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Spatial Bandwidth Asymptotic Analysis for 3D
Large-Scale Antenna Array Communications

Liqin Ding, Member, IEEE, Jiliang Zhang, Senior Member, IEEE and Erik G. Ström, Fellow, IEEE

Abstract—In this paper, we study the spatial bandwidth for
line-of-sight (LOS) channels with linear large-scale antenna
arrays (LSAAs) in 3D space. We provide approximations to the
spatial bandwidth at the center of the receiving array, of the
form CR−B , where R is the radial distance, and C and B are
directional-dependent and piecewise constant in R. The approx-
imations are valid in the entire radiative region, that is, for R
greater than a few wavelengths. When the length of the receiving
array is small relative to R, the product of the array length and
the spatial bandwidth provides an estimate of the available spatial
degree-of-freedom (DOF) in the channel. In a case study, we apply
these approximations to the evaluation of spatial multiplexing
regions under random orientation conditions. The goodness-of-
fit of the approximations is demonstrated and some interesting
findings about the DOF performance of the channel under 3D and
2D orientation restrictions are obtained, e.g., that, under some
conditions, it is better to constrain the receiving array orientation
to be uniform over the unit circle in the 2D ground plane rather
than uniform over the 3D unit sphere.

Index Terms—Large-scale antenna array, degree-of-freedom,
spatial bandwidth, spatial multiplexing.

I. INTRODUCTION

Research on wireless communication technologies utilizing
large-scale antenna arrays (LSAAs) is experiencing significant
growth and attention. Various schemes and concepts have been
proposed, including large intelligent surface (LIS) [1], [2], ex-
tremely large aperture array (ELAA) [3], holographic multiple-
input multiple-output (MIMO) [4], [5], and extremely large-
scale MIMO (XL-MIMO) [6]–[8], among others. The remark-
ably large physical size of LSAAs leads to unconventional
advantages, such as precise beam focus at specific locations [9]
and spatial multiplexing under line-of-sight (LOS) propagation
conditions [2], [4], [10], and brings wireless communication
to a new regime where the information richness of the spatial
domain has a more important role to play than ever before.
To efficiently explore this regime, the need for a thorough
understanding of the spatial characteristics of electromagnetic
(EM) waves cannot be overemphasized [5]–[7], [11], [12].

One fundamental aspect that underlies several unconven-
tional advantages, including the two mentioned above, is the
presence of abundant spatial degrees of freedom (DOFs) in
LOS channels with LSAA. The related research can be traced

This work was supported in part by the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska Curie Grant
Agreement No. 887732 (H2020-MSCA-IF VoiiComm) and in part by the
National Key R&D Program of China under Grant 2021YFB3300900.

L. Ding and E. G. Ström are with the Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg, Sweden.

J. Zhang is with the College of Information Science and Engineering,
Northeastern University, Shenyang, China.

back to the seminal work of O. M. Bucci and G. Franceschetti
in the late 1980s [13], [14], where they studied the total
number of spatial DOFs existing in the radiative EM field radi-
ated/scattered by sources confined within a fixed sphere. They
revealed that the effective spatial bandwidth of such EM field
is limited and determined by the radius of the source sphere
[13], and that asymptotically (in a sense that will become clear
later), the total number of spatial DOFs is given by the number
of Nyquist samples taken over an outer spherical observing
domain [14]. The study was later generalized by Bucci et
al. to sources confined within a convex domain with rotational
symmetry [15], where they introduced the concept of local
spatial bandwidth