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Abstract
Maintenance is a critical aspect of many industries, playing an indispensable
role in ensuring the optimal functionality, reliability, and longevity of various
assets, equipment, and infrastructure. For a system to remain operational,
maintenance of its components is required, and for the industry to optimize its
operations, establishment of good maintenance policies and practices is vital.

This thesis concerns the simultaneous scheduling of preventive maintenance for
a fleet of aircraft and their common components along with the maintenance
workshop, to which the components are sent for repair. The problem arises from
an industrial project with the Swedish aerospace and defence company Saab.
In the four papers underlying this thesis, we develop mathematical models
based on a mixed-binary linear optimization model of a preventive maintenance
scheduling problem with so-called interval costs over a finite and discretized time
horizon. We extend this scheduling model with the flow of components through
the repair workshop, including stocks of spare components as well as of damaged
components to be repaired. The components are modeled either individually,
aggregated, or as jobs in the workshop, whose scheduling is considered to be
preemptive or non-preemptive. Along with the scheduling, we address and
analyze two contracting forms between the stakeholders—the aircraft operator
and the repair workshop; namely, an availability of repaired components contract
and a repair turn–around time contract of components sent to the repair
workshop, leading to a bi-objective optimization problem for each of the two
contracting forms. To handle the computational complexity of the problems
at hand, we use Lagrangean relaxation and subgradient optimization to find
lower bounding functions—in the objective space—of the set of non-dominated
solutions, complemented with math-heuristics to identify good feasible solutions.
Our modeling enables capturing important properties of the results from the
contracting forms and it can be utilized for obtaining a lower limit on the
optimal performance of a contracted collaboration between the stakeholders.
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1 Introduction

Development of theories studied in mathematics is often motivated by practical
applications. While in pure mathematics, the abstract concepts are studied
on their own, the problems that are being studied in applied mathematics
usually come from different fields (e.g., physics, engineering, medicine, biology,
finance, business, computer science and industry). Thus, applied mathematics
is a combination of mathematical science and specialized knowledge. The
use of mathematical models and methods to find the best alternative when
making a decision belongs to the field of optimization1. Thereby, optimization
is the science of making the best possible decision. The term best refers to
obtaining the best value of the defined objective and possible refers to the
restrictions/constraints2 that we most often have. For example, an objective
many people have every morning on their way to work is to minimize the travel
time. However, there are restrictions such as traffic, speed and roads that have
an impact on the minimization of the travel time. Minimizing the travel time
subject to traffic, speed and roads constitutes an optimization problem. In order
to create a mathematical model, the optimization problem, consisting of one
(or multiple) optimization objective(s) and the constraints, has to be expressed
in terms of mathematical functions and relations. The model is then solved
with either existing or problem-tailored methods and solution approaches.

Optimization is an interdisciplinary field in which, in order to achieve good
results in a practical application, one often needs skills and competence in math-
ematics and computer science, but also problem-specific domain knowledge.
There are numerous areas of application of optimization, and some of them
include production planning [2, 49], transport and logistics [8, 9, 27], telecommu-
nication (e.g., network design [26]), traffic planning (e.g., traffic signal control
[12], infrastructure planning [56]), structural design (e.g., electric-vehicle charg-
ing stations [42], robot control [61]), timetabling and staff planning (e.g., shifts

1The word optimum ("optimus" in Latin) means "best, very good".
2A constraint is a condition of an optimization problem that the solution must satisfy.
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2 1. Introduction

in a school [44]), portfolio optimization [38]. Some of various applications within
my research group come from energy [34, 73], automotive [75] and aerospace
[29, 64] industry.

The application presented in this thesis comes from aerospace industry and
concerns maintenance of aircraft components. In order for an aircraft (or
any system that operates in a similar fashion) to perform well and remain
operational, maintenance is required. Different systems require maintenance at
different frequencies. For example, an offshore windmill [65] does not require
as frequent maintenance as compared to a commercial airplane [63]. Besides
frequencies at which maintenance is performed, we differentiate between types
of maintenance as well as costs that come with different maintenance activities.
When planning maintenance for any system [70, Ch. 3], the decisions to be
made concern when each of its components should be maintained (i.e., replaced,
repaired, or serviced) and what kind of maintenance should then be performed,
with respect to the operational schedule of the system. A good maintenance
plan increases the operational readiness and minimizes the downtime of a system.
Preventive maintenance (PM) [66], performed in order to avoid failure, can often
be planned well in advance, while corrective maintenance (CM) [15], performed
after failure has occurred in order to restore the system into an operational
state, may come on very short notice. While both PM and CM aim at restoring
the components in order to put the system back in an operational state, CM is
often much more costly than PM, due to a longer system down-time, (possibly)
short notice but also due to possible damages to other components caused by
the failure. On the other hand, an unexpected but necessary CM action may
provide an opportunity for the PM at which the maintenance actions can be
rescheduled, starting from the system’s current state. Another strategy for
planning maintenance activities is so called opportunistic maintenance (OM),
in which a mathematical model is utilized to decide whether, at a (possibly
already planned) maintenance occasion, more than the necessary maintenance
activities should be performed [3].

Maintenance planning is sometimes given insufficient attention. Investing in
maintenance planning early on can save a lot of costs (in terms of replacements,
repairs and renewals). Hidden costs are often even more important to account
for (e.g., due to an unexpected failure, the system cannot operate as planned—
which is often quite costly) [17]. Effective maintenance planning requires the
determination of a measurably good or, ideally, the best plan, which can be
achieved by using optimization frameworks and tools. Maintenance optimization
means deciding which maintenance activities to perform, and when, such that
one or several objectives are optimized. Models developed for such tasks are
extensively studied in the literature (see the surveys [20, 21, 28, 50]) and have
impact on both cost and efficiency of the maintenance actions.
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Aims

The main goal of this thesis is modeling of the integrated simultaneous scheduling
of the preventive maintenance of the aircraft and of the maintenance workshop.
We consider two stakeholders and two types of contracts between them. The
model development presented in this thesis was motivated by seeking improve-
ment in two areas: modeling (grasping the problem structure and incorporating
a higher degree of specificity) and efficiency (striving for models and solution
approaches for obtaining solutions in reasonable computing time). The problems
we address are complex, hence the goal is to construct the best mathematical
models for these problems as well as an efficient solution approaches.

Outline

The outline of this thesis is as follows. In Chapter 2, we describe the use
case given by Saab, which provided the starting point for determining the
framework. The mathematical optimization background required to understand
the work presented in the thesis is given in Chapter 3. Then, the mathematical
modeling of the problem (including decision variables, optimization constraints
and objective functions), complexity analysis and methodology are given in
Chapter 4. we summarize the appended papers in Chapter 5, and give the main
conclusions and future research questions in Chapter 6.
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2 Aircraft maintenance

In this chapter, we describe and motivate the industrial problem studied in this
thesis, as well as discuss limitations encountered on the way.

Figure 2.1: Work flow. Collaboration between academia and industry requires
identification, understanding and definition of the problem, followed by development
of mathematical modeling used to describe it. The next steps are experiment design,
choice of data and implementation. After obtaining (any) results, model is likely to be
revisited and adjusted couple of times until some significant conclusions and findings
can be inferred.

5



6 2. Aircraft maintenance

2.1 Problem description

We present an application from the aerospace industry, in collaboration with
a Swedish aerospace and defence company Saab. On one side, we consider
a system of aircraft that has an operational demand to fulfill, and on the
other, the maintenance workshop (Saab) that repairs the components coming
from the aircraft and makes them available for usage again. Hence, there
are two stakeholders, an aircraft operator and a maintenance workshop (i.e.,
maintenance supplier), whose collaboration is normally predefined by a contract.
We define and discuss a number of optimization objectives corresponding to two
different contract types, so-called availability and turn–around time contracts. In

Figure 2.2: Illustration of the problem studied. The problem provided by
Saab is one part of a larger supply chain, including external manufacturers and
subcontractors, maintenance workshop, operational level, stocks of components and
operational scheduling.

Figure 2.2, we illustrate the system–of–systems governing repair and replacement
of components from an aircraft. The Swedish Air Force is assigned a flight
hour requirement to be distributed among the fleet of aircraft, which defines a
flight assignment problem [30, 72]. After an operational schedule is made, each
aircraft is assigned to a timetable specifying when it is scheduled to fly. Since
maintenance can be performed only when the aircraft is grounded, time windows
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of opportunities for doing maintenance are generated based on the operational
timetables. Maintenance scheduling is done on the operational level (O–level in
Fig. 2.2) where each component to be repaired is replaced with a new (or as good
as new) component of the same component type. The component to be repaired
goes to the maintenance workshop (MRO – Maintenance, Repair and Overhaul
in Fig. 2.2), where it is to be scheduled for repair. The maintenance workshop
is governed by Saab but there are also original equipment manufacturers (OEMi

in Fig. 2.2) and external subcontractors. Components can be repaired in the
maintenance workshop governed by Saab but they can also be sent further, to
one of the OEMs or external subcontractors outside of Saab’s supply chain
and maintenance operations. Joint activities between any two stakeholders are
typically governed by a contract.

2.2 Motivation

The research presented in this thesis was motivated by a specific real world
problem. However, the application of this work goes beyond this specific problem.
Any system that performs some sort of operations and undergoes maintenance
can be considered in our modeling.

Maintenance is a critical aspect of many industries, playing an indispensable
role in ensuring the optimal functionality, reliability, and longevity of various
assets, equipment, and infrastructure. Some of numerous examples are railway
and air traffic, commercial heavy vehicles, manufacturing machines in industry,
energy production and automotive industry [6, 11, 24, 53, 57, 68]. Performing
maintenance operations in a good fashion is of high importance because it has
implications on productivity, efficiency, safety, and cost-effectiveness within
industrial operations. Many companies and factories operate in reactive mode,
which means that a problem (e.g., a component failure) is addressed and dealt
with only once it occurs. Maintenance costs represent, on average, a significant
portion of the total operating budget, varying from a few percent in lighter manu-
facturing to a high percentage in equipment-intensive industries. Frequently,
maintenance costs are underestimated due to the fact that the hidden costs are
not accounted for. Ineffective maintenance management policies lead to large
increases in costs and most importantly, decreased efficiency.

We give a few applications of scheduling optimization from [4, Ch. 1]. Scientist
collaborating with United Airlines in 1986 considered their crew scheduling
problem. The savings reported form the implementation of the results of the
project was 6 million US dollars per year. A planning optimization regarding
bus scheduling in Berlin resulted in reduction from the use of 1800 to 1200 buses,
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without any loss of quality of service. A group of operations research scientist
collaborating with the San Francisco police department in 1989 developed a tool
based on a heuristic solution of the staff planning and police vehicle allocation
problem; it has been reported that it gave a 20% faster planning and savings in
order of 11 million US dollars per year. Hence, smart scheduling can provide
with significant reduction of cost while giving good, often better solutions for
the problem at hand.

