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Mathematical Multi-Objective Optimization of the
Tactical Allocation of Machining Resources in

Functional Workshops

Sunney Fotedar

Division of Applied Mathematics and Mathematical Statistics
Department of Mathematical Sciences

Chalmers University of Technology

Abstract

In the aerospace industry, efficient management of machining capacity is crucial
to meet the required service levels to customers and to maintain control of the
tied-up working capital. We introduce new multi-item, multi-level capacitated
resource allocation models with a medium–to–long–term planning horizon.
The model refers to functional workshops where costly and/or time- and
resource-demanding preparations (or qualifications) are required each time
a product needs to be (re)allocated to a machining resource. Our goal is to
identify possible product routings through the factory which minimize the
maximum excess resource loading above a given loading threshold while
incurring as low qualification costs as possible and minimizing the inventory.

In Paper I, we propose a new bi-objective mixed-integer (linear) optimization
model for the Tactical Resource Allocation Problem (TRAP). We highlight some
of the mathematical properties of the TRAP which are utilized to enhance the
solution process. In Paper II, we address the uncertainty in the coefficients
of one of the objective functions considered in the bi-objective TRAP. We
propose a new bi-objective robust efficiency concept and highlight its benefits
over existing robust efficiency concepts. In Paper III, we extend the TRAP
with an inventory of semi-finished as well as finished parts, resulting in a
tri-objective mixed-integer (linear) programming model. We create a criterion
space partitioning approach that enables solving sub-problems simultaneously.
In Paper IV, using our knowledge from our previous work we embarked upon
a task to generalize our findings to develop an approach for any discrete tri-
objective optimization problem. The focus is on identifying a representative
set of non-dominated points with a pre-defined desired coverage gap.

Keywords: Capacity planning, Discrete bi-objective and tri-objective optimiza-
tion, Robust efficient solutions, Decision-making, Representation of the set of
non-dominated points, Coverage gap.
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1 Introduction

The field of Manufacturing, Planning, and Control (MPC) as defined in APICS
dictionary [Blackstone Jr., 2013, p. 99] is described as a closed-loop information
system which includes planning functions of production planning, sales and operations
(S&OP) [Blackstone Jr., 2013, p. 154], master production scheduling [Blackstone Jr.,
2013, p. 101], material requirements planning [Blackstone Jr., 2013, p. 103], and
capacity requirements planning. Due to the increased complexity of businesses
and production methods, most of medium- and large-sized companies have im-
plemented computerized planning systems in the past few decades. Generally,
these are transactional systems helping to track flows of material. Therefore,
it maintains updated procurement and manufacturing information on each
planning decision. However, unless these tools are combined with mathematical
optimization, the chances of getting the best possible solution are minimal (and
not guaranteed at all).

Mathematical optimization is a topic/subject in applied mathematics that deals
with finding the best possible solution to a decision problem (although, some-
times only dealing with the feasibility problem is sufficient). The definition
of best can vary depending on the definition of the objective function(s) of the
optimization problem. In 1960s and 1970s, mixed integer programming (MIP)
models became popular among operations research practitioners who tried
to tackle simple planning problems using MIPs. However, as the size of the
problem instance grows solving a MIP to optimality becomes computationally
demanding. Many state-of-the-art commercial solvers have made solving MIPs
relatively easier as compared to a few decades ago. The adoption of mathemat-
ical optimization has increased for industrial process planning. In this work,
a few novel mathematical optimization models are proposed for allocating
machining resources to jobs for medium-to-long-range planning horizons for
GKN Aerospace Engine Systems (GKN for short) in Trollhättan, Sweden. The
model is intended to assist engineers and planners to make decisions regarding
product routings in the factory.

1



2 1. Introduction

1.1 Case Company: GKN Aerospace Engine Sys-
tems

GKN is a leading supplier of aircraft engine parts. GKN’s products are present
in almost all major commercial aircraft. The products manufactured at the
Trollhättan factory in Sweden include fans at the front of the jet engines or
gas turbines, rotors, stators, and other turbine structures. Rotation and a
high-temperature difference between different parts of the engine put high,
in many cases extreme, quality demands (tight tolerance limits). The capital-
intensive production at a large aerospace tier-1 supplier like GKN is generally
influenced by expensive materials, long supply lead times, a large product mix
(see Lewestam and Mäki [2015]).

1.2 Production context

Manufacturing is performed in multiple steps, such as cutting (milling, turn-
ing, drilling, and grinding), welding, assembly, heat/surface treatments, and
control/measurements. For cutting, GKN has a variety of production re-
sources (machines) with different functions. The factory is organized in several
functionally oriented production shops (so-called functional workshops) [Black-
stone Jr., 2013, p. 70]1, and most of the production resources are shared by
several products. Each production shop is organized as a job-shop [Black-
stone Jr., 2013, p. 87], where similar types of machines are placed in proximity
to each other. A complication is that it is, in practice, impossible to physically
move machines, as they are bulky and fixed into the ground in 2–5 meters deep
pits to avoid mechanical vibrations. Thus, the factory as such can only to a
very limited extent be adapted to changes in the product mix. It is therefore
not possible to maintain perfect flows of parts through the factory over time.
Hence, managing capacity, especially machining capacity (since it takes up a
large share of the total lead times) is crucial for GKN.

1.3 Capacity management

The focus of our research is on capacity management [Blackstone Jr., 2013, p. 22]
which is defined as the function of establishing, measuring, monitoring, and ad-

1A factory configuration in which similar operations are grouped together. An alternate term is
a job-shop layout
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justing limits or levels of capacity in order to execute all manufacturing activities.
Capacity management is also referred to as a response to variation in demand.
However, demand is generally not the only source of variation; another source
that is internally generated is due to additional capacity requirements caused by
re-works, which is the reprocessing done to salvage a defective item or part (see
[Blackstone Jr., 2013, p. 152]). Our interest in aspects of capacity management
is because it helps the planners to absorb some of these variations.

At GKN, a hierarchical approach is used to plan for the machining capacity,
instead of using one big monolithic model. In a hierarchical approach, the deci-
sions made at the top levels influence (set the boundary conditions/constraints)
the decisions made at lower levels. Within this hierarchical approach, a feed-
back loop can help to continuously improve the efficiency of the planning
system by appropriately adjusting the control parameters.

Figure 1.1 illustrates the decomposition of capacity management into the three
levels, capacity strategy, capacity planning, and capacity control. The capacity
strategy deals with the decision regarding investment in new machines and
identifying/modifying product structures. This is done between 2–6 years
in advance. Capacity strategy requires input from manufacturing experts to
establish the bill of material (see [Blackstone Jr., 2013, p. 15]), which is simply a
list of parts, sub-assemblies and raw materials required to form a final product,
and the operations list, that details the method of manufacture of a part and its
sequences.

The output from the capacity strategy level defines the solution space for
capacity planning, also known as rough-cut capacity planning (see [Blackstone Jr.,
2013, p. 153]). Capacity planning deals with tactical allocation decisions made
1–4 years in advance. This identifies product routings which include the
operations performed, their sequences, and machines involved to process them
(see [Blackstone Jr., 2013, p. 153]). It is also necessary for a functional workshop
to prepare/qualify more than one possible routing for each product, rendering
flexibility to the production planners.

The next level is the capacity control [Blackstone Jr., 2013, p. 22], which is the
process of measuring output from production and comparing it with the actual
capacity plan. There is usually a difference between the two, and necessary
corrective measures are required to prevent serious delivery issues. The input
is all possible qualified (approved) routings. These alternative routings [Black-
stone Jr., 2013, p. 6] provide the necessary flexibility to the planners to tackle
any short-term demand variability. Certain performance indices are tracked at
each level, and a feedback loop that goes up one level could be used to adjust
different control parameters. This gradually improves the accuracy of mod-
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Figure 1.1: Hierarchial planning framework with different capacity sources and respec-
tive feedback loops (time discretization in years)

els for capacity planning as some of the control parameters are appropriately
adjusted to produce desirable changes.

1.4 The need for a tactical resource allocation model

The decision regarding where to process products/parts is generally made at
the time of the introduction of new products to a factory (or less frequently,
with a significant change in the production capacity). The process of intro-
ducing a new product is inevitably linked with resource allocation decisions
in a functional workshop. These tactical resource allocations referred to in
this text should not be mistaken for the short-term resource allocations done
when choosing between resources (among several qualified resources) while
scheduling. The latter is commonly addressed in the industry (see an example
from GKN, Thörnblad et al. [2015]). At the time of introduction of new prod-
ucts, manufacturing experts decide the operations list for a product and where
respective operations will be performed. This process involves qualifying
machines for a new job, running simulations and physical tests to check the
quality of features (for example, how accurate (e.g. roundness) was a certain
hole drilled in a job) produced. Thus, once a product’s operations are assigned
to certain machines, changing it is a very costly, and time-consuming, activity.

A decision-making tool that supports GKN in resource allocations for medium-
to-long term planning horizon is needed. Our proposed model provides the
routings to be used by products, and suggestions of new qualifications to
be performed either for new or old products. A general framework for the
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Step 1: Input

Soft constraints Hard constraints

Logistics(DM)
Product 
experts (DM)

Step 2: Model

Step 3: DMs Choices

𝑥𝑖

Qualifications 
acceptable

DMs select a solution
𝑔1(𝑥)

𝑔2(𝑥)

Step 4: Performance loop

𝒊 += 𝟏

𝑥∗

no

Figure 1.2: Framework for resource allocation decision-making tool

decision-making tool is presented in Figure 1.2. Although the focus in this
thesis is mainly on the model (i.e. step 2), it is still important to understand
how the results are going to be utilized. All four steps are part of a continuous
procedure. In the first step, the input regarding constraints is provided by
logisticians and product experts, who are the two types of decision-makers
(DMs) involved. Soft constraints are related to decision makers’ preferences,
and can be modelled either as objective functions or as hard constraints ac-
companied with lexicographic minimization (see Definition 5 routing efficient
solution in Paper I). Hard constraints are related to the feasibility of allocating
a job to a machine, and to capacity limitations of machines. Hard constraints
are modeled as constraints in the optimization model. In the second step, a
multi-objective optimization model is solved. Then, an efficient solution is
chosen and further analyzed by the product experts to check if the new quali-
fications are indeed feasible, using simulations or lab experimentation. If the
qualification is not acceptable, then product experts add new constraints to the
model, and a new (or slightly different) set of efficient solutions is identified.
The final solution is sent to the logistics department responsible for utilizing
these new routings in its scheduling software. The fourth step is about tracking
the effect of new qualifications on lead times, capacity utilization, and other
performance criteria.
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1.4.1 Routings

The term routings is sometimes used as an alternative term for instruction sheet
and bill of operations, which detail the method of manufacture of a particular
product. Routings includes a list of operations to be performed, along with
details about the machines in which the operations must be performed. For
example in Figure 1.3, a product’s/part’s routings are illustrated. It begins
with raw materials released from the inventory. Then, all such types of raw
materials are sent to machine M1 where the first operation is performed for
all the three routings (R1, R2, R3). The second operation can be performed in
three different machines M2(in R1),M3(in R2) and M6(in R3). Afterwards, the
raw materials are sent to M3 for the third operation, and to machine M2 for
the fourth (the last operation). All the finished products/parts are sent to the
final inventory of finished goods. The three different routings differ only in
one operation, i.e. the second operation. The two dashed rectangles enclosing
several machines represent two different shop floors (physical locations in the
factory). Note that the same product/part may visit the same machine multiple
times in the process of getting transformed into the finished product (for
example, in Figure 1.3, machine M2 is visited twice in routing R1). The three
routings considered are shown at the bottom of Figure 1.3. It is generally well-
known that having several alternative routings for a product provides necessary
capacity cushion for managing short-term demand variations, especially, when
machines are shared among products. Thus, it is beneficial to have several
routings qualified for a product.

