑐 there should be chosen to be minimal, not maxi-
mal, with respect to the given property). For the second part, the proof is the same, swapping the
roles of completed cohomology and compactly supported completed cohomology, and completed
homology and completed Borel–Moore homology. □

Let us also indicate that Conjecture 3.16(2) is known for completed homology when 𝐺 is
semisimple and 𝑙0 = 0; this is part of [12, Theorem 1.4] (and follows from [11] and known limit
multiplicity formulas for discrete series). More precisely, let Γ ⊆ 𝐺(ℚ) is an arithmetic subgroup
with closure Γ ⊆ 𝐺(ℚ𝑝) and let 𝑋 = 𝑋(Γ). Then �̃�𝑞0(𝑋, ℤ𝑝)[1∕𝑝] is an admissible ℚ𝑝-Banach
space representation of Γ of corank 0 by the results of [11]. Dualizing, we see that the completed
homology space

�̃�𝑞0
(𝑋, ℤ𝑝) ∶= lim

←��
Γ′⊆𝐶𝑝(Γ)

𝐻𝑞0
(Γ′∖𝑋, ℤ𝑝)

has codimension 0 as a ℤ𝑝⟦Γ⟧-module. If 𝐴 → 𝐵 is a (left and right) flat map of (left and
right) Noetherian rings and 𝑀 is a finitely generated right 𝐴-module, then one easily sees that
Ext𝑖

𝐵
(𝑀 ⊗𝐴 𝐵, 𝐵) ≅ 𝐵 ⊗𝐴 Ext

𝑖
𝐴
(𝑀,𝐴). In particular, if𝐴 → 𝐵 is (left and right) faithfully flat, then

Ext𝑖
𝐴
(𝑀,𝐴) = 0 if and only if Ext𝑖

𝐵
(𝑀 ⊗𝐴 𝐵, 𝐵) = 0. By an analysis of components similar to that

preceding Proposition 3.6, one sees that if Γ = 𝐺(ℚ)+ ∩ 𝐾𝑝𝐾𝑝, then �̃�𝑞0
(𝑋, ℤ𝑝) ⊗ℤ𝑝⟦Γ⟧ ℤ𝑝⟦𝐾𝑝⟧ is

a direct summand of �̃�𝑞0
(𝐾𝑝, ℤ𝑝), and hence the latter has codimension 0 as a ℤ𝑝⟦𝐾𝑝⟧-module.

Here, we take 𝐾𝑝 to be sufficiently small so that it is neat and pro-𝑝; then ℤ𝑝⟦Γ⟧→ ℤ𝑝⟦𝐾𝑝⟧ is
flat (indeed projective) by [8, Lemma 4.5], and hence, faithfully flat since ℤ𝑝⟦Γ⟧ is then local. For
ease of reference, let us state the result below.

Theorem 3.18. Assume that 𝐺 is semisimple and that 𝑙0 = 0. Then the codimension of �̃�𝑞0
is equal

to 0.

4 SHIMURA VARIETIES

In this section, we discuss Shimura varieties of Hodge and (pre-) abelian type, and how the con-
ditional results of § 3 together with the results § 5 give many unconditional cases of Conjectures
3.1 and 3.16.

4.1 Recollections on Shimura varieties

We use the definition and conventions for Shimura data, morphisms of Shimura data, and con-
nected Shimura data from [18]; see also [30]. Given a Shimura datum (𝐺, 𝑋), there are three other
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 27

data which one can attach to it, one Shimura datum and two connected Shimura data. They are
as follows:

∙ the connected Shimura datum (𝐺𝑑𝑒𝑟, 𝑋+);
∙ the connected Shimura datum (𝐺𝑎𝑑, 𝑋+);
∙ the Shimura datum (𝐺𝑎𝑑, 𝑋𝑎𝑑).

Here 𝑋+ ⊆ 𝑋 is any choice of a connected component, and if ℎ ∈ 𝑋, then 𝑋𝑎𝑑 is the 𝐺𝑎𝑑(ℝ)-
conjugacy class of the composition of ℎ with 𝐺ℝ → 𝐺𝑎𝑑

ℝ
(this is independent of the choice of ℎ).

The Shimura datum (𝐺𝑎𝑑, 𝑋𝑎𝑑) will only feature when we discuss the Hodge–Tate period map
later, the other two will feature throughout the rest of this article. We recall that a Shimura datum
(𝐺, 𝑋) is said to be of Hodge type if there exists a Siegel Shimura datum (𝐺′, 𝑋′) and a closed
immersion (𝐺, 𝑋) → (𝐺′, 𝑋′) of Shimura data. A Shimura datum (𝐺, 𝑋) is said to be of abelian type
if there exists a Shimura datum (𝐺1, 𝑋1) of Hodge type and a central isogeny 𝐺𝑑𝑒𝑟1

→ 𝐺𝑑𝑒𝑟, which
induces an isomorphism (𝐺𝑎𝑑

1
, 𝑋+

1
) ≅ (𝐺𝑎𝑑, 𝑋+). We make the following slightly more general

definition, following [31, 2.10].

Definition 4.1. Let (𝐺, 𝑋) be a connected Shimura datum. We say that (𝐺, 𝑋) is of preabelian
type if there exists a Shimura datum (𝐺, 𝑋) of Hodge type such that (𝐺𝑎𝑑, 𝑋) ≅ (𝐺𝑎𝑑, 𝑋+). We say
that a Shimura datum (𝐺, 𝑋) is of preabelian type if (𝐺𝑑𝑒𝑟, 𝑋+) is of preabelian type.

Remark 4.2. Recall that if𝐺 is semisimple, then by the convential definition,𝐺 admits a connected
Shimura datum (𝐺, 𝑋) if and only if𝐺 has no compactℚ-factors and𝑋𝐺 is a hermitian symmetric
domain; in this case,𝑋 ≅ 𝑋𝐺 . The assumption that𝐺 has no compactℚ-factors could be dropped,
but we will keep phrasing our results in terms of Shimura data for simplicity.

To be able to apply the inductive arguments from § 3, we will need the following lemma.

Lemma 4.3. Assume that 𝐺 admits a connected Shimura datum of preabelian type and let 𝑄 ⊆ 𝐺

be an admissible parabolic with hermitian part𝑀ℎ. Then𝑀ℎ admits a connected Shimura datum
of preabelian type.

Proof. The assertion does not depend on the choice of 𝐺 inside the isogeny class of 𝐺, so we may
assume that (𝐺, 𝑋) = (𝐺𝑑𝑒𝑟

1
, 𝑋+

1
)with (𝐺1, 𝑋1) a Shimura datumofHodge type. The assertion then

follows from the well-known fact that the rational boundary components of (𝐺1, 𝑋1) are of Hodge
type. □

4.2 Results for semisimple groups

The following is the main theorem of this paper on the Calegari–Emerton conjectures; at this
point, the proof is simply a summary of the results so far together with Corollary 5.21, which we
prove using 𝑝-adic methods in the next section.

Theorem 4.4. Let 𝐺 be a semisimple group that admits a connected Shimura datum of pre-
abelian type. Then Conjectures 3.1, 3.5, and 3.16 hold for 𝐺. Moreover, for any 𝐾𝑝, the natural
map �̃�𝑖

𝑐(𝐾
𝑝, ℤ𝑝) → �̃�𝑖(𝐾𝑝, ℤ𝑝) is an isomorphism for 𝑖 > 𝑑 + 1 − inf𝑄≠𝐺 𝛾(𝑄) and surjective for
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28 HANSEN and JOHANSSON

𝑖 = 𝑑 + 1 − inf𝑄≠𝐺 𝛾(𝑄), where 𝑑 = dimℂ 𝑋
𝐺 , 𝑄 is an admissible parabolic subgroup of 𝐺 and we

recall that the quantities 𝛾(𝐺) are defined in § 3.3.

Proof. We start with Conjecture 3.5. For ? = 𝑐, this Corollary 5.21. For ? = ∅, it then follows
from Lemma 4.3 and Theorem 3.13. The more precise statement about the map �̃�𝑖

𝑐(𝐾
𝑝, ℤ𝑝) →

�̃�𝑖(𝐾𝑝, ℤ𝑝) follows fromTheorem 3.13, Lemma 2.10, and an analysis of components as in the proof
of Proposition 3.6. Conjecture 3.1 then follows, and as does Conjecture 3.16 (using Proposition 3.17,
Theorem 3.18, and the fact that �̃�𝑑(𝐾

𝑝, ℤ𝑝) = �̃�𝐵𝑀
𝑑

(𝐾𝑝, ℤ𝑝)). □

4.3 Results for reductive groups

Here, we will briefly indicate what type of results can be proved toward the Calegari–Emerton
conjectures for more general reductive groups. Recall that if (𝐺, 𝑋) is a Shimura datum, then 𝑋+

need not equal the symmetric space 𝑋𝐺 in general. Indeed, 𝑋+ ≅ 𝐺(ℝ)∕𝑍(ℝ)𝐾∞, where 𝑍 ⊆ 𝐺

is the center and 𝐾∞ ⊆ 𝐺(ℝ) is a maximal compact subgroup. Recall that 𝐴 ⊆ 𝑍 is the maximal
ℚ-split subtorus and set

𝑍𝑎 =
⋂
𝜒

Ker 𝜒,

where 𝜒 runs over the characters of 𝑍 defined over ℚ. Then 𝑍 = 𝑍𝑎𝐴 with 𝐴 ∩ 𝑍𝑎 finite, and
𝑋𝐺 → 𝑋+ is a (trivial) fibration with fiber 𝑍𝑎(ℝ)∕(𝑍𝑎(ℝ) ∩ 𝐾∞). In particular, 𝑋𝐺 ≅ 𝑋+ if and
only if 𝑍𝑎(ℝ) is compact. Note that this is equivalent to all arithmetic subgroups of 𝑍 being finite,
and to 𝑙0(𝑍) = 0. When this happens, we get clean results. Let 𝑑 = dimℂ 𝑋.

Theorem 4.5. Assume that 𝐺 admits a Shimura datum of preabelian type and that 𝑍𝑎(ℝ) is
compact. Then Conjectures 3.1, 3.5, and 3.16 hold for 𝐺.

Proof. We start with Conjecture 3.5. Fix a neat arithmetic subgroup Γ ⊆ 𝐺(ℚ)+ and 𝑛 > 𝑞0. Let
𝑇 = 𝐺∕𝐺𝑑𝑒𝑟 be the cocenter of 𝐺. Since 𝑍 → 𝑇 is an isogeny, all arithmetic subgroups of 𝑇 are
finite as well. In particular, the image of Γ in 𝑇(ℚ) is neat, hence trivial. So, Γ is contained in
𝐺𝑑𝑒𝑟(ℚ)+, and one readily sees that Conjecture 3.5 for 𝐺 is equivalent to Conjecture 3.5 for 𝐺𝑑𝑒𝑟,
which follows from Theorem 4.4. Conjecture 3.1 then follows, and as does Conjecture 3.16 (using
Proposition 3.17) apart from part (2). For a proof of this, we refer to Corollary 4.10 below, though
we also note that one could give an easier proof in this special case. The last statement follows
from the corresponding statement for 𝐺𝑑𝑒𝑟 by the same arguments as in Theorem 4.4. □

Remark 4.6. We have elected to drop the statement that �̃�𝑖
𝑐(𝐾

𝑝, ℤ𝑝) → �̃�𝑖(𝐾𝑝, ℤ𝑝) is an isomor-
phism (or surjective) in a range of degrees, but, of course, the proof also shows that we get this.
We will continue to drop this statement throughout this section.

Corollary 4.7. Assume that 𝐺 admits a Shimura datum of Hodge type. Then Conjectures 3.1, 3.5,
and 3.16 hold.