Advanced optimization models have been developed for each part of the supply
chain of aircraft maintenance—from tactical scheduling of aircraft to missions
or maintenance [30, 47, 59, 67], flight assignment [30, 72], to depot level main-
tenance planning and scheduling [7, 25, 39]. Even though there exists an
interdependent relationship between production scheduling and maintenance
planning, the two are mostly planned and executed separately, both in litera-
ture and in reality. Most of the time, there is lack in communication between
the maintenance planning and the production scheduling side [71], resulting
in unmet demand and/or supply on either side, implying lower efficiency and
higher costs. An integrated optimization problem of non-permutation flow-shop1

scheduling and maintenance planning with variable processing speed is studied
in [36]. A heuristic approach for maintenance scheduling for a military aircraft
fleet under limited maintenance capacities was proposed in [74].

Generally speaking, stakeholders collaborate based on a contractual agreement
and the level of transparency of their collaboration varies. If the organizations
and the information they work with are fully transparent, and the decisions are
taken simultaneously for all stakeholders, that is regarded as a tightly integrated
collaboration. A systematic review and meta-analysis on the value of integrated
planning for production, inventory, and routing decisions was presented in [35],
estimating an expected cost savings provided by integration of 11.08% with a
95% confidence interval of [6.58%, 15.58%]. According to [14], the integrated
optimization of production scheduling and maintenance planning in the capital
goods industry can reduce up to 63.5% of the total cost by comparing with the
existing company’s scheduling. The motivation for considering a tight integration
of the maintenance planning for the systems and the production scheduling of
the maintenance workshop is threefold. First, a tight integration provides a
planning tool for the systems in which the maintenance workshop is, in reality,
integrated with the operating system. In this case, the stakeholder operating
the aircraft is also responsible for and performs maintenance of its components.
Secondly, when there is more than one stakeholder, a tightly integrated model
formulation will provide an optimistic estimate of the results—in terms of costs

1The Non-Permutation Flow-Shop scheduling problem (NPFS) [58] is a generalization of
the traditional Permutation Flow-Shop scheduling problem (PFS) that allows changes in the
job order on different machines.
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for maintenance, of costs for lateness (under a turn-around time contract), or
of the lower limit of items on the stock and/or the average availability (under
an availability contract)—that could be obtained in reality and which can be
used as a benchmark. Lastly, the integration enables an investigation and
a comparison of different types of contracts that can be set up between the
stakeholders.

2.3 Limitations

Mathematical modeling is a powerful tool that can be utilized to represent the
reality, and the trade-off between model simplicity and inclusion of the nuances
of the real world is an integral part of it. Typically, a model is a simplification
or an abstraction of reality, tailored to the particular problem at hand, and the
level of detail taken into account varies. Assumptions and simplifications are
carefully introduced so that the main properties and structures of the problem
are kept.

Focus of this work is preventive maintenance modeling, which enables mini-
mization of risks of unexpected failures, but it does not eliminate them. It may
still happen that a component breaks or stops functioning unexpectedly, when
there is no scheduled preventive maintenance event. Our modeling can address
this situation in two ways. First, once an unexpected failure occurs, one can
re-plan from that point in time while leaving the part of the schedule in the
near future unchanged (to avoid significant disturbances). Since short-term
changes in the operational schedules for the systems, as well as in the schedules
for the maintenance workshop, are often inconvenient and sometimes not even
feasible, the rescheduling should (if possible) be such that the solution remains
fixed for a certain number of time steps. Secondly, by keeping up the level of
available components, we ensure that once a component needs to be replaced,
there will be no long waiting time. Similarly, by ensuring aircraft availability,
we may replace an aircraft in need of maintenance with another aircraft, whence
the disturbance in the operational schedule would be minimized. However, this
is not sufficient in order to account for the possible unexpected events and to
fully replace the corrective maintenance planning.

Saab is a defense company, and the data is classified and confidential. Thus,
real data could not be used for our research, and results are based on simulated
data, which makes it harder to make exact and possibly realistic conclusions
about (some parts of) the results. There exists a large number of components
circulating in between the aircraft and the maintenance workshop. Instead
of modeling all component types, we focus on the most important, the safety



10 2. Aircraft maintenance

critical components2 A similar approach is employed in, e.g., nuclear power plant
maintenance modeling [19]. The total number of components considered could,
in reality, be larger; the length of the planning horizon depends heavily on the
length of each time step (e.g., one hour, one half-day, or one day), which is a
matter of definition. However, the use of our model in different applications, will
result in different instance sizes. For example, rail traffic or commercial airlines
instances would have a larger number of systems (i.e., train sets, aircraft). In
addition, we do not model the parameters that are judged not to be in the
scope of our research (e.g., the cost of maintaining a component of a certain
type is fixed and its effect on the solution in the tight integration can thus be
neglected). If required, these parameters could be included in the modeling.
Nonetheless, the primary research interest in the work presented in this thesis
is a general maintenance planning problem with simulated data that may be
utilized not only for the specific use case, but for related applications as well.

The choice of the length of a time step is not clearly specified in the thesis.
The reason is that this length should be chosen depending on the length of the
planning period. Hence, each time step may represent a half-day, a day, or a
week, while the planning period may represent one month, one year, or several
years.

Stochasticity in the every day operations in the maintenance workshop is hard
to model. While we introduce ways for overcoming some level of uncertainty,
we can neither eliminate nor fully account for it. Besides this, parallel activities
in the workshop that are limited by personnel, test equipment and other
facility artifacts, are modeled as parallel repair lines, which indeed leads to a
simplification of the actual operations in the maintenance workshop.

2A component is called safety critical if its failure could lead to a breakdown, possibly
with catastrophic consequences (e.g., the engine or the ejection seat).



3 Mathematical modeling
toolbox

A general optimization problem can be formulated as

minimize f(x), (3.1a)
such that x ∈ X , (3.1b)

where f : Zn1 × Rn2 7→ R is an objective function, the decision variables are
denoted by x = (x1, x2, . . . , xn)T and n = n1 + n2. The set X ⊂ Zn1 × Rn2

defines the feasible solutions to the problem and usually has the form X :=
{x ∈ Zn1 × Rn2 : gi(x) ≤ bi, i = 1, . . . , m}, where g1, . . . , gm are functions and
b1, . . . , bm are given parameters. Depending on how the functions g1, . . . , gm

are specified and which assumptions are made regarding feasible values on the
variables, we obtain different problem classes, such as linear optimization (LP),
non-linear optimization (NLP), mixed-integer linear programming (MILP) or
integer linear optimization (ILP).

This chapter presents a background for the mathematical modeling and opti-
mization methods used within the thesis.

3.1 Mixed-integer linear programming (MILP)

A mixed-integer linear program is an optimization problem with affine/linear
objective, constraint functions and integral requirements on some of the variables.

11



12 3. Mathematical modeling toolbox

Every MILP problem can be expressed as

z∗ := minimum cTx, (3.2a)
such that Ax ≥ b, (3.2b)

x ∈ Zn1 × Rn2 , (3.2c)

where n = n1 + n2 is the dimension of the variable space, m is the number of
inequality constraints, A is an m × n matrix and b and c are vectors. MILP
problems are NP-hard (e.g., [18, Section 1.3.3]), which means that the time to
solve the model (in the worst case) is exponential as a function of the instance
size (i.e., number of variables and constraints).

A classical example of a problem that can be formulated as a MILP is the
travelling salesperson problem (TSP). Let G = (V, A) be a directed graph, where
the nodes v ∈ V represent the cities and arcs a ∈ A represent the roads. There
is a traveling time cost ca associated with every arc a. If the traveling cost from
city i to city j is equal to the cost from j to i, the problem is called symmetric
TSP. Otherwise, it is asymmetric. TSP can be modeled as MILP and one of
the formulations given by [46], is expressed as to

minimize
∑
a∈A

caxa, (3.3a)

such that
∑

a∈δ+(i)

xa = 1, i ∈ V, (3.3b)

∑
a∈δ−(i)

xa = 1, i ∈ V, (3.3c)

ui − uj + (n − 1)x(ij) ≤ n − 2, (ij) ∈ A s.t. i, j ̸= s, (3.3d)
ui ∈ [1, n − 1], i ∈ V \ {s}, (3.3e)
x ∈ {0, 1}m. (3.3f)

The (integer) decision variables ui denote the order in which the nodes (cities)
are being visited while the (binary) decision variables xa take value 1 if arc a is
used, otherwise 0. The constraints (3.3b) and (3.3c) ensure that each node has
one entering and one leaving arc, where δ−(i) and δ+(i) denote the set of arcs
entering and leaving node i, respectively. One way to prevent subtours, i.e.,
to ensure that the solution admits only one connected tour and not multiple
disjoint tours, is to use the constraints (3.3d).
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3.2 Multi-objective optimization

"We will say that the members of a collectivity enjoy maximum
ophelimity1 in a certain position when it is impossible to find a way
of moving from that position very slightly in such a manner that
the ophelimity enjoyed by each of the individuals of that collectivity
increases or decreases. That is to say, any small displacement in
departing from that position necessarily has the effect of increasing
the ophelimity which certain individuals enjoy, and decreasing that
which others enjoy, of being agreeable to some and disagreeable to
others." Vilfredo Pareto (1896)

Multi-objective optimization is a type of vector optimization that has been
applied in many fields of science, where optimal decisions need to be taken
in the presence of trade-offs between two or more conflicting objectives. In
multi-objective mathematical programming2, there are more than one objective
function and in most cases, there is no single optimal solution that optimizes all
objective functions simultaneously. Then, it is the decision maker who chooses
the most preferred solution. Consider the optimization problem to

minimize {f1(x), . . . , fK(x)} (3.4a)
such that x ∈ X (3.4b)

where K ≥ 2 is the number of possibly conflicting objective functions fk : Rm →
R, k = 1, . . . , K, that are to be optimized simultaneously. The optimization
problem (3.4) is a so-called multi-objective optimization problem [22]. If there
exists a solution that is optimal with respect to all K objectives, that is a trivial
case, since there is no conflict between objectives in that case. We assume that
solutions that are optimal with respect to all objectives do not exist in the
model (3.4).

Naturally, the question of defining optimality for multi-objective problems arises.
For that, we define Pareto optimality (see, e.g., [43]).

A point x∗ ∈ X is Pareto optimal in the multi-objective optimization problem
(3.4) if and only if there does not exist any point x ∈ X such that fk(x) ≤ fk(x∗),
k ∈ {1, . . . , K}, and fℓ(x) < fℓ(x∗) for at least one ℓ ∈ {1, . . . , K}. All Pareto

1Ophelimity is an economic concept introduced by Vilfredo Pareto as a measure of purely
economic satisfaction, so he could use the already well-established term utility as a measure of
a more broadly based satisfaction encompassing other dimensions as well, such as the ethical,
moral, religious, and political.