Each operation has to be qualified for a machine, which requires a significant
one-time cost in the form of man-hours for programming the control systems
and of buying new fixtures or tools. These new qualifications also require
approval from the customers. Thus, it requires time as well as money to
prepare new routings. Hence it should be done well-in-advance, and with
some thought. GKN has 120 machines and thousands of different parts with at
least 5–10 operations, hence, the number of feasible allocations/routings are
simply too many to enumerate and a mathematical analysis of the problem is
therefore necessary.
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R3

R1

M1   ->  M2  ->  M4  ->  M5  ->  M2 

M3

M1

M3 M4

M2

M5

M6

Inventory of 
raw materials

Inventory of 
finished goods

R1 (base routing)

R2

R3 M6

R1

R1,R2,R3

R2

R3

R2

R1,R2,R3

R1,R2,R3

Shop A Shop B

Figure 1.3: Routings for a product. The base routing is the routing that is used most
frequently

1.5 Previous work

The research field of production planning is broad. We provide a brief overview
of the field before diving into the specific variant of the production planning
problem studied and solved in this work.

One popular way of classifying production planning models is by acknowledg-
ing the considered time-horizons. This simplifies to some extent the decision
variables and parameters used in the model. Several authors (e.g. Min and
Zhou [2002], Gupta and Maranas [1999]) classify production planning prob-
lems as strategic, tactical, or operational. Our focus is on tactical models, since
we make medium-to-long term capacity planning decisions. To the best of our
knowledge the most recent review of tactical level mathematical production
planning models is done by Díaz-Madroñero et al. [2014]. The authors have
identified the following categorizations:

(a) Number of products and number of levels of the product structure
The number of products/parts being manufactured; their levels refer to
whether a product has a flat bill of material (BOM) or BOM with multiple
levels consisting of various sub-assemblies. Different variants of multi-
level products/parts (e.g. series, assembly, general, arborescence) are
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described in [Pochet and Wolsey, 2006, Ch. 13]

(b) Time periods

Deals with the size of the time-buckets used. In a small time-bucket,
the time period is long enough to produce only one part/item, whereas
in long time-buckets, either multiple items can be produced or a final
product consisting of multiple items. In Transchel et al. [2011], the authors
have considered both types.

(c) Nature of the demand

The demand uncertainty is mainly tackled by stochastic approaches, and
less commonly by robust or fuzzy approaches. Some of the research
done in stochastic demand production planning models are Genin et al.
[2008] (added noise to demand patterns), Wei et al. [2011] (uses robust
approaches with interval uncertainty) and Chen and Huang [2010] (uses
fuzzy approaches).

(d) Capacity constraint classes

Numerous combinations of capacity constraint classes are comprehen-
sively reviewed in [Díaz-Madroñero et al., 2014, p. 5176, Table 6]. The
classes include inventory, supply, production resources, and transport
services.

(e) Types of objective functions

The most common type of objective function minimizes costs/time (pro-
cessing time, set-up time, and fixture costs) (see Bradley and Glynn [2002],
Van Mieghem [2003]). However, using such an objective function has
drawbacks since most of the cost measures rely heavily on the used ac-
counting principles, which are sometimes misleading as highlighted in
Myrelid and Olhager [2019]. Some of the other objectives considered
in the literature are minimizing backlogs, maximizing throughput, and
maximizing utilization.

Apart from the above-mentioned categorizations, there are numerous other
extensions. In unrelated parallel machine problems Garey and Johnson [1979],
the processing times of jobs (tasks/operations) at machines are not related to
each other and depend on the machine in which it is being processed. On the
contrary, in related parallel machine problems, the processing times of jobs are
independent of the machine in which they are being processed.
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1.6 Scope

The aim of our project is to create a multi-item, multi-level, big time-bucket, capaci-
tated, unrelated parallel machine tactical resource allocation model. The focus of
our models is resource loading, i.e. planning the allocation of capacity of ma-
chines for a time frame where reliable weekly or daily demand predictions do
not exist. Consequently, short-time buckets are not relevant to our models. In-
stead, time discretization employs long time steps (a quarter of a year) wherein
it is reasonable to assume a constant material flow. For example, a product or
a part P1 requires a set of operations, for instance,

{
OP100,OP200,OP300

}
.

A job-type is a combination of a part type and an operation. The orders of job
types, that is, each element of the set of 2-tuples

{
(P1,OP100), (P1,OP200),

(P1,OP300)
}

, must be allocated to machines in each time period over a long
time horizon (1–4 years) with quarterly time-buckets.
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2 Problem description and mod-
elling

In this chapter, the so-called Tactical resource allocation problem (TRAP) is dis-
cussed. We present the basic model that is presented in Paper I and further
developed in the remaining papers.

In Table 2.1 routings for a dummy production system are illustrated with three
machines (k = 1, 2, 3) and two operations milling and turning are performed
on a single product. In the first time period t = 1, milling is done in machines
k = 1 and k = 3, in the second time period the same operation is done in
machines 1 and 2, and in the third time period it is done only in machine 2.
For machine 2, the box around the M indicates that the milling operation is
to be qualified and performed in time-period 2. Similarly, for machine 3 the
turning operation is to be qualified in time-period 2 and performed in time-
period 3. This qualification requires a one-time cost which includes the cost of
new fixtures and the cost of time spent on programming the control systems.
The qualification must be done either before or at the beginning of the time
period when it is to be used.

k = 1 k = 2 k = 3

t = 1 M T T M
t = 2 M T M T
t = 3 M T T

Table 2.1: Routings for a sin-
gle part/product: M (milling)
and T (turning) indicate time
periods (t) when machines (k)
are used for the respective pur-
pose; indicates time period
and machine qualification for
milling and turning, respec-
tively.

11



12 2. Problem description and modelling

2.1 The feasible set: a non-mathematical descrip-
tion

Constraints in an optimization model limit the domain of feasible solutions
(decision variables) acceptable to the planner. However, in [Wierzbicki et al.,
2000, Chapter 5], it is argued that in the real-world many constraints are
divided into so-called soft constraints, and hard constraints. The authors suggest
modeling soft constraints as additional objectives for the optimization problem,
and hard constraints as constraints of the mathematical model. In this section,
a non-mathematical description of the hard constraints is presented

(a) Demand

Each time bucket is a quarter of a year, which is significantly larger than
the total lead time of products. Hence, the demand in each time period
must be satisfied within the same time period.

(b) Routing limitations (τ )

These types of constraints ensure that it is not allowed to allocate orders
of the same job-type to more than a user-defined number of machines
in each time-period, denoted by τ ≥ 1. These constraints keep the
product flow less complex for the production planners. For instance,
in Figure 2.1, we assume a part type P1 (represented by a red-node)
requiring two operations {OP100,OP200}, and the two corresponding
job-types are (P1,OP100) and (P1,OP200) (see the black rectangles at
the top of Figure 2.1). If τ = 2, then only two machines are allowed to
perform job-types (P1,OP100) and (P1,OP200) during the same time-
period. Hence, there are at most four different feasible routings for
product P1 (in Figure 2.1 these routings are R2, R3, R4, R5 marked with
black-arrows). However, if τ = 3, the number of possible routings can be
nine (three machines for each job-type). Increasing the value of τ results
in a greater chance to balance the resource loading; however, having
too many routings may result in a complicated product flow that is not
suitable to the planners. In Figure 2.1, it is evident that if the value of
τ is increased to three, the routings R1 and R6 (blue-dashed arrows)
are allowed as well. The end-user should provide a limitation on the
parameter τ .

(c) Qualification costs (β) and related limitations (γ)

These types of constraints ensure that a given job-type must be qualified
for a machine before planners can start using them. The qualification
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(P1,OP100) (P1,OP200)

P1 M3

M2

M1

M3

M2

M1

R3, R5

R2, R4

R1, R6 R1

R6

R4

R5

R2

R3

Figure 2.1: Routing limitations: P1: a product/part node, {M1,M2,M3} is the set of
machines.

cost associated with qualifying jobs for machines may be in the form of
time spent by manufacturing experts to program the control systems, or
buying new fixtures or tools. The exact costs for qualifying a machine for
a job type are not known a priori, and an accurate prediction requires de-
tailed simulation work by the engineering team. Hence, ordinal numbers
(or levels) will be used.

In Figures 2.2a and 2.2b the two multi-task machines capable of per-
forming both milling and turning operations are illustrated. One of the
significant differences between the two is that the one to the left (Fig-
ure 2.2a) has smaller diameter turning table as compared to the one to
the right (Figure 2.2b). Hence, given that all the other operational condi-
tions are the same, it should be technically possible to move some jobs
from the machine to the left to the machine to the right. However, there
will still be a not too high cost associated with it. Note that apart from
diameter of the parts/products, and the turning tables, there are many
other part/product features and machine capabilities that have to match
for the allocation to be feasible. In this work, it is assumed that such in-
formation is available. The multi-task machines illustrated in Figure 2.2c
and Figure 2.2d have the so-called B-axis, that is, they are inclined at
45◦. This is the only difference between the machines in Figure 2.2a and
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Figure 2.2c, otherwise they are the same size, both having diameter of the
turning table 1.25 m. The turning table in the machine in Figure 2.2d is
larger than that of Figure 2.2a–Figure 2.2c. There are both benefits and
drawbacks of moving a job from the multi-task machine in Figure 2.2a
or Figure 2.2b to any of the B-axis machines in Figure 2.2c or Figure 2.2d.
A benefit is that the productivity is increased due to the use of lower
cutting parameters, such as feed rate or depth of cut, to reach the same level
of quality; hence, the operations are faster. Furthermore, inclined ma-
chines are also more robust w.r.t. the production of more accurate features
on products/parts; hence, less chances of need for re-works. So, both
productivity and robustness are increased in the machine with the 45◦

inclined axis. However, the downside is that the inclined spindle head
may reduce the accessibility to certain sections of the part/product, thus,
making it incapable of producing certain types of product features. In
Figure 2.2e and Figure 2.2f, the two vertical lathes are capable of perform-
ing only turning operations. All of this information has to be encoded
appropriately to be used as parameters in the mathematical model.

