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A B S T R A C T

This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD) services. These
imbalances occur due to uneven stochastic travel demand and can be mitigated by proactively rebalancing empty
vehicles to areas where the demand is high. To achieve this, we propose a method that takes into account un-
certainties of predicted travel demand while minimizing pick-up time and rebalance mileage for autonomous
MoD ride-hailing. More precisely, first travel demand is predicted using Gaussian Process Regression (GPR) which
provides uncertainty bounds on the prediction. We then formulate a stochastic model predictive control (MPC) for
the autonomous ride-hailing service and integrate the demand predictions with uncertainty bounds. In order to
guarantee constraint satisfaction in the optimization under estimated stochastic demand prediction, we employ a
probabilistic constraining method with user-defined confidence interval, using Chance Constrained MPC
(CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty prediction from data
can naturally be embedded into the MoD optimization framework, allowing us to keep the imbalance at each
station below a certain threshold with a user-defined probability. Second, CCMPC can be relaxed into a Mixed-
Integer-Linear-Program (MILP) and the MILP can be solved as a corresponding Linear-Program, which always
admits an integral solution. Our transportation simulations show that by tuning the confidence bound on the
chance constraint, close to optimal oracle performance can be achieved, with a median customer wait time
reduction of 4% compared to using only the mean prediction of the GPR.
1. Introduction

The fast growing urbanization in the world puts major challenges on
urban transportation (Raposo, 2019). In Europe, the urbanization is ex-
pected to grow from 74% in 2018 to 84% in 2050 (United Nations
Publications, 2019). Traditionally, urban transportation is improved by
infrastructure investments in road expansions and public transportation.
However, with recent development of new technologies within auto-
mation, connectivity, electrification and shared services, there is a po-
tential for new transport solutions to satisfy the increasing demand.
Transportation modes that have gained huge interest and market share
are mobility-on-demand (MoD) services, e.g., mobility-as-a-service pro-
viders and car-rental pools (Zardini et al., 2022). These types of services
are more flexible than public transportation and can in fact complement
it (Salazar et al., 2018). Moreover, the combination of MoD and auton-
omous vehicles (AVs), Autonomous Mobility-on-Demand (AMoD), has
been at the center of research for over a decade (Zardini et al., 2022).
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AMoD is predicted to become one of the major means of transportation in
cities (Litman, 2020). However, a major concern with MoD and AMoD
services is that they have a tendency to become imbalanced, i.e., have a
mismatch between vehicles and requests in different parts of the service
area. The imbalance is due to unevenly distributed stochastic spatial and
temporal travel patterns, which give rise to a poor quality of service
(George, 2012). To handle this issue, the service providers may match
requests with vehicles centrally and proactively send vehicles to areas
with predicted high imbalances. A vital part of the AMoD system is to
predict the stochastic travel pattern in order to match demand (Zardini
et al., 2022). Predictions comewith uncertainty in travel patterns and can
have a large influence on the AMoD performance. In this paper, we
propose a method for efficient AMoD fleet control with probabilistic
guarantees on the imbalance. The method is applied and tested for an
autonomous ride-hailing service but can be applied to any MoD or AMoD
system.

There are different methodologies for modeling and predicting travel
demand patterns. Previous work can be divided into two categories:
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Nomenclature

1 � ε Confidence level
D Destination of trip
FλijðtÞðzÞ Cumutlativ distribution function of λij(t)
N Number of partitioned station
O Origin of trip
T Number of time intervals for the time horizon
ΔtGPR Update interval for Gaussian Process Regression
ΔtMPC Update interval for Model Predictive Control Algorithm
PijðtÞ Probability distribution of λij(t)
T Discrete set of time intervals
μ Mean prediction of Gaussian Process Regression
σ Standard deviation of mean prediction of Gaussian Process

Regression
cφ Cost of each vehicle
k Upper bound on the imbalance
t0 Current time step
xrijðtÞ A decision variable for the number of vehicles to rebalance

from station i to station j at time interval t
Δt Discrete time interval length
Θ⊂R2 Operating area for vehicles
κij(t) Travel time, in discrete time intervals, to drive from station

i to station j at time t
λij(t) Number of customers that wants to travel from station i to

station j at time t
φi(t) Initial number of idle vehicles in each station
cλ Cost of leaving out one customer that wants to go from

station i to station j at time t
crijðtÞ Cost of rebalancing one vehicle from station i to station j at

time t
sij(t) A decision variable for the imbalance, i.e., describes how

many customers to not pick-up at time t that wants to go
from station i to station j

xcijðtÞ Number of vehicles to drive customers from station i to
station j at time interval t
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parametric and non-parametric travel demand prediction (in view of the
structure of the demand probability distribution function). In case of
parametric solutions, the underlying form of the demand is assumed to be
known (Rasmussen and Williams, 2005). These models span from simple
linear regression to fitting of distributions to data (Rasmussen and Wil-
liams, 2005). Poisson distributions are commonly used as parametric
models (Braverman et al., 2019; Zardini et al., 2022) as well as Gaussian
distributions (Mao et al., 2020). However, assuming such distributions
are oversimplifications of demand patterns since the travel demand often
follows an unknown spatio-temporal probability distribution. The
complexity of the spatio-temporal travel demand patterns has lead to an
increased focus on non-parametric approaches. These models do not
make strong assumptions on the form of the travel demand (probability
distribution), which make them more flexible to learn arbitrary patterns.
Different non-parametric approaches have been used for demand pre-
diction, such as Long Short-Term Memory neural (LSTM) networks
(Iglesias et al., 2018; Tsao et al., 2018). A drawback of neural network
methods is that they require large data sets to be reliable. Their strong
dependence on hyperparameters and initial conditions may hinder effi-
cient fitting (Pereira et al., 2022). Studies on using LSTM for predicting
mobility movements have been shown to be efficient with up to 80%
accuracy in predicting mobility patterns (Zhao et al., 2016). On the other
hand, the uncertainty in the prediction should also be predicted and
accounted for in the optimization, calling for explicit uncertainty
parameterization. One way of modeling the uncertainty is to assume that
the travel demand belongs to an uncertainty set. The uncertainty set can
be constructed from data using hypothesis testing (Miao et al., 2017). To
make the uncertainty set representative enough, large data sets are
required and the correlation between different time intervals is neglec-
ted. Hence, one plausible solution to explicit uncertainty estimation for
forecasting spatio-temporal data with uncertainties for both small and
large data sets is Gaussian Process Regression (GPR) (Rasmussen and
Williams, 2005). For small datasets, GPR is often superior to other pre-
diction methods and it provides a confidence on the prediction, which is
beneficial for robustness (Rasmussen and Williams, 2005). However, to
the best of our knowledge, the efficiency of GPR is yet to be reported in
combination with optimization of AMoD systems.