Proof. If 𝐺 admits a Shimura datum of Hodge type, then 𝑍𝑎(ℝ) is compact, so Theorem 4.5
applies. □
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 29

When 𝑍𝑎(ℝ) is noncompact, the Leopoldt conjecture interferes in deducing the Calegari–
Emerton conjectures for 𝐺 from 𝐺𝑑𝑒𝑟 or 𝐺𝑎𝑑. Indeed, if 𝐺 = 𝑇 is a torus, then the Leopoldt
conjecture for 𝑇 is equivalent to Conjecture 3.1 for 𝑇; see [26, § 4.3.3] (note that Hill uses the
symmetric spaces 𝐺(ℝ)∕𝐾∞ instead of our 𝑋𝐺). We recall this briefly (also recall that tori satisfy
the congruence subgroup property). Let 𝐾 = 𝐾𝑝𝐾𝑝 be a compact open subgroup of 𝑇(𝔸𝑓) with
𝐾𝑝 arbitrary and𝐾𝑝 neat. Set Γ = 𝑇(ℚ) ∩ 𝐾; this is a finitely generated torsion-free abelian group.
Let Γ̂ be the 𝑝-adic completion of Γ and consider the natural map 𝑓 ∶ Γ̂ → 𝐾𝑝; set Δ = Ker 𝑓

and 𝐼 = Im𝑓. Δ is a finite free ℤ𝑝-module and the Leopoldt conjecture asserts that Δ = 0 (this
assertion is independent of the choice of 𝐾). An application of [26, Lemma 14] gives that

𝐻𝑖(Γ,Map𝑐𝑡𝑠(𝐼, 𝔽𝑝)) = Homℤ𝑝
(∧𝑖

ℤ𝑝
Δ, 𝔽𝑝),

and, by Lemma 2.10,𝐻𝑖(Γ,Map𝑐𝑡𝑠(𝐼, 𝔽𝑝)) vanishes simultaneously with𝐻𝑖(Γ,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)), so
by Proposition 3.6, the vanishing of Δ is equivalent to Conjecture 3.3. In fact, the Leopoldt conjec-
ture is also equivalent to Conjecture 3.16(2) for 𝑇 (note that 𝑞0(𝑇) = 0). This is certainly also well
known; we give a very brief sketch of the proof.

Proposition 4.8. Let 𝐾𝑝 ⊆ 𝑇(𝔸
𝑝

𝑓
) be compact open. Then the codimension of �̃�0(𝐾

𝑝, ℤ𝑝) is 𝑙0 −
rankℤ𝑝Δ. In fact, the projective dimension of �̃�0(𝐾

𝑝, ℤ𝑝) is 𝑙0 − rankℤ𝑝Δ.

Proof. Choose 𝐾𝑝 neat and set Γ = 𝑇(ℚ)+ ∩ 𝐾𝑝𝐾𝑝. As a right 𝐾𝑝-module, a straightforward
computation (using the commutativity of 𝑇) shows that

�̃�0(𝐾
𝑝, ℤ𝑝) ≅

⨁
𝑡

ℤ𝑝⟦𝐼∖𝐾𝑝⟧,
where 𝑡 runs over the finite set 𝑇(ℚ)+∖𝑇(𝔸𝑓)∕𝐾𝑝𝐾𝑝 and 𝐼 denotes the closure of Γ in 𝐾𝑝. Set
𝑀 = ℤ𝑝⟦𝐼∖𝐾𝑝⟧, 𝐴 = ℤ𝑝⟦𝐼⟧ and 𝐵 = ℤ𝑝⟦𝐾𝑝⟧; 𝐵 is a projective (left and right) 𝐴-module by [8,
Lemma 4.5] and𝑀 is a finitely generated right 𝐵-module, which is isomorphic to ℤ𝑝 ⊗𝐴 𝐵. Then
Ext𝑖

𝐵
(𝑀, 𝐵) ≅ 𝐵 ⊗𝐴 Ext

𝑖
𝐴
(ℤ𝑝, 𝐴), so the codimension of 𝑀 as a right 𝐵-module is equal to the

codimension of ℤ𝑝 as a right 𝐴-module. Since 𝐼 ≅ ℤ
𝑙0−rankℤ𝑝Δ

𝑝 , a computation using the Koszul
complex shows that the codimension of ℤ𝑝 is 𝑙0 − rankℤ𝑝Δ. This finishes the proof of the first
part. For the second part about the projective dimension, note that the Koszul complex of 𝐴 is a
resolution 𝑃∙ of ℤ𝑝 of length 𝑙0 − rankℤ𝑝Δ by finite free 𝐴-modules. It follows that 𝑃∙ ⊗𝐴 𝐵 is a
resolution of𝑀 of length 𝑙0 − rankℤ𝑝Δ by finite free 𝐵-modules. Together with the first part, this
finishes the proof of the second part. □

We may now give the most general result for reductive groups that we can prove.

Theorem 4.9. Let𝐺 be a connected reductive group overℚwith center 𝑍. Assume that the Leopoldt
conjecture holds for 𝑍 and that 𝐺𝑎𝑑 admits a Shimura datum of abelian type. Then Conjecture 3.5
holds for 𝐺.

Proof. Let Γ0 ⊆ 𝐺(ℚ)+ be an arithmetic subgroup and choose a sufficiently small neat 𝐾𝑝 that is
a product 𝐾𝑝 = 𝐾𝑍

𝑝 × 𝐾
𝑎𝑑
𝑝 of a compact open 𝐾𝑍

𝑝 ⊆ 𝑍(ℚ𝑝) and a compact open 𝐾𝑎𝑑
𝑝 ⊆ 𝐺𝑑𝑒𝑟(ℚ𝑝);

note that the image of 𝐾𝑎𝑑
𝑝 in 𝐺𝑎𝑑(ℚ𝑝) is open and isomorphic to 𝐾𝑎𝑑

𝑝 ; we will conflate the two
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30 HANSEN and JOHANSSON

(this explains the notation). Set Γ = Γ0 ∩ 𝐾𝑝. Let Γ𝑍 = Γ ∩ 𝑍(ℚ) and consider the closure Γ𝑍 of
Γ𝑍 inside 𝐾𝑍

𝑝 . It is not clear to us a priori if Γ𝑍 is saturated inside 𝐾
𝑍
𝑝 (as a ℤ𝑝-module), but if not

we may achieve this by replacing 𝐾𝑍
𝑝 with a smaller subgroup without changing Γ𝑍 , so we may

assume this. This implies that the closure of the image of the projection Γ → 𝐾𝑍
𝑝 is equal to Γ𝑍 . To

see this, let 𝐶 = 𝐺∕𝐺𝑑𝑒𝑟 be the cocenter of 𝐺. The image Γ𝐶 of Γ under the projection Γ → 𝐶(ℚ𝑝)

is an arithmetic subgroup inside𝐾𝑍
𝑝 that contains Γ𝑍 as a finite index subgroup. It follows that the

closure Γ𝐶 of Γ𝐶 inside 𝐾𝑍
𝑝 contains Γ𝑍 as a finite index subgroup, but since Γ𝑍 is saturated they

must be equal. From this, it follows that the composition

Γ → 𝐾𝑝 → 𝐾𝑝∕Γ𝑍,

where the first map is the inclusion and the second is the natural projection, is equal to the
composition

Γ → 𝐾𝑎𝑑
𝑝 → 𝐾𝑎𝑑

𝑝 × 𝐾𝑍
𝑝∕Γ𝑍 = 𝐾𝑝∕Γ𝑍,

where the first map is the projection and the second is the inclusion that is trivial on the second
factor. We will use these facts in the calculation below.
Now, by Proposition 2.9 and Lemma 2.10, it suffices to show that

𝐻𝑛
? (Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)) = 0

for 𝑛 > 𝑞0 = 𝑞0(𝐺) = 𝑞0(𝐺
𝑎𝑑). Let Γ𝑎𝑑 be the image of Γ in 𝐺𝑎𝑑(ℚ)+. Consider the proper fibra-

tion 𝜋 ∶ Γ∖𝑋 → Γ𝑎𝑑∖𝑋
𝑎𝑑 with fiber Γ𝑍∖𝑋𝑍 (in this proof and the next only, 𝑋𝑎𝑑 = 𝑋𝐺𝑎𝑑 ) and the

corresponding Leray spectral sequence

𝐻𝑟
?(Γ𝑎𝑑∖𝑋

𝑎𝑑, 𝑅𝑠𝜋∗ Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)) ⇒ 𝐻𝑟+𝑠
?

(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)).

By Proposition 2.3, 𝑅𝑠𝜋∗ Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝) is the local system corresponding to
𝐻𝑠(Γ𝑍,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)). Using the discussion on Leopoldt’s conjecture above, the assump-
tion that Leopoldt holds for 𝑍, and Lemma 2.10, we see that𝐻𝑠(Γ𝑍,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)) = 0 for 𝑠 > 0.
We then compute

Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)
Γ𝑍 ≅ Map𝑐𝑡𝑠(𝐾

𝑍
𝑝∕Γ𝑍, 𝔽𝑝) ⊗Map𝑐𝑡𝑠(𝐾

𝑎𝑑
𝑝 , 𝔽𝑝)

as Γ𝑎𝑑-modules, where Γ𝑎𝑑 acts trivially on the first factor, which is an 𝔽𝑝-vector space that we
call 𝑉 (this uses the detailed setup above). So, the Leray spectral sequence reduces to

𝐻𝑛
? (Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, 𝔽𝑝)) ≅ 𝐻𝑛

? (Γ𝑎𝑑∖𝑋
𝑎𝑑, 𝑉 ⊗Map𝑐𝑡𝑠(𝐾

𝑎𝑑
𝑝 , 𝔽𝑝))

≅ 𝐻𝑛
? (Γ𝑎𝑑∖𝑋

𝑎𝑑,Map𝑐𝑡𝑠(𝐾
𝑎𝑑
𝑝 , 𝔽𝑝)) ⊗ 𝑉.

ByLemma2.10 andTheorem4.4,𝐻𝑛
?
(Γ𝑎𝑑∖𝑋

𝑎𝑑,Map𝑐𝑡𝑠(𝐾
𝑎𝑑
𝑝 , 𝔽𝑝)) vanishes for𝑛 > 𝑞0. This finishes

the proof. □

Corollary 4.10. Keep the notation and assumptions of Theorem 4.9. Then Conjectures 3.1 and 3.16
hold for 𝐺.
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 31

Proof. Note that 𝑙0 = 𝑙0(𝐺) = 𝑙0(𝑍) and 𝑞0 = 𝑞0(𝐺) = 𝑞0(𝐺
𝑎𝑑). Fix 𝐾𝑝 ⊆ 𝐺(𝔸

𝑝

𝑓
). Using The-

orem 4.9, everything apart from Conjecture 3.16(2) follows as before, and additionally
�̃�𝑞0

(𝐾𝑝, ℤ𝑝) = �̃�𝐵𝑀
𝑞0

(𝐾𝑝, ℤ𝑝) . The argument in Proposition 3.17 also shows that �̃�𝑞0
(𝐾𝑝, ℤ𝑝) has

codimension ⩾ 𝑙0, so we need to show the opposite inequality. As in the proof of Theorem 4.9,
choose a neat 𝐾𝑝 ⊆ 𝐺(ℚ𝑝) that can be written as a product 𝐾𝑝 = 𝐾𝑎𝑑

𝑝 × 𝐾𝑍
𝑝 with 𝐾

𝑍
𝑝 ⊆ 𝑍(ℚ𝑝) and

𝐾𝑎𝑑
𝑝 ⊆ 𝐺𝑑𝑒𝑟(ℚ𝑝), and setΓ = 𝐺(ℚ)+ ∩ 𝐾𝑝𝐾𝑝 andΓ𝑍 = Γ ∩ 𝑍(ℚ); again,we rig it so that the closure

Γ𝑍 is saturated inside 𝐾𝑍
𝑝 .