2Also known as multi-objective programming, multicriteria optimization, multiattribute
optimization or Pareto optimization.
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optimal points (possibly an infinite number) constitute a Pareto optimal set or
Pareto front, and they all lie on the boundary of the feasible criterion space X .
There are many ways of exploring a Pareto front (see [45]). The most common
one is to solve single objective problems created from the multi-objective problem
through (some sort of) scalarization procedure (e.g., the weighted sum method
or the ε-constraint method; see [23]). Since all solutions on the Pareto front are
equally good, it is the decision maker who is required to choose one out of the
set of all Pareto optimal solutions. In practice, it is not always the case that all
solutions on the Pareto front are computed, so the decision maker may choose
one of the solutions computed.

3.2.1 Scalarization methods

One way to solve a multi-objective optimization problem is to transform the
multi-objective problem to a (parameterized) single objective problem and
solve it repeatedly with different parameter values, as illustrated in Fig. 3.1.
Scalarization methods fulfill some properties that are desirable when solving
a multi-objective problem [37], including that: optimal solutions are (weakly)
efficient, solving a scalarized problem is not harder than single objective version
of problem (both in theory and in practice), all efficient solutions can be found
and scalarization has linear formulation.

A commonly used scalarization methods for computing Pareto optimal points
is the ε-constraint method, where one of the objectives is optimized while the
other objectives are turned into constraints and expressed as to

minimize fj(x), (3.5a)
such that fk(x) ≤ εk, k ∈ {1, . . . , K} \ {j} (3.5b)

x ∈ X . (3.5c)

By parametric variation in the RHS of the constrained objective functions
(εk), the efficient solutions of the problem are obtained. Results about the
method can be found at [13]. Since the upper bound constraints on objective
values, as expressed in (3.5b), are knapsack constraints3, the problem (3.5)
is usually an NP-hard problem [18, Ch. 1.3], which implies that solving each
independent scalarized problem (and we might have a fair share of them) may
be computationally expensive.

3Given a set of items, each with a weight and a value, determine the number of each item
to include in a collection so that the total weight is less than or equal to a given limit and the
total value is as large as possible.
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Figure 3.1: ε-constraint method for a (linear) bi-objective optimization
problem. One objective is optimized while the other one is constrained by the values
of ε. The distribution and number of ε values is a matter of choice. If we consider
the range in between the smallest possible (εmin) and the largest possible (ε1 ≥ εmin)
value of ε, then we update the εs := εs−1 − 1

n
(ε1 − εmin), until εs ≤ εk, where s is the

index of the current ε, and n is the number of discrete epsilon values used.

3.3 Job and machine scheduling

Scheduling is the action of assigning resources (processors, network links or
expansion cards) to perform tasks/jobs (threads, processes or data flows). The
general job scheduling problem involves allocation of n jobs (j1, j2, . . . , jn) with
different processing times to m machines with varying processing power. The
objective is to minimize the makespan, which is the total duration required to
complete all the jobs. In the case of job-shop scheduling, each job comprises
a set of operations (o1, o2, ..., on) that must be executed in a predetermined
order, taking into account the precedence constraints4. Every operation has a
designated machine for its processing, and at any given time, only one operation
of a job can be processed. If each operation can be processed on any machine,
where the machines are considered to be identical, the problem is identified as
a flexible job-shop problem. Identical-machines scheduling is an optimization
problem in computer science and operations research. We are given n jobs
(j1, j2, . . . , jn) of varying processing times, which need to be scheduled on m
identical machines, such that a certain objective function is optimized (e.g.,

4A precedence constraint is a relationship between two work orders that indicates when
one task begins or ends in relation to another.
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minimization of the makespan). This class of problems is a special case of
optimal job scheduling. For an overview of scheduling theory see [5, 54].

In scheduling, preemption is a technique that allows for the interruption of
a running job or operation. One motivation for enabling preemption is the
need to switch to a higher-priority task on occasion. Thereby, preemption is
particularly useful in situations where jobs have varying priorities or where
there is uncertainty in the processing time of jobs. With preemption, a running
job can be paused and resumed later, allowing the processor, or machine, to
work on a higher-priority job in the meantime [1]. Preemption can improve
the performance of scheduling algorithms by allowing them to react quickly to
changing conditions and prioritize important jobs. However, preemption can
also introduce additional overhead due to the need to save and restore the state
of a running job, and can lead to increased complexity in scheduling algorithms.
A non-preemptive schedule allows no interruptions in job processing. Non-
preemption is, however, more suitable for applications in which interruptions in
job processing are not allowed. Moreover, non-preemption is a more realistic
approach to modeling in some application as interruptions are often not to be
planned for.

3.4 Lagrangean relaxation

Generally speaking, a relaxation of a problem is an approximation of the problem
by a nearby problem that is easier to solve. A relaxation of a problem can
be utilized to provide bounds on optimal solutions and define good staring
points for heuristic searches for good feasible solutions. Main incentive for
utilizing a problem relaxation is that the relaxed problem is typically less
computationally demanding as compared to the original, non-relaxed problem.
However, solutions to the relaxation are often infeasible in the non-relaxed
problem; whence, (heuristic) procedures are used to construct or create a
solution that is feasible (and often non-optimal) in the non-relaxed problem.

When we face a large structured problem (e.g., integer programming5 problems),
it can be difficult or impossible to solve the problem in a reasonable time.
Lagrangean relaxation is a solution strategy used for solving such problems;
see [31]. The main idea to is relax some constraints, typically the ones that
complicate the problem (i.e., make it more difficult to solve) and take them
into account implicitly through the objective in the Lagrangean function. The
relaxed constraints do not have to be fulfilled any longer but any violation of

5The word "programming" originates from the English word program and also means
planning - meaning that is more used in the optimization language.
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them will be penalized with the set of Lagrangean multipliers6. Typically, after
relaxation of the "complicating" constraints, the original problem separates into
smaller and more easily solvable problems. Let us consider a linear optimization
problem

minimize c⊤x ,

subject to g(x) ≤ 0m,

x ∈ X ,

where c ∈ Rn, x ∈ Rn, g : Rn → Rm, X ⊂ Rn, m, n ∈ Z+, and there exists a
feasible solution (i.e., {x ∈ X | g(x) ≤ 0m} ̸= 0). The Lagrangean function
L : Rm+n → R is then L(x, λ) := cTx + λTg(x) and the Lagrangean dual
problem is defined as

maximize h(λ),
λ ≥ 0

where

h(λ) := min
x∈X

L(x, λ)

and h : Rm → R is the Lagrangean dual function. For some λ ≥ 0m, the
problem of minimizing the Lagrangean function L over x is refered to as a
subproblem.

The concept of Lagrangean relaxation is based on the duality theory for non-
linear problems, known as Lagrangean duality. Lagrangean duality holds and is
used for non-convex problems (e.g., integer programming problems) and uses
the relationship between the primal and the Lagrangean dual problem in order
to find the optimal solution.

3.5 Subgradient algorithm

The subgradient algorithm is often applied, in combination with Lagrangean
duality, to solve optimization problems. The main idea is to relax the compli-
cating constraints and then find optimal (or near-optimal) solutions that will
satisfy the relaxed constraints as well.

In order to define and understand the subgradient algorithm, we start by

6Dual variables, penalties.
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introducing the definition of a subgradient7. Furhter, we discuss step length
and subgradient direction.

Definition. A vector γ ∈ Rn is a subgradient of a concave function h at λ ∈ Rn

if the inequality
h(λ) ≤ h(λ) + γT(λ − λ)

holds for all λ ∈ Rn. The set of subgradients of h at λ is called the subdifferential,
denoted by ∂h(λ).

Geometrically, a subgradient is a vector defining a supporting hyperplane to the
epigraph of the function h containing the point λ. The subgradient algorithm
is defined in Algorithm 1.

Algorithm 1 Subgradient Algorithm

1: Let k := 0 and initialize λ0 ∈ Λ ≥ 0, h0
best := h(λ0) where Λ is a feasible

set for the multipliers λ;
2: repeat
3: Solve the Lagrangean subproblem for λk and calculate a lower bound

h(λk) on the optimal value;
4: Calculate a subgradient direction γk := g(x(λk), step length ϕk > 0

and update λk+1:

λk+ 1
2 := λk + ϕkγk, (3.6a)

λk+1 := projΛ(λk+ 1
2 ), (3.6b)

and update the best bound found so far: hbest := max{hk
best, h(λk+1)};

5: until [a termination criteria is fulfilled, let k := k + 1].

The step lengths ϕk are chosen based on some rule which guarantees convergence.
A commonly used step length rule was defined by B. Polyak in [55], and the
step length is computed as

ϕk := θk(h∗ − h(λk))
||γk||2

,

where θk is a scaling parameter for the step length and h∗ is a dual upper bound.
To ensure theoretical convergence to an optimal solution to the dual problem, it
has to hold that 0 < ξ1 ≤ θk ≤ 2 − ξ2 < 2, k = 0, 1, 2, . . . , where ξ1 and ξ2 are
positive limits for the scaling parameter θ. One challenge with this step length

7In mathematics, the subderivative, subgradient, and subdifferential generalize the derivative
to convex functions which are not necessarily differentiable
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rule is that h∗ is not always known, in which case we may use an upper bound
h ≥ h∗ to achieve finite convergence to an ε-optimal solution, where we define
ε-optimal as h(λk) ≥ h∗ − ε, for any ε ≥ 0 (see Theorem 4 in [55]).

There are different ways of updating the value of the scaling parameter θk. An
adaptive step length update, that has been shown to give fast convergence to an
optimal solution in practice, is presented by [10]. The value of the parameter
is updated every p number of subgradient iterations. In summary, the best
and worst lower bounds found during the last p iterations are compared. If
their difference in absolute value is more than 10% of the absolute value of the
worst lower bound, implying that too large steps are taken by the algorithm,
then the scaling parameter is halved. If their difference is less than 1% of the
absolute value of the worst lower bound, the step length can be increased and
the scaling parameter is multiplied by 3

2 . If neither of the two cases above holds
true, then θk is kept unchanged. The percentages and value of the p parameter
are adjusted, depending on the algorithm in case, and it is (in practice) no
longer required that θk ∈ (0, 2).

An alternative rule for step length computation is the divergent series step
length rule [4, p.181], and it requires that

ϕk > 0, k = 1, 2, . . . ,

lim
k→∞

ϕk = 0,

∞∑
k=0

ϕk = +∞.