There has been extensive research on different modeling and control
algorithms for MoD and AMoD systems. Earlier works focused on reactive
control methods, from the Hungarian method (Kuhn, 1955) to control
methods based on queueing-based models (Pavone et al., 2012; Ruch
2

et al., 2020). More recently, the use of future demand together with
model predictive control (MPC) has been proven to be highly effective
(Iglesias et al., 2018; Lacombe et al., 2021; Miao et al., 2017; Tsao et al.,
2018; Zhang et al., 2016). Zhang et al. (2016) proposed to use MPC to
solve the dispatching and rebalancing problem. However, they did not
consider any demand forecasting method and, in addition, the compu-
tational complexity increased with the number of vehicles. These issues
were addressed in Iglesias et al. (2018), although the uncertainty in the
demand prediction was neglected. In Tsao et al. (2018), a nominal pre-
diction method is used via sample average approximation. A robust,
minmax uncertainty handling is presented in Miao et al. (2017). Guo
et al. (2021) proposed a robust optimization model that combines
matching of demand and vehicles with rebalancing but demand predic-
tion was not considered. Another robust optimization method considered
for vehicle rebalancing is distributionally robust optimization model
with enhanced linear decision rule (He et al., 2020). As indicated above,
there is no unique way of introducing travel demand into AMoD algo-
rithms. Methods that take the uncertainty of the demand into account
have been proven to be efficient but complex. Therefore there is a need
for more transparent, scalable, computationally efficient, and accurate
methods.

A promising approach is to incorporate GPR and MPC and couple
them stochastically via the uncertainty bound provided by GPR. One
appealing solution is to solve the stochastic and uncertain MPC problem
under probabilistic constraints, i.e., chance constraint (Charnes and
Cooper, 1959). This methodology has proven successful for control of
autonomous racing and autonomous underwater vehicles (Hewing et al.,
2019). Furthermore, chance constraint optimization (CCO) has been used
in many resource allocation problems (Grosso et al., 2014; Ono and
Williams, 2008; Varga et al., 2020), which are similar to the control of
AMoD systems. The benefit of CCO is that, via probabilistic constraining,
we can adjust the solution implicitly. This is beneficial since the two
objectives of controlling a AMoD fleet, service and cost, are contra-
dicting. Generally, the better the service, the higher the cost and vice
versa. The relaxation of the CCO is typically very complex unless the
probability distribution is assumed to be known. The combination of GPR
and chance constrained MPC has the potential to provide a powerful
methodological environment.

The main contribution of this paper is to combine data driven demand
prediction with model based predictive AMoD resulting in a chance
constraint optimization. This is done by first, formulating a Chance



Fig. 1. A visual representation of how the city of San Francisco could be par-
titioned into different stations (https://planet.osm.org). Each colored area rep-
resents one station.
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Constrained MPC (CCMPC), which is a probabilistic approach to solving
stochastic optimization problems. Second, we propose a GPR for pre-
dicting travel demand time-series. The prediction given by the GPR
contains both a mean prediction and an uncertainty bound. Hence, GPR
naturally fits into the CCMPC framework. By means of separability and
by knowing the form of the estimated PDF, probabilistic constraints can
be reformulated into a deterministic optimization. To the best of our
knowledge, no other study has focused on the combination of GPR and
CCMPC in the AMoD setting. Previous studies in this area have either
focused on only the demand prediction part or on AMoD control
methods, which assume simplified demand modeling or demand
modeling that require large datasets. Third, the proposed optimization is
benchmarked in the high fidelity transport simulator AMoDeus (Ruch
et al., 2018). This is important in order to get an accurate measure of
different metrics, such as pick-up time and vehicle mileages. Many
studies consider less accurate in-house transport simulators based on
simplified road and traffic models (Iglesias et al., 2018; Miao et al., 2017;
Tsao et al., 2018).

The outline of this study is the following. First, we present the model
of the AMoD systems in Section 2. In Section 3, we first formulate the
MPC and then the Chance Constrained MPC, which is later relaxed to a
mixed integer linear program (MILP) using GPR and the separablemodel.
The transport simulation methodology and results are presented and
discussed in Section 4. Finally, Section 5 concludes the paper with a short
discussion and future work.

2. AMoD modeling

In this section, we first describe the stochastic discrete-time linear
model of the AMoD system, building on prior work presented in Iglesias
et al. (2018) and Tsao et al. (2018). Our approach assumes that travel
demand follows some unknown spatio-temporal probability distribution,
and uses Gaussian Process Regression (GPR) to predict demand, which is
subsequently incorporated into a chance constraint model for the system.

Specifically, the AMoDmodel captures the movement of both vehicles
and customers, while ensuring that the number of vehicles and customers
remains conserved. Our model also accounts for the mismatch between
vehicles and customers in different parts of the city, and offers a way to
3

optimize fleet operations under uncertain demand conditions. For a
detailed description of all notions introduced throughout the paper, we
refer to glossary in Appendix.

The bounded operation area is a two-dimensional map denoted by
Θ⊂R2. We assume that the map is partitioned into N regions, referred to
as stations (Fig. 1), and these partitions are predetermined. The parti-
tioned city is modeled as a complete graph, where the nodes represent
the stations, and the edges represent the distances and travel time be-
tween the stations. The travel time and distances between the stations are
considered exogenous, and do not vary with traffic. The AMoD model
operates in discrete time with a fixed sampling interval of Δt. At each
time step, new customers arrive at the stations, awaiting pick-up by ve-
hicles. We assume that the origin O and destination D of each trip are
constrained to lie within the operation area, i.e., O, D ⊆Θ. We denote the
current time step as t0.