We then have �̃�𝑞0
(𝐾𝑝, ℤ𝑝) ≅ Homℤ𝑝

(�̃�𝑞0(𝐾𝑝, ℤ𝑝), ℤ𝑝) by [12, Theorem 1.1(3)] and the van-
ishing of �̃�𝑞0+1(𝐾𝑝, ℤ𝑝), so it suffices to prove that �̃�𝑞0(𝐾𝑝, ℤ𝑝) has a sub-𝐾𝑝-representation of
injective dimension ⩽ 𝑙0. Since 𝐻𝑞0(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)) is a direct summand of �̃�𝑞0(𝐾𝑝, ℤ𝑝),
it suffices to show that 𝐻𝑞0(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)) has a submodule of injective dimension ⩽ 𝑙0.
Here we viewMap𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝) as a left Γ-module via inverting the left translation action; it has a
commuting left 𝐾𝑝-action via right translation that gives 𝐻𝑞0(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)) its structure
of a left𝐾𝑝-module. Using the computations in the proof of Theorem 4.9 with 𝔽𝑝 replaced byℤ∕𝑝𝑟
and taking inverse limits over 𝑟 (which commute with cohomology by [19, Proposition 1.2.12]), we
see that

𝐻𝑞0(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)) ≅ 𝐻𝑞0(Γ𝑎𝑑∖𝑋
𝑎𝑑,Map𝑐𝑡𝑠(𝐾

𝑎𝑑
𝑝 , ℤ𝑝))⊗̂ℤ𝑝

Map𝑐𝑡𝑠(𝐾
𝑍
𝑝 , ℤ𝑝)

Γ𝑍 ,

as left 𝐾𝑝 = 𝐾𝑎𝑑
𝑝 × 𝐾𝑍

𝑝 -representations. By Proposition 4.8 and the assumption on 𝑍,
Map𝑐𝑡𝑠(𝐾

𝑍
𝑝 , ℤ𝑝)

Γ𝑍 has injective dimension 𝑙0 as a 𝐾𝑍
𝑝 -representation. By Theorem 3.18 and

the discussion preceding it, 𝐻𝑞0(Γ𝑎𝑑∖𝑋
𝑎𝑑,Map𝑐𝑡𝑠(𝐾

𝑎𝑑
𝑝 , ℤ𝑝)) contains an injective admissible

𝐾𝑎𝑑
𝑝 -subrepresentation𝑊. It follows that𝑊⊗̂ℤ𝑝

Map𝑐𝑡𝑠(𝐾
𝑍
𝑝 , ℤ𝑝)

Γ𝑍 is a sub-𝐾𝑝-representation of
𝐻𝑞0(Γ∖𝑋,Map𝑐𝑡𝑠(𝐾𝑝, ℤ𝑝)) of injective dimension ⩽ 𝑙0, as desired. □

Remark 4.11. We make a few additional remarks on these results.

(1) Examples of cases when Theorem 4.9 and Corollary 4.10 are unconditional include 𝐺 =

Res𝐹
ℚ
GSp2g for abelian totally real fields 𝐹, since the Leopoldt conjecture is known for tori

which split over an abelian extension ofℚ. One could also getweaker resultswith no condition
on the center by assuming the known bounds for the Leopoldt defect.

(2) Conjecture 3.16 has a natural analog for 𝔽𝑝-coefficients, stated in [12, § 1.7]. Our methods
prove this conjecture too under the same assumptions. We content ourselves by noting that
the arguments to prove Proposition 3.17 and Corollary 4.10 go through with only superfi-
cial changes for 𝔽𝑝-coefficients (though one could simplify the argument in Corollary 4.10
for 𝔽𝑝-coefficients). Note here that Theorem 3.18 implies its 𝔽𝑝-version when one knows
𝑝-torsionfreeness of �̃�𝑞0

, using the results of [12, § 1.7].

5 PERFECTOID SHIMURA VARIETIES

5.1 Preparations in 𝒑-adic geometry

In this preliminary section, we prove a number of loosely related results in 𝑝-adic geometry.
We continue to fix a prime 𝑝. Group actions on spaces will mostly be right actions throughout
this section.
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32 HANSEN and JOHANSSON

Until further notice, “adic space” means “analytic adic space over ℤ𝑝.” In what follows, we
freely use the language of diamonds and some standard notation from [38]. Recall that a diamond
is a pro-étale sheaf on the site Perf of characteristic 𝑝 perfectoid spaces with certain properties.
If 𝑋 is an adic space, the corresponding diamond 𝑋◊ comes equipped with a natural map 𝑋◊ →

Spd ℤ𝑝; since Perf∕ Spd ℤ𝑝
is naturally equivalent to the category Perfd of all perfectoid spaces, one

is free to think of 𝑋◊ as a functor on Perfd. If 𝑋 is a diamond with a 𝐺-action for some profinite
group 𝐺, we write 𝑋∕𝐺 for the quotient sheaf computed as a pro-étale sheaf.

Lemma 5.1. Let𝑋 be a spatial diamondwith a𝐺-action for some profinite group𝐺. Suppose that𝐺
acts with finitely many orbits on 𝜋0𝑋, and that each connected component of𝑋 is a perfectoid space.
Then 𝑋 is a perfectoid space.

Proof. Let 𝑋0 be some connected component of 𝑋, and let 𝑥 ∈ 𝑋0 be any point. Choose some
open affinoid perfectoid neighborhood 𝑈 ⊆ 𝑋0 of 𝑥. Let 𝑐 ∶ |𝑋|→ 𝜋0𝑋 be the natural map, with
𝑠 = 𝑐(𝑋0). Writing

𝑋0 = lim
𝑠∈𝑆⊂𝜋0𝑋 clopen

𝑐−1(𝑆)

as a cofiltered inverse limit of clopen spatial subdiamonds of 𝑋 and applying [38, Proposition
11.23(iii)]), we deduce that 𝑈 spreads out to a small open spatial subdiamond �̃� ⊆ 𝑋 with �̃� ∩

𝑋0 = 𝑈. Let 𝐾 ⊆ 𝐺 be the open subgroup stabilizing �̃�. Then for any 𝑘 ∈ 𝐾, �̃� ∩ 𝑋0𝑘 = �̃�𝑘 ∩

𝑋0𝑘 = (�̃� ∩ 𝑋0)𝑘 = 𝑈𝑘 is an affinoid perfectoid space. Since our assumptions on the group action
guarantee that the orbit 𝑋0𝐾 is an open spatial subdiamond of 𝑋, we deduce that �̃� ∩ 𝑋0𝐾 is an
open spatial subdiamond of 𝑋 containing 𝑥, with the property that each connected component
of �̃� ∩ 𝑋0𝐾 is affinoid perfectoid. By [38, Lemma 11.27], we deduce that �̃� ∩ 𝑋0𝐾 itself is affinoid
perfectoid. Since 𝑋0 and 𝑥 were arbitrary, we get the result. □

We now turn to some general results on group quotients. Let 𝑋 be an adic space equipped
with an action of a finite group 𝐺. The coarse quotient 𝑋∕𝐺 always exists in Huber’s category  ,
but, in general, it may not be an adic space. We need some general results showing that if 𝑋 is a
rigid analytic space or a perfectoid space, then so is 𝑋∕𝐺. The first author already considered this
problem in [24], but the results there can be difficult to apply, since they included the assumption
that 𝑋 admits a 𝐺-invariant affinoid covering, and such coverings can be hard to exhibit in “real-
life” situations. Here, we obtain much more satisfying and user-friendly results, which do not
assume the a priori existence of 𝐺-invariant affinoid covers. In the rigid analytic situation, we
obtain a very general result, cf. Theorem 5.3 below. In the perfectoid situation, we need slightly
stronger hypotheses, cf. Theorem 5.8, but the result is sufficient for our intended applications to
Shimura varieties.
Let 𝑋 be a topological space with an action of a finite group 𝐺 by continuous automorphisms.

Let 𝑥 ∈ 𝑋 be any point, with stabilizer 𝐻𝑥 ⊆ 𝐺. We say that an open neighborhood 𝑈 of 𝑥 is 𝐺-
clean if 𝑈ℎ = 𝑈 for all ℎ ∈ 𝐻𝑥 and moreover 𝑈 ∩ 𝑈g = ∅ for all g ∈ 𝐺 ⧵ 𝐻𝑥. Note, in particular,
that if 𝑈 is a 𝐺-clean neighborhood of 𝑥, then the natural map

𝑈 ×𝐻𝑥 𝐺
(𝑢,g)↦𝑢g
⟶ 𝑋

is an open embedding, and its image is just the union inside𝑋 of [𝐺 ∶ 𝐻𝑥]many disjoint translates
of 𝑈, so this is an especially pleasant type of 𝐺-stable open containing the orbit 𝑥𝐺.
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 33

Lemma 5.2. Let𝑋 be aHausdorff topological space with a𝐺-action. Then every point 𝑥 ∈ 𝑋 admits
a 𝐺-clean open neighborhood.

Proof. Fix 𝑥 ∈ 𝑋, with stabilizer𝐻. Choose coset representatives𝐺 =
∐

1⩽𝑖⩽𝑛 𝐻g𝑖 with g1 = 1; the
orbit of 𝑥 is then {𝑥1, … , 𝑥𝑛}, with 𝑥𝑖 = 𝑥g𝑖 . Since𝑋 is Hausdorff, we may choose pairwise disjoint
open neighborhoods 𝑈′

𝑖
of the 𝑥𝑖 ’s. Clearly, g−1𝑖 𝐻g𝑖 is the stabilizer of 𝑥𝑖 , so the open set

𝑈𝑖 =
⋂

𝑘∈g−1
𝑖
𝐻g𝑖

𝑈′
𝑖 𝑘

contains 𝑥𝑖 and is stable under g−1
𝑖
𝐻g𝑖; moreover, the 𝑈𝑖 ’s are pairwise disjoint. Now set 𝑉𝑖 =

𝑈𝑖g
−1
𝑖
, so 𝑥 ∈ 𝑉𝑖 and 𝑉𝑖 is 𝐻-stable. Finally, set𝑊 =

⋂
𝑖 𝑉𝑖; we claim that𝑊 is a 𝐺-clean open

neighborhood of 𝑥. Indeed,𝑊 is 𝐻-stable since the 𝑉𝑖 ’s are, so it remains to check that if 𝑖 ≠ 𝑗,
then𝑊g𝑖 ∩ 𝑊g𝑗 = ∅. But𝑊g𝑖 ⊆ 𝑉𝑖g𝑖 = 𝑈𝑖 and similarly for𝑊g𝑗 , so𝑊g𝑖 ∩ 𝑊g𝑗 ⊆ 𝑈𝑖 ∩ 𝑈𝑗 = ∅,
as desired. □

Theorem 5.3. Let 𝑋 be a rigid analytic space over some nonarchimedean field 𝐾 with an action of
a finite group 𝐺. Assume that 𝑋 is separated, and that for every rank one point 𝑥 ∈ 𝑋, the closure
{𝑥} ⊆ 𝑋 is contained in some open affinoid subspace𝑈 = Spa(𝐴,𝐴◦) ⊆ 𝑋. Then the categorical quo-
tient 𝑋∕𝐺 = (|𝑋|∕𝐺, (𝑞∗𝑋)

𝐺, …) is a rigid analytic space, and the natural map 𝑋 → 𝑋∕𝐺 is finite.
Moreover, the canonical map 𝑋◊∕𝐺 → (𝑋∕𝐺)◊ is an isomorphism.

The auxiliary conditions on 𝑋 in this theorem are satisfied, for example, if 𝑋 is affinoid, or
if 𝑋 is partially proper. In particular, the theorem applies whenever 𝑋 is the analytification of a
separated 𝐾-scheme of finite type. We would like to emphasize that these auxiliary conditions
do not involve the 𝐺-action in any way. In particular, we are not assuming a priori that 𝑋 admits
a covering by 𝐺-stable affinoid subsets (though, a posteriori, the theorem shows that this is the
case).