There is also a limitation on the total number of new qualifications to
perform in each time-period. This is a result of the limited number of
trained technical experts. This limitation is denoted by γ ∈ Z+.
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(a) A multi-task machine performing both
turning and milling operations with a small-
sized turning table

(b) A multi-task machine performing both
turning and milling operations with a
medium-sized turning table

(c) A multi-task machine with inclined spindle
head performing both turning and milling op-
erations with a small-sized turning table

(d) A multi-task machine with inclined spin-
dle head performing both turning and milling
operations with a large-sized turning table

(e) A vertical lathe machine performing turn-
ing operations with a large-sized turning ta-
ble

(f) A vertical lathe machine performing turn-
ing operation with a medium-sized turning
table

Figure 2.2: Different machine alternatives
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2.2 Problem definition: a mathematical description

The deterministic version of the tactical resource allocation problem (TRAP)
addressed in Paper I is defined in this section. It is called deterministic, as the
values of all the parameters are (assumed to be) known. The notation used for
the model is described in Table 2.2.

Definition 2.1 (Tactical Resource Allocation Problem (TRAP)). Given a set J
of job-types (tasks) and a set K of machines, let pjk be the average processing time
(including set-up time) of job-type j ∈ J when performed in a compatible machine
k ∈ Kj ⊆ K. Each machine k ∈ K has the capacity Ckt (time units) in time-period
t ∈ T and a relative loading threshold ζk ∈ [0, 1]. The demand ajt of each job-type
j ∈ J in time-period t ∈ T must be met. The number of machines allocated to the same
job-type in each time-period must not exceed the value of the parameter τ ∈ Z+. For
assignments (j, k), such that k ∈ Nj and j ∈ J , so-called qualifications are required,
which generate additional one-time costs. It holds that Nj ⊆ Kj for all j ∈ J ; for
the case of a new job-type (associated with a new product) j, Kj = Nj holds. For a
job-type j ∈ J , the machines in the set Kj \ Nj do not require any qualifications. The
total number of qualifications performed per time-period t may not exceed the value
of the parameter γ ∈ Z+. The objectives considered are to minimize the sum (over
time-periods) of maximum excess resource loading above a given threshold ζk over each
machine k ∈ K and to minimize the sum of qualification costs incurred.

Excess resource loading (g1) The objective function is defined by g1, to
be minimized, considers the sum over the time-periods t ∈ T of the ex-
cess resource loading of the machines (i.e. nt ≥ 0), which is defined as the
maximum (over the machines) ratio between the allocated machining hours
and the available hours (i.e. 1

Ckt

∑
j∈J pjkxjkt) minus the loading threshold

ζk ∈ [0, 1] for the machine. The thresholds ζk are provided by the users.
Therefore, in a solution y that minimizes the objective g1, the equality nt =
max

{
0;maxk∈K

{
1

Ckt

∑
j∈J pjkxjkt − ζk

}}
will hold for t ∈ T . In the context

of a bi-objective mixed integer programming (BOMIP) problem, it is defined by
(2.1a), (2.2d), (2.2g), and (2.2j), below.

The practical motivation for employing this objective function is to avoid—
for each machine in each time-period—that the planned loading level (i.e.∑

j∈J pjkxjkt) exceeds the user-defined threshold (Cktζk). As a result, this will
help in maintaining some capacity buffers to be used when there is a short-term
demand variation, which in turn implies that the queuing times are kept at a
minimum.
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Table 2.2: Notation for the tactical resource allocation problem (TRAP)

Sets Description

J = {1, . . . , J} set of job-types to be performed on the products
K = {1, . . . ,K} set of machines
Kj ⊆ K set of machines feasible for job-type j ∈ J
Nj ⊆ Kj set of machines feasible, but not qualified for job-type j ∈ J
T = {1, . . . , T} set of time-periods

Variables Description

xjkt ∈ Z+ number of orders of job-type j ∈ J performed in machine
k ∈ Kj in time-period t ∈ T

sjkt ∈ {0, 1} equals 1 if job-type j ∈ J is allocated to machine k ∈ Kj in
time-period t ∈ T ; equals 0 otherwise

zjkt ∈ {0, 1} equals 1 if machine k ∈ Nj is qualified for job-type j ∈ J
in time-period t ∈ T ; equals 0 otherwise

nt ∈ R+ maximum resource loading above thresholds ζk, k ∈ K, in
time-period t ∈ T

y := (x, s,n, z) bold notations representing vectors of the corresponding
indexed variables

Parameters Description

ajt ∈ Z+ demand of orders of job-type j ∈ J in time-period t ∈ T
pjk ∈ Q+ average machining time (including set-up time) in machine

k ∈ Kj for job-type j ∈ J
Ckt ∈ Z+ capacity (hours) available in machine k ∈ K in time-period

t ∈ T
βjk ∈ Z+ nominal qualification cost associated with qualifying ma-

chine k ∈ Nj for job-type j ∈ J
γ ∈ Z+ upper limit on the number of qualifications in a single time-

period
τ ∈ Z+ upper limit on number of alternative machines for each

job-type in a single time-period
ζk ∈ [0, 1] loading threshold for machine k ∈ K
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Total qualification cost (g2) The objective function g2, to be minimized, is
defined as the sum of the one-time costs incurred by qualifying machines for
job-types, over all the time-periods, i.e. (2.1b). An increase in the number of
qualifications may enable a reduction of the excess loading of the machines.

2.2.1 Model description [Deterministic-TRAP]

The minimization objectives defined in the previous subsection are mathemati-
cally expressed as

minimize
x,s,n,z

g1(x, s,n, z) :=
∑
t∈T

nt, (2.1a)

minimize
x,s,n,z

g2(x, s,n, z) :=
∑
t∈T

∑
j∈J

∑
k∈Nj

βjkzjkt, (2.1b)

while the feasible set is described by the constraints

s.t.
∑
k∈Kj

xjkt = ajt, j ∈ J , t ∈ T , (2.2a)

xjkt ≤ min
{
ajt,

⌊
Ckt

pjk

⌋}
sjkt, k ∈ Kj , j ∈ J , t ∈ T , (2.2b)∑

k∈Kj

sjkt ≤ τ, j ∈ J , t ∈ T , (2.2c)

1
Ckt

∑
j∈J

pjkxjkt − ζk ≤ nt, k ∈ K, t ∈ T , (2.2d)

∑
l∈T :l≤t

zjkl ≥ sjkt, k ∈ Nj , j ∈ J , t ∈ T , (2.2e)

∑
j∈J

∑
k∈Nj

zjkt ≤ γ, t ∈ T , (2.2f)

xjkt ∈ Z+, k ∈ Kj , j ∈ J , t ∈ T , (2.2g)
sjkt ∈ {0, 1}, k ∈ Kj , j ∈ J , t ∈ T , (2.2h)
zjkt ∈ {0, 1}, k ∈ Nj , j ∈ J , t ∈ T , (2.2i)

1− ζk ≥ nt ≥ 0, t ∈ T , k ∈ K. (2.2j)

Defining1 y := (x, s,n, z), for any values of τ, γ ∈ Z+ the set of feasible

1The notations (x, s,n, z) and y will be used interchangeably throughout this section.
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solutions to the model (2.2) is denoted as

Y (τ, γ) :=
{
y
∣∣ the constraints (2.2a)–(2.2j) hold

}
. (2.3)

We denote the number of orders of job-type j ∈ J , processed in machine k ∈ Kj

in time-period t by the decision variables xjkt. In our model, the number of job-
types processed should be equal to the demand for each job-type j ∈ J in each
time-period t ∈ T , as expressed in (2.2a). The constraints (2.2b) ensure that the
number of orders xjkt of job-type j performed in machine k in time-period t
does not exceed the demand ajt or available capacity; they also set an auxiliary
variable sjkt = 1 whenever xjkt > 0. The constraints (2.2c) set an upper bound
for each job-type and time-period, the number of machines to be used to τ ,
the value of which is given as an input by the user. The reason behind the use
of this constraint is to keep the product flow less complex (see Section 2.1).
The constraints (2.2d) make sure to minimize the maximum excess loading
above a given threshold for each machine (referred as ζk) by setting an upper
bound on the variables nt for each time-period. Furthermore, a binary variable
zjkt equals one when a job-type j ∈ J is qualified for machine k ∈ Nj . The
constraints (2.2e) imply that if a job-type j is performed in a machine k ∈ Nj in
time-period t, where Nj is the set of machines that have not been qualified for
job-type j, then a qualification of machine k for job-type j must be done once
within the time-periods {1, . . . , t}. The constraints (2.2f) limit the number of
qualifications allowed to be scheduled in each time-period to γ.

The constraints (2.2g), (2.2h), (2.2i), and (2.2j) define the allowed values of
the variables xjkt, sjkt, and zjkt, nt, respectively. The two objectives (2.1a)
and (2.1b) represent the sum of excess loading above thresholds and the sum
of qualification cost incurred by the planners, respectively. Clearly, this a
bi-objective mixed integer programming (BOMIP) model.

2.2.2 Model description [Robust-TRAP]

In Paper II, the uncertainty in the qualification cost parameter β is considered.
Since these are one-time costs (non-repeatable events) we believe it is not
appropriate to use a stochastic programming approach as we cannot achieve
long-run optimality. Consequently, we reply on a robust optimization approach.
It is well-known from the robust optimization literature that when dealing
with robust counterparts of a deterministic optimization problem, the selection
of an uncertainty set is the most crucial part in hedging against unwanted
events (for more details, see [Ben-Tal et al., 2009, Chapter 3]; Bertsimas and Sim
[2004]). The two types of uncertainty sets that are commonly used are finite
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uncertainty sets and polyhedral uncertainty sets (see, [Kuhn et al., 2016, Section 3.2]
for definitions).

For the applications considered in this work, the qualification cost of each
allocation (j, k), where, j ∈ J and k ∈ Nj is a natural number; hence, a finite
uncertainty set is considered. We define two scenarios, the so-called nominal-
case (most likely case) and a worst-case of qualification cost for each job-type j
to be qualified for a machine k ∈ Nj . It is common in the robust optimization
literature to assume a nominal or most likely scenario (see Bertsimas and Sim
[2004]). We represent the indices of scenarios by Q := {q̂, q̃}2, where q̂ and q̃
refer to the nominal and the worst-case scenarios, respectively. It is to be noted
that the qualification cost in the nominal scenario, i.e. βq̂

jk is always lower than
or equal to that of the worst-case scenario i.e. βq̃

jk.

Thus, in a robust counterpart to the deterministic TRAP, we can define an
objective function g : Y (τ, γ) × Q 7→ R2

+, i.e. the scenarios in Q affect the
objective values. Hence, an uncertain bi-objective TRAP is defined as

P(Q) := {P(q), q ∈ Q}, (2.4a)
(2.4b)

where P(q) is defined as

min
(x,s,n,z)∈Y (τ,γ)

g((x, s,n, z), q) := min
(x,s,n,z)∈Y (τ,γ)

(
g1(x, s,n, z)

g2((x, s,n, z), q)

)
, (2.4c)

and

g2((x, s,n, z), q) :=
∑
t∈T

∑
j∈J

∑
k∈Nj

βq
jkzjkt, q ∈ Q, (2.4d)

g1(x, s,n, z) :=
∑
t∈T

nt. (2.4e)

The concept of efficient solutions (see [Miettinen, 1988, Section 2.7]) from multi-
objective optimization literature is not entirely valid here. Hence, it is necessary
to define alternative concepts that result in desirable solutions when one of
the objective functions is uncertain. Paper II deals with the bi-objective robust
optimization problem with an uncertain objective function.