As a result, the subgradient algorithm yields a sequence x(λk) of solutions to
the Lagrangean subproblem. The sequence of solutions typically is not feasible
in the original primal problem as the solutions from the sequence will not satisfy
the relaxed constraints. Hence, convergence to the optimal primal solutions is
not ensured. When that is the case, ergodic sequences of subproblem solutions
may be utilized. The general idea is creation of approximations of primal
solutions by averaging the solutions from the subproblems [76]. This idea was
enhanced in [33], where more information is exploited from later subproblem
solutions than from earlier ones. The ergodic sequence is shown to converge
to an optimal primal solution when the convexity weights are appropriately
chosen.
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3.6 Complexity classes

Complexity theory is used to determine how long time it takes to solve certain
classes of problems. The algorithmic complexity provides insights into the
relationship between the computational time of an algorithm and the size of
the problem the algorithm is used for. We are interested in estimating how
the computational time changes as the problem size increases. The concept
of problem complexity, on the other hand, facilitates the determination of the
degree of difficulty associated with solving different problem classes. When

Figure 3.2: Diagram of intersection among classes P, NP, NP-complete
and NP-hard problems. The least complex class of problems is P while the most
complex one is NP-hard/complete.

we analyze and classify optimization problems with respect to their problem
complexity, we study a transformation of the problem, called a decision problem.
A decision problem is formulated such that the answer to the problem is always
either yes or no. In general, an optimization problem is not harder to solve
than its corresponding decision problem.

An algorithm is said to be of polynomial time if its running time is upper
bounded by a polynomial expression in the size of the input for the algorithm.
P is a complexity class that includes the set of all optimization problems whose
corresponding decision problems can be solved in polynomial time. That is,
given an instance of the problem, the answer yes or no can be decided in
polynomial time. These problems are usually refereed to as "easy" problems.

A larger class of problems, including the class P, is non-deterministic polynomial,
denoted by NP8. It is a complexity class that represents the set of all decision
problems with the property that for each given solution and corresponding yes
answer, there exists a polynomial algorithm that can be used to verify that the
yes answer is correct. A decision problem is NP-hard if any NP problem can be
reduced to it in polynomial time. A decision problem is NP-complete if it is in

8The P versus NP problem is a major unsolved problem in theoretical computer science.
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NP and it is NP-hard [18, Ch. 1.3]. These problems are typically difficult to
solve.

However, P does not always mean "easy", the same was NP does not always
mean "hard". A theoretical polynomial algorithm may have extremely large
constant factors or exponents, thus rendering it impractical. Moreover, even if
a problem is shown to be NP-complete, there may be effective approaches to
solving the problem in practice. Algorithms for some NP-complete problems
(e.g., the knapsack problem) have been developed that can solve to optimality
many real-world instances in reasonable time.
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4 Model and method devel-
opment

In Chapter 2, we presented the large scale system–of–systems (see Fig. 2.2, Ch.
1) and a subset of it, that is subject of the work presented in this thesis, is
illustrated in Figure 4.1. From now on, the MRO is denoted as the maintenance
workshop and O-level as the operational level. In this chapter, we take a closer
look at each part of the problem, namely aircraft maintenance scheduling,
maintenance workshop planning, (repaired and damaged) stocks of components,
and operational demand. We present mathematical modeling for each part
of the system, as well as their interconnections, and formulate optimization
objectives for the respective stakeholders. Component flow can be tracked
individually (i.e., each individual component is tracked with its id number) or
in an aggregated fashion (i.e., all individual components of the same type are
aggregated and only the number of components of a component type is tracked).
In the maintenance workshop, we model repair lines and perform repairs such
that we respect the capacity constraint and we may include job1 modeling.
Moreover, the workshop model may be preemptive or non-preemptive (that
is, interruptions in repair for a specific job can or cannot occur). Whence, in
this chapter we refer to three different models and for the sake of simplicity,
introduce the following abbreviations:

• Individual component flow (ICF) model (Paper I),

• Aggregated component flow (ACF) model (Paper II) and

• Job flow (JF) model (Paper III, IV),

that will be used from now on. Further, two contracting forms between the
stakeholders are defined and different versions of the optimization objectives

1Every action taken in the maintenance workshop is considered as a job.

23
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Figure 4.1: Scope of the thesis. Preventive maintenance scheduling for a fleet of
aircraft and maintenance workshop scheduling, with operational demand as input to
the model and the scheduling of component replacement and repair as output.

corresponding to the two contracts are presented. Lastly, a solution approach for
the JF model, for a bi-objective problem that is difficult to solve, is presented.

4.1 Aircraft maintenance scheduling

The model of the maintenance scheduling problem presented is partly based on
the preventive maintenance scheduling problem with interval costs (PMSPIC)
presented in [32]. The PMSPIC considers a system with multiple component
types and for which the costs for replacement of components take into account
the interval between any two consecutive replacements/maintenance occasions;
we generalize this model such that we allow for multiple systems and individual
component modeling. The PMSPIC is partly an extension of the opportunistic
replacement problem (ORP) studied in [3], described as follows: "The system
consists of a set of components. The time between two consecutive replacements
of a component may not exceed its assigned maximum replacement interval. To
each time point in the planning period corresponds a fixed maintenance set-up
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cost and replacement costs for each component. The problem is to schedule the
component replacements over a finite set of time points in order to minimize
the total maintenance cost." Unlike the ORP model, the PMSPIC takes into
account the intervals between two replacements (i.e., maintenance occasions) for
each component and assigns a cost depending on the length of this maintenance
interval.

We consider a fleet of |K| aircraft with |I| component types and |Ji| individual
components of each type i ∈ I. Maintenance can be scheduled at any time
step t within the finite and discretized planning horizon T := {0, . . . , T + 1}. A
maintenance occasion of an aircraft k at time step t generates a maintenance cost.
The maintenance interval (i.e., the interval between two maintenance occasions)
of a component generates an interval cost, which is non-decreasing with the
length of the interval. For each component type, by defining substantially higher
costs for scheduling maintenance after—and also close before—the end of its
life, unexpected failures are avoided; thereby our approach may stay within
the scope of PM scheduling. We model this problem (denoted as GPMSPIC
in [51] for the (ICF) and MS-PMSPIC in [52] for the (ACF) model), as a 0-1
mixed-integer linear optimization problem (see [18]); the decision variables are
described below.

Decision variables (ICF). To determine the maintenance intervals of the
components as well as the maintenance schedules for the aircraft, we define the
decision variables

xijk
st =


1, if individual component j of type i

in aircraft k receives PM at times s
and t, but not in-between,

0, otherwise,

j ∈ Ji, i ∈ I, k ∈ K,
0 ≤ s < t ≤ T + 1,

zk
t =

1, if maintenance of aircraft k occurs
at time t,

0, otherwise,
k ∈ K, t ∈ T .

Decision variables (ACF, JF). In the case of the aggregated component
flow the z variables remain the same while the x variables are defined as

xik
st =


1, if component of type i in aircraft k

receives PM at times s and t, but
not in-between,

0, otherwise,

i ∈ I, k ∈ K,
0 ≤ s < t ≤ T + 1.

The variable definition remains the same for the JF model as the job modeling
does not belong to this part of the system–of–systems. As we assume that each
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aircraft k ∈ K is equipped with exactly one individual of each component type
I, the x variables will be binary with and without the individual component
flow.

Constraints (ICF). The feasible set of the maintenance planning is modeled
by the following equality and inequality constraints

∑
j∈Ji

t−1∑
s=0

xijk
st =

∑
j∈Ji

T +1∑
r=t+1

xijk
tr , i ∈ I, t ∈ T , k ∈ K, (4.1a)

∑
j∈Ji

T +1∑
t=1

xijk
0t = 1, i ∈ I, k ∈ K, (4.1b)

∑
j∈Ji

t−1∑
s=0

xijk
st ≤ zk

t , i ∈ I, t ∈ T , k ∈ K, (4.1c)

∑
k∈K

t−1∑
s=0

xijk
st ≤ 1, j ∈ Ji, i ∈ I, t ∈ T , (4.1d)

xijk
st = 0, j ∈ Ji, k ∈ K,

t̄i ≤ s + t̄i < t ≤ T + 1, i ∈ I. (4.1e)

For each aircraft k and component type i, a maintenance interval starts at
time 0, which is modeled by (4.1b), while the constraints (4.1a) ensure that
the same number (i.e., 0 or 1) of maintenance intervals ends and starts at time
t. The constraints (4.1c) ensure that if a maintenance interval of component
type i in aircraft k ends at time t, then maintenance of aircraft k must occur
at time t. The constraints (4.1d) ensure that each component (i, j) is in at
most one aircraft k at each time t. To prevent any maintenance interval for
component type i ∈ I from being longer than t̄i ≤ T , the constraints (4.1e) are
defined. That, in effect, prevents from having to perform corrective maintenance
(to an extent).

Constraints (ACF, JF). In the case of the aggregated component flow,
constraints (4.1a)–(4.1e) become

t−1∑
s=0

xik
st =

T +1∑
r=t+1

xik
tr , i ∈ I, t ∈ T , k ∈ K, (4.1f)

T +1∑
t=1

xik
0t = 1, i ∈ I, k ∈ K, (4.1g)
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t−1∑
s=0

xik
st ≤ zk

t , i ∈ I, t ∈ T , k ∈ K, (4.1h)

xik
st = 0, t̄i ≤ s + t̄i < t ≤ T + 1, i ∈ I, k ∈ K. (4.1i)

and their interpretation is similar as to the interpretation of (4.1a)–(4.1e). As
for the variables, the constraints remain the same in the JF model.

4.2 Maintenance workshop scheduling

Components that should be maintained are sent to the maintenance workshop,
which contains a number (L) of (identical) parallel repair lines for component
repair. Each repair line has a repair capacity of one unit, while each component
repair requires one unit of this capacity per time step during a prespecified
(component type-specific) number of time steps. When a component arrives at
the workshop, it is available for repair and (in the case of a turn–around time
contract) assigned a due date, at which the repair should be finished, and the
component returned back to the aircraft operator. This problem is identified as
an identical parallel machines scheduling problem (IPMSP; Brucker and Knust
(2012)), where a machine is equivalent to a repair line. For a survey of parallel
machine scheduling problems, see [48]. In the classical deterministic IPMSP,
there is a number of independent jobs to be processed on a range of identical
machines. Each job has to be carried out on one of the machines during a fixed
processing time, without preemption2. A component that finishes repair prior
to (after) its due date generates a non-positive (non-negative) penalty cost,
which applies only in the case of a turn–around time contract (see Section 4.5).
A solution to the maintenance workshop scheduling problem specifies at which
time each component arriving at the workshop should start maintenance. In
case of the JF model, the solution also specifies on which machine the repair is
performed while that information is lost with ICF and ACF models.

Decision variables and constraints (ICF). For each individual component
j of each type i and for each time step t, we define

uij
t =

{
1, if component (i, j) starts repair at time t,

0, otherwise,
i ∈ I, j ∈ Ji, t ∈ T .

The number of active parallel repair lines at each time step t is defined by the

2If preemption (i.e., job splitting) is allowed, the processing of any operation may be
interrupted and resumed at a later time.
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non-negative integer variable ℓt, that should fulfill the constraints

0 ≤ ℓt = ℓt−1 +
∑
i∈I

∑
j∈Ji

(
uij

t − uij
t−pi

)
≤ L, t ∈ T , (4.2a)

where ℓ0 and uij
t , t ≤ 0, are initial (fixed) values that constitute input to the

model.