Proof. Let 𝑥 ∈ |𝑋| be any rank one point, with stabilizer 𝐻𝑥 and closure {𝑥} ⊆ |𝑋|. Let |𝑋|ℎ be
the maximal Hausdorff quotient of |𝑋|, and let 𝜋 ∶ |𝑋|→ |𝑋|ℎ be the natural map, so if 𝑥 ∈ |𝑋|
is any rank one point, then {𝑥} ⊆ 𝜋−1(𝜋(𝑥)).† By functoriality of the maximal Hausdorff quotient,
𝐺 naturally acts on |𝑋|ℎ and 𝜋 is 𝐺-equivariant. By Lemma 5.2, we can choose a 𝐺-clean open
neighborhood𝑈𝑥 ⊆ |𝑋|ℎ of𝜋(𝑥). Set �̃�𝑥 = 𝜋−1(𝑈𝑥) ⊆ |𝑋|, so �̃�𝑥 is a𝐺-clean open neighborhood
of 𝑥 containing {𝑥}.
By assumption, we can choose an open affinoid subspace 𝑉𝑥 = Spa(𝐴,𝐴◦) ⊆ 𝑋 containing

{𝑥}. Since 𝑋 is separated, the intersection ∩ℎ∈𝐻𝑥
𝑉𝑥ℎ is still affinoid, so after replacing 𝑉𝑥 by

∩ℎ∈𝐻𝑥
𝑉𝑥ℎ, we can assume that 𝑉𝑥 is𝐻𝑥-stable. The intersection𝑊𝑥 = �̃�𝑥 ∩ 𝑉𝑥 is still a 𝐺-clean

open neighborhood of 𝑥 containing {𝑥}. Now, observe that 𝑊𝑥 ×
𝐻𝑥 𝐺 ⊆ 𝑋 is a 𝐺-stable open

†One might guess that in fact {𝑥} = 𝜋−1(𝜋(𝑥)), but this is not clear to us. Indeed, let |𝑋|𝜈 be the quotient of |𝑋| by the
transitive closure of the prerelation “𝑥 ∼ 𝑦 if 𝑈 ∩ 𝑉 ≠ ∅ for all open neighborhoods 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉.” Then 𝜋 naturally
factors as a composition of quotient maps |𝑋| 𝜏

→ |𝑋|𝜈 𝑞
→ |𝑋|ℎ . By some standard structure theory of analytic adic spaces,

𝜏 induces a bijection from the rank one points of |𝑋| onto |𝑋|𝜈 , and 𝜏−1(𝜏(𝑥)) = {𝑥} for any rank one point 𝑥 ∈ |𝑋|.
However, the map 𝑞may not be a homeomorphism: for a general topological space 𝑇, 𝑇ℎ can be obtained by transfinitely
iterating the construction 𝑇 ⇝ 𝑇𝜈 . When |𝑋| is taut, one can prove that 𝑞 is a homeomorphism by combining [27, Lemmas
5.3.4 and 8.1.5].
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34 HANSEN and JOHANSSON

subspace of 𝑋 containing {𝑥}𝐺 with the crucial property that

𝑊𝑥∕𝐻𝑥 ≅
(
𝑊𝑥 ×

𝐻𝑥 𝐺
)
∕𝐺 ⊆ 𝑋∕𝐺

is naturally a rigid analytic space, because 𝑉𝑥∕𝐻𝑥 ≅ Spa(𝐴𝐻𝑥 , 𝐴◦𝐻𝑥) is an affinoid rigid space
(e.g., by [24]) and |𝑊𝑥|∕𝐻𝑥 is an open subset of |𝑉𝑥|∕𝐻𝑥. Varying over all rank one points 𝑥 ∈ 𝑋,
the spaces𝑊𝑥∕𝐻𝑥 give an open covering of𝑋∕𝐺 by rigid analytic spaces, so𝑋∕𝐺 is a rigid analytic
space, as desired.
For finiteness of the map 𝑋 → 𝑋∕𝐺, note that 𝑓 ∶ 𝑊𝑥 → 𝑊𝑥∕𝐻𝑥 is finite, since it is the pull-

back of the finite map 𝑉𝑥 → 𝑉𝑥∕𝐻𝑥 along𝑊𝑥∕𝐻𝑥 → 𝑉𝑥∕𝐻𝑥. It then suffices to observe that the
pullback of 𝑋 → 𝑋∕𝐺 along the open embedding𝑊𝑥∕𝐻𝑥 → 𝑋∕𝐺 is given by the map

𝑊𝑥 ×
𝐻𝑥 𝐺 ≃

∐
1⩽𝑖⩽𝑛

𝑊𝑥g𝑖

∐
𝑓 ◦ g−1

𝑖
⟶ 𝑊𝑥∕𝐻𝑥,

which is clearly finite.
For the last point, it suffices to prove that the canonical maps 𝑉◊

𝑥 ∕𝐻𝑥 → (𝑉𝑥∕𝐻𝑥)
◊ are iso-

morphisms of pro-étale sheaves. We claim that, in fact, for any Tate ℤ𝑝-algebra 𝐴 with an
action of a finite group 𝐺 and a 𝐺-stable subring of integral elements 𝐴+, the canonical map
Spd(𝐴,𝐴+)∕𝐺 → Spd(𝐴𝐺,𝐴+𝐺) is an isomorphism. It suffices to check that Spd(𝐴,𝐴+) × 𝐺 ⇉

Spd(𝐴,𝐴+) is a presentation of Spd(𝐴𝐺,𝐴+𝐺) as a pro-étale sheaf. Arguing as in [14, Proposition
2.1.1], this reduces to the fact that the maps Spd(𝐴,𝐴+) → Spd(𝐴𝐺,𝐴+𝐺) and Spd(𝐴,𝐴+) × 𝐺 →

Spd(𝐴,𝐴+) ×Spd(𝐴𝐺,𝐴+𝐺) Spd(𝐴,𝐴
+) are quasi-pro-étale. Since themorphisms in question are sep-

arated, this can be checked on rank one geometric points by [38, Proposition 13.6], where it is
obvious. □

Unfortunately, the perfectoid variant of the previous theorem is not so clean, primarily because
of “problems”with the notion of a “separated” perfectoid space. For example, for perfectoid spaces
over a perfectoid field, the notion introduced in [38, Definition 5.10] is too weak for our purposes.
The following notion of separation is more than sufficient for our purposes. In what follows, we
will frequently use the fact that if𝑋 and𝑌 are perfectoid spaces over Spa(𝐾, 𝐾+) for some affinoid
field (𝐾, 𝐾+), then the fiber product 𝑋 ×Spa(𝐾,𝐾+) 𝑌 is naturally a perfectoid space. By gluing, this
reduces to the claim that this fiber product is naturally affinoid perfectoid if 𝑋 and 𝑌 are each
affinoid perfectoid, which is [28, Corollary 3.6.18].

Definition 5.4.

(1) Amap of perfectoid spaces𝑍 → 𝑋 is aZariski-closed embedding if for any open affinoid perfec-
toid subset𝑈 ⊆ 𝑋, the map 𝑍 ×𝑋 𝑈 → 𝑈 is a Zariski-closed embedding of affinoid perfectoid
spaces in the sense of [37, § 2.2].We say that an open subset𝑈 of a perfectoid space𝑋 is Zariski
open if the inclusion 𝑋 ⧵ 𝑈 → 𝑋 is a Zariski closed embedding.

(2) A perfectoid space 𝑋 over a nonarchimedean field Spa(𝐾, 𝐾+) is analytically separated if the
diagonal map 𝑋 → 𝑋 ×Spa(𝐾,𝐾+) 𝑋 is a Zariski-closed embedding.

We caution the reader this definition of being a Zariski-closed embedding is rather delicate:
among other things, it is not clear whether this property can be checked locally on a single affinoid

 14697750, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12799 by Statens B

eredning, W
iley O

nline L
ibrary on [24/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 35

cover of 𝑋, or whether this property is stable under base change. The key property of analytically
separated perfectoid spaces that we will use is part (2) of the following lemma.

Lemma 5.5.

(1) If a perfectoid space 𝑋 is analytically separated, then it is separated in the sense of [38], that is,
𝑋◊ → Spd(𝐾,𝐾+) is a separated map of v-sheaves.

(2) If 𝑋 is analytically separated, then for any two open affinoid perfectoid subsets 𝑈,𝑉 ⊆ 𝑋, the
intersection𝑈 ∩ 𝑉 is affinoid perfectoid.

Proof. Part (1) is straightforward and left to the reader (and we woould not need it anyway). Part
(2) is immediate upon writing 𝑈 ∩ 𝑉 = (𝑈 ×Spa(𝐾,𝐾+) 𝑉) ×𝑋×Spa(𝐾,𝐾+)𝑋,Δ 𝑋. □

In practice, analytic separation can often be checked via the following lemma.

Lemma 5.6. Let (𝑋𝑖)𝑖∈𝐼 be a cofiltered inverse system of separated rigid analytic spaces over some
Spa(𝐾, 𝐾◦), and suppose that there is some perfectoid space 𝑋∞ such that 𝑋∞ = lim

←��𝑖
𝑋
◊
𝑖
as dia-

monds. Suppose moreover that each 𝑋𝑖 is an open subset of the analytification of a projective variety
over 𝐾. Then 𝑋∞ is analytically separated.

Proof. By assumption, we can choose open immersions𝑋𝑖 → 𝑉an
𝑖
for some projective varieties𝑉𝑖 .

Let 𝑈 ⊆ 𝑋∞ ×Spa(𝐾,𝐾◦) 𝑋∞ be some open affinoid perfectoid subset. Set

𝑊𝑖 = 𝑈 ×𝑋𝑖×Spa(𝐾,𝐾◦)𝑋𝑖 ,Δ 𝑋𝑖 ≅ 𝑈 ×𝑉an
𝑖
×Spa(𝐾,𝐾◦)𝑉

an
𝑖
,Δ 𝑉

an
𝑖
.

A priori, we are computing this fiber product as diamonds. However, by the subsequent lemma,
𝑊𝑖 is affinoid perfectoid and the resulting map 𝑊𝑖 → 𝑈 is a Zariski-closed embedding. Then
𝑈 ×𝑋∞×Spa(𝐾,𝐾◦)𝑋∞,Δ 𝑋∞ = lim

←��𝑖
𝑊𝑖 is affinoid perfectoid, and lim←��𝑖 𝑊𝑖 → 𝑈 is a cofiltered limit of

Zariski-closed embeddings. Since any cofiltered limit of Zariski-closed embeddings with fixed
target is a Zariski-closed embedding, we get the result. □

Lemma 5.7. Let𝑌 → 𝑋 be a closed immersion of quasi-projective varieties over a nonarchimedean
field 𝐾, and let 𝑍 be any perfectoid space equipped with a map 𝑓 ∶ 𝑍 → 𝑋an. Then the diamond
𝑊 = 𝑍 ×𝑋an 𝑌

an is a perfectoid space, and the natural map𝑊 → 𝑍 is a Zariski-closed embedding.

Proof. Unwinding the definitions, it suffices to prove that if 𝑍 is affinoid perfectoid, then 𝑊 =

𝑍 ×𝑋an 𝑌
an → 𝑍 is a Zariski-closed embedding of affinoid perfectoid spaces.