2More than two scenarios may exist and the methods presented in Paper II can be applied to
such uncertainty sets as well
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2.2.3 Generalized tactical resource allocation model [GTRAP]

The two variants of the model, Deterministic-TRAP and Robust-TRAP, are
explored in Paper I and Paper II, respectively. Furthermore, in Paper III and
Paper IV, the consideration is extended to include inventories. In the context
of Eq. (2.2a), this implies the presence of a buffer that allows for production
levels that may exceed or fall short of demand, as long as the discrepancy is
offset by the corresponding inventory. Additionally, rather than treating each
machining task as an independent job, we adopt a multi-level series structure
for each part type. This approach facilitates the maintenance of inventory for
both semi-finished and finished products. We refer to this model variant as the
Generalized Tactical Resource Allocation Problem (GTRAP).
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3 Related scientific fields

The theoretical background required to solve variants of the TRAP model
is presented. The objective functions are linear functions w.r.t. the decision
variables and the constraints are affine functions of the same variables. The
decision variables are constrained to have one of the following properties:
continuous, integer, and binary. Hence, our problems are bi-objective mixed
integer linear programming (BOMILP) problems. The latter variant (Robust-
TRAP) is also a bi-objective mixed integer linear programming problem (similar
to the Deterministic-TRAP) but with an uncertain objective function. A proof
of the NP-hardness of the TRAP is presented in Paper I. Hence, solving the
TRAP (or any other general problem of which the TRAP is a special case)
is computationally hard, especially for the large instances considered in the
given industrial problem. Hence it is important that efforts are made to solve a
bi-objective MILP as well as a robust bi-objective MILP in a reasonable time-
frame. Furthermore, in Paper III we have also introduced a tri-objective variant
that has similar (if not more) computational challenges. Ease of interpretation
and reasonable computation times are generally extremely important for an
optimization model which is part of a decision-making tool. For this purpose,
in the coming sections some of the relevant theory that builds the background
for the contributions in Papers I, II, III, and IV are discussed.

While an effort has been made to provide an overview of the applicable litera-
ture for all four papers within this chapter, it is advised to refer to the individual
literature sections of each paper for a comprehensive understanding.

3.1 Preliminaries: MILP and MOMLP

In this section, some preliminaries for Mixed Integer Linear Programming
(MILP) problems and Multi-Objective Mixed Integer Linear Programming

23
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(MOMILP) problems are discussed.

3.1.1 Mixed Integer Linear Programming and Solution Meth-
ods

A mixed integer linear programming problem is of the form

min c⊤x+ h⊤y, (3.1a)
s.t. Ax+Gy ≤ b, (3.1b)

x ∈ Zn1
+ , (3.1c)

y ∈ Rn2
+ , (3.1d)

where the data, assumed rational, are denoted as c ∈ Qn1
+ ,h ∈ Qn2

+ , A ∈ Qm×n1 ,
and G ∈ Qm×n2 . The decision variable vector x is non-negative and integral,
and the variable vector y is non-negative and continuous. The feasible set to
(3.1) is denoted

S := {(x,y) ∈ Zn1
+ × Rn2

+ | Ax+Gy ≤ b},

which can be referred to as a mixed integer set. Generally, MILPs are com-
putationally hard to solve, and thus, continuous relaxations of MILPs are
extensively used to (hopefully) get good approximations of an optimal solu-
tion. The reason is that linear programs (LPs) are generally easier to solve. The
natural continuous relaxation of the set S is

S0 := {(x,y) ∈ Rn1
+ × Rn2

+ | Ax+Gy ≤ b}, (3.2)

and the corresponding linear program is min{c⊤x + h⊤y | (x,y) ∈ S0}. In
Figure 3.1a, a set of mixed integer points in a polyhedron corresponding to the
following MILP is illustrated:

min −5x− 2y,

s.t. − x+ y ≤ 2, (black-dashed)
8x+ 2y ≤ 17, (red-dashed)

x, y ≥ 0,

x ∈ Z+.

Many real-world decision problems are modeled as MILPs. Hence, it is worth-
while to investigate the computational difficulty of solving such problems to
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(a) A mixed integer set w.r.t. (3.1)
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(b) Addition of a cutting plane to the problem

Figure 3.1: Mixed integer set and a cutting plane

(near-)optimality. For a significant majority of real-world problems, the size
of the problem instances is large enough to discard the possibility of using
enumeration techniques. For instance, in an assignment problem, there are n
jobs to be performed by n machines. The cost of performing a job is cjk, where
j ∈ J denotes a job, and k ∈ K denotes a machine. The optimization problem
is to decide the cheapest way to assign all the jobs to machines (the same job
cannot be assigned to two or more machines, and the same machine cannot
be assigned to two or more jobs). Since the first job can be assigned to any
of the n machines, the second job to any one of the n − 1 machines, and so
on, there is a total of n! possible assignments. It is well-known that n! grows
exponentially as a function of n. Hence, enumeration is not possible for an
instance with a large value of n. Generally, MILPs and ILPs are NP-hard (i.e.
polynomial-time algorithms are not available) (see [Conforti et al., 2014, Chap-
ter 1.3]). However, there are some combinatorial optimization problems for
which polynomial-time algorithms are available. This happens when a perfect
formulation is available or can be easily obtained. The linear system of inequal-
ities Ax + Gy ≤ b results in a perfect formulation of the set S ⊂ Zn1

+ × Rn2
+ ,

if conv(S) = {(x,y) ∈ Rn1
+ × Rn2

+ | Ax +Gy ≤ b}. For pure integer sets, if the
constraint matrix is totally unimodular (TU) [Conforti et al., 2014, Chapter 4.2],
then the perfect formulation is available. Perfect formulations are available for
some of the classical combinatorial optimization problems such as assignment,
shortest path, maximum flow, and bipartite matching. A perfect formulation
is also available if the linear system of inequalities has total dual integrality
(see, [Conforti et al., 2014, Chapter 4.6]). In general, perfect formulations can
be made available for all combinatorial optimization problems but for the
problems that are NP-hard the number of constraints in a perfect formulation
grows exponentially as a function of the number of variables.

Solution methods for MILPs Two common components of most of the ex-
act solution methods for solving MILP problems are the branch-and-bound
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method and the cutting plane method. In practice, there are many stochastic
solution methods, which typically do not provide any (lower) bounds. There
are also approximation algorithms that provide bounds on the MIP duality gap.
However, in this section we focus on two of the popular solution approaches,
i.e. branch-and-bound and cutting plane.

• The branch-and-bound algorithm is a method based on the divide-and-
conquer principle. Let us denote an optimal solution to a problem defined
in (3.1) by (x∗,y∗) and the optimal objective value by z∗. Let us denote
the optimal solution and value of the corresponding LP relaxation with
feasible set S0 by (x0,y0) and z0, respectively. Since S ⊂ S0, the inequal-
ity z0 ≤ z∗ holds. If x0 is integral then it is implied that (x0,y0) ∈ S, and
z∗ = z0. However, usually, at least one of the components of the vector
x0 is fractional. The two main building blocks of the branch-and-bound
method, as also highlighted in the name are branching and bounding. The
former, also called variable branching, is a procedure in which two or more
sub-problems are created by restricting the domain of a variable or a
group of variables. Bounding of the objective value is done by solving
the LP relaxations of the corresponding sub-problems. This is called
linear programming bounding. The branch-and-bound algorithm maintains
a list of linear programming sub-problems to be solved by relaxing in-
tegrality of variables, and also adding constraints on the variables, as
xj ≤ ⌊xj⌋ and xj ≥ ⌈xj⌉, in the respective branches. Each linear program-
ming sub-problem is represented as a node in the branch-and-bound tree.
For details, we refer to [Conforti et al., 2014, p. 10]. There are various
other modern approaches to branching and bounding implemented in
commercial solvers.

• The cutting plane method is the second approach that results in better
or tighter re-formulations describing the feasible set S. The main idea
is to find an inequality (valid inequality) that cuts off feasible solutions
in the relaxed problem which are not present in the set S. An inequality
α⊤u ≤ β is valid for a set K ⊆ Rd, if it is satisfied for every point ū ∈ K,
where α and β is a rational vector and scalar, respectively.
Hence, for the first linear relaxation S0, look for a valid inequality for the
set S, for instance, â⊤x+ ĝ⊤y ≤ b̂, where â ∈ Qn1 , ĝ ∈ Qn2 , b̂ ∈ Q such
that â⊤x0 + ĝ⊤y0 > b holds but â⊤x+ ĝ⊤y ≤ b̂ holds for all x ∈ S (note
that x0 has fractional components). Hence, the feasible set

S1 := S0 ∩ {(x,y) | â⊤x+ ĝ⊤y ≤ b̂}

is smaller than S0. Thus, it is implied that S ⊆ S1 ⊂ S0, and the formula-
tion corresponding to the LP relaxation of S1 is stronger than for the set
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S0. Consequently, z0 ≤ z1, where z1 = min
(x,y)∈S1

{c⊤x+ h⊤y}. Note that

for a minimization problem it is important to compute as large a lower
bound as possible for faster convergence to an optimal solution. For
detailed steps the reader should refer to [Conforti et al., 2014, p. 10], and
for details on cutting plane methods, the introduction section in [Conforti
et al., 2014, Chapter 5] is relevant.

Generally, in most of the commercial solvers, both of these methods are com-
bined in a branch-and-cut framework. In this approach, cuts are added to get
tighter formulations before applying branching. For instance, in the example in
Figure 3.1a, one of the optimal solutions for the LP relaxation corresponding to
S0 is (x, y) = (1.3, 3.3), and if the constraint 2.5x+ y ≤ 5.5 is added, it results
in a tighter formulation (see Figure 3.1b). In fact, if the LP relaxation is solved
after adding this constraint, a solution (x, y) = (1, 3)⊤ is obtained, which is a
feasible, and optimal solution to the MILP problem in (3.1).

For most of our work, commercial solvers are used that have advanced/mature
sub-routines to generate appropriate cuts and selection rules for branching
decisions depending on the type of problem instances. Some of the cuts that
are applied are knapsack covers (see Crowder et al. [1983]), GUB covers (see
Gu et al. [1999]), flow covers (see Gu et al. [1999]), cliques (see Crowder et al.
[1983]), implied bounds (see Hoffman and Padberg [1991]) and Gormory mixed-
integer cuts (see Cornuéjols [2006]. There are also various lifting procedures
(see [Conforti et al., 2014, Chapter 7]) which are used extensively in almost all
modern implementations. For more details on commercial codes of solvers,
readers should refer to Bixby et al. [2000].