Decision variables and constraints (ACF). In the case of the aggregated
component flow, we define for each i ∈ I and t ∈ T the variables

ui
t ∈ Z+ : the number of components of type i starting maintenance at time t;

and ℓt becomes

0 ≤ ℓt = ℓt−1 +
∑
i∈I

(
ui

t − ui
t−pi

)
≤ L, t ∈ T . (4.2b)

As before, ℓ0 and ui
t, t ≤ 0, are initial (fixed) values that constitute input to

the model.

Both models (4.2a) and (4.2b) are preemptive models, which means that inter-
ruptions of repairs in the maintenance workshop are allowed. We next define
a non-preemptive model of IPMSP combined with modeling of jobs in the
maintenance workshop.

Decision variables (JF). For each job n ∈ Ni and each i ∈ I, l ∈ L, and
t ∈ T , the following binary variables are defined as

uinl
t =

1, if a component of type i starts maintenance at time t as job n in
machine l,

0, otherwise.

Constraints (non-preemptive JF). For each t ∈ T , the number ℓt ∈ Z+ of
active parallel machines at time t, and model the constraints

∑
i∈I

∑
n∈Ni

t∑
s=t−pi+1

uinl
s ≤ 1, t ∈ T , l ∈ L, (4.2c)

∑
l∈L

∑
t∈T

uinl
t ≤ 1, n ∈ Ni, i ∈ I, (4.2d)

∑
l∈L

∑
i∈I

∑
n∈Ni

t∑
s=t−pi+1

uinl
s = ℓt, t ∈ T . (4.2e)
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The constraints (4.2c) state that each machine l ∈ L can process at most one
job at each time step t ∈ T , and that any job n ∈ Ni that starts processing
in a machine l at a certain time step t, will occupy the machine until it is
finished, at pi time steps later, i.e., the scheduling is non-preemptive. The
constraints (4.2d) make sure that each job n ∈ Ni is assigned to component
type i at most once over all repair lines l ∈ L and all time steps t ∈ T . In our
study, we also vary the number of parallel machines (L), to enable decision
support for capacity investments in the maintenance workshop. The constraints
(4.2e) define the loading ℓt (i.e., the number of repair lines occupied) of the
maintenance workshop at time step t. The constraints (4.2c) and (4.2e) together
imply that the workshop loading ℓt cannot exceed the maximal number, L, of
repair lines in the workshop. Naturally, non-preemption may be disabled in the
JF model, in which case, the workshop model would be modeled similarly to
(4.2b)

0 ≤ ℓt = ℓt−1 +
∑
i∈I

∑
n∈Ni

∑
l∈L

(
uinl

t − uinl
t−pi

)
≤ L, t ∈ T , (4.2f)

To model the interface between the variables defined for the two respective
problems presented in Sections 4.1 and 4.2, I next introduce the dynamics of
the stock of components.

4.3 Stocks of components modeling

When an individual component is taken out of an aircraft it is sent—with
no time delay—to the stock of damaged components, where it stays until it
is scheduled for repair. The transport time between the stock of damaged
components and the maintenance workshop δi

a is prespecified. Upon being
repaired, the component goes to the stock of repaired, so called as good as new
components, again with a prespecified transport time between the workshop
and stock of repaired components δi

b, where it is kept until its scheduled time
for placement into an(other) aircraft. We assume that all transport times are
represented by non-negative integers. Further, we introduce the variables and
the constraints for the ICF, ACF and JF model.

Decision variables (ICF). To model the flow of components, we define the
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following binary variables

aij
t (bij

t ) =

1, if individual component j of type i is on the stock of
damaged (repaired) components at time t ∈ T ∪ {0},

0, otherwise,

αij
t (βij

t ) =

1, if individual component j of type i is taken out of (placed
in) one of the aircraft k ∈ K at time t ∈ T ,

0, otherwise.

Decision variables (ACF). In the case of the aggregated component flow,
the variables are transformed to

ai
t (bi

t) : the number of individuals of component type i on the stock of
damaged (repaired) components at time t ∈ T ∪ {0};

αi
t (βi

t) : the number of individuals of component of type i taken out of
(placed in) any of the systems k ∈ K at time t ∈ T ,

for all i ∈ I.

Decision variables (JF). Further, in the case of job flow modeling, the only
modification (as compared to ACF) is the definition of the α variables to

αink
t =

1, if an individual of component type i is taken out of a
system k ∈ K at time t ∈ T and allocated to job n ∈ Ni;

0, otherwise,

for all i ∈ I. The variables ai
t, bi

t and βi
t remain the same as for the ACF.

Constraints (ICF). The stock of damaged components is then modeled by
the constraints

αij
t =

∑
k∈K

t−1∑
s=0

xijk
st , j ∈ Ji, i ∈ I, t ∈ T , (4.3a)

aij
t = aij

t−1 + αij
t − uij

t+δi
a

∈ {0, 1}, t ∈ {1 − δi
a, . . . , T + 1}, j ∈ Ji, i ∈ I.

(4.3b)

The constraints (4.3a) connect the variables from the maintenance scheduling
with the stock of damaged components: if a component (i, j) is taken out of
any of the aircraft k ∈ K at time t, αij

t will take the value 1; otherwise αij
t

takes the value 0. The constraints (4.3b) provide the state of component (i, j)
at time t: whether it is on the stock of damaged components (i.e., aij

t = 1) or
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not (i.e., aij
t = 0). The state of a component at time t depends on its state in

the previous time step t − 1, whether it is taken out of any system k and placed
on the stock at time step t, and whether it is starting maintenance at time step
t + δi

a.

The stock of repaired components is modeled analogously as

βij
t =

∑
k∈K

T +1∑
r=t+1

xijk
tr , j ∈ Ji, i ∈ I, t ∈ T (4.3c)

bij
t = bij

t−1 − βij
t + uij

t−δi
b
−pi ∈ {0, 1}, j ∈ Ji, i ∈ I, t ∈ T (4.3d)∑

j∈Ji

bij
t ≥ bi, i ∈ I, t ∈ T . (4.3e)

The constraints (4.3c) represent the connection between the stock of repaired
components and the maintenance scheduling. If component (i, j) is placed into
any aircraft k at time t, βij

t will take the value 1; otherwise βij
t takes the value

0. In (4.3d) the individual states of the components at time t are updated: a
component is either on the stock (i.e., bij

t = 1) or it is not (i.e., bij
t = 0). A

component’s state on the stock of repaired components is affected by its state
in the previous time step t − 1, whether it is placed in some system k at time
t, and whether it will arrive to the stock at time t after being repaired (i.e.,
if uij

t−δi
b
−pi = 1, which means that component (i, j) started maintenance at

time t − δi
b − pi and will arrive to the stock of repaired components at time

t). The variables bij
0 , βij

0 , and uij
t , t ∈ {1 − δi

b − pi, . . . , 0}, comprise (fixed)
input data. Then, in (4.3e) it is expressed that the sum of the variables bij

t

over the individual components, i.e., the stock level of repaired components per
component type i at time t, may not be below the lower stock limit bi.

Constraints (ACF). The stock of damaged components is then modeled by
the constraints

αi
t =

∑
k∈K

t−1∑
s=0

xik
st , i ∈ I, t ∈ T , (4.3f)

ai
t = ai

t−1 + αi
t − ui

t+δi
a

≥ 0, i ∈ I, t ∈ {1 − δi
a, . . . , T + 1}, (4.3g)

while the stock of repaired components is modeled analogously, as

βi
t =

∑
k∈K

T +1∑
r=t+1

xik
tr , i ∈ I, t ∈ T , (4.3h)
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bi
t = bi

t−1 − βi
t + ui

t−δi
b
−pi ≥ bi, i ∈ I, t ∈ T ∪ {T + 1}. (4.3i)

The interpretation of the stock constraints with aggregated component flow
remains similar to (4.3a)–(4.3e). The main difference is that now ai

t and bi
t

correspond to the stock levels of component type i at time step t while in
(4.3a)–(4.3e), aij

t and bij
t represent the {0, 1} state of an individual component

(i, j) on the stock(s) (a component is either on a stock or not).

Constraints (JF). The model of the stock of damaged components becomes

∑
n∈Ni

αink
t =

t−1∑
s=0

xik
st , k ∈ K, t ∈ T , (4.3j)

∑
t∈T

∑
k∈K

αink
t ≤ 1, n ∈ Ni, (4.3k)

ai
t − ai

t−1 =
∑

n∈Ni

(∑
k∈K

αink
t −

∑
l∈L

uinl
t+δi

a

)
, t ∈ {1 − δi

a, . . . , T + 1},

(4.3l)
ai

t ≥ 0, t ∈ {1 − δi
a, . . . , T + 1},

(4.3m)

for all i ∈ I, while the stock of repaired components is modeled as

βi
t =

∑
k∈K

T +1∑
r=t+1

xik
tr , t ∈ T , (4.3n)

bi
t = bi

t−1 − βi
t +

∑
n∈Ni

∑
l∈L

uinl
t−δi

b
−pi , t ∈ T ∪ {T + 1}, (4.3o)

bi
t ≥ bi, t ∈ T , (4.3p)

for all i ∈ I. Constraints (4.3k) ensure that a pair (i, n) can occur at most
once during the planning period (i.e., a job can occur at most once). The
interpretation of the remaining constraints in (4.3j)–(4.3p) remains similar as
in the ACF model.

4.4 Operational demand

The system of aircraft considered possesses an operational demand, represented
by a flight schedule that should be fulfilled. The flight schedule defines time
intervals during which the aircraft is either operating or grounded. Thereby,
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the starting point for our modeling is precisely the operational demand (as
illustrated in Figure 4.1).

For the maintenance planning problem, the flight schedule (i.e., operational
schedule) is represented in terms of time intervals when the system is either
operating – at which times maintenance cannot be performed – or accessible
for maintenance. In other words, PM may not be scheduled while a system is
operating. In the case of railway systems [41], each train is assigned time slots
when it should operate (i.e., perform transport of goods or passengers); hence,
PM may be scheduled only in-between those time slots. In the case of offshore
wind turbine maintenance [60], the operational demand is fulfilled by wind
energy production, while maintenance work can be done only during time periods
of not too harsh weather conditions. When planning any PM occasion, the
(predicted or planned) operational schedule for the systems provide time windows
during which maintenance may be performed. As input to the integrated aircraft
maintenance scheduling and maintenance workshop scheduling model (presented
in Sections 4.1,4.2, 4.3), for all t ∈ T and all k ∈ K we thus use the parameters

zk
t =

{
1, if PM is allowed to be scheduled for system k at time t,
0, otherwise.