Replacing 𝑋 by its closure in some projective space, and replacing 𝑌 by its closure in 𝑋, we can
assume that 𝑌 → 𝑋 is a closed immersion of projective varieties. Let  ⊆ 𝑋an be the ideal sheaf
cutting out 𝑌an. By rigid GAGA and the projectivity of 𝑋, we can choose a vector bundle  on
𝑋an together with a surjection  ↠ . Then 𝑓∗ is naturally a vector bundle on 𝑍, and the image
of the natural map 𝑓∗ → 𝑍 is just the ideal sheaf generated by 𝑓−1. However, 𝑍 is affinoid
perfectoid, so 𝑓∗ is generated by its global sections, which are just a finitely generated projective
𝑍(𝑍)-module. In particular, if 𝑒1, … , 𝑒𝑛 ∈ 𝐻0(𝑍, 𝑓∗) is any set of generators, then their images
in 𝑍(𝑍) generate an ideal 𝐼 corresponding to the ideal sheaf generated by 𝑓−1. Let𝑊 ⊆ 𝑍 be
the Zariski-closed subset cut out by 𝐼. It is then easy to see that 𝑊 represents the fiber product
claimed in the statement of the lemma. □
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36 HANSEN and JOHANSSON

Theorem 5.8. Let 𝑋 be a perfectoid space over a nonarchimedean field, with an action of a finite
group𝐺. Assume that𝑋 is analytically separated, and that for every rank one point𝑥 ∈ 𝑋, the closure
{𝑥} ⊆ 𝑋 is contained in some open affinoid perfectoid subspace𝑈 = Spa(𝐴,𝐴+) ⊆ 𝑋.
Then the categorical quotient 𝑋∕𝐺 is a perfectoid space, and the natural map 𝑞 ∶ 𝑋 → 𝑋∕𝐺 is

affinoid in the (weak) sense that any point 𝑦 ∈ 𝑋∕𝐺 admits a neighborhood basis of open affinoid
perfectoid subsets 𝑌 ⊆ 𝑋 whose preimages 𝑞−1(𝑌) are affinoid perfectoid. Moreover, the canonical
morphism 𝑋◊∕𝐺 → (𝑋∕𝐺)◊ is an isomorphism.

Proof. The first portion of the proof is nearly identical to the proof of Theorem 5.3, but we repeat
the details for the reader’s convenience.
Let 𝑥 ∈ 𝑋 be any rank one point, with stabilizer𝐻𝑥 and closure {𝑥} ⊂ 𝑋. Let |𝑋|ℎ be the maxi-

mal Hausdorff quotient of |𝑋|, and let𝜋 ∶ |𝑋|→ |𝑋|ℎ be the naturalmap, so if 𝑥 ∈ |𝑋| is any rank
one point, then {𝑥} ⊆ 𝜋−1(𝜋(𝑥)). By functoriality of the maximal Hausdorff quotient, 𝐺 naturally
acts on |𝑋|ℎ and 𝜋 is 𝐺-equivariant. By Lemma 5.2, we can choose a 𝐺-clean open neighborhood
𝑈𝑥 ⊆ |𝑋|ℎ of 𝜋(𝑥). Let �̃�𝑥 be the preimage of𝑈𝑥 in |𝑋|, so �̃�𝑥 is a 𝐺-clean open neighborhood of
𝑥 containing {𝑥}.
By assumption, we can choose an open affinoid perfectoid subspace𝑉𝑥 = Spa(𝐴,𝐴+) ⊆ 𝑋 con-

taining {𝑥}. Since 𝑋 is analytically separated, the intersection ∩ℎ∈𝐻𝑥
𝑉𝑥ℎ is affinoid perfectoid by

Lemma 5.5.(2), so after replacing𝑉𝑥 by ∩ℎ∈𝐻𝑥
𝑉𝑥ℎ, we can assume that𝑉𝑥 is𝐻𝑥-stable. The inter-

section𝑊𝑥 = �̃�𝑥 ∩ 𝑉𝑥 is still a𝐺-clean open neighborhood of 𝑥 containing {𝑥}. Now, observe that
𝑊𝑥 ×

𝐻𝑥 𝐺 ⊂ 𝑋 is a 𝐺-stable open subspace of 𝑋 containing {𝑥}𝐺 with the crucial property that

𝑊𝑥∕𝐻𝑥 ≅
(
𝑊𝑥 ×

𝐻𝑥 𝐺
)
∕𝐺 ⊆ 𝑋∕𝐺

is naturally a perfectoid space, because 𝑉𝑥∕𝐻𝑥 ≅ Spa(𝐴𝐻𝑥 , 𝐴+𝐻𝑥) is an affinoid perfectoid space
by [24, Theorem 1.4] and |𝑊𝑥|∕𝐻𝑥 is an open subset of |𝑉𝑥|∕𝐻𝑥. Varying over all rank one
points 𝑥 ∈ 𝑋, the spaces𝑊𝑥∕𝐻𝑥 give an open covering of 𝑋∕𝐺 by perfectoid spaces, so 𝑋∕𝐺 is a
perfectoid space, as desired.
To see that 𝑞 is affinoid, let 𝑦 ∈ 𝑋∕𝐺 be any point, so 𝑦 is contained in some𝑊𝑥∕𝐻𝑥. Let 𝑌 ⊆

𝑊𝑥∕𝐻𝑥 ⊆ 𝑋∕𝐺 be any open subset containing 𝑦 such that 𝑌 is a rational subset of 𝑉𝑥∕𝐻𝑥. The
set of such 𝑌’s is clearly a neighborhood basis of 𝑦. Moreover, 𝑞−1(𝑌) is a finite disjoint union of
copies of the preimage of 𝑌 in 𝑉𝑥, but the latter preimage is a rational subset of 𝑉𝑥, and hence, is
affinoid perfectoid, so 𝑞−1(𝑌) is affinoid perfectoid. Varying 𝑦, we get the claim.
The last point follows exactly as in the proof of Theorem 5.3. □

In the next section, we will often be in a situation where we have a morphism between two
inverse systems of Shimura varieties for some closely related Shimura data. In the remainder of
this section, we prove some results that will allow us to transfer information from one inverse
system to the other.

Lemma 5.9. Let (𝑋𝑖)𝑖∈𝐼
𝑓𝑖
⟶ (𝑌𝑖)𝑖∈𝐼 be a morphism of cofiltered inverse systems of locally Noethe-

rian adic spaces. Assume moreover that the maps 𝑓𝑖 and the transition maps in the inverse systems
are all finite maps, and that 𝑌∞ = lim

←��𝑖
𝑌
◊
𝑖
is perfectoid.

Then 𝑋∞ = lim
←��𝑖

𝑋
◊
𝑖
is perfectoid, and the morphism 𝑓∞ ∶ 𝑋∞ → 𝑌∞ is quasi-compact. More-

over, if𝑈 ⊆ 𝑌∞ is an open affinoid perfectoid subset that arises as the preimage of an open affinoid
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 37

𝑈𝑖 ⊆ 𝑌𝑖 for some 𝑖, then 𝑓−1∞ (𝑈) ⊆ 𝑋∞ is also affinoid perfectoid. Finally, 𝑓∞ is affinoid in the sense
of Theorem 5.8.

With more effort, one can show that the morphism 𝑓∞ is proper and quasi-pro-étale in the
sense of [38]. We will not need this.

Proof. Without loss of generality,wemay assume that 𝐼 contains an initial element 0.Next, observe
that

𝑋∞ ≅ lim
←��
𝑗

𝑋∞ ×𝑌𝑗 𝑌∞

≅ lim
←��
𝑖⩾𝑗

𝑋𝑖 ×𝑌𝑗 𝑌∞

≅ lim
←��
𝑖

𝑋𝑖 ×𝑌𝑖 𝑌∞

using the cofinality of the diagonal to get the last line. Choose an open affinoid subset 𝑈0 ⊆ 𝑌0
with preimages𝑈𝑖 ⊆ 𝑌𝑖 ,𝑊𝑖 ⊆ 𝑋𝑖 ,𝑈∞ ⊆ 𝑌∞,𝑊∞ ⊆ 𝑋∞. To prove the first part of the theorem, it
suffices to prove that𝑊∞ is a perfectoid space. This can be checked locally on some covering of
𝑈∞ by open affinoid perfectoid subsets 𝑉 = Spa(𝑅, 𝑅+) ⊆ 𝑈∞. By our assumptions, the natural
maps𝑊𝑖 → 𝑈𝑖 are finite maps of affinoid adic spaces, so, in particular, +(𝑈𝑖) → +(𝑊𝑖) is an
integral ring map. By general nonsense, the fiber product 𝑋𝑖 ×𝑌𝑖 𝑉 = 𝑊𝑖 ×𝑈𝑖 𝑉 is computed as
Spd(𝑆, 𝑆+), where 𝑆 = 𝑅 ⊗(𝑈𝑖)

(𝑊𝑖) (topologized in the usual way) and 𝑆+ is the integral clo-
sure of im(𝑅+ ⊗+(𝑈𝑖)

+(𝑊𝑖) → 𝑆) in 𝑆. In particular, 𝑅+ → 𝑆+ is an integral ring map, so the
subsequent lemma implies that𝑊𝑖 ×𝑈𝑖 𝑉 is an affinoid perfectoid space. Passing to the limit over
𝑖, we deduce that𝑊∞ ×𝑈∞ 𝑉 is an affinoid perfectoid space, and then varying over all choices of
𝑈0 ⊆ 𝑌0 and 𝑉 ⊆ 𝑈∞ as above, we conclude that 𝑋∞ is a perfectoid space.
Quasi-compactness of 𝑓∞ is clear. For the remaining claims of the theorem, choose some𝑈𝑖 ⊆

𝑌𝑖 and𝑈 ⊆ 𝑌∞ as in the statement of the claim, and let𝑈𝑗 ⊆ 𝑌𝑗 and𝑊𝑗 ⊆ 𝑋𝑗 denote the evident
preimages for all 𝑗 ⩾ 𝑖. Arguing as in the first part of the proof,we see that𝑓−1∞ (𝑈) = lim

←��𝑗⩾𝑖
𝑊𝑗 ×𝑈𝑗

𝑈 and that𝑊𝑗 ×𝑈𝑗 𝑈 is an affinoid perfectoid space for any 𝑗 ⩾ 𝑖. Passing to the limit over 𝑗 gives
the claim. Affinoidness of 𝑓∞ now follows from Lemma 5.11 below. □

In the course of this proof, we crucially used the following result, which is essentially just a
rephrasing of a theorem of Bhatt–Scholze.

Lemma 5.10. Let (𝑅, 𝑅+) → (𝑆, 𝑆+) be a map of Tate–Huber pairs such that 𝑅 is a perfectoid
Tate ring and the ring map 𝑅+ → 𝑆+ is integral. Then the diamond Spd(𝑆, 𝑆+) is an affinoid
perfectoid space.

Proof. Choose a pseudouniformizer 𝜛 ∈ 𝑅+. Since 𝑅+ is integral perfectoid and 𝑅+ → 𝑆+ is an
integral ring map, [10, Theorem 1.16(1)] guarantees the existence of an integral perfectoid 𝑆+-
algebra 𝑆+

perfd
such that any map from 𝑆+ to an integral perfectoid ring factors uniquely through

the map 𝑆+ → 𝑆+
perfd

. Set 𝑇 = 𝑆+
perfd

[1∕𝜛], and let 𝑇+ ⊂ 𝑇 be the integral closure of 𝑆+
perfd

in
𝑇. Then 𝑇 is a perfectoid Tate ring, and the natural map (𝑆, 𝑆+) → (𝑇, 𝑇+) induces a bijection
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38 HANSEN and JOHANSSON

Hom((𝑇, 𝑇+), (𝐴,𝐴+)) ≅ Hom((𝑆, 𝑆+), (𝐴,𝐴+)) for any perfectoid Tate–Huber pair (𝐴,𝐴+). This
shows that Spd(𝑆, 𝑆+) ≅ Spd(𝑇, 𝑇+) is affinoid perfectoid, as desired. □

We also used the following result.

Lemma 5.11. Let (𝑋𝑖)𝑖∈𝐼 be a cofiltered inverse system of locally Noetherian adic spaces with finite
transition maps. Assume that𝑋 = lim

←��
𝑋
◊
𝑖
is a perfectoid space. Then𝑋 has a neighborhood basis of

open affinoid perfectoid subsets𝑊 ⊂ 𝑋 that are preimages of open affinoids𝑊𝑖 ⊂ 𝑋𝑖 at (variable)
finite levels.