3.1.2 Multi-Objective Mixed Integer Linear Programming Prob-
lems

Most industrial decision problems have several objectives, which are often in
conflict. Let us consider a multi-objective mixed integer linear programming
(MOMILP) problem defined as

min
x∈X

z(x) := (z1(x), . . . , zp(x)), (3.4)

here X ⊆ Zn
+ is defined by a set of affine constraints, with x ∈ Zn1

+ × Rn2
+

variables, where n = n1 + n2. The functions z1, z2, . . . , zp are linear, and the
image Z of X under vector valued functions z : Zn

+ → Rp
+ represents the

feasible set in the criterion space. Some common notations and definitions used



28 3. Related scientific fields

to solve multi-objective optimization problems and define relevant optimality
concepts are described next. For any two vectors z and w, both belonging to
Rp with p ≥ 2, we employ the following criteria for comparisons:

z ≤ w ⇐⇒ wi ∈ [zi,∞) ∀i ∈ {1, . . . , p}; (3.5a)
z ⪯ w ⇐⇒ wi ∈ [zi,∞) ∀i ∈ {1, . . . , p} and z ̸= w; (3.5b)
z < w ⇐⇒ wi ∈ (zi,∞) ∀i ∈ {1, . . . , p}. (3.5c)

In MOMILPs, it is often the case that a singular optimal value does not exist
due to the inherent trade-offs between conflicting objectives. Hence, one
must present a set of solutions that represent a balance among the competing
objectives. These solutions can then be presented to decision-makers, who can
make informed choices based on their specific preferences and the solutions
obtained.

Definition 3.1 (Weakly efficient solutions). A feasible solution x′ ∈ X is called the
weakly efficient solution if ∄x ∈ X such that, zk(x) < zk(x

′), for k ∈ {1, . . . , p}.
Furthermore, z(x′) is called a weakly non-dominated point in the criterion space.

Definition 3.2 (Efficient solutions). A feasible solution x′ ∈ X is called the efficient
solution or Pareto optimal solution if ∄x ∈ X such that z(x) ⪯ z(x′). Furthermore,
z(x′) is called a non-dominated point in the criterion space. The set of all the non-
dominated points is called the efficient frontier. The set of efficient solutions is denoted
by Xeff . The set of corresponding objective values is called a set of non-dominated
points (NDPs).

Definition 3.3 (Ideal point). A point zideal ∈ Rp is called an ideal point (see [Miet-
tinen, 1988, Definition 2.4.1]) if it minimizes all the objectives separately/individually.
Thus, zidealk := min

x∈X
zk(x), k ∈ {1, . . . , p}.

Definition 3.4 (Supported efficient solution). A feasible solution x′ ∈ Xeff is
called a supported efficient solution (see [Ehrgott, 2005, Definition 8.7]) if ∃λ > 0p

such that x′ ∈ argmin
x∈Xeff

λ⊤z(x) and z(x′) is supported non-dominated point. On

the contrary, if an efficient solution does not satisfy this condition then it is called a
un-supported efficient solution1.

Most Multi-Objective Optimization Problems (MOOPs) are tackled using a
method known as scalarization. This method involves converting a MOOP
into a single-objective optimization problem, which can then be solved using
well-established techniques for single-objective optimization. The solution thus
obtained serves as a boundary for the subsequent scalarization iteration. This it-
erative process continues until all non-dominated points have been identified or

1Note that un-supported efficient solutions generally exist for non-convex problems
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an acceptable approximation is achieved. It is important to note that MOMILP
poses a particularly daunting challenge due to the inherent complexity of solv-
ing scalarized problems in the form of mixed-integer programs. Nonetheless,
MOMILP is a well-researched field, and several developed methods will be
discussed in the following section. In the context of this discussion, we are
specifically considering problems with only affine functions. However, there is
also significant research focused on multi-objective mixed-integer convex (and
non-convex) optimization, where multiple convex (or non-convex) objective
functions are present and some variables are constrained to integer values.
Notable work in this area includes Eichfelder and Warnow [2023], Niebling
and Eichfelder [2019]. However, the focus of the literature survey is mainly
multi-objective integer linear programming (MOILP) problems as we have also
shown that our models have only a discrete number of non-dominated points
in Paper I.

3.2 Methods for Solving Multi-Objective Integer
Linear Programming (MOILP) Problems

Algorithms for Multi-Objective Integer Linear Programming (MOILP) can be
broadly classified into two main categories: decision space search methods and
criterion space search methods.

Popular methods for decision space search include evolutionary multi-objective
methods, such as NSGA-II (see Deb et al. [2002]), which has gained interest,
although it does not provide any measure of the verified closeness to the Pareto
front. There have been some improvements suggested in branch-and-bound
methods for mixed 0-1 linear problems (e.g. Vincent et al. [2013] and Stidsen
et al. [2014]), which is a decision space search method.

Our work focuses on criterion space search methods, that provide (approxi-
mate) efficient frontiers, and which are also motivated by an improved effi-
ciency of mathematical optimization solvers and relatively inexpensive com-
puting power. Some of the popular methods for criterion space search are the
weighted sum method (e.g. Aneja and Nair [1979]), the perpendicular search method
(see Chalmet et al. [1986]), the augmented weighted Tchebycheff (AWT) method
(e.g. Bowman [1976] and Steuer and Choo [1983]), and the ϵ-constraint method
(see [Miettinen, 1988, p. 85]). Most of the algorithms suggested in the literature
have one basic operation common among them, the so-called scalarization. The
idea is to transform a MOILP into a series of single-objective optimization
problems which are solved sequentially.



30 3. Related scientific fields

Definition 3.5 (Scalarized problem). A scalarized problem is a single-objective
optimization problem related to MOILP with additional variables, and constraints
solved repeatedly in order to find some subset of the set of efficient solutions (see Ehrgott
[2006]).

The two main aspects considered while choosing a scalarization are (a) Is
an optimal solution of the scalarized problem a weakly or strictly efficient
solution? (b) Can all the efficient solutions be identified (both supported
and un-supported efficient solutions)? Following are some of the popular
scalarization techniques used to identify efficient solutions:

• Weighted Sum method: This is one of the most popular methods for solving
both MOILPs and MOMILPs. In this method, each objective function is
associated with a non-negative coefficient, and hence, transformed into a
single-objective optimization problem. The following model is a typical
representation of the scalarization used in the weighted sum method:

min
x∈X

p∑
k=1

λkc
⊤
k x, (3.6)

where λk > 0 is the weight coefficient for each objective function indexed
by k ∈ {1, . . . , p}. The cost coefficient vector for the kth objective function
is ck ∈ Rn

+. It is a well-known result (see [Ehrgott, 2005, Chapter 3])
that any solution to the model (3.6) is an efficient solution, however, it
is always a supported efficient solution. Hence, un-supported efficient
solutions are not identified by the weighted sum method. One important
advantage of the weighted sum method is that it (model (3.6) for a given
λ) usually requires the same computational effort as a single-objective
version of the MOILP or MOMILP.

• ϵ-constraint method: It is a popular type of method capable of finding
all the efficient solutions (both supported as well as un-supported). In
this method, only one of the p objective functions is considered and the
remaining p − 1 are set as constraints (also popularly referred to as ϵ-
bounds) on the values of the respective objective functions. The values of
ϵ ∈ Rp−1 are updated after each scalarized problem

min
x∈X

c⊤j x, (3.7a)

s.t. c⊤k x ≤ ϵk, k ∈ {1, . . . , p} \ {j}, (3.7b)

is solved to optimality. The optimal solution of the model (3.7) is at least
weakly efficient, and under certain conditions even strictly efficient (see
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Chankong and Haimes [1983] for other results). One of the drawbacks
of the ϵ-constraint method is that the scalarized model (3.7) is generally
computationally harder as compared to the single objective version. This
is mainly due to the constraints (3.7b), which are actually knapsack con-
straints, added to the problem. For certain types of problems depending
on the structure of set X , these additional constraints may make the prob-
lem computationally very hard (see [Ehrgott, 2006, Sec 4.4] for specific
problem instances).

• Augmented weighted Tchebycheff (AWT) method: This method first proposed
in Steuer and Choo [1983] is quite popular within interactive methods (see
[Miettinen, 1988, Chapter 5] for more details) as well. The method adds to
the objective function a weighted distance from a reference point (usually
an ideal point, zideal ∈ Rp) in the criterion space. The following model is
a typical scalarization used for this purpose

min
x∈X

{
f+λ̄

p∑
k=1

(
zk(x)− zideal

k

)}
, (3.8a)

s.t. f ≥ αk

(
zk(x)− zideal

k

)
, k ∈ {1, . . . , p} (3.8b)

f ≥ 0, (3.8c)

where αk > 0 are the respective weights for the l∞-norm of the difference
between the ideal point (zideal) and the objective vector z(x) correspond-
ing to a point x ∈ X , and λ̄ is the coefficient for the l1-norm of the
same distance measure. By choosing appropriate values of λ̄ and α,
all non-dominated points can be obtained. The inclusion of min-max
objective results in some increased computation time as compared to
single-objective MOILPs. Furthermore, identifying λ̄ and α for searching
only strictly efficient or at least fewer weakly efficient solutions has made
the use of this method elusive.

• Benson’s method: First presented in Benson [1978], it is a method that
can be used for checking whether a given solution is efficient, and also
identifying yet unknown non-dominated points. The scalarized problem
can be defined as (note the additional variable vector u)

max

p∑
k=1

uk, (3.9a)

s.t. c⊤k x̄− uk − c⊤k x = 0, k = 1, . . . , p, (3.9b)
u ≥ 0, (3.9c)
x ∈ X, (3.9d)
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where x̄ ∈ X is the solution that needs to be checked if it is efficient or
not. Let us denote uk = c⊤k x̄− c⊤k x, a formulation almost a union of the
weighted sum and ϵ-constraint method is obtained as

min
x∈X

{ p∑
k=1

c⊤k x : c⊤k x ≤ c⊤k x̄, k ∈ {1, . . . , p}
}
. (3.10)

A general framework suggested by Ehrgott [2006], for scalarized problems is:

min
x∈X

max
k∈{1,...,p}

{
αk(c

⊤
k x− ρk) +

p∑
k=1

λk(c
⊤
k x− ρk)

}
, (3.11a)

s.t. c⊤k x ≤ ϵk, k ∈ {1, . . . , p}, (3.11b)

where ρk, and αk, k ∈ {1, . . . , p}, are defined in Table 3.1.

Table 3.1: Parameters for the generalized scalarized problem (3.11), where zideal and x̄
denote the ideal objective value, and (pre-defined) reference solution, respectively.

Method ρk αk λ ϵ

weighted sum 0 0 λ ∈ Rp
> ϵk = ∞, k ∈ {1, . . . , p}

ϵ-constraint 0 0 λj = 1, λk = 0, k ̸= j ϵj = ∞, ϵk ∈ R, k ̸= j

AWT zideal
k > 0 [λk]k={1,...,p} = λ̄ ≥ 0 ϵk = ∞, k ∈ {1, . . . , p}

Benson’s 0 0 [λk]k={1,...,p} = 1 ϵk = c⊤k x̄, k ∈ {1, . . . , p}

Another common strategy while looking for efficient solutions is the so-called
two-phase strategy. Generally, in the first phase, all the supported efficient
solutions are identified, whereas in the second phase, un-supported efficient so-
lutions are identified. This method was used to solve a bi-objective assignment
problem in Przybylski et al. [2008]. However, these two-phase approaches have
appeared previously as well (see Visée et al. [1998]). Some other methods that
have been proposed for MOILP problems can be reviewed in [Ehrgott, 2006,
Sec. 2].
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3.3 Specific algorithms for BOILP and TOILP prob-
lems

In Paper I, a bi-objective mixed integer linear programming (BOMILP) problem
called Tactical Resource Allocation Problem (TRAP) is solved. An important
conclusion drawn from Proposition 3 in Paper I is the following

Proposition 3.1 (Efficient frontier of the TRAP model). The efficient frontier of
the TRAP contains only isolated non-dominated points, and no (closed, half open, or
open) line segments (as is the case in typical BOMILPs), irrespective of the values of
the parameters βjk, k ∈ Nj , j ∈ J .