Further, we include the following constraints (for all three models ICF, ACF,
JF) —such that the time windows for PM are respected—in our model:

zk
t ≤ zk

t , t ∈ T , k ∈ K. (4.4a)

An efficient way of generating the operational schedules (e.g., timetables) for
the systems considered is presented in [30], in which the availability of a fleet
of aircraft is maximized subject to requirements on the transport missions
and maintenance of the aircraft and their components. An alternative way is
presented in [16], where the maximal number of aircraft in maintenance at any
given time during the planning period is minimized.

Another way of modeling (4.4a) may be to use slightly softer constraints to
model the opportunities for performing maintenance, as follows:∑

k∈K

zk
t ≤ M, t ∈ T , (4.4b)

where (4.4b) limits the number of maintenance occasions for each time step t to
at most M aircraft at a time. The main benefit of using this approach is that it
gives more freedom to the model to choose the optimal maintenance schedules.

However, solving the integrated system–of–systems while fulfilling the opera-
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tional demand may be done in a reversed, bottom-up way. After solving the
integrated system–of–systems, flight schedule may be generates such that the
PM occasions are input to the flight assignment problem. The flight assignment
problem, subject to a given operational demand, is then solved. The approach
in this thesis is, however, top-down.

4.5 Choice of optimization objectives

Up until this section, we have defined the feasibility problems for the ICF, ACF
and JF models. We now discuss and define objective functions, that, together
will the feasibility problems, define optimization problems. The definition of
the different objectives for the ICF model is described below. The objectives
are easily modified for the ACF and JF models, according to the variable and
constraint definition in Sections 4.1–4.4.

Minimizing costs for maintenance set-up and intervals. Each mainte-
nance occasion yields a set-up maintenance cost (dt) for the aircraft operator.
It can be either the cost of having an aircraft grounded/unavailable for flight
operations, or the cost of performing any maintenance activity, or both. Besides
the set-up cost, there is an interval cost (ci

st) for every component which is deter-
mined based on the length of the interval between two consecutive maintenance
occasions. We assume that the interval cost is non-decreasing with an increasing
length of the interval. Furthermore, the longer the length of the maintenance
interval is the more expensive it becomes to do maintenance. Using this cost
structure enables prevention of (too) long maintenance intervals which could
lead to over usage of a component and thereby, to component failure.

From the aircraft operators’ point of view, the objective is to minimize the total
costs for maintenance, which includes both set-up and interval costs, and it is
modeled as to

minimize
∑
k∈K

∑
t∈T

dtz
k
t +

∑
k∈K

∑
i∈I

∑
j∈Ji

T +1∑
t=1

t−1∑
s=0

ci
stx

ijk
st . (4.5)

Minimizing the risk for lack of spare parts. To ensure that the operational
schedule is undisturbed, or that the disturbance is minimal, it is crucial to
have enough spare components available. When an unexpected failure occurs,
whether there is disturbance in planned operations or not is determined by the
availability of a "as good as new" component that will replace the one that has
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a failure. Thus, availability of components plays a crucial role when it comes
to the stability of the system–of–systems. We give three formulations of an
availability contract.

1. Maximize a weighted average of the number of components (repaired or
new) available, which is modeled as to

maximize 1
T

∑
t∈T

∑
i∈I

wi
∑
j∈Ji

bij
t , (4.6a)

where wi > 0 is an objective weight assigned to component type i ∈ I.

2. The risk for lack of spare components may be minimized by maximizing a
weighted average of the lower limits on the numbers of available components
of each type, subject to a lower bound on the availability of each component
type, i.e., to

maximize
∑
i∈I

wiei, (4.6b)∑
j∈Ji

bij
t ≥ ei ≥ bi, i ∈ I, t ∈ T , (4.6c)

where, for each component type i ∈ I, wi > 0 denotes the weight assigned
while the lower limit on the number of available components is denoted
by ei and bi ≥ 0 is the lower limit on the level of available components of
type i ∈ I (as defined in Section 4.3).

3. Whenever the stock level for component type i goes below a predefined
threshold bi, there is a non-negative penalty cAV

i for every unit yi
t of

number of components at time step t that go below bi. That is,

minimize
∑
i∈I

cAV
i

∑
t∈T

yi
t, (4.6d)

yi
t ≥ bi −

∑
j∈Ji

bij
t , i ∈ I, t ∈ T , (4.6e)

yi
t ≥ 0, i ∈ I, t ∈ T , (4.6f)

bij
t ∈ {0, 1}, i ∈ I, j ∈ Ji (4.6g)

where the inequalities (4.6e)–(4.6f) define yi
t as the measure of how much

the stock level
∑

j∈Ji
bij

t for component type i at time t falls below the
lower limit bi on the stock of available components.
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Minimizing the risk for exceeding the contracted turn–around times
for component repair. The turn–around time of an individual component
(i, j) is defined as the time from when the component is taken out of an aircraft
in K until it has become repaired and is available for usage again in an(other)
aircraft. The total turn–around time, vij

tat, for component individual (i, j),
j ∈ Ji, i ∈ I, over the planning period T , is thus computed as

vij
tat =

T +1∑
t=0

((
t + pi + δi

b

)
uij

t − tαij
t

)
, (4.7a)

where the term (pi + δi
b)uij

0 is positive if component (i, j) is initially on the stock
of damaged components, and the equalities uij

T +1 = aij
0 − uij

0 +
∑

t∈T (αij
t − uij

t )
and αij

T +1 = 0 hold.3 The shortest possible turn–around time for a component
of type i equals δi

a + pi + δi
b, i.e., the sum of the repair time in the maintenance

workshop and the time required for the transportation to and from the workshop.
Letting cij

delay > 0 and cij
early ∈ (0, cij

delay] denote the penalty for late and early4,
respectively, delivery of a repaired component, this objective is then expressed
as to

minimize
∑
i∈I

∑
j∈Ji

(
cij

delayvij
delay − cij

earlyvij
early

)
, (4.7b)

where vij
delay (vij

early) denotes the total delay (earliness) for component (i, j) over
the planning period. These variables are due to the constraints

vij
early ≤ vij

tat − qij
due

(
aij

0 +
T +1∑
t=1

αij
t

)
≤ vij

delay, (4.7c)

vij
early ≤ 0 ≤ vij

delay, (4.7d)

where qij
due > 0 denotes the contracted due date for component (i, j), j ∈ Ji,

i ∈ I. Due to the construction of (4.7c)–(4.7d) either vij
early or vij

delay (or both)
will attain value zero when the objective (4.7b) is optimized (a component
will be either early, or late, or on time; in the latter case vij

early = vij
delay = 0

hold). Therefore, for each component (i, j) the objective (4.7b) minimizes the
penalty for total lateness or earliness. Typically, vij

delay would be penalized and
optimized for, and vij

early could be removed from the model formulation, leading
3Note that the use of the variables aij

0 and uij
T +1 leads to a possible underestimate of vij

tat, as
we possibly shorten the vij

tat for components which were initialized on the stock of components
to be repaired at t = 0 and components which did not finish repair until t = T + 1. It follows
that vij

early (vij
delay), as defined in (4.7c)–(4.7d), will possibly be under(over)estimated.

4A penalty for earliness will, by construction, be a reward.
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to the following reformulation of (4.7b)–(4.7d):

minimize
∑
i∈I

∑
j∈Ji

cij
delayvij

delay, (4.7e)

vij
tat − qij

due

(
aij

0 +
T +1∑
t=1

αij
t

)
≤ vij

delay, (4.7f)

vij
delay ≥ 0. (4.7g)

4.5.1 Other objectives that could be utilized

There are more objectives that could be discussed and included in the multi-
objective setting, if relevant and desired. Two such examples are given below.

Minimizing investment costs for repair lines in the workshop. We
assume that each repair line in the maintenance workshop comes with an
investment cost cinv > 0. One of the objectives on the maintenance workshop
side would be to minimize the investment costs for repair lines in the workshop.
The workshop capacity costs are then addressed as to

minimize cinvL, (4.8)

where the parameter L would then be regarded as a decision variable, which
takes the role of an upper limit, as expressed in the constraints (4.2a). This
objective is relevant when investigating the optimal workshop capacity.

Minimizing the costs of performing repairs. Each maintenance activity
associated with a component (i, j) normally has a repair cost cij

repair, which
may depend on the component’s processing time pij , be non-decreasing with an
increasing value of pij and assigned to the uij

t variables. The objective is to

minimize
∑
i∈I

∑
j∈Ji

cij
repair(pij)uij

t , (4.9)

and it is relevant if we want to optimize the number of maintenance activities.
Within the application presented in this thesis, components have to be repaired
regardless of the price of repair, and it is not possible to merge two or more
repairs together to minimize the costs (opportunistic replacement planning, see
e.g. [3]); thus, we neglect this objective at the current stage. Moreover, (4.9)



38 4. Model and method development

would lead to a so-called zero-sum game 5, which would not have a great impact
on the bi-objective analysis presented in our current work.

4.6 Contracting forms and the bi-objective prob-
lem definition

The collaboration between the stakeholders is regulated with a contractual
agreement. In reality, there are many ways to define a contract. Based on
industrial input, we define and study two contract types: an availability and a
turn–around time contract. Both are some measures of component flow over
time: availability represents the levels of available components on the stock of
repaired components and turn–around time measures the lateness/earliness of
component delivery after being repaired. Neither of the two contract types is
uniquely defined. Aircraft operator has the same objective in both contracts,

Figure 4.2: Contracting forms between the stakeholders. One of the two
contracts, availability or turn–around time, is employed. While the aircraft operator
has the same objective in the case of both contracts, the choice of the optimization
objective for the maintenance workshop depends on the contract choice.

and that is to minimize maintenance costs. Depending on the contract type,
maintenance workshop has two different objectives: maximizing availability
(or, minimizing availability penalties, depending on the choice of the contract

5In game theory and economic theory, a zero-sum game is a mathematical representation
of a situation in which an advantage that is won by one of two sides is lost by the other. See
e.g. [69].
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constraints defining the preemption contract;
model feasible set for the in the optimization

bi-objective problem workshop objectives
1. ICF (4.1a)–(4.1e), (4.2a), AV;

(4.3a)–(4.3d), (4.4a) preemptive (4.5), (4.6a)
2. ICF (4.1a)–(4.1e), (4.2a), TAT;

(4.3a)–(4.3e), (4.4a),(4.7c)–(4.7d) preemptive (4.5), (4.7b)
3. ACF (4.1f)–(4.1i), (4.2b) AV;

(4.3f)–(4.3i), (4.4a), (4.6e)–(4.6g) preemptive (4.5),(4.6d)
4. JF (4.1f)–(4.1i), (4.2c)–(4.2e) non- AV;

(4.3j)–(4.3o),(4.4a), (4.6e)–(4.6g) preemptive (4.5), (4.6d)
5. JF (4.1f)–(4.1i), (4.2c)–(4.2e) non- TAT;

(4.3j)–(4.3p),(4.4a), (4.7f)–(4.7g) preemptive (4.5), (4.7e)
6. JF (4.1f)–(4.1i), (4.2f) AV;

(4.3j)–(4.3o),(4.4a) preemptive (4.5), (4.6d)
7. JF (4.1f)–(4.1i), (4.2f) TAT;

(4.3j)–(4.3p),(4.4a), (4.7f)–(4.7g) preemptive (4.5), (4.7e)

Table 4.1: Summary of the bi-objective optimization problems studied.
For each model ICF, ACF and JF, preemptive or non-preemptive scheduling in the
maintenance workshop, and an availability (AV) or turn–around time (TAT) contract,
we define a bi-objective optimization problem constituted by a set of constraints (i.e.,
a feasible set) and two optimization objective functions.

formulation) when the contract in place is availability and minimizing penalties
for late (and early) deliveries in the case of a turn–around time contract. This
is illustrated in Figure 4.2. The two bi-objective optimization problems, the
availability bi-objective problem and the turn–around time bi-objective problem,
together with their feasible sets and optimization objectives, are summarized in
Table 4.1.