Proof. Without loss of generality, we can assume that 𝐼 has an initial object 0. The problem is
local on 𝑋0, so replacing 𝑋0 by an open affinoid subset and using the finiteness of the maps in the
tower, we can also assume that all 𝑋𝑖 ’s are affinoid, say with 𝑋𝑖 = Spa(𝐵𝑖, 𝐵

+
𝑖
). Let (𝐵, 𝐵+) be the

completed direct limit of the system (𝐵𝑖, 𝐵
+
𝑖
), so 𝑋 ≅ Spd(𝐵, 𝐵+). Now, let be the set of rational

subsets𝑊 ⊂ 𝑋 that are contained in some open affinoid perfectoid subset of𝑋. Then any𝑊 ∈

is affinoid perfectoid, and elements of  clearly form a neighborhood basis of 𝑋. On the other
hand, any rational subset of 𝑋, and in particular any element of , is the preimage of a rational
subset of 𝑋𝑖 for some large 𝑖 by standard approximation arguments. □

In applications, we will usually care about inverse systems with the following restrictive
properties.

Definition 5.12. Fix a nonarchimedean field 𝐾. A good tower is a cofiltered inverse system of
locally Noetherian adic spaces (𝑋𝑖)𝑖∈𝐼 over Spa𝐾 with the following properties.

(1) Each𝑋𝑖 is the analytification of a projective variety over𝐾, and the transition maps are finite.
(2) The inverse limit 𝑋 = lim

←��𝑖
𝑋
◊
𝑖
is a perfectoid space.

(3) There exists a pair of coverings of𝑋 by open affinoid perfectoid subsets𝑈𝑗, 𝑉𝑗 such that𝑈𝑗 ⊆

𝑉𝑗 for all 𝑗, and such that for each 𝑗,𝑈𝑗 and𝑉𝑗 occur as the preimages of some open affinoids
𝑈𝑗,𝑖𝑗

, 𝑉𝑗,𝑖𝑗 ⊆ 𝑋𝑖𝑗 for some 𝑖𝑗 ∈ 𝐼.

The point of this definition is captured in the following proposition.

Proposition 5.13.

(1) Let (𝑌𝑖)𝑖∈𝐼 be a good tower. If (𝑋𝑖)𝑖∈𝐼
𝑓𝑖
⟶ (𝑌𝑖)𝑖∈𝐼 is any map of cofiltered inverse systems such

that the morphisms 𝑓𝑖 are finite, then (𝑋𝑖)𝑖∈𝐼 is a good tower.
(2) If (𝑋𝑖)𝑖∈𝐼 is a good tower with an action of a finite group 𝐺, then the categorical quotient 𝑋∕𝐺 is

a perfectoid space and 𝑋∕𝐺 ≅ lim
←��𝑖

𝑋𝑖∕𝐺.

Note that in part (2), we are not claiming that (𝑋𝑖∕𝐺)𝑖∈𝐼 is a good tower: it is not clear to us
whether condition (3) is preserved.

Proof. For part (1), let 𝑓 ∶ 𝑋 → 𝑌 denote the map between the limits of the towers. Note that
since 𝑋𝑖 → 𝑌𝑖 is finite, the tower (𝑋𝑖)𝑖∈𝐼 satisfies condition (1) of Definition 5.12 by rigid GAGA.
Conditions (2) and (3) then follow from Lemma 5.9. Indeed, (2) is immediate, and (3) follows
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 39

from the observation that if 𝑈𝑗 ⊆ 𝑉𝑗 ⊆ 𝑌 are open affinoid perfectoid subsets pulled back from
some finite-level affinoids 𝑈𝑗,𝑖𝑗

, 𝑉𝑗,𝑖𝑗 ⊆ 𝑌𝑖 , then 𝑓−1(𝑈𝑗) is affinoid perfectoid by Lemma 5.9 and
is clearly the preimage of the affinoid 𝑓−1

𝑖𝑗
(𝑈𝑗,𝑖𝑗

) ⊆ 𝑋𝑖𝑗 (and similarly for the 𝑉𝑗 ’s). Finally, the

condition on closures follows from the inclusions 𝑓−1(𝑈𝑗) ⊆ 𝑓−1(𝑈𝑗) ⊆ 𝑓−1(𝑉𝑗).
For part (2),𝑋∕𝐺 is perfectoid by Theorem 5.8, since by design, the limit of a good tower satisfies

the conditions of that theorem. Indeed, the limit of any good tower is analytically separated by
Lemma 5.6. Moreover, if 𝑈𝑗, 𝑉𝑗 ⊆ 𝑋 are as in the definition of a good tower, then any rank one
point 𝑥 ∈ 𝑋 is contained in some 𝑈𝑗 , in which case {𝑥} ⊆ 𝑈𝑗 ⊂ 𝑉𝑗 .
It remains to check that the naturalmap𝑓 ∶ 𝑋∕𝐺 → lim

←��𝑖
𝑋𝑖∕𝐺 is an isomorphism of diamonds.

The source and target of this map are spatial diamonds, so the map is automatically qcqs. Thus,
by [38, Lemma 11.11], it suffices to prove that 𝑓 induces a bijection on (𝐶, 𝐶+)-points for every
algebraically closed perfectoid field 𝐶 with an open and bounded valuation subring 𝐶+ ⊆ 𝐶. In
what follows, we will freely use the fact that (𝐶, 𝐶+)-points can be computed “naively”: if 𝑋 is a
pro-étale sheaf with a 𝐺-action for some profinite group 𝐺 and 𝑋∕𝐺 denotes the quotient as pro-
étale sheaves, then 𝑋(𝐶, 𝐶+)∕𝐺 ≅ (𝑋∕𝐺)(𝐶, 𝐶+). This is an easy consequence of the fact that any
pro-étale cover of a geometric point (𝐶, 𝐶+) has a section.†
For surjectivity, let (𝑥𝑖 ∈ 𝑋𝑖(𝐶, 𝐶

+)∕𝐺)𝑖∈𝐼 be any inverse system of points. Let𝑊𝑖 ⊆ 𝑋(𝐶, 𝐶+)

be the preimage of 𝑥𝑖 . Since 𝑊𝑖 ≅ lim
←��𝑗

𝑊𝑖,𝑗 where 𝑊𝑖,𝑗 ⊆ 𝑋𝑗(𝐶, 𝐶
+) is the preimage of 𝑥𝑖 , and

each𝑊𝑖,𝑗 is finite and nonempty (use that 𝑋𝑗 → 𝑋𝑖 is finite),𝑊𝑖 naturally has the structure of a
(nonempty) profinite set. Then𝑊 = lim

←��𝑖
𝑊𝑖 is an inverse limit of non-empty compact Hausdorff

spaces, and thus is nonempty. Any choice of 𝑥 ∈ 𝑊 ⊆ 𝑋(𝐶, 𝐶+)maps to the inverse system (𝑥𝑖)𝑖∈𝐼 .
For injectivity, let 𝑥, 𝑦 ∈ 𝑋(𝐶, 𝐶+) be two elements with the same image in lim

←��𝑖
𝑋𝑖(𝐶, 𝐶

+)∕𝐺.
Let 𝑥𝑖, 𝑦𝑖 ∈ 𝑋𝑖(𝐶, 𝐶

+) be the images of 𝑥 and 𝑦, and let 𝐺𝑖 ⊂ 𝐺 be the set g ∈ 𝐺 with g𝑥𝑖 = 𝑦𝑖 .
Then 𝐺𝑖 is nonempty by assumption, and 𝐺𝑗 → 𝐺𝑖 is injective for all 𝑗 ⩾ 𝑖, so lim

←��𝑖
𝐺𝑖 is nonempty.

Choosing any g ∈ lim
←��𝑖

𝐺𝑖 , we then have g𝑥 = 𝑦, as desired. □

5.2 Perfectoid Shimura varieties of Hodge type

Wenow return to Shimura varieties. Let (𝐺, 𝑋) be a Shimura datumofHodge type,with reflex field
𝐸 and Hodge cocharacter 𝜇. For any open compact subgroup 𝐾 ⊆ 𝐺(𝔸𝑓), we write 𝑆ℎ𝐾(𝐺, 𝑋) for
the canonical model of the associated Shimura variety; this is a normal quasi-projective scheme
over𝐸. This has a canonical projectiveminimal compactification 𝑆ℎ∗

𝐾
(𝐺, 𝑋), which is also normal.

Fix a prime 𝔭 of 𝐸 lying over 𝑝, and let 𝐾 , resp. ∗
𝐾
denote the rigid analytic space over 𝐸𝔭

associated with 𝑆ℎ𝐾(𝐺, 𝑋) ⊗𝐸 𝐸𝔭, resp. 𝑆ℎ∗𝐾(𝐺, 𝑋) ⊗𝐸 𝐸𝔭. As𝐾 varies, these spaces form a pair of
inverse systems with finite transition maps, and compatible open immersions 𝐾 → ∗

𝐾
. Recall

the (rigid analytic) flag varietyF𝓁𝐺,𝜇 attached to (𝐺, 𝑋), as defined over 𝐸𝔭 in [16, § 2.1].

Proposition 5.14. Fix any open compact subgroup 𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
). Then ∗

𝐾𝑝
= lim
←��𝐾𝑝


∗,◊
𝐾𝑝𝐾𝑝

is a

perfectoid space, and there is a 𝐺(ℚ𝑝)-equivariant Hodge–Tate period map 𝜋𝐻𝑇 ∶ ∗
𝐾𝑝

→ F𝓁𝐺,𝜇
which is functorial in the tame level.

†More generally, if  is a presheaf of sets on a site , and 𝑋 ∈  is any object with the property that every covering of 𝑋
admits a section, then the natural map (𝑋) →  𝑠ℎ(𝑋) is a bijection, where (−)𝑠ℎ denotes sheafification. This is easy and
left to the reader.
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40 HANSEN and JOHANSSON

Moreover,∗
𝐾𝑝

is analytically separated, and we can find a pair of coverings by finitely many open
affinoid perfectoid subsets𝑈𝑖, 𝑉𝑖 ⊆ ∗

𝐾𝑝
such that𝑈𝑖 ⊆ 𝑉𝑖 for all 𝑖 and such that𝑈𝑖 and 𝑉𝑖 arise as

the preimages of some open affinoid subsets of some ∗
𝐾𝑝𝐾𝑝

.
In particular, for any cofinal system of open compact subgroups𝐾𝑝 ⊆ 𝐺(ℚ𝑝), (∗

𝐾𝑝𝐾𝑝
)𝐾𝑝 is a good

tower (over 𝐸𝔭) in the sense of Definition 5.12.

Note that∗
𝐾𝑝

may not coincide with the “ad hoc” compactification∗

𝐾𝑝
constructed in [Sch15],

although by construction, there is certainly a map ∗
𝐾𝑝

→ 
∗

𝐾𝑝
. The fact that we can prove this

result for the genuine minimal compactification relies crucially on the perfectoidization theorem
of Bhatt–Scholze recalled in Lemma 5.10.

Proof. Fix a closed embedding 𝜄 ∶ (𝐺, 𝑋) → (GSp2g , ℌ
±
g
) into a Siegel Shimura datum. For any

open compact subgroup 𝐾 ⊆ GSp2g (ℚ𝑝), let 𝐾 , resp. ∗
𝐾
denote the rigid analytic space over 𝐸𝔭

associated with 𝑆ℎ𝐾(GSp2g , ℌ±
g ) ⊗ℚ 𝐸𝔭, resp. 𝑆ℎ∗𝐾(GSp2g , ℌ

±
g ) ⊗ℚ 𝐸𝔭. By [37, Theorem 3.3.18],

lim
←��𝐾𝑝

∗
𝐾𝑝𝐾𝑝

is a perfectoid space for any open compact subgroup 𝐾𝑝 ⊆ GSp2g (ℚ𝑝) contained in

some conjugate of a principal congruence subgroup of level ⩾ 3. However, this last condition can
easily be removed using [24, Theorem 1.4], noting, in particular, that ∗

𝐾𝑝
is covered by finitely

many GSp2g (ℚ𝑝)-translates of a certain open affinoid perfectoid subset ∗
𝐾𝑝
(𝜖)𝑎,† and that these

subsets are invariant under the action of 𝐾′𝑝∕𝐾𝑝 for any normal inclusion 𝐾𝑝 ⊆ 𝐾′𝑝 of tame-
level groups.
The chosen embedding 𝜄 gives rise to compatible finite maps 𝐾∩𝐺(𝔸𝑓)

→ 𝐾 for any 𝐾 ⊆

GSp2g (𝔸𝑓) as above, which naturally extend to compatible finite morphisms ∗
𝐾∩𝐺(𝔸𝑓)

→ ∗
𝐾
.