Hence, without loss of generality, one can use algorithms for bi-objective inte-
ger linear programming (BOILP) problems for solving the TRAP as well. Most
of the algorithms mentioned in the previous section are popular while solv-
ing BOILPs. However, some algorithms based on decomposing the criterion
space also exist. One of the important (recent) ones, called the Balanced Box
method, is designed for BOIPs (see Boland et al. [2015] for details). Generally,
in these criterion space decomposition methods, more number of scalarized
problems are solved as compared to most of the conventional scalarization
methods but usually, these scalarized problems in decomposition methods
are computationally easier to solve. In this section, we have also introduced a
specialized method for the tri-objective integer linear programming (TOILP)
problem which is useful in Paper III and Paper IV.

3.3.1 Balanced Box method

Balanced Box method is used to identify efficient frontier of bi-objective integer
programming problems. There is an initial search space defined by the two non-
dominated points zT and zB, which refer to the non-dominated points defining
the minimum value for the first and second objective functions, respectively.
Formally, the two non-dominated points are defined as

zT := lexmin
x∈X

{z1(x), z2(x)}, (3.12a)

zB := lexmin
x∈X

{z2(x), z1(x)}, (3.12b)

where lexmin is the standard lexicographic minimization as defined in [Ehrgott,
2005, Section 5.1].
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Figure 3.2: First step of the Balanced Box
method
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Figure 3.3: Second step of the Balanced
Box method (legends as Figure 3.2)

The rectangular search space is then defined as

R(zT, zB) :=
{
z ∈ R2

∣∣∣ zT
1 ≤ z1 ≤ zB

1, z
B
2 ≤ z2 ≤ zT

2

}
,

where (zT
1, z

B
2) and (zB

1, z
T
2) denote the ideal and nadir points, respectively (see

[Miettinen, 1988, p. 15–16]). In Figures 3.2 and 3.3, a simple example of this
procedure is illustrated. In the first step (see Figure 3.2), there are two initial
non-dominated points (zT and zB). Furthermore, the rectangle R(zT, zB) is split
into two halves along the z2 axis. Thus, the two new rectangles containing
yet-unknown non-dominated points are R(zT, zt) and R(zb, zB), where zb :=

(zT
1,

zT
2+zB

2

2 ) and zt := (zB
1,

zT
2+zB

2

2 ). Firstly, the rectangle R(zb, zB) is searched and
the problem lexmin

x∈X
{z1(x), z2(x) | z ∈ R(zb, zB)} is solved. The non-dominated

point obtained is z1 (see illustration in Figure 3.3). Similarly, a lexicographic
minimization problem is solved for the other rectangle R(zT, zt) to find z2

using lexmin
x∈X

{z2(x), z1(x) | z ∈ R(zT, zt)}. A recursive algorithm is presented

in [Boland et al., 2015, Algorithm 2]; this algorithm has shown computational
superiority over many existing methods for several benchmarking instances
for BOIPs (see [Boland et al., 2015, Section 6]).

3.3.2 AWT (with adaptive formulae)

The Augmented Weighted Tchebycheff (AWT) method is discussed in Sec-
tion 3.2. As already highlighted, one of the issues with the AWT method
is, however, that the coefficients for the l∞- and l1-norms are not available;
hence there is a risk that many weakly efficient solutions are identified2. In
Dächert et al. [2012] the authors came up with adaptive formulae for solv-
ing bi-objective integer linear programming problems and the summary is
in Table 3.2. For a given reference point in the criterion space zideal, define

2sometimes using too small coefficients also result in numerical insatiability.
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x := zB
1 − zideal1 , y := zT

2 − zideal2 , and u ∈ (0, 1). Note that when x ≤ 1, or
y ≤ 1 (not considered in Table 3.2), since it is a BOILP, there are no interior
non-dominated points in R(zT, zB), where zT and zB are described in (3.12).

Table 3.2: Parameters for the AWT method (3.8) for BOILPs from [Dächert et al., 2012,
Table 2]

Case α1 α2 λ̄

x > y ≥ 2 xy−x−y+u(2−u)
xy−y−3x+x2+2u(2−u)

(x−u)(x+u−2)
xy−y−3x+x2+2u(2−u)

(x−u)(1−u)
xy−y−3x+x2+2u(2−u)

x = y ≥ 2 1
2

1
2

1−u
2(x+u−2)

y > x ≥ 2 (y−u)(y+u−2)
xy−x−3y+y2+2u(2−u)

xy−x−y+u(2−u)
xy−x−3y+y2+2u(2−u)

(y−u)(1−u)
xy−x−3y+y2+2u(2−u)

3.3.3 Quadrant Shrinking method (for TOILP problems)

There are numerous specialized algorithms described in the literature specifi-
cally designed for solving MOILPs (see some popular ones Sylva and Crema
[2004]; Dächert et al. [2017]; Lokman and Köksalan [2012]), and for a detailed
review, we refer to [Boland et al., 2017, Section 1]. One of the latest additions to
algorithms for tri-objective integer linear programming (TOILP) problems is
the Quadrant Shrinking Method (QSM) presented in Boland et al. [2017]. Our
interest in TOILP problems is due to Paper III which introduces a generalized
tactical resource allocation problem (GTRAP). The QSM forms the basis of
our decomposition approaches in both Papers III and IV. The reason behind
the selection of the QSM is that it operated on the projected two-dimensional
criterion space that facilitated our decomposition approach.

A TOILP can be described as in (3.4), with p = 3. QSM works in projected
two-dimensional criterion space. A point u := (u1, u2, u3)

⊤ is projected as
û = (u1, u2) in the criterion space corresponding to z1 and z2. Given û ∈ R2, a
quadrant is defined as Q(û) := {y ∈ R2 | y ≤ û}, hence, û is the upper bound
of the quadrant Q(û). As a result of [Boland et al., 2017, Propositions 4 and
5], it is established that a non-dominated point z(x̂), with the property that its
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projection (z1(x̂), z2(x̂))
⊤ ≤ û, can be found by solving the following two ILPs

x∗ ∈ argmin
x

{z3(x) : x ∈ X; zk(x) ≤ ûk, k ∈ {1, 2}}, (3.13a)

x̂ ∈ argmin
x

{ 3∑
k=1

zk(x) : x ∈ X; z3(x) ≤ z3(x
∗); zk(x) ≤ ûk, k ∈ {1, 2}

}
.

(3.13b)

This is referred to as 2-D-NDP search in Boland et al. [2017], however, originally
it first appeared as a two-stage scalarization in Kirlik and Sayın [2014]. This is
the core step in QSM used to explore all the quadrants that are expected to
have yet unknown non-dominated points. A recursive algorithm is detailed in
[Boland et al., 2017, Algorithm 1].

3.4 Uncertainty in the objective functions

The multi-objective optimization problem (3.4) has no uncertainty associated
with parameters. Sometimes uncertainty present in parameters may arise due
to uncertain future developments of the data defining an instance, and some
imprecise calculations or measurements. The outcome of decisions made under
uncertainty of some parameters can sometimes be extremely sensitive to the
actual data, and hence, extra care should be taken while making decisions
under uncertainty.

For this particular reason, different approaches have been suggested for solving
MOOPs which are based on stochastic programming, fuzzy approaches, and
robust optimization. Stochastic programming for MOOP (see Gutjahr and Pich-
ler [2013]) is used when there are enough data available and fuzzy approaches
(see [Slowinski and Teghem, 1990, Chapter 4]) when expert judgments on fuzzy
membership are reliable. A drawback of the stochastic approach is that for
some problems so-called long-run optimality is not relevant, as the repeatability
element of the decisions is missing; the decision maker has to live with the
consequences of the decision made once. Since in TRAP, qualification costs for
a specific type of allocation is incurred only once, it is evident that combining
robust optimization and multi-objective optimization has certain benefits over
other approaches.

Recently, the robust multi-objective optimization approach has been gaining
interest in the research community for solving multi-objective optimization
problems with uncertain objective functions, and deterministic constraints, for
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which the amount of data available is not sufficient to make any informed prob-
ability distribution assumptions of the input parameters. An uncertain MOOP
(with deterministic constraints) can be defined as a family of parameterized
problems as follows:

P(U) := (P(ξ), ξ ∈ U), (3.14a)

where P (ξ) is defined as

min z(x, ξ), ξ ∈ U , (3.15a)
s.t. x ∈ X, (3.15b)

where z : X × U → Rp, ξ is a vector containing uncertain parameters and U
is the set of uncertain scenarios. There are two main types of uncertainty sets
considered in the robust optimization literature:

• Finite uncertainty set. In this case, it is assumed that the set of scenarios
is finite, i.e. U = {ξ1, . . . , ξn}.

• Polyhederal uncertainty. The uncertainty set is given as the convex hull
of a finite set of scenarios, i.e. U = conv{ξ1, . . . , ξn}.

Next, single-objective robust optimization and its generalization to the multi-
objective case is introduced.

3.4.1 Single objective robust optimization

For single objective robust optimization (SO-RO) problems with determinis-
tic constraints, numerous concepts of robustness have been discussed in the
literature. Some of the well-known ones are:

• Minmax robust optimality for SO-RO problems (see [Ide and Schöbel, 2016,
Definition 11]). Given P (U) with z : X × U → R (i.e only one objective
function), a solution is called minmax robust optimal if it is an optimal
solution to

min
x∈X

max
ξ∈U

{ z(x, ξ) }.

• Minmax regret is a concept to avoid conservativeness of the minmax
approach. Regret is defined as the difference between the resulting benefit
(cost) to the decision maker, and the benefit (cost) to the decision maker
from the decision if the actual scenario was known (see [Kouvelis and
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Yu, 1997, Chapter 1] for details). There are many other variants of regret
as well, one of them being the relative deviation of the objective value
corresponding to the robust decision from the value corresponding to the
optimal decision if the actual scenario is known.

• Light robustness is introduced for SO-RO in Fischetti and Monaci [2009].
The idea is to choose solutions that are considered ε “good enough” in
the nominal (most likely) scenario and select the one that is most reliable
in the worst-case scenario within a certain interval. This approach also
reduces the over-conservativeness of the minmax approach which is a
common criticism of robust optimization as well.

A recent review article on SO-RO is Goerigk and Schöbel [2016].