4.7 Problem complexity

After introducing a mathematical model, a relevant question is, to which
complexity class it belongs to. Without loss of generality, we choose the JF
model for the following theorem and definition 3. for the availability objective
function (4.6). The same result can be proven for the ICF and ACF models.

Theorem 1 (Complexity of the availability bi-objective problem). The
complete JF model of the system–of–systems (4.1)–(4.4), with either of the
objective functions (4.5) or (4.6d), binary requirements on the variables xik

st , zk
t ,
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uinl
t , and αin

t , and non-negativity and integer requirements on the variables yi
t,

ai
t, bi

t, βi
t , and ℓt, for all relevant values of the indices, is NP-hard.

Proof. Consider the JF constraints (4.1)–(4.4), with the relevant binary, non-
negativity, and integer requirements on the variables. Assume that the capac-
ity of the maintenance workshop equals the total number of jobs, i.e., that
L =

∑
i∈I Ni holds. Moreover, assume that for each component type i ∈ I, the

number of individual components fulfills Ji ≥ K
⌈

T +1
1+δi

a+pi+δi
b

⌉
(where 1 repre-

sents the shortest time a component spends in a system k), that b̄i
0 = Ji − K,

and that bi = 0. Then, each repair job can always be instantly performed in
the workshop and there will always be a (repaired) component in stock for
replacement.

The problem (4.1)–(4.4), with the objective to minimize (4.5), is hence reduced
to the minimization of (4.5) subject to (4.1g)–(4.1e), which separates into one
instance of the PMSPIC for each of the systems k ∈ K. As stated in Definition
1 in [52] and the reasoning thereafter, the PMSPIC is NP-hard; see also [32].
Therefore, there exists an instance of the problem of minimizing (4.5) which is
NP-hard.

Now, consider the problem (4.1)–(4.4), (4.6e), (4.6f), with the objective to
minimize (4.6d). Since bi = 0, the problem separates over minimizing (4.6d)
subject to yi

t ≥ 0 for all relevant i and t, and minimizing a zero objective subject
to (4.1)–(4.4), and bi

t ≥ 0 for all relevant i and t. Minimization of (4.6d) subject
to yi

t ≥ 0 for all relevant i and t results in yi
t = 0, for all relevant i and t (for all

non-negative cost coefficients) and there are no constraints involving y (or any
of other) variables. For the former problem, setting all y variables to zero will
be an optimal solution, such that the optimal value of (4.6d) will equal zero
(that is, CAV(y∗) = 0 for any optimal solution (x∗, z∗, u∗, . . . , y∗) since y∗ = 0
is optimal whenever bi = 0). The latter problem is reduced to the problem of
minimizing (4.5) subject to (4.1)–(4.4), with the costs ci

st = 0 and dt = 0, for all
relevant indices. Hence, there exists an instance of the problem of minimizing
(4.6d) which is NP-hard.

We conclude that the availability bi-objective problem is NP-hard.

In a similar fashion, it can be proved that the turn–around time bi-objective
problem, for any of the ICF, ACF or JF models, is NP-hard. The proof is given
in Paper IV.

The complete problem may be reduced (at most) to an NP-hard problem
(PMSPIC, [32]), regardless of the contract type, model selection (ICF, ACF,
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Figure 4.3: Complexity of isolated parts within the system–of–systems.
Each part of the system–of–systems has its own complexity, which has an effect on
the complexity of the integrated system–of–systems.

JF) and enabling preemption or not. If we consider each part of the whole
system–of–systems independently, as in Figure 4.3, as isolated systems: the
stock dynamics equations can be formulated as a network flow model, where each
equality constraint is a node balancing constraint. The problem is an LP and
thus can be solved in polynomial time; The preemptive IPMSP with a (weighted)
sum objective is polynomially solvable [40, Ch. 8.0], whereas its version with a
minimax (i.e., makespan) objective is NP-hard [7, Ch. 2.1]. Finding an optimal
non-preemptive schedule on parallel machines with a makespan objective is
NP-hard even for the case of two identical machines [62]. If we have a non-
preemptive IPMSP with an objective that is neither a (weighted) sum nor a
makespan, we cannot with certainty conclude its computational complexity.

4.8 Bounding the Pareto front of a turn–around
time bi-objective optimization problem

The turn–around time contract is first defined for the ICF model (Paper I).
However, due to it becoming computationally intractable for larger instances,
either a new formulation of the turn–around time model or an efficient way
of solving the existing one is required. It appears to be challenging to define
a formulation of the turn–around time without the individual tracking of
components (as in Paper I, using ICF) or tracking of jobs (as in Paper III,
using JF). The second one proves to be more efficient when optimizing for not
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being late with component delivery upon repair, hence we choose the JF model
formulation. To solve the problem more efficiently, we Lagrangean relax the
complicating constraints defining the delay penalties.

Figure 4.4: A simplified illustration of the bounding of the Pareto front. The
delay cost is the objective transformed into an ϵ-constraint. For each value of ϵ, using
the subgradient algorithm, a number of linear lower bounds on the optimal solution
of the ϵ-constraint scalarized problem reformulation is obtained. In combination with
the pair of upper bounds on the two optimization objectives, we attain the area of
uncertainty in which the Pareto points may be found.

Summary of the method. Let us consider (either of) the bi-objective opti-
mization problem(s) 5. (or 7.) from Table 4.1. The ϵ-constraint scalarization of
the problem (see Section 3.2.1) gives a scalarized, single objective optimization
problem, in which one of the two objectives is constrained in an ϵ-constraint.
Next, the complicating constraints ((4.7f) defined for the JF model) are La-
grangian relaxed (see Section 3.4) and the remaining constraints define the
Lagrangean subproblem. For each value of ϵ, the subgradient algorithm (see
Section 3.5) is performed and the dual variables (i.e., penalties for the La-
grangean relaxed constraint) are updated in each subgradient iteration. For
each pair of values of ϵ and of the dual variable, a linear lower bound is obtained,
as the Lagrangean dual function is a linear function of ϵ. In addition, the
Lagrangean dual function is a lower bound on the optimal primal solution. The
linear lower bound is a valid bound for all points on the Pareto front for the
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bi-objective problem. Further, a pair of upper bounds (for the two objectives in
the bi-objective problem) is derived. This idea is illustrated in Figure 4.4 and a
complete mathematical derivation is presented in Paper IV.
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5 Summaries of the appen-
ded papers

The foundation for the models formulated in Papers I–III is a mixed-binary
linear optimization (MBLP) model of a preventive maintenance scheduling
problem with so-called interval costs over a finite and discretized time horizon.
We extend this scheduling model with the individual (ICF) or aggregated (ACF)
flow of components, or with a job flow (JF) through the repair workshop.
Next, we include stocks of spare components, both those components that need
repair and the repaired ones. The resulting scheduling model is then utilized
in the optimization of (one of the) two main contracts, namely maximizing
the availability of repaired (or new) components, and minimizing the deviation
from the contracted turn–around times for the components in the maintenance
loop. Each of these objectives are combined—in a bi-objective setting—with
the objective to minimize the costs for maintenance of the operating systems.
While Papers I–III primarily address the modeling, Paper IV concerns method
development.

paper model preemption in availability turn–around
the workshop contract time contract

I ICF + + +
II ACF + + -
III JF - + -
IV JF + + +

Table 5.1: Summary of the main characteristics of the appended papers.

In this chapter, we summarize the respective papers, whose main properties
and differences are highlighted in Table 5.1. The papers were developed as
enumerated and each of the papers I–III motivated the development of the next
one.
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5.1 Paper I: Scheduling of repair and replace-
ment of individual components in operating
systems

We develop a mixed-binary linear optimization (MBLP) model for simultaneous
preventive maintenance scheduling and (preemptive) workshop planning, in
which the components are tracked individually. To ensure that the operational
schedule is undisturbed, or at least that the disturbance is minimal, it is crucial
to have enough spare components available. The availability objective is defined
as maximization of a weighted average of the number of repaired (or new)
components available. The turn–around time objective minimizes the total
penalty for late and early component delivery. Each of these objectives, together
with a minimization of the maintenance costs, lead to two bi-objective problems,
one corresponding to an availability contract and the other corresponding to a
turn–around time contract.

Our model assumes deterministic processing times in the maintenance workshop.
Uncertainty, such as unexpected events, may, however, affect the processing
times. Unexpected change in processing time(s) is incorporated in our model
by a re-solution of the scheduling problem for the new processing time(s), from
the point in time at which the processing time(s) changed (i.e., the time step
when the component at hand started repair in the workshop). The re-solution
is performed whenever an unexpected event is revealed. The complete schedule
employed is then composed by the computed part-schedules, as defined by each
consecutive pair of time steps at which a(ny) longer processing time(s) were
detected.

We analyze the two contracting forms by studying and comparing the Pareto
fronts resulting from different parameter settings, regarding minimum allowed
stock levels and investments in repair capacity of the workshop. Our specific
results concern the effect on the levels of the stocks of components. We conclude
that our bi-objective mixed-binary linear optimization model is able to capture
important properties of the results from the contracting forms.

Main results and contribution:

1. Formulation of an integrated preventive maintenance scheduling and
maintenance workshop planning, including the modeling of stock dy-
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namics. The model includes individual component flow and preemp-
tive scheduling in the maintenance workshop, as well as a rescheduling
algorithm in case of unexpected events.

2. Definition of the two contracting forms between the stakeholders,
an availability and a turn–around time, leading to two bi-objective
optimization problems.

3. The turn–around time contract, which introduces non-binary coeffi-
cients in the constraint matrix, becomes computationally intractable
for larger instance sizes. An availability contract is computationally
more tractable as it allows removal of individual components in the
model, thereby more suitable for larger instances and real world
problems.

This paper is submitted to the Journal of Scheduling and is under review for
publication. Initial ideas were presented on The First EUROYoung Workshop,
Seville (2019) and some later ideas on the Swedish Operations Research Confer-
ence, Nyköping (2019) and PLANs forsknings- och tillämpningskonferens, KTH
Södertälje (2020).