Now, choose any 𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
) as in the proposition, and choose an open compact 𝐾′𝑝 ⊆

GSp2g (𝔸
𝑝

𝑓
) such that 𝐾𝑝 ⊆ 𝐾′𝑝. Choosing a cofinal set of (neat) open compact subgroups 𝐾0 ⊇

𝐾1 ⊇ 𝐾2⋯ in GSp2g (ℚ𝑝), we get a map of inverse systems (∗
𝐾𝑝𝜄−1(𝐾𝑛)

)𝑛⩾0 → (∗
𝐾′𝑝𝐾𝑛

)𝑛⩾0 satisfy-
ing all the hypotheses of Lemma 5.9. Applying that lemma, we deduce that ∗

𝐾𝑝
is a perfectoid

space and the natural map 𝑓 ∶ ∗
𝐾𝑝

→ ∗
𝐾′𝑝

is quasi-compact. Moreover, ∗
𝐾𝑝

is analytically
separated by Lemma 5.6.
Now choose some 0 < 𝜖 < 𝜖′ < 1∕2 and finitely many g𝑖 ∈ GSp2g (ℚ𝑝) such that the translates

∗
𝐾′𝑝
(𝜖)𝑎 ⋅ g𝑖 cover ∗

𝐾′𝑝
. Note that any such translate is the preimage of an open affinoid subset of

some ∗
𝐾′𝑝𝐾𝑛

, so again, by Lemma 5.9, we see that the preimages

𝑈𝑖 = 𝑓−1(∗
𝐾′𝑝
(𝜖)𝑎 ⋅ g𝑖) ⊆ 𝑉𝑖 = 𝑓−1(∗

𝐾′𝑝
(𝜖′)𝑎 ⋅ g𝑖)

are affinoid perfectoid and give open covers of ∗
𝐾𝑝
, and arise by pullback from some finite level.

Moreover,∗
𝐾′𝑝
(𝜖)𝑎 ⋅ g𝑖 ⊂ ∗

𝐾′𝑝
(𝜖′)𝑎 ⋅ g𝑖 for any 𝜖 < 𝜖′ < 1∕2, and clearly𝑈𝑖 ⊆ 𝑓−1(∗

𝐾′𝑝
(𝜖)𝑎 ⋅ g𝑖), so

we conclude that 𝑈𝑖 ⊆ 𝑉𝑖 as desired.
The Hodge–Tate period map is the composition of the natural map ∗

𝐾𝑝
→ 

∗

𝐾𝑝
with the (pre-

viously known) Hodge–Tate period map ∗

𝐾𝑝
→ F𝓁𝐺,𝜇, cf. [13, Theorem 3.3.1] for a discussion of

the latter (the argument there also works to construct 𝜋𝐻𝑇 ∶ ∗
𝐾𝑝

→ F𝓁𝐺,𝜇 without the use of ad
hoc compactifications). □

† This subset is denoted as ∗
Γ(𝑝∞)

(𝜖)𝑎 in [37, § 3].
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 41

For later use, we also record an extremely mild generalization of this result.

Corollary 5.15. For any open compact subgroup𝐾 ⊆ 𝐺(𝔸𝑓)andany cofinal systemof open compact
subgroups 𝐾𝑝 ⊆ 𝐺(ℚ𝑝), (∗

𝐾∩𝐾𝑝
)𝐾𝑝 is a good tower (over 𝐸𝔭) in the sense of Definition 5.12.

Here and in what follows, we adopt the following notational convention: if 𝐺 is an algebraic
group over ℚ,𝐻 is a subgroup of 𝐺(𝔸𝑓), and 𝐾𝑝 is a subgroup of 𝐺(ℚ𝑝), then𝐻 ∩ 𝐾𝑝 denotes the
group of elements ℎ ∈ 𝐻 whose image in 𝐺(ℚ𝑝) lies in 𝐾𝑝. In other words, 𝐻 ∩ 𝐾𝑝 is short for
𝐻 ∩ (𝐺(𝔸

𝑝

𝑓
)𝐾𝑝). We hope this does not cause any confusion.

Proof. Let𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
) denote the image of𝐾 along the natural projection. Then𝐾 ∩ 𝐾𝑝 has finite

index in 𝐾𝑝𝐾𝑝, so we get natural finite morphisms ∗
𝐾∩𝐾𝑝

→ ∗
𝐾𝑝𝐾𝑝

that compile into a map of
towers (∗

𝐾∩𝐾𝑝
)𝐾𝑝 → (∗

𝐾𝑝𝐾𝑝
)𝐾𝑝 . Since the target is a good tower by the previous proposition, we

may apply Proposition 5.13(i) to conclude. □

5.3 Perfectoid Shimura varieties of preabelian type

In this section, we change notation slightly. Given a Shimura datum (𝐺, 𝑋) and an open com-
pact subgroup 𝐾 ⊆ 𝐺(𝔸𝑓), we write 𝑆ℎ𝐾(𝐺, 𝑋) for the associated Shimura variety regarded as a
quasi-projective variety over ℂ, and 𝑆ℎ∗

𝐾
(𝐺, 𝑋) for its projective minimal compactification. For a

(usually implicit) choice of connected component𝑋+ ⊆ 𝑋, wewrite 𝑆ℎ𝐾(𝐺, 𝑋)0 for the connected
component of 𝑆ℎ𝐾(𝐺, 𝑋) whose analytification is the image of the natural map

𝑋+ × {𝑒} → 𝐺(ℚ)+∖(𝑋
+ × 𝐺(𝔸𝑓))∕𝐾 ≅ 𝑆ℎ𝐾(𝐺, 𝑋)

an,

and we write 𝑆ℎ∗
𝐾
(𝐺, 𝑋)0 for the Zariski closure of 𝑆ℎ𝐾(𝐺, 𝑋)0 in 𝑆ℎ∗

𝐾
(𝐺, 𝑋). Note that since

𝑆ℎ∗
𝐾
(𝐺, 𝑋) is normal, the map 𝜋0𝑆ℎ𝐾(𝐺, 𝑋) → 𝜋0𝑆ℎ

∗
𝐾
(𝐺, 𝑋) is a homeomorphism.

Now, fix once and for all an isomorphism ℂ ≃ ℂ𝑝 (for simplicity), and let 𝐶∕ℂ𝑝 be a com-
plete algebraically closed extension of nonarchimedean fields. All of the following results hold for
any choice of 𝐶. We write ∗

𝐾
(𝐺, 𝑋) for the rigid analytic space associated with 𝑆ℎ∗

𝐾
(𝐺, 𝑋) ⊗ℂ 𝐶.

Similarly, we get rigid analytic spaces𝐾(𝐺, 𝑋),𝐾(𝐺, 𝑋)0,∗
𝐾
(𝐺, 𝑋)0with the obviousmeanings.

For any fixed open compact subgroup 𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
), define

∗
𝐾𝑝 (𝐺, 𝑋) = lim

←��
𝐾𝑝⊆𝐺(ℚ𝑝) open compact

∗
𝐾𝑝𝐾𝑝

(𝐺, 𝑋)◊,

where the inverse limit is taken in the category of diamonds over Spd𝐶. We also write 𝐾𝑝(𝐺, 𝑋),
∗
𝐾𝑝
(𝐺, 𝑋)0, and 𝐾𝑝(𝐺, 𝑋)0 for the obvious variants.

Proposition 5.16. Maintain the above notation. The following conditions on a Shimura datum
(𝐺, 𝑋) are equivalent.

(1) The diamond ∗
𝐾𝑝
(𝐺, 𝑋) is a perfectoid space for any choice of 𝐾𝑝.

(2) The diamond ∗
𝐾𝑝
(𝐺, 𝑋)0 is a perfectoid space for any choice of 𝐾𝑝.

We say the Shimura datum (𝐺, 𝑋) satisfies Property  if either of these equivalent conditions holds.
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42 HANSEN and JOHANSSON

Proof. (1) implies (2): In general, ∗
𝐾𝑝
(𝐺, 𝑋)0 is an inverse limit of open-closed subfunctors

𝑖 ⊆ ∗
𝐾𝑝
(𝐺, 𝑋). Therefore, if ∗

𝐾𝑝
(𝐺, 𝑋) is perfectoid and 𝑈 ⊆ ∗

𝐾𝑝
(𝐺, 𝑋) is any open affinoid

perfectoid subset, then 𝑈 ∩ ∗
𝐾𝑝
(𝐺, 𝑋)0 = lim

←��𝑖
𝑈 ∩ 𝑖 and each 𝑈 ∩ 𝑖 is affinoid perfectoid, so

𝑈 ∩ ∗
𝐾𝑝
(𝐺, 𝑋)0 is affinoid perfectoid. Varying 𝑈 then gives the result.

(2) implies (1): Choose any open compact subgroup 𝐾𝑝 ⊂ 𝐺(ℚ𝑝), so the diamond ∗
𝐾𝑝
(𝐺, 𝑋)

has a natural 𝐾𝑝-action. Then 𝐾𝑝 acts with finitely many open orbits on the profinite set
𝜋0

∗
𝐾𝑝
(𝐺, 𝑋) ≅ 𝐺(ℚ)+∖𝐺(𝔸𝑓)∕𝐾

𝑝 (by [5, Theorem 5.1]). Moreover, each connected component of
∗
𝐾𝑝
(𝐺, 𝑋) is isomorphic to ∗

g𝐾𝑝g−1
(𝐺, 𝑋)0 for some g ∈ 𝐺(𝔸

𝑝

𝑓
), and, in particular, is perfectoid.

By Lemma 5.1, we deduce that ∗
𝐾𝑝
(𝐺, 𝑋) is a perfectoid space, as desired. □

We also need to work with connected Shimura varieties. Let (𝐺, 𝑋+) be a connected Shimura
datum. If Γ ⊂ 𝐺(ℚ)+ is an arithmetic subgroup, then the quotient Γ∖𝑋+ is the analytification
of a connected normal quasi-projective complex variety, defined uniquely up to unique isomor-
phism, which we denote by 𝑆ℎΓ(𝐺, 𝑋+). Again, this has a canonical minimal compactification
𝑆ℎ∗

Γ
(𝐺, 𝑋+), which is a connected normal projective variety. If Γ is torsion-free, then 𝑆ℎΓ(𝐺, 𝑋+)

is smooth. Again, we denote the associated rigid analytic spaces over 𝐶 by ∗
Γ
(𝐺, 𝑋+), and so on.

Definition 5.17. We say that a connected Shimura datum (𝐺, 𝑋+) satisfies Property if for every
arithmetic subgroup Γ ⊆ 𝐺𝑎𝑑(ℚ)+, the diamond

∗
Γ,∞(𝐺, 𝑋

+) ∶= lim
←��

𝐾𝑝⊂𝐺(ℚ𝑝) open compact

∗
Γ∩𝐾𝑝

(𝐺, 𝑋+)◊

is a perfectoid space.

In this statement, recall our notational convention that Γ ∩ 𝐾𝑝 is shorthand for Γ ∩ (𝐺(𝔸
𝑝

𝑓
)𝐾𝑝)

(cf. the discussion following Corollary 5.15).

Proposition 5.18. Let (𝐺, 𝑋) be a Shimura datum or a connected Shimura datum. Suppose that
(𝐺𝑎𝑑, 𝑋+) satisfies Property  . Then (𝐺, 𝑋) satisfies Property  .