2.1. States and decision variables

There are several non-negative integer states and decision variables in
the system. The first state of the system is the number of customers that
want to travel from station i to station j at time t and is denoted by λij(t).
This is a stochastic variable and each λij(t) is assumed to have an un-
known time-varying probability distribution, PijðtÞ. Furthermore, it is
assumed that the values of λij at different time t are correlated, while
spatial values at different stations are not correlated. The initial state of
the customer demand, λij(t0), is the number of outstanding customer that
wants to go from station i to station j. The second state is the average
travel time between stations, denoted by κij(t). Since the model is
discrete, κij(t) is also discretized into time intervals. The third and final
state is the initial position of idle vehicles in each station and is denoted,
φi(t). Vehicles that are traveling are assumed to be idle when they reach
their destination.

There are three decision variables in this model. The main decision
variable is the movement of the vehicles when they are empty, and this
will be referred to as rebalancing. The number of vehicles to rebalance
from station i to station j at time t is denoted xrijðtÞ. The second decision
variable is the number of vehicles that serve travel demand traveling
from station i to station j and is denoted xcijðtÞ. The decision variable sij(t)
describes the imbalance in station i for travel demand with destination j.
The imbalance is the difference between customers and vehicles in each
station.

2.2. Vehicle conservation

The principle of vehicle conservation stipulates that vehicles cannot
disappear or appear in the model during a specific time period, denoted
by T ¼ f1;2;…;Tg, where T is the total number of time intervals. This
conservation principle is enforced by a vehicle conservation constraint,
which requires that the difference between the number of vehicles
entering and departing the station is equal to the initial number of ve-
hicles present in the station at the beginning of each time interval.
Mathematically, this constraint can be expressed as follows:
X
j2N

xcijðtÞ þ xrijðtÞ � xcjiðt � κjiÞ � xrjiðt � κjiÞ ¼ φiðtÞ; 8i 2 N; t 2 T (1)

where xcijðtÞ and xrijðtÞ denote the number of vehicles that leave station
i to station j for driving customers and rebalancing, respectively, at time t;
xcjiðt�κjiÞ and xrjiðt�κjiÞ denote the number of vehicles that enter station i
from station j for driving customers and rebalancing, respectively, at time
t � κji; and φi(t) denotes the initial number of vehicles present in station i
at time t. The constraint must hold for all stations i and time intervals t.
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2.3. Imbalance

The imbalance is the difference between number of travel request and
vehicles in each station. Ideally, the imbalance is zero at all time, i.e.,
there is a perfect match between the number of travel demand and ve-
hicles:

λijðtÞ � xcijðtÞ ¼ 0; 8i; j 2 N; t 2 T (2)

However, if there are more customers than vehicles, constraint (2) is
violated. Therefore, this constraint needs to be relaxed to ensure feasi-
bility, which is done by introducing the slack variable sij(t):

sijðtÞ ¼ λijðtÞ � xcijðtÞ 8i; j 2 N; t 2 T (3)

If sij(t) > 0, i.e., there are more request than available vehicles, the
remaining request should be served at a later time step. Hence, we carry
on sij(t) to the next time step if t > t0,

sijðt þ 1Þ ¼ sijðtÞ þ λijðt þ 1Þ � xcijðt þ 1Þ
8i; j 2 N; t 2 ft0 þ 1;…; T þ t0g

(4a)

sijðt0Þ ¼ λijðt0Þ � xcijðt0Þ 8i; j 2 N (4b)

The state xcijðtÞ cannot be larger than the number of travel request
since it represents only vehicles that drives customer, i.e., the imbalance
should be greater or equal to zero,

sijðtÞ � 0; 8i; j 2 N; t 2 T (5)

The combination of constraint (5) and that sij(t) is a integer decision
variable, gives that

sijðtÞ 2 ℕ; 8i; j 2 N; t 2 T

3. Model predictive control of AMoD with probabilistic
guarantees

In this section, a model predictive controller (MPC) for AMoD is
proposed based on the model described in the previous section. The MPC
is first written as a stochastic mixed integer linear program (sMILP). The
optimization problem is a MILP since several variables are restricted to be
integer values (Walukiewicz, 2013). The sMILP is then reformulated as a
chance constraint optimization. Finally, the Chance Constrained MPC is
relaxed into a deterministic MILP using assumptions on the probability
distribution of the stochastic variable.

3.1. Model predictive control of AMoD

The above mentioned approach to AMoD is a discrete time optimi-
zation problem that is solved for T time steps into the future, also called
time horizon. The solution of the sMILP is a sequence of optimal decision
variables for the time horizon. Only the optimal decisions belonging to
the first time step in the horizon is used whilst the rest is discarded. In the
next time step, the states in the sMILP is updated and the sMILP is solved
again, i.e., receding horizon control. The following optimization problem
is formulated:

minimize
xrij ;sij

XTþt0

t¼t0

XN
i;j¼1

crijðtÞxrijðtÞ þ cλðtÞsijðtÞ
(6a)

subject to

sijðt0Þ ¼ λijðt0Þ � xcijðt0Þ 8i; j 2 N
(6b)

sijðt þ 1Þ ¼ sijðtÞ þ λijðt þ 1Þ � xcijðt þ 1Þ; 8i; j 2 N; t 2 T (6c)
4

XN
j¼1

xcijðtÞþ xrijðtÞ� xcjiðt� κjiÞ� xrjiðt� κjiÞ¼φiðtÞ 8i2N; t 2T (6d)

xrij; sij; x
c
ijðtÞ 2 ℕ 8i; j 2 N; t 2 T (6e)

Optimization Problem (6) is a stochastic optimal control problem.
The constraints in the MPC come from the model described in the pre-
vious section, Eq. (2). The first two constraints are the imbalance in the
system for t ¼ t0, Eq. (6b), and for t > t0, Eq. (6c). The third constraint is
the network flow conservation, Eq. (6d). It prohibits new vehicles from
appearing or disappearing from the system. The last constrain enforces
the decision variables to belong to the natural numbers set, which are all
non-negative integers.