5.2 Paper II: Simultaneous scheduling of replace-
ment and repair of common components in
operating systems

The key bottleneck in Paper I is the intractability of the suggested model,
primarily for a turn–around type contract between the stakeholders, but also
for the availability contract when the size of the instance that is to be solved
increases. Ergo, the question is how to preserve the main model formulation
but improve its efficiency.

The model formulated in this paper preserves the structure of the model de-
veloped in Paper I; whence a preventive maintenance scheduling problem,
integrated with the maintenance workshop planning via the stocks of spare
components. Unlike in Paper I, the individual component flow is removed and
instead, we only consider component types. That leads to a lot of variables be-
coming integer rather than binary. Hence, the mixed-binary linear optimization
model becomes a mixed-integer linear problem (MILP).

The stakeholders’ collaboration is based upon an availability contract. A new
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definition of the availability contract is presented, in which the lower limit on the
number of available components for a component type is maximized. Together
with minimizing the maintenance (interval and set-up) costs, the bi-objective
problem corresponding to the availability contract is defined. The resulting
model is then utilized in the optimization of the availability contract.

Removal of individuality proves to be advantageous as we are able to keep the
main model properties and at the same time solve the problem more efficiently.
The trade-off, however, appears once we want to define a component repair
turn–around time, for which the aggregation over individual components is not
sufficient.

Main results and contribution:

1. An aggregation of the individual components for each component type
leads to an efficient framework for the availability type of contract.

2. The resulting solutions can be used to find a lower limit for an optimal
performance of a collaboration between the stakeholders. Our results
concern the effect of our modeling on the levels of the stocks of
components over time, in particular minimizing the risk for lack of
spare components. The model can be used for analyzing the change in
the solution when some parameters (e.g., the maintenance workshop
capacity) are varied.

3. This modeling provides a planning tool when the maintenance work-
shop and the system operator are integrated, and a decision support,
regardless of the integration.

This paper has been published in Annals of Operations Research [52] (2023).
The results were presented on the MAPSP (Models and Algorithms for Planning
and Scheduling Problems) conference in Oropa, Italy (2022) as well as on a
SANU (Serbian Academy of Sciences and Arts) seminar in Belgrade, Serbia
(2022).
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5.3 Paper III: An enhanced mathematical model
for optimal simultaneous preventive mainte-
nance scheduling and workshop planning

In Paper I, we formulate a model with individual flow of components and in Paper
II, a model with an aggregated flow of components through the whole system–
of–systems. The first one showed to be computationally intractable for a turn–
around contract type while the second one appeared to be reasonably fast for the
availability contract type. The next question is if we can formulate an efficient
model that allows modeling of a component turn–around time. In addition,
the modeling of the maintenance workshop in Papers I–II is rather simple.
We assumed preemptive flow of components through the workshop, which
means that job interruptions are allowed. While preemption can sometimes be
advantageous, we are also interested in formulating a non-preemptive model for
the maintenance workshop, where a job that has started must be completed
with no interruptions (neither in terms of time nor in terms of repair line),
which we do in this paper.

As a compromise in between the individual and the aggregated flow of compo-
nents through the system–of–systems, we introduce the flow of jobs through
the maintenance workshop, facilitating the preservation of the main model fea-
tures but also enabling the computation of turn–around times. The availability
objective is now formulated as minimization of penalties for going below a
predefined lower limit on the stock of repaired components. We further analyze
the computational complexity of the resulting bi-objective MILP and prove
that it belongs to the class of NP-hard problems (see Section 3.6), hence it is a
computationally demanding problem.

We analyze the uncertainty intervals of the availability penalty reduction for an
increased workshop capacity, and possible reductions of the availability penalty
for an increased maintenance workshop capacity. In addition, utilization of
components in the systems is computed as the averaged wasted component life
over the total number of replacements over the planning horizon, indicating
that there is a trade-off between decreasing the risk of component failure and
increasing its utilization.
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Main results and contribution:

1. An availability bi-objective mathematical model that enables non-
preemptive job scheduling in the maintenance workshop, which brings
this model closer to a real world application.

2. A model that is solvable in reasonable time and allows for computation
of component turn–around times.

3. Our results measure the interplay between the workshop capacity
and the level of component availability, as well as the corresponding
cost trade-off between the stakeholders.

This paper is submitted to EURO Journal on Decision Processes (2023).

5.4 Paper IV: Approximating the Pareto fron-
tier for bi-objective preventive maintenance
and workshop scheduling. A Lagrangean
lower bounding methodology for evaluating
contracting forms

One of the results from Paper III is that, with the JF model, we have the means
to compute the turn–around times without tracking the individual components.
Instead, the turn–around is computed for each job/repair in the workshop. The
next step is to formulate a model for the turn–around time contract between the
stakeholders, that, as before, consists of the minimization of the maintenance
cost as one objective and minimization of penalties for late deliveries as the other
objective. Even though the JF model is more efficient than an ICF, optimizing
for turn–around time (i.e., minimizing the penalties for late deliveries of repaired
components) still leads to long computing times.

This paper develops a solution approach for solving a computationally heavy
bi-objective optimization problem, which corresponds to the turn–around time
contract and JF model. In order to manage the computations in reasonable time,
we use Lagrangean relaxation (see Section 3.4) and subgradient optimization
(see Section 3.5) to find lower bounding functions—in the objective space—of the
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set of non-dominated solutions, complemented with math-heuristics to identify
good feasible solutions (see Section 4.8). The main bottleneck in our method is
the individual tracking of jobs that is necessary for computing the turn–around
times. For that reason, we suggest aggregation over jobs in some parts of the
model, and a heuristic for splitting the aggregated variables back into individual
jobs upon solving the subproblem. As a result, we obtain an approximation
of the Pareto frontier for bi-objective preventive maintenance and workshop
scheduling.

The suggested method may be utilized for further evaluation and comparison
of contracting forms between the stakeholders. At the current stage, when it
comes to the costs the stakeholders face, our results indicate that an availability
contract performs better than a turn–around time contract. While penalties do
not necessarily represent the actual costs, they constitute a measure of contract
violation. Our results indicate that delay penalties are higher as compared to
the availability penalties.

Main results and contribution:

1. Lagrangean relaxation and subgradient algorithm development for
a bi-objective optimization problem. The problem is defined for a
turn–around time contract, but the framework may be utilized for
different problems/optimization objectives as well.

2. Pareto front bounding for a turn–around time bi-objective problem,
that is normally very computationally expensive to compute.

3. Framework for the comparison between the two contract types.

This paper is a manuscript. The main idea of this work was presented on the
Northern Lead Day conference in Gothenburg, Sweden (2023).
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6 Conclusions and future
perspectives

Mathematical models are often created subject to limitations and simplifications,
hence they cannot be seen as complete representations of reality. Rather than
striving to describe the reality in its fullest, a good objective is to approximate
it by focusing on important problem-specific aspects. A representative model
enables systematic analyses and understanding of complex systems, prediction,
insight deduction and cost-effective testing of theories and hypotheses, before
committing to expensive experimentation or development.

This thesis summarizes the development of mathematical modeling and solu-
tion approaches for simultaneous scheduling of component replacement and
repair. On our trajectory towards a comprehensive model, we made certain
modifications, assumptions and improvements, which resulted in Papers I–III.
In Paper I, we show the viability of the integrated preventive maintenance
and workshop scheduling problem, define the contracting forms between the
stakeholders and the corresponding bi-objective optimization problems. The
turn–around time contract becomes computationally intractable for larger in-
stance sizes, indicating that an availability contract is more computationally
tractable. Removing the individuality of components improves the computing
times, leading to Paper II. The resulting solutions may be used to find a lower
limit for an optimal performance of a collaboration between the stakeholders,
regulated by an availability contract. An availability bi-objective mathematical
model that enables non-preemptive job scheduling in the maintenance workshop,
with a new definition of the availability contract, is presented in Paper III.
Modeling of jobs allows for computation of turn–around times, but at the same
time, is less computationally demanding as compared to the individual tracking
of components. The bi-objective turn–around time optimization problem is still
difficult to solve, hence the modeling developed in Paper III requires solution
approaches that make it practically useful. The methodology, that is based on
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Lagrangean lower bounding, heuristically computed upper bounds, and problem
relaxation techniques, is developed in Paper IV. As a result, the Pareto front
for a turn–around time bi-objective optimization problem, which is in practice
unsolvable, is approximated. In light of this, a framework for comparison of the
contracts between the stakeholders is obtained.

Our work indicates that an availability contract type leads to lower maintenance
costs and may be a better choice as compared to a turn–around time contract
type. Evidently, this result is dependent on the data utilized. Nevertheless,
while the turn–around time contract only focuses on repairing and returning
components within a contracted due date, an availability contract reduces the
risk of not fulfilling the operational schedule—which may come very costly—by
ensuring component availability on the stock. Moreover, the availability models
are computationally easier to handle, thus more appealing for practical usage.

Inspiration for this work came from an industrial problem in aerospace. However,
the application of the models and methods presented goes beyond the original
scope, as they may be applied for any system–of–systems with a similar problem
structure. The resulting scheduling modeling provides decision support for the
stakeholders, and may be used as a planning tool when the stakeholders operate
in an integrated fashion. Our modeling provides a framework for aiding and
making decisions.

Future research

There are a few directions in which this work may be extended. An extension
important for the intended application of this work is to introduce corrective
maintenance modeling. At the current stage, the means to handle unexpected
failures are to reduce the risk for such failures by not allowing too large mainte-
nance intervals, and to reschedule the maintenance plan whenever an unexpected
event occurs. Short-term changes in the operational schedules, as well as in the
schedules for the maintenance workshop, are often inconvenient and sometimes
not even feasible. Thus, if possible, the rescheduling should be such that the
solution remains fixed for a certain number of time steps.

The total number of components to be considered can be quite large and, as
discussed in Chapter 1, it is challenging to model them all. Since only a subset
of the total number of components is safety critical, they are the ones that are of
main interest and constitute the driving force of the whole system–of–systems.
Another extension could be to cluster the non-safety critical components in
a way such that they can be incorporated into the modeling. Additionally,
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we may differentiate between missions that are supposed to be flown, and
aircraft configurations required to perform them, as that may have an impact
on maintenance policies, wear of and demand for components.

To model the whole system–of–systems presented in Figure 2.2, we may expand
to more than one maintenance workshop, include external subcontractors and
a contract regulating Saab’s collaboration with each one of them. Instead of
having operational schedules as inputs to the model, the problem of aircraft
operations scheduling may be included as well.

For the purpose of further evaluating the contracts governing the collaboration
between the stakeholders, the modeling may be expanded with additional
indicators and optimization objectives.

As previously discussed, the problem at hand is a complex one. Thus, methods
and solution approaches for improving the computational speed are needed (e.g.,
problem relaxation, decomposition, algorithm development), especially if the
above suggested model extensions would be incorporated into the modeling.
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