Proof. Let 𝜋 ∶ 𝐺 → 𝐺𝑎𝑑 denote the natural map. When (𝐺, 𝑋) is a connected Shimura datum
and Γ ⊆ 𝐺(ℚ)+ is an arithmetic subgroup, then Γ,∞(𝐺, 𝑋

+) = 𝜋(Γ),∞(𝐺
𝑎𝑑, 𝑋+) and the result

follows, so let (𝐺, 𝑋) be a Shimura variety. By Proposition 5.16, it is enough to show that∗
𝐾𝑝
(𝐺, 𝑋)0

is perfectoid for any 𝐾𝑝 ⊆ 𝐺(𝔸
𝑝

𝑓
). Let Γ = 𝐺𝑎𝑑(ℚ)+ ∩ 𝐾 be a choice of congruence subgroup for

some open compact subgroup 𝐾 ⊆ 𝐺𝑎𝑑(𝔸𝑓) with the property that 𝜋(𝐾𝑝) ⊆ 𝐾 ∩ 𝐺𝑎𝑑(𝔸
𝑝

𝑓
). Then

for any open compact subgroup 𝐾𝑝 ⊆ 𝐺(ℚ𝑝), there is a natural finite morphism ∗
𝐾𝑝𝐾𝑝

(𝐺, 𝑋)0 →

∗
Γ∩𝜋(𝐾𝑝)

(𝐺𝑎𝑑, 𝑋+). Moreover, these morphisms are compatible as 𝐾𝑝 varies, and the transition
maps in the two towers are finite. Passing to the inverse limit over 𝐾𝑝, the result now follows
from Lemma 5.9. □

We now come to the key result in this subsection.

Proposition 5.19. Let (𝐺, 𝑋) be a Shimura datum of Hodge type. Then the connected Shimura
datum (𝐺𝑎𝑑, 𝑋+) satisfies Property  .
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 43

Proof. We start by proving that

lim
←��

𝐾𝑝⊂𝐺
𝑎𝑑(ℚ𝑝)

∗
Γ∩𝐾𝑝

(𝐺𝑎𝑑, 𝑋+)◊

is a perfectoid space when Γ ⊆ 𝐺𝑎𝑑(ℚ)+ is a congruence subgroup. Let 𝜋 ∶ 𝐺 → 𝐺𝑎𝑑 denote the
natural map. Choose a congruence subgroup Γ′ = 𝐾 ∩ 𝐺(ℚ)+ ⊆ 𝐺(ℚ)+ with 𝜋(Γ′) ⊆ Γ, and set
Γ′′ = Γ′ ∩ 𝐺𝑑𝑒𝑟(ℚ), so Γ′′ is also a congruence subgroup. Choose a cofinal descending family of
open compact subgroups

𝐾𝑝,0 ⊇ 𝐾𝑝,1 ⊇ ⋯ ⊇ 𝐾𝑝,𝑛 ⊇ ⋯

in 𝐺(ℚ𝑝), and write 𝐾𝑑𝑒𝑟
𝑝,𝑛 = 𝐾𝑝,𝑛 ∩ 𝐺

𝑑𝑒𝑟(ℚ𝑝). Without loss of generality, we can assume that
𝐾𝑑𝑒𝑟
𝑝,0

∩ 𝑍𝐺(ℚ𝑝) = {1} and that Γ′ ⊆ 𝐾𝑝,0, so then Γ′′ ⊆ 𝐾𝑑𝑒𝑟
𝑝,0

and Γ′′ ∩ 𝑍𝐺(ℚ𝑝) = {1}, and themap𝜋
induces isomorphisms 𝜋(Γ′′ ∩ 𝐾𝑝,𝑛) = 𝜋(Γ′′ ∩ 𝐾𝑑𝑒𝑟

𝑝,𝑛 ) = 𝜋(Γ′′) ∩ 𝜋(𝐾𝑑𝑒𝑟
𝑝,𝑛 ). Moreover, the inclusion

Γ′′ ⊆ Γ′ induces a natural map of towers

(∗
𝜋(Γ′′∩𝐾𝑝,𝑛)

(𝐺𝑎𝑑, 𝑋+))𝑛⩾0 → (∗
𝐾∩𝐾𝑝,𝑛

(𝐺, 𝑋))𝑛⩾0,

where the map at every level 𝑛 is finite. By Corollary 5.15, the target of this map is a good tower.
Now define Γ′′′ = ∩𝛾∈Γ∕𝜋(Γ′′)𝛾𝜋(Γ

′′)𝛾−1. By design, Γ′′′ is an arithmetic subgroup of 𝐺𝑎𝑑(ℚ)+,
and is a normal subgroup of Γ with finite index. Since Γ′′′ ∩ 𝜋(𝐾𝑑𝑒𝑟

𝑝,𝑛 ) is of finite index in 𝜋(Γ
′′) ∩

𝜋(𝐾𝑑𝑒𝑟
𝑝,𝑛 ) = 𝜋(Γ′′ ∩ 𝐾𝑝,𝑛), we get another natural map of towers

(∗

Γ′′′∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+))𝑛⩾0 → (∗

𝜋(Γ′′∩𝐾𝑝,𝑛)
(𝐺𝑎𝑑, 𝑋+))𝑛⩾0,

where the map at every level 𝑛 is finite. For any 𝑛 ⩾ 0, Γ′′′ ∩ 𝜋(𝐾𝑑𝑒𝑟
𝑝,𝑛 ) is a normal finite-

index subgroup of Γ ∩ 𝜋(𝐾𝑑𝑒𝑟
𝑝,𝑛 ). Set Δ𝑛 = (Γ′′′ ∩ 𝜋(𝐾𝑑𝑒𝑟

𝑝,𝑛 ))∖(Γ ∩ 𝜋(𝐾
𝑑𝑒𝑟
𝑝,𝑛 )), so Δ𝑛 is a finite group

and the natural maps Δ𝑛+1 → Δ𝑛 are injective. Write Δ = lim
←��𝑛

Δ𝑛, so Δ = Δ𝑛 for all suf-
ficiently large 𝑛. Then Δ operates naturally on the tower (∗

𝜋(Γ′′′)∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+))𝑛⩾0, and

∗

Γ′′′∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+)∕Δ ≅ ∗

Γ∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+) for all sufficiently large 𝑛.

Summarizing the situation so far, we have a diagram of towers

where all the morphisms at any given level 𝑛 are finite. We have already observed that
the upper-right tower is a good tower, so by two applications of Proposition 5.13(i), we
deduce that the upper-left tower is a good tower. Since Δ operates naturally on the
upper-left tower and ∗

Γ′′′∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+)∕Δ ≅ ∗

Γ∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+) for all sufficiently large

𝑛, we may apply Proposition 5.13(ii) to deduce that ∗
Γ′′′,∞

(𝐺𝑎𝑑, 𝑋+)∕Δ is a perfectoid space
and that∗

Γ′′′,∞
(𝐺𝑎𝑑, 𝑋+)∕Δ ≅ lim

←��𝑛
∗

Γ′′′∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+)∕Δ. But lim

←��𝑛
∗

Γ′′′∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+)∕Δ ≅
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44 HANSEN and JOHANSSON

lim
←��𝑛

∗

Γ∩𝜋(𝐾𝑑𝑒𝑟𝑝,𝑛 )
(𝐺𝑎𝑑, 𝑋+) = ∗

Γ,∞
(𝐺𝑎𝑑, 𝑋+), so we conclude that ∗

Γ,∞
(𝐺𝑎𝑑, 𝑋+) is a perfectoid

space, as desired. This finishes the proof when Γ is a congruence subgroup.
Now assume that Γ ⊆ 𝐺𝑎𝑑(ℚ)+ is an arithmetic subgroup. By Propositions 2.11 and 2.13, there

is a congruence subgroup Γ′ such that Γ ⊆ Γ′ ⊆ 𝐺𝑎𝑑(ℚ)+. Then(
∗
Γ∩𝐾𝑝

(𝐺𝑎𝑑, 𝑋+)
)
𝐾𝑝⊆𝐺

𝑎𝑑(ℚ𝑝)
→

(
∗
Γ′∩𝐾𝑝

(𝐺𝑎𝑑, 𝑋+)
)
𝐾𝑝⊆𝐺

𝑎𝑑(ℚ𝑝)

is map of towers with finite transition maps, and by above Γ′,∞(𝐺
𝑎𝑑, 𝑋+) is perfectoid. By

Lemma 5.9, Γ,∞(𝐺𝑎𝑑, 𝑋+) is perfectoid, as desired. □

We may now summarize our results in this section in the following theorem.

Theorem 5.20. Let (𝐺, 𝑋) be a Shimura datum (resp. a connected Shimura datum) of preabelian
type. Then, for any compact open subgroup 𝐾𝑝 ⊆ 𝐺(𝔸𝑓) (resp. arithmetic subgroup Γ ⊆ 𝐺𝑎𝑑(ℚ)+),
the diamond ∗

𝐾𝑝
(𝐺, 𝑋) (resp. ∗

Γ,∞
(𝐺, 𝑋)) is a perfectoid space.

Proof. Choose a Shimura datum (𝐺1, 𝑋1) of Hodge type with a central isogeny 𝐺𝑑𝑒𝑟1
→ 𝐺𝑎𝑑 induc-

ing an isomorphism (𝐺𝑎𝑑
1
, 𝑋+

1
) ≅ (𝐺𝑎𝑑, 𝑋+). By Proposition 5.19, (𝐺𝑎𝑑, 𝑋+) satisfies property  ,

and then Proposition 5.18 implies that (𝐺, 𝑋) satisfies property  , as desired. □

This has the following consequence for compactly supported completed cohomology, which
may be viewed as a generalization of [37, Corollary 4.2.2].

Corollary 5.21. Let (𝐺, 𝑋) be a connected Shimura datum of preabelian type. Then Conjecture 3.5
for ? = 𝑐 holds for 𝐺.

Proof. Note that the towers used to formulate Conjecture 3.5 correspond to the towers used in this
section. Once we know that the towers of minimal compactifications are perfectoid in the limit
(by Theorem 5.20), the argument in the proof of [37, Corollary 4.2.2] (and [37, Theorem 4.2.1], on
which it relies) goes through verbatim. Note that the boundary is strongly Zariski closed (which
is needed for the argument proving [37, Theorem 4.2.1]), since all Zariski closed sets are strongly
Zariski closed by [10, Remark 7.5]. □

Remark 5.22. We give some remarks on the possibility of proving vanishing above the middle
degree for �̃�∗ using perfectoid methods instead of the topological methods used in Sections 3 and
4. In [17], Caraiani and Scholze prove that toroidal compactifications of certain unitary Shimura
varieties are perfectoid in the limit and that the (étale) cohomology of this perfectoid space com-
putes completed cohomology,which implies the desired vanishing (see [17, Theorem2.6.2, Lemma
4.6.2]). The perfectoidness result relies on a result of Pilloni–Stroh [36] for Siegel modular vari-
eties. It seems to us that these methods should extend directly to Shimura varieties of Hodge type.
However, the more general case of abelian type is not clear to us. In particular, in the general
abelian-type case, it is not clear to us that the auxiliary cone decompositions can be chosen so
that the toroidal tower becomes perfectoid at infinite level, while simultaneously ensuring that
the transition maps over the boundary have the good behavior required for the argument in [17].
We also note that the perfectoid methods do not directly give that �̃�𝑖

𝑐 → �̃�𝑖 is an isomorphism
or surjective in a range of degrees including the middle. In principle, however, there is a connec-
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PERFECTOID SHIMURA VARIETIES AND THE CALEGARI–EMERTON CONJECTURES 45

tion between the perfectoid method and the method of this paper. The result [17, Lemma 4.6.2],
which essentially goes back to Pink [34], morally says that infinite-level toroidal compactifica-
tions behave like Borel–Serre compactifications. Thus, one could get more detailed information
from the perfectoid method by studying the map from the toroidal compactification to the mini-
mal compactification, as in [34]. Morally, this should give the same information in the end as the
topological method in this paper. However, in our opinion, our topological method is far more
elementary and transparent, and far less technically demanding.
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