The objective is to offer a good service to the customers and to ensure
that this is done efficiently, Eq. (6a). Hence we want to minimize the
mismatch, sij(t), between customers and vehicles. This mismatch can be
minimized by rebalancing vehicles in-between stations. The rebalancing
comes with a cost for the operator and this cost should also beminimized.
There is a trade-off between the imbalance and the rebalancing cost. This
trade-off can be tuned by choosing appropriate values for the imbalance
cost, cλ(t), and the rebalancing cost, cij(t). The imbalance cost should
reflect the cost of making customers wait, which could be varying over
time. The rebalancing cost is a combination of distance and travel time.
To be able to find a good weighting of the costs, Pareto analysis is used.
3.2. Chance constrained MPC

As mentioned in the previous section, the demand prediction, λij(t), is
assumed to follow a probability density distribution, PijðtÞ. Hence, we
can reformulate the imbalance constraint, Eq. (6c), to have a probability
distribution fulfilled with some confidence 1� ε,where ε 2 [0, 1], see Eq.
(7c). One of the benefits of this formulation is that we can decide the
confidence based on what risk we want to take. Therefore, the following
sMILP problem is proposed:

minimize
xrij ;sij

XTþt0

t¼t0

XN
i;j¼1

crijðtÞxrijðtÞ þ cλðtÞsijðtÞ
(7a)

subject to
Eqs: ð6bÞ; ð6dÞ; and ð6eÞ (7b)

Pij

�
sijðtþ1Þ¼ sijðtÞþλijðtþ1Þ� xcijðtþ1Þ� k

�
� 1� ε 8i; j2N; t 2T

(7c)

In constraint Eq. (7c), the constant k is an upper bound on the
imbalance sij(t þ 1). The Chance Constraint Optimization (CCO) problem
can be difficult to solve (Van Ackooij et al., 2011). There are several
methods to reformulate the chance constraints into deterministic con-
straints. One method is to consider that the probability distribution be-
longs to a set of distributions, called ambiguity sets (Van Parys et al.,
2016). In this work, we use the separable model for reformulation of the
chance constraints (Pr�ekopa, 2013).
3.3. Separable model

In the imbalance constraint, Eq. (7), the uncertainty and the decision
variables enter in an affine way. This is a special case of the chance
constraint and is referred to as a separable chance constraint (Shapiro
et al., 2021). A separable chance constraint with known probability
distribution can be reformulated as a deterministic constraint. We can
rewrite the separable chance constraint to a deterministic constraint by
using the cumulative distribution function (CDF):



S.E. Tingstad Jacobsen et al. Communications in Transportation Research 3 (2023) 100097
FλijðtÞðzÞ : ¼ ℙij λijðtÞ � z (8)

� �

With the use of the CDF, Eq. (8), the chance constraint, Eq. (7c), can
be written as

Fλijðtþ1Þ

h
k þ xcijðt þ 1Þ � sijðtÞ

i
� 1� ε

Then by taking the inverse CDF we get the following constraint,

k þ xcijðtþ 1Þ � sijðtÞ � F�1
λijðtþ1Þð1� εÞ (9)

F�1
λijðtþ1Þð1�εÞ is also called the quantile function. Constraint (9) is

deterministic if the CDF is known. In this study, the travel demand, λij(t),
is predicted using Gaussian process regression (GPR). The GPR gives a
mean prediction, μ, and a confidence bound on the prediction, σ, where
the confidence is assumed to follow a Gaussian distribution. We can
therefore use the cumulative distribution function for a Gaussian distri-
bution, which is defined as

Fðx; μ; σÞ ¼ 1

σ
ffiffiffiffiffi
2π

p
Z x

�∞
e�

ðz�μÞ2

2σ2 dz (10)

Given a mean, μ, and a standard deviation, σ, the cumulative distri-
bution function is explicit, hence constraint (9) is also explicit. The
chance constraint formulation in Eq. (7) can therefore be reformulated
into the deterministic constraint (9).

The stochastic variable is bounded to be larger or equal to zero, λij(t)
� 0. However, the Gaussian distribution might take both positive and
negative values. Hence, we use the truncated normal distribution for
negative values of the quantile function. The lower truncated CDF, is
given by

Ftrðx; μ; σÞ ¼

8><
>:

0 if x < 0

Fðx; μ; σÞ � Fð0; μ; σÞ
1� Fð0; μ; σÞ if x � 0

where F(x; μ, σ) is the standard normal CDF and F(0; μ, σ) is the CDF
evaluated at zero. Truncating the Gaussian distribution for GPR has been
proposed in several papers, including (Jensen et al., 2013) and (Swiler
et al., 2020).
Fig. 2. Sample functions generated from the prior distribution of the locally
periodic kernel. Each sample function is plotted as a dotted line in a different
color, illustrating the variability of functions that can be generated from this
distribution.
3.4. Gaussian Processes regression (GPR) for time-series modelling

A Gaussian Process (GP) is a non-parametric probabilistic model that
can be used for making predictions. Gaussian Process Regression (GPR) is
an effective tool for predicting time series with uncertainty bounds
(Roberts et al., 2013). GPRs have been successfully applied to predict
time-series mobility data (Gammelli et al., 2020) as well as non-negative
traffic volume time series data (Xie et al., 2010).

The GPR can be explained from the function perspectives, called the
function-space view (Rasmussen and Williams, 2005). Consider a black
box system with input t and output λ ¼ f(t), where f(t) is an unknown
function. Assume that we have historic input- and output-data from this
system, called the training dataset D ¼ fðti; λiÞji ¼ 1;…; ng. There are
infinitely many functions that can be fitted on the dataset. In GPRs, a
probabilistic method is used to find the best function fit. This is done by
assigning a multivariate probability distribution to the entire
function-space. By using a probability distribution of the function space,
it is possible to include confidence of the prediction.