3.4.2 Robust MOOP

The need to develop efficiency concepts for robust MOOP first arose due
to requirements in certain application areas of aircraft route guidance and
shipping hazardous materials (see, [Kuhn et al., 2016, Section 8] for more
details on applications). Defining an analogous concept of efficient solutions
(from MOOP) to a comparable concept in robust MOOP is not straightforward.
Various concepts of the so-called robust efficiency have been suggested. A
detailed overview of various robust efficiency concepts is presented in [Ide and
Schöbel, 2016, Section 3]. Following are some of the robust efficiency concepts
that are important for Paper II

Definition 3.6 (Flimsily robust efficient (FRE)). Given the uncertain MOOP P(U),
a solution x̄ ∈ X is called flimsily robust efficient (FRE) for P(U) if it is efficient for
P(ξ) for at least one ξ ∈ U . The set FRE solutions X f := ∪

ξ∈U
Xeff(ξ), where Xeff(ξ),

is the set of efficient solutions to the deterministic MOOP P(ξ).

Definition 3.7 (Highly robust efficient (HRE)). Given the uncertain MOOP P(U),
a solution x̄ ∈ X is called highly robust efficient (HRE) for P(U) if it is efficient for
P(ξ) for all ξ ∈ U . The set of HRE solutions Xh := ∩

ξ∈U
Xeff(ξ).

Remark 3.1. For the two special cases following holds

• For |U| = 1 (i.e. MOOP), the set of HRE and FRE solutions are equivalent.

• For p = 1 (one objective function, i.e. single-objective robust optimization), a
solution is HRE if it is optimal for all the scenarios ξ ∈ U and FRE if it is
optimal to at least one of the scenarios.
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Figure 3.4: zU (x1)−R2
⪰ (dash-dotted), zU (x2)−R2

⪰ (solid), zU (x3)−R2
⪰ (dashed). The

cross and square-marks are for scenarios ξ1 and ξ2, respectively.

HRE is a very restrictive requirement, and the existence of such solutions is not
guaranteed. However, as per [Ide and Schöbel, 2016, Lemma 9], the existence of such a
solution (i.e. HRE) is guaranteed, if one of the objectives does not have any uncertain
parameters i.e. at least one of the objective function i∗ ∈ {i ∈ {1, . . . , p}; zi(x, ξ′) =
zi(x, ξ̄), ξ

′, ξ̄ ∈ U} exists, and also has a unique optimal solution to the problem
min{zi∗(x, ·) | x ∈ X}3.

For SO-RO problems, minmax robust optimality is well-defined but when there
is a vector valued objective function, the definition of the worst-case is not
unambiguous. Hence, an extension of minmax robustness to MOOP is not
unambiguously defined. There are three extensions of this concept for MOOP.
The most common one—from Ehrgott et al. [2014]—is presented next.

Definition 3.8 (Set-based minmax robust efficiency, Ehrgott et al. [2014]). Given
the uncertain MOOP P(U), a feasible solution x̄ ∈ X is called set-based minimax
RE solution if ∄x′ ∈ X \ {x̄}, such that

zU (x
′) ⊆ zU (x̄)− Rp

⪰, (3.16)

where zU (x) := {z(x, ξ) | ξ ∈ U}, and {z ∈ Rp | z ⪰ 0} is denoted by Rp
⪰.

3Note that sign · signifies that any vector ξ ∈ U can be used as the corresponding function is
not uncertain
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In Figure 3.4, an example is presented with U = {ξ1, ξ2}, and X = {x1,x2,x3}
to illustrate set-based minmax RE solutions. The boundaries of the respective
sets {zU (xj)}j∈{1,2,3} are shown using different line-styles. It is evident that x1

is set-based minmax RE, because zU (x1)−R2
⪰ does not contain either of the sets

zU (x
2) and zU (x

3). Similarly, x2 is also a set-based minmax RE solution. How-
ever, the same could not be said about x3 since zU (x2) ⊂ zU (x

3)−Rp
⪰. There are

other set-based RE concepts such as hull-based minmax RE solutions (Bokrantz
and Fredriksson [2017]), point-based minmax RE solutions (see Kuroiwa and Lee
[2012]), lower set less ordered efficient, and alternative set less ordered efficient (see,
Ide and Köbis [2014]). In Ide and Köbis [2014], relationships between several
RE concepts are investigated, and various special cases are also presented
where equivalence is established between a few RE concepts.

The concept of light robustness from Fischetti and Monaci [2009] for SO-RO is
generalized for uncertain MOOP in Ide and Schöbel [2016]. The pre-requisite to
finding light robust solutions is the existence of a nominal (most likely) scenario.
It is quite common to consider a nominal scenario, and it has appeared in many
articles such as Ben-Tal and Nemirovski [2002], Ben-Tal et al. [2009]. The
motivation behind light robustness is to avoid the overconservativeness of
the minmax solutions. For problems with uncertain objective functions and
deterministic constraints, the concept of light robustness is defined as follows

Definition 3.9 (Light robustness for SO-RO problems Schöbel [2014]). Consider
a single-objective robust optimization problem P(U), with p = 1, and assume that
x̂ ∈ X is an optimal solution to the problem P(ξ̂), where ξ̂ is a nominal scenario.
Then, a solution x ∈ X is called lightly robust optimal to P(U), w.r.t. ϵ ≥ 0 if it is
an optimal solution to the min-max problem

min
x∈X

{
max
ξ∈U

z(x, ξ) | z(x, ξ̂) ≤ z(x̂, ξ̂) + ϵ
}
. (3.17)

Ide and Schöbel [2016] has generalized light robustness for multi-objective
robust optimization problems with p > 1 and |U| > 1 as follows.

Definition 3.10 (Light robustness for robust MOOP). Given a robust MOOP
P(U), with p > 1, and |U| > 1, a nominal scenario ξ̂ ∈ U , and an ϵ ∈ Rp

⪰, a solution
x∗ ∈ X is called ϵ-lightly robust efficient solution for P(U) if it is one of the efficient
solutions to the following deterministic MOOP for a given x̂ ∈ Xeff(ξ̂) (i.e. x̂ is an
efficient solution in the nominal scenario)

min
x∈X

{
max
ξ∈U

z(x, ξ) | zk(x, ξ̂) ≤ zk(x̂, ξ̂) + ϵk, k ∈ {1, . . . , p}
}
. (3.18)
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The union of the set of efficient solutions to (3.18) for each x̂ ∈ Xeff(ξ̂) is called
ϵ-lightly RE solution set. The main idea behind light robustness for robust
MOOP is to find solutions that are good enough in the nominal scenario and to
choose the most robust solutions among them. Authors in [Kuhn et al., 2016,
Section 4.7] introduced a new RE concept for bi-objective robust optimization
problems with uncertain objective function and deterministic constraints. It is
called ϵ-representative lightly RE solutions and is aimed to reduce the number
of ϵ-lightly robust efficient solutions to be assessed by the decision maker.

For SO-RO problems, it is a common approach to be indifferent toward non-
worst-case scenarios. This is sometimes referred to as the so-called strict robust-
ness. Iancu and Trichakis [2014], formally prove that the traditional concept
of strict robustness (as presented in Ben-Tal et al. [2009]) for SO-RO, which
solely focuses on worst-case scenarios, is not reasonable. The main reason is
that there might exist alternative solutions that perform much better in other
scenarios. Hence, just using the worst-case scenario leaves solutions/decisions
un-optimized for other scenarios, which in most problems might be more likely
to occur. Hence, (Iancu and Trichakis [2014]) introduced the concept of Pareto
robust optimal (PRO) solutions for SO-RO problems. To extend the concept of
PRO in SO-RO to bi-objective robust optimization problems, [Kuhn et al., 2016,
Definition 9] suggest PRO robust efficient (PRO RE) solutions. Hence, it is
established that each of the RE solutions must be PRO RE to be non-dominated
in all of the scenarios.

Definition 3.11 (Pareto robust optimal (PRO) solutions for SO-RO problems).
Let U be a set of scenarios, and z : X × U → R the objective function. Then, a family
of functions over the set U is defined as ϕU (x) := (z(x, ξ))⊤ξ∈U where x ∈ X , and
the function z(·, ξ) : X → R. A solution x ∈ X is PRO if ∄x′ ∈ X such that
ϕU (x

′) ⪯ ϕU (x).

For the multi-objective case, an analogous definition is proposed in [Kuhn et al.,
2016, Section 5], and referred to as PRO robust efficient (PRO RE) solutions.

Definition 3.12 (PRO RE solutions for robust MOOP). Let U be a set of sce-
narios and z : X × U → Rp a p-dimensional vector-valued objective function.
Then, a family of vector-valued functions over the set U is defined as ϕU (x) :=
(z1(x, ξ), . . . , zp(x, ξ))

⊤
ξ∈U where x ∈ X , and zk(·, ξ) : X → R, k ∈ {1, . . . , p}. A

solution x ∈ X is PRO RE if ∄x′ ∈ X such that ϕU (x
′) ⪯ ϕU (x).

Hence, as discussed in Kuhn et al. [2016], all the RE solutions obtained for
a robust MOOP must be PRO RE. This provides a guarantee that no other
solution exists that, apart from mitigating the worst-case, also performs better
in all other possible scenarios in U .
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3.5 Representative set of non-dominated points

Although it is useful to obtain many or all non-dominated points (NDPs), their
generation is computationally demanding. Besides, it is then cumbersome for
the DM to scan through all the NDPs to identify the most suitable one. There
are three types of methods that address such issues Interactive, Inexact (Meta-
heuristic), and Representation methods. The interactive method requires the
active participation of the DM, inexact methods are fast but are not guaranteed
to find NDPs. Representation methods identify a subset of NDPs that provide
a guarantee for a given performance criterion. There are three different types of
performance criteria utilized in representation methods. These are coverage gap,
uniformity and cardinality of the representative set. Firstly, we present a definition
of the coverage gap [Ceyhan et al., 2019, Def. 6].

An adaptation to a minimization problem is as follows.

Definition 3.13 (Coverage gap and representative points). The coverage gap of
R with respect to z ∈ Zndp

4 is defined as αR(z) := miny∈R {maxi=1,2,3{yi − zi}},
where αR(z) ≥ 0 holds for z ∈ Zndp. The coverage gap of R with respect to Zndp is
then defined as α∗

R := αR(z
∗), where z∗ ∈ argmaxz∈Zndp

{αR(z)}. A point r ∈ R
is said to be representative for the point z ∈ Zndp if it holds that max

i=1,2,3
{ri − zi} =

αR(z).

Solving a representation problem for a given desired coverage gap value α means
identifying a representative set R of Zndp (set of all the NDPs) such that α∗

R :=
αR(z

∗) ≤ α. Note that a reduction of the desired coverage gap α may increase
the number of points in R and hence, increase the required computing time.

In Sayin [2000], authors presented another performance criterion, so-called,
uniformity. This relies on evaluating Chebyshev distance between any two
points in the representation R of the set Zndp i.e.,

∆R := min
y,y′∈R:y ̸=y′

{
max

i=1,2,3
|yi − y′i|

}
. (3.19)

Along with the cardinality of the set R, the three performance criteria form
the so-called discrete representation problem which is itself a tri-objective
optimization problem as shown in Shao and Ehrgott [2016] and presented as

min
|R|≥2

{α∗
R, −∆R, |R| } . (3.20)

4set of all the NDPs
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The focus is, however, on the coverage gap in Paper IV due to ease of under-
standing for the end-users.
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4 Summary of included papers

In this chapter, the contributions of the four appended papers are described.