Based on prior knowledge and a training dataset, the aim of GPR is to
find the underlying multivariate distribution. Prior knowledge can be
incorporated into the fitting process; for example, periodicity or
smoothness properties of f(t). In GPR, the underlying multivariate dis-
tribution is assumed to be a multivariate normal distribution. Hence the
estimated output follows a normal distribution, λ1;…;λn � NðμðtÞi;::;n;ΣÞ,
5

where Σi,j ¼ Cov(λi, λj) ¼ k(ti, tj) is the covariance function, also called
kernel, and μ(t) is the mean function. Thus, the Gaussian process is
completely defined by its mean and covariance functions according to

f ðtÞ � GPðμðtÞ; kðt; t0ÞÞ (11)

An important aspect of kernels is that they are only dependent on the
inputs. The covariance function can be any function that generates a
positive semi-definite covariance matrix (Kocijan 2016). When selecting
different kernels, prior knowledge of the data is used. If we assume a
smooth function, the radial basis function kernel (RBF) can be used

kRBFðt; t0Þ ¼ exp
�
� kt� t0k2

2l2

�
(12)

where l is the lengthscale hyperparameter. If the data is periodic, a
periodic kernel is proposed:

kPeriodicðt; t0Þ ¼ exp

0
BB@� 2

sin 2
�
π
p ðt� t0Þ

�
l2

1
CCA (13)

where p is the period and l is the lengthscale hyperparameter. The
sum and multiplication of two kernels is also a kernel (Rasmussen and
Williams, 2005).

When the kernels have been selected, the hyperparameters are
trained on the dataset by maximizing the log-marginal likelihood (Ras-
mussen and Williams, 2005). The log marginal likelihood is given by

log pðyjX; θÞ ¼ �1
2
y>Σ�1y� 1

2
log jΣj � n

2
logð2πÞ (14)

where Σ is the covariance matrix,

Σn;n ¼

0
BB@

k1;1 k1;2 ⋯ k1;n
k2;1 k2;2 ⋯ k2;n
⋮ ⋮ ⋱ ⋮
kn;1 kn;2 ⋯ kn;n

1
CCA (15)

A gradient method is used to find the hyperparameters that maximize
the log marginal likelihood, i.e., the partial derivatives of Eq. (14) with
respect to the hyperparameters are computed:
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∂

∂θi
log pðyjX; θÞ ¼ �1

2
y>Σ�1∂Σ

∂θi
Σ�1y� 1

2
tr Σ�1∂Σ

∂θi
(16)
� �

The computational complexity of training the GPR is mainly due to
the need of finding the matrix inversion of Σ and requires the compu-
tational complexity ðOðn3ÞÞ (Rasmussen and Williams, 2005). From the
tuned kernels and mean function, future prediction can be made using
conditional probability on the posterior distribution. Given a new input
t*, the predictive distribution of the corresponding output λ* is a
Gaussian distribution with mean and variance:

μ̂ðt*Þ¼ k*
>Σ�1y (17)

σ̂2ðt*Þ¼ kðt*; t*Þ � k*
>Σ�1k* (18)

where Σ is the covariance matrix for the training data, k* is the vector
of covariances between t* and n training points.

In this work, we will use a locally periodic kernel which is the
multiplication of the RBF and Periodic kernels. Periodic kernels assumes
perfect correlation between data points that are N � p distances apart,
i.e., t � t0 ¼ N � p, where N is an integer. This strict periodicity
assumption is not valid for most stochastic functions. While travel de-
mand data have some periodicities they are not strict, e.g., the exact time
and extend of people commuter patterns varying from day to day. Locally
periodic kernels allow the shape of the periodic parts to vary over time
and are therefore better suitable for travel demand prediction. Arbitrary
function samples from the prior of the locally periodic kernel can be seen
in Fig. 2. It can be seen that there are local periodicity in each sample but
the periodicity can change over time.

3.5. Chance constraint MPC (CCMPC) with GPR

The chance constraint in optimization Problem (7) can be reformu-
lated to an deterministic constraint using the separable model in Section
3.3. The mean and standard deviation in Eq. (10) is estimated using GPR,
Eqs. (17) and (18). Hence the chance constraint represent the confidence
in the prediction of the travel demand. The estimated mean and standard
deviation are denoted μ̂ and σ̂, Eqs. (17) and (18), respectively. The final
optimization problem can be written as

minimize
xrij ;sij

XTþt0

t¼t0

XN
i;j¼1

crijðtÞxrijðtÞ þ cλðtÞsijðtÞ
(19a)

subject to
sijðtþ1Þ¼F�1

λijðtþ1Þð1�ε; μ̂; σ̂Þ� xcijðtþ1Þþ sijðtÞ� k; 8i; j2N; t 2T
(19b)

ð6bÞ; ð6dÞ; and ð6eÞ (19c)

The chance constraint in Eq. (7c) is reformulated to Eq. (19b) using
the separable model in Eq. (9). The optimization problem, (19), is now an
Fig. 3. Visual representation of the dispatching, travel demand prediction, and MPC
vehicles. First, the requests are matched with vehicles in the same station. Then the
travel demand prediction the AMoD optimization problem is solved (Algorithm 1) a
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deterministic MILP. An important property with Problem (19) is that the
MILP is totally unimodular and hence the corresponding linear program
(LP) solution will always be integral. Therefore, the optimization Prob-
lem (19) can be solved efficiently as a LP with the simplex method. The
proof that Eq. (19) is totally unimodular can be found in Appendix.
3.6. Minimal fleet size

The chance constraint Eq. (7c) guarantees that the imbalance in each
station i is below a threshold k with probability 1 � ε. However, this
guarantee is only valid if we have enough vehicles in the station to drive
the predicted demand, xcijðtÞ. The decision variable xcijðtÞ is constrained by
Eq. (6d). Hence, we need to rebalance vehicles between station and
ensure that the total fleet size is large enough. The minimal fleet size can
be found by solving the following optimization problem.

minimize
xrij ;sij ;φið0Þ

XTþt0

t¼t0

XN
i;j¼1

crijðtÞxrijðtÞ þ cλðtÞsijðtÞ þ cφφið0Þ
(20a)

subject to

sijðtþ1Þ¼F�1
λijðtþ1Þð1� ε; μ̂; σ̂Þ� xcijðtþ1Þ þ sijðtÞ� k;8i; j2N; t 2T (20b)

XN
j¼1

xcijð0Þ þ xrijð0Þ � φið0Þ 8i 2 N (20c)

XN
j¼1

xcijðtÞ þ xrijðtÞ � xcjiðt � κjiÞ � xrjiðt � κjiÞ ¼ 0 8i 2 N; t 2 T (20d)

ð6eÞ; ð6bÞ; and φið0Þ 2 ℕ (20e)

The optimization problem, Eq. (20), minimizes the rebalancing, xrij,
the imbalance, sij(t), and the initial number of vehicles in each station,
φi(0). The imbalance is constrained by the upper threshold k. When
seeking the minimal fleet size required to serve all demand directly, we
set k ¼ 0 to ensure that there is no imbalance, sij(t) ¼ 0. The optimization
problem is solved for a full day.
3.7. Algorithm

The proposed algorithm for 1 time step is presented in Algorithm 1.
The control actions are updated every ΔtMPC minute and the GPR is
updated every ΔtGP minute. For dispatching of request and vehicles in
each station, we use the Hungarian algorithm (Kuhn, 1955). It is
important to note that the Hungarian can only match request and vehi-
cles in the same station. The proposed Algorithm 1 makes sure that there
are enough vehicles in each station to serve the request. Before the dis-
patching and rebalancing started, the city/rural area is discretized into N
stations using k-means clustering on historical request location. A visual
representation of the dispatching, prediction, and rebalancing can be
. The map is split into N stations and there is an initial number of requests and
travel demand is predicted, here represented by the colored bars. Based on the
nd the vehicles are rebalanced accordingly.



Table 1
Metric scores for GPRs.

Metric Mean Standard deviation

Explained variance score 0.362 0.225
Mean squared error 2.054 5.151
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seen in Fig. 3.

Algorithm 1. AMoD dispatching and rebalancing.

4. Case study

In this section, the proposed Chance Constrained MPC algorithm
outlined in Algorithm 1 is tested in realistic AMoD scenarios using a high-
fidelity transport simulator.

4.1. Simulation environment

The high-fidelity transport simulator AMoDeus (Ruch et al., 2018)
was used for contrasting and benchmarking of the AMoD algorithm
(Algorithm 1). AMoDeus is an open-source agent-based transport simu-
lator based on Multi-Agent Transport Simulator (MATSim) (Horni et al.,
2016). It was intentionally developed to simulate AMoD systems and to
test new algorithms for fleet control. With AMoDeus and MATSim large
scale transport simulations for one full day can be performed. The
transport network is constructed using a queue based approach. Several
realistic mobility scenarios for different cities are implemented in AMo-
Deus for benchmark testing. We chose to simulate the San Francisco
scenario for this work. The San Francisco scenario is based on a taxi
dataset from 2008 (Piorkowski et al., 2022). The data contains mobility
traces from 500 taxi vehicles in San Francisco and contains 464,045
customer trips, which were collected betweenMay 17, 2008 and June 10,
2008. In this study, we have chosen to simulate Thursday, May 29th,
which corresponds to a total of 11,453 requests. The transport simula-
tions were performed on a MacBook Pro with a 2.3 GHz Quad-Core Intel
core i7 processor and 16 GB of RAM. We used IBM CPLEX to solve
optimization problem Eqs. (19) and (20) (Cplex, 1987). Optimization
Fig. 4. Gaussian Process regression of requests going from one station to
another. The blue data points indicate the training data while the green data
points correspond to the request we want to predict. The red line is the pre-
diction of incoming requests and the orange area is the corresponding 95%
confidence bound.
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Problem (19) is totally unimodular and hence an LP solver such as Primal
Simplex can be used. Optimization Problem (20) is an MILP and hence a
MILP solver is used, such as branch-and-bound.
4.2. Travel demand prediction

The GPR is implemented using the GPyTorch library in Python
(Gardner et al., 2018). GPyTorch is a highly efficient implementation of
GPR that leverages PyTorch for GPU acceleration. This enables us to train
GPR models at a high speed, making real-time usage possible.

Our training data consist of the flow of requests between all stations
per time interval. Therefore, a separate GPR is trained for each specific
flow. In this study, we divided San Francisco into 10 stations, requiring us
to train 100 GPRmodels. The number of GPRmodels scales quadratically
with the number of stations ðOðN2ÞÞ. While optimal partitioning or dy-
namic repartitioning is beyond the scope of this paper, we found that 10
districts were sufficient based on the size of the city and data availability.

We used the previous five days’ data from the day we want to predict
for training. In this study, we used training data from 2008 to 05–24 to
2008-05-28. The trained mean and 95% confidence for the flow between
stations 0 and 3 can be seen in Fig. 4. The mean prediction and confi-
dence accurately describe the data, including the peak demand on day
2008-05-29, where the mean prediction is low, but the confidence in-
terval encompasses the peak test data points. The explained variance
score and mean squared error (MSE) for all trained GPR models are
shown in Table 1. The low mean explained variance score with a rela-
tively high standard deviation indicates that the selected kernel is not
suitable for predicting all flows due to randomness in travel patterns.
However, since we account for prediction uncertainty in Algorithm 1, we
can handle this explicitly. Additionally, the mean MSE metric is quite
low, indicating that our average behavior is adequate.

The use of Gaussian process regression (GPR) can lead to non-physical
solutions, with λij taking negative values, especially when the data points
are close to zero, as illustrated in Fig. 4. This issue is most pronounced
during off-peak hours when the demand is low, and little rebalancing is
needed. To address this problem, we have incorporated a truncation into
the optimization problem, which ensures that the Gaussian distribution is
bounded to be greater than or equal to zero (Algorithm 1). Similar tru-
cation methods have be investigated in Jensen et al. (2013) study on
bounded likelihood functions in GPR, as well as Swiler et al. (2020)
survey paper on constrained GPR.