Paper I: Bi-objective optimization of the tactical allo-
cation of job types to machines

In this paper, a bi-objective tactical resource allocation problem (TRAP) is
presented. The constraints of this bi-objective MILP are defined in (2.2), and
the two objective functions are defined in (2.1). The model is a MILP as the
variables n are continuous, the variables s, z are binary, and x is integral. The
makespan minimization of the unrelated parallel machine scheduling problem,
i.e. R||Cmax is polynomially reducible to the TRAP as shown in Proposition 1
of Paper I. The difficulty in solving the optimization problem stems from
the linking constraints (2.2e) which connect the time periods. We propose a
starting heuristic (see Section 4 of Paper I) which is based on decomposing the
TRAP w.r.t. the time periods, and solving one (smaller) MILP for each time
period. The starting heuristic also makes use of Proposition 2 in Paper I (see
Proposition 4.1 below), which concludes that for fixed values of s, the variables
z can be regarded continuous. For fixed values of the binary variables s, the
following polyhedron is defined in the space of the z variables:

Z(s, γ) :=
{
z
∣∣ zjkt ∈ [0, 1], k ∈ Nj , j ∈ J , t ∈ T ; (2.2e)–(2.2f) hold

}
. (4.1)

Proposition 2 in Paper I is stated as follows

Proposition 4.1 (On the integrality of the variables z). For any sjkt ∈ {0, 1},
k ∈ Nj , j ∈ J , t ∈ T , all the extreme points of the polyhedron Z(s, γ), defined in
(4.1), are integral.

Details of the heuristic are mentioned in Alg. 1 in Paper I. The other main
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contribution of this work is a modified version of the bi-directional ϵ-constraint
method. The proposed solution approach combines two well-known criterion
space search methods, AWT with adaptive formulae (see Dächert et al. [2012]),
and bi-directional ϵ-constraint method (see [Boland et al., 2015, Section 5.1]).
It has shown significant positive computational effects on the 60 numerical
industrial test cases investigated.

The proposed modification is based on switching to the AWT method when
only a pre-defined fraction ϕ of the total search area (in the criterion space) is left
to be explored for yet-unknown non-dominated points. In Figure 4.1, solution
times of various state-of-the-art solution approaches is compared using the so-
called performance profiles (see, Dolan and Moré [2002] for details). In Figures 4.1
and 4.2, the term rps refers to the performance ratio rps :=

tps
minr∈S{tpr} , where

s ∈ S (S being the set of solution methods used), and p ∈ P (P being the set of
problem instances), and tps is the computing time used for solving problem
instance p by solution method s.

For each solution method in Figure 4.1, the two objectives are tackled by either
augmentation (Aug) or a lexicographic (Lex) minimization of the two. The
main criterion space search methods used are the bi-directional ϵ-constraint
(BD-ϵ) and the balanced box (BB) method. A switch to the AWT method is
denoted by AWT, while ∅ means that there is no such switch. The solution ap-
proaches compared are defined by the 3-tuples (Aug,BD-ϵ,AWT), (Aug,BD-ϵ,∅),
(Aug,BB,∅), and (Lex,BD-ϵ,AWT), including two variants of (Aug,BD-ϵ,AWT)
for the values ϕ ∈ {0.25, 0.35}. Hence, in total five variants are tested and
presented in Figure 4.1. In Figure 4.2, the performance profiles illustrate the
effect of using a starting feasible solution.
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Paper II: Robust optimization of a bi-objective tacti-
cal resource allocation problem with uncertain quali-
fication costs

In this paper, the qualification cost parameters βjk, j ∈ J and k ∈ Nj , the coef-
ficients of the second objective function (g2, i.e. (2.1b)) are considered uncertain.
In (2.4) an uncertain bi-objective optimization problem is presented, with an
uncertain objective function and possessing the same feasible set (2.2) as in the
deterministic TRAP. We have two main contributions. Firstly, we have pre-
sented a new robust efficiency concept called positive robustness ϵ-representative
lightly RE solution. This new RE concept is presented as an alternative to ϵ-
representative lightly RE solution, as the former captures the positive effect on
mitigating risk by replacing an efficient solution in the nominal scenario with a
solution that is “good enough” in the nominal scenario and has a net reduction
in qualification cost in the worst-case scenario.

The second contribution is a new solution approach called 3-stage approach,
involving the solution of two bi-objective optimization problems to find all
the desired PRO RE solutions instead of solving a tri-objective optimization
problem as suggested in Kuhn et al. [2016] for bi-objective optimization prob-
lems with one uncertain objective function and two scenarios. Our proposed
approach is computationally superior than the one presented in Kuhn et al.
[2016]. We use the quadrant shrinking method (QSM) for the purpose of solv-
ing the tri-objective IP, hence the name QSM in Figure 4.3. For almost all the
instances (except instance 11) our proposed approach finds a smaller number
of PRO RE solutions but manages to find all the ones that are interesting for
the decision-makers to analyze. However, as it is evident from Fig. 4.3, the
solution times of our 3-stage approach are significantly lower than those of the
QSM method.
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Figure 4.3: Left axis: Ratio of solutions times (grey bars; red bars for negative values).
Right axis: Difference between the number of PRO-RE solutions identified by the QSM
(NQSM) and the 3-stage method (N3-stage) (orange asterisk). All computed sets are
minimal sets

Paper III: A criterion space decomposition approach
to generalized tri-objective tactical resource allocation

In Paper III, we have introduced inventory in the TRAP. We call this new model
the Generalized TRAP (GTRAP), which is described in detail in Sec. 3.1 in
Paper III. This allows the model to have an inventory of even semi-finished
parts that can have a significant effect on the previously defined two objectives
as well. Furthermore, we have also developed a specialized procedure that
relies on partitioning the criterion space and solving sub-problems simulta-
neously to reduce computational time. The main idea is to split the projected
two-dimensional criterion space using Prop. 9 and 10 from Paper III and use the
QSM Boland et al. [2017] to solve each sub-problem. Furthermore, some modifi-
cations are suggested to avoid some of the redundancies due to parallelization
in Sec. 4.3.1 in Paper III. In Fig. 4.4b and 4.4a we illustrate the difference in
solution time of using the QSM (ti(QSM)) and our proposed parallel QSM (ti(P-
QSM)) in seconds, where i is the problem instance. We have also performed
sensitivity analyses for different values of threshold ζk = ζ ∈ {0.7, 0.75, 0.80},
k ∈ K.
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Figure 4.4: Difference of solution time for QSM and P-QSM [s] for threshold values
ζ ∈ {0.70, 0.75, 0.80} and varied the discretization δ1 ∈ {0.05, 0.1} used for the first
objective function which is not integer-valued

Paper IV: A method to identify a representative set
of non-dominated points for discrete tri-objective
optimization problems

During the course of writing Paper I–III, we realized that for a significant
reduction in solution time, we need to reduce the number of NDPs identified.
However, we do not want to use in-exact methods as there will be no guarantee
on any of the three performance criteria mentioned in Sec. 3.5. There exist
several interesting works that are discussed in detail in Sec. 1.2 in Paper IV.
Our contribution to this paper is developing a new method specialized for
any discrete tri-objective optimization problem. The method utilizes some
aspects of the approach presented in Paper III and is generalized for any
discrete tri-objective optimization problem. Furthermore, new modifications
are introduced that were not considered in the P-QSM from Paper III.

The computational performance of our proposed algorithm is far superior
compared to the state-of-the-art methods on industrial instances of GTRAP.
Furthermore, we also tested our approach for some other general instances
such as the multi-dimensional three-objective knapsack problem. We compare
our algorithm α-PQSM with two state-of-the-art algorithms grid-point-based
algorithm GPBA-A Mesquita-Cunha et al. [2023] and the territory-defining
algorithm (TDA) Ceyhan et al. [2019]. The results are also promising for
these instances. A performance profile is illustrated in Fig. 4.5 for the multi-
dimensional knapsack problem instances. The performance metric is the ratio
of solution time similar to the one described in the summary of Paper I. Here,
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Figure 4.5: Performance profile for different algorithms using the ratio of solution time
as the performance measure for multi-dimensional three-objective knapsack instances.



5 Conclusion and future re-
search areas

Conclusion. In the Tactical Resource Allocation Problem, the primary objective
is to balance machine loading levels in order to reduce product lead times. In
Papers I and II, this balance is achieved by introducing qualifications, which
entail one-time setup costs. Furthermore, Paper III incorporates inventories
and assesses their impact on the other two objectives.

From a practical standpoint, certain categories of machines consistently display
high loading levels. For example, multi-task machines capable of performing
various operations are typically highly loaded and often become bottlenecks.
However, by adding new qualifications, these loading levels can be mitigated.
In Paper II, we emphasized the need for a careful assessment of variations
in qualification costs, as this can considerably affect the trade-off between
loading levels and qualification costs in certain scenarios. In some instances,
alternative efficient solutions may be identified. In Paper III, we employed a
series-assembly structure for the final products and allowed for the accumula-
tion of inventories of both semi-finished and finished products. This strategy
enabled us to uncover new solutions that were not feasible in Papers I and II,
although at the expense of additional inventory, which is accounted for as a
third objective. Our study underscores the potential benefits of maintaining
certain inventories, which, in specific cases, may reduce the need for expensive
qualifications. Lastly, in Paper IV, we proposed an innovative algorithm aimed
at identifying a representative set of non-dominated points, thereby alleviating
the computational load on decision-makers and enhancing the tool’s usability.

Future research areas. Some of the future research areas envisioned are

Stochastic Tactical resource allocation model: We believe that there is a need
to develop a new framework regarding the stochastic arrival of raw materials.
This extension should be done to the GTRAP presented in Paper III. However,
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this requires a deep dive into understanding how the delays in the delivery
of raw materials are distributed and their dependencies on properties which
depend on the statuses of suppliers. We have an ongoing manuscript (not
considered in this thesis for evaluation) in which we develop a model that
takes into account the stochastic arrival of raw materials. For this purpose, we
need to define smaller time buckets in order to capture the effect of the late
arrival of raw materials on the excess loading, qualification costs, and inventory.
We then model the uncertainties using a truncated geometric distribution.

Visualization and user-interface: There is a possibility to explore preference
articulation. This can involve interactive methods, visual analytics, and prefer-
ence modeling techniques such as Inverse optimization. More effort is needed
in learning from real production data to find better ways to combine the objec-
tives.

Recommender system: I proposed and supervised a master thesis project with
GKN Aerospace entitled Evaluating compatibility between machines and operations
for aerospace engine products Costanzo and Limbayyaswamimath [2021] which
was aimed as a starting point to develop a machine learning system for recom-
mending job types to machines based on historical data. However, the lack of
unified classification and production-level data led to no further progress but
it is definitely a good idea for future research as data collection is increasing.

Computational studies: The frameworks developed regarding robust optimiza-
tion, criterion space decomposition, and representative set of non-dominated
points could be adapted and applied to other discrete bi- and tri-objective opti-
mization problems, including computational studies of specific and realistic
instances of these.
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