The computational complexity of GPR is cubic in the number of data
points ðOðn3ÞÞ (Rasmussen and Williams, 2005), making it unsuitable for
large datasets. However, GPyTorch reduces the computational
complexity to be squared in the number of data points ðOðn2ÞÞ. This,
combined with GPU acceleration, results in an acceptable computation
burden for our case studies. In this study, the average computational
training time per prediction for GPR was 4.82 s (Table 3). Since we
Table 2
Pick-up time, total-,rebalance-, and pick-up-distances for fixed fleet size of 300
vehicles and each control algorithm.

Metric MPC-Oracle CCO MPC GBM MPC-fixed

Mean pickup time (s) 205 211 276 230
Median pickup time (s) 171 173 236 191
Total distance (km) 52,645 52,842 51,361 54,858
Rebalance distance (km) 7,307 7,206 0 9,970
Pickup distance (km) 7,464 7,757 13,482 6,983



Table 3
Computational running time for single execution of Chance Constrained MPC
(CCMPC) for routing and Gaussian Process Regression (GPR) for travel demand
prediction.

Method Sample Mean (s) Median (s) STD (s) Max (s)

CCMPC 143 0.093 0.078 0.047 0.281
GPR 886 4.82 4.82 0.112 6.87

Fig. 5. Minimal fleet size, optimal solution from Eq. (20), for different confi-
dence 1 � ε.

Fig. 6. Mean and median wait time for different confidence bounds for fixed
fleet size of 300 and 350 vehicles using CCMPC Algorithm 1.

Fig. 7. Total and rebalancing distance for different confidence bounds for fixed
fleet size of 300 and 350 vehicles.
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predict one hundred different flows when the city is divided into ten
stations, the total computational time is around 482 s.

4.3. Minimal fleet size for different confidence levels

By solving the optimization problem, Eq. (20) we get the minimal
required fleet size to keep the imbalance in each station below some
threshold, k, with probability 1 � ε.

Intuitively, the minimal required fleet size should increase with
higher probability, 1 � ε, which is also the case in Fig. 5. The results in
Fig. 5 are from solving optimization Problem (20) with threshold k ¼ 0.
When 1� ε is increasing the bound on the travel demand, λij(t), increases
and hence a larger fleet size is required.
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4.4. Confidence bound in CCMPC

In the CCMPC (Algorithm 1), there are four variables that can be
tuned according to the specific scenario; the objective cost weights ðcrijðtÞ;
cλÞ, the horizon length T, the confidence bound 1 � ε, and the fleet size.
We have chosen to have a horizon of 3 h and the cost weights are set
according to operating costs, where the rebalancing cost is relative to the
distance and the imbalance cost is relative to customer wait time. With a
fixed horizon and cost weights, we study how the confidence bound in
the chance constraint optimization Problem (7) affects the performance
for fleet sizes of 300 and 350 vehicles. Two performance metrics are
evaluated; the pick-up time (Fig. 6), which indicates the service level
provided; and the distances driven (Fig. 7), which represent operating
cost.

By studying the mean and median pick-up time as a function of
confidence level for 300 vehicles, it is evident that there is an optimal
confidence level at around 0.65 where both of these measures are
minimized (Fig. 6). The maximum mean wait time is reached for a
confidence level of 0.8 and the second-highest for a confidence level of
0.3. When the confidence level is increased, the number of predicted
requests between the different stations' increase. Hence, a higher confi-
dence level requires a larger fleet size, which we concluded in Section
4.3. For a fleet size of 300 vehicles there is not enough control input for
confidence level of 0.8 and the rebalancing hence decreases (Fig. 7).
When the vehicle fleet is increased to 350 vehicles, there is possibility for
more rebalancing and the rebalancing increases for confidence level of
0.8. However, the performance in terms of median and mean pick-up
time is similar or worse then for confidence level of 0.65. The extra
rebalancing is not improving the service level since it rebalance more
then it have too. For low confidence levels the number of requests are
underestimated, hence the rebalancing decreases for lower confidence
levels (Fig. 7). Even though the rebalancing distance is the lowest for
confidence level of 0.3, the total distance is the lowest for confidence
level of 0.4 which has more than the doubled rebalancing distance
compared to confidence level of 0.3 (Fig. 7). Beyond 0.4, the distance
grows due to stricter and stricter chance constraints forcing vehicles to
drive towards customers. A confidence level of 0.65 has the maximal
rebalancing distance of 7,206 km and the total distance is only 844 km
more than the minimum total distance for fleet size of 300 vehicles. This
indicates that the rebalancing at confidence level of 0.65 decreases the
mean and median wait time at a low cost. Hence, this confidence level is
considered to be optimal for this scenario. For this confidence level the
median wait time is reduced by 4% compared to using only the mean
prediction of the GPR.



Fig. 8. Mean and median wait times as function of fleet size for different con-
trol algorithms.

Fig. 9. Driving distance as function of fleet size for different control algorithms.
Solid lines correspond to empty distance, i.e., distance driven without cus-
tomers, and dash-dotted line corresponds to rebalance distance.
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4.5. Comparative evaluation of AMoDs

The performance of the CCMPC (Algorithm 1) is benchmarked
against three different control algorithms:

� MPC-Oracle – A non-causal controller where the future travel demand,
λij(t), is known for all t in Eq. (6), i.e. the performance of this
controller is an upper limit for the performance of the proposed
algorithm.

� MPC-FixedDemand – This is a causal controller, see Eq. (6), with a
fixed future travel demand, all future travel demands are set equal to
the last known travel demand, i.e., λij(t) ¼ λij(t0 � 1) 8 t 2 [t0, T þ t0].

� Global Bipartite Matching Dispatcher (GBM) – This controller solves the
bipartite problem to match available vehicles with customer request
using the Hungarian algorithm (Kuhn, 1955). The cost of matching a
request with a vehicle is the distance between them. The controller
does simply react to the current demand and does not perform any
rebalancing.

A comparison of the performance, pick-up time, and distance driven,
for different control algorithms as a function of fleet size can be seen in
Figs. 8 and 9. It is apparent that the best performing algorithm in terms of
wait time is the MPC-Oracle, which is expected. However, for a fleet size
of 300 vehicles the best performing causal algorithm is the CCMPC with
only a few seconds more thanmean and median pick-up time (Fig. 8). For
a fleet size of 300 vehicles, the mean pickup time for CCMPC is 24%
lower than the GBM (Table 2), which is the worst performing algorithm
in terms of pickup time. This is also expected since GBM is a reactive
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algorithm. On the other hand, MPC-fixed has a mean pickup time that is
only 19 s longer compared to CCMPC. (Table 2). However, the MPC-
Fixed has a rebalancing distance that is 2,764 km more than CCMPC.
Since the fixed demand prediction is not accurate, a lot of vehicles will
unnecessarily be rebalanced. When the fleet size is above 300 vehicles,
the performance of MPC-Oracle, CCMPC, andMPC-fixed in terms of pick-
up time is similar because a large fleet size compensates for a bad
controller as the MPC-Fixed. A lot of vehicles can be rebalanced without
affecting the pick-up-time since there is an oversupply of vehicles in the
system. Therefore, the mean and median pickup-time is similar but the
total distance driven is still more for the MPC-Fixed. From an operator's
perspective, it is desired to keep the fleet size as low as possible because
of cost savings. Therefore, a fleet size of 300 vehicles seems to be optimal
in terms of cost and performance (Figs. 8 and 9).
4.6. Computational complexity

The number of variables in the optimization problem is proportional
to the number of stations and the time horizon, resulting in a computa-
tional complexity of OðN2TÞ for the number of variables and
Oð4N2T þNTÞ for the number of constraints. The low computational
running time of 0.093 s (on average, Table 3) is due to the optimization
problem being TU (totally unimodular), as well as the fact that the
number of variables and constraints is solely dependent on the number of
stations and the time horizon.

5. Conclusion and future work

In this study, we have proposed a predictive chance constraint reba-
lancing approach for autonomous mobility-on-demand (AMoD) services,
which is applied to the use case of ride-hailing. We first introduce a
commonly used model for this service where the service area is dis-
cretized into smaller areas, called stations. The model consists of con-
straints for the imbalance and vehicle conservation. Based on the model,
a model predictive controller (MPC) is formulated with the multi-
objective to minimize the rebalance distance for vehicles and the
imbalance in each station. The travel demand is predicted using Gaussian
Process regression (GPR). GPR, in contrast to other proposed prediction
methods, is superior for small datasets and provides a confidence bound
on the prediction. We account for uncertainties in the travel demand
prediction by formulating a chance constraint MPC (CCMPC). The
CCMPC is relaxed using the GPR prediction and the use of the separable
model. The proposed algorithm was benchmarked using the high fidelity
transport simulator AMoDeus and real taxi data from San Francisco
(Ruch et al., 2018). Our results show the importance of incorporating the
confidence bound of the demand prediction. By tuning the confidence
bound, the median wait time is reduced by 4% compared to using only
the mean prediction of the GPR. We showed that the CCMPC is per-
forming close to optimal performance and that is significantly better than
a reactive controller. The performance and computational efficiency of
the proposedmethod implies that it would be useful for real-time control.
There are many important directions to consider for future work
including embedding traffic and limited range into the model as well as
more case studies for different cities. Furthermore, future research could
explore the potential benefits of utilizing multivariate Gaussian process
regression to model the continuous spatial properties of travel demand.
Additionally, the incorporation of endogenous traffic and induced travel
demand, which could affect the travel demand in a given area and
therefore the service quality.

Replication and data sharing

The data used in this paper can be downloaded from https://ieee
-dataport.org/open-access/crawdad-epflmobility. The simulation soft-
ware used in this paper can be accessed at https://github.com/a

https://ieee-dataport.org/open-access/crawdad-epflmobility
https://ieee-dataport.org/open-access/crawdad-epflmobility
https://github.com/amodeus-science/amod
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Appendix. Total Unimodular

There are certain cases where the optimal solution of the LP relaxation of an MILP is guaranteed to be integral. Consider the following MILP:

minimizex c>y
subject to

Ay � b
y 2 N

If the Amatrix is totally unimodular (TU), then the linear programming (LP) relaxation will always have one integral solution (Hoffman and Kruskal,
2010). We aim to show that the chance constraint optimization problem in Eq. (19) is TU. We can write the active constraints in the optimization
problem (Eq. (19)) with the following matrix constraint:

2
66664
B C 0
0 D E
I 0 0
0 I 0
0 0 I

3
77775

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{A

2
4 xr

xc

s

3
5

zfflffl}|fflffl{y

¼

2
66664
φ
λ
0
0
0

3
77775

zfflffl}|fflffl{b

(A1)

where B and C represent the vehicle conservation constraint (6d), andD and E are matrices chosen to represent the imbalance constraint in Eq. (19b).
The vectors xr, xc, and s are vectors of all decision variables xrijðtÞ; xcijðtÞ, and sij(t). The matrix D is an identity matrix. Matrices B, C, D, and E are TU
because each column of these matrices consists of at most two non-zero entries (þ1 and�1) (Schrijver, 1998). Since we are minimizing xr and s, we can
neglect the decision variable xc by rewriting the constraint:

Dxc þ Es ¼ λ ⇔ xc ¼ D�1λ� D�1Es (A2)

Therefore, we can simplify Eq. (21) to

2
664
B 0 �CD�1E
I 0 0
0 I 0
0 0 I

3
775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A

2
4 xr

xc

s

3
5

zfflffl}|fflffl{y

¼

2
664
φ� D�1λ

0
0
0

3
775

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{b

; (A3)

which A is a TU matrix (Schrijver, 1998). Therefore, both xr and s are integer, and thus, so is xc because all values in Eq. (22) are integer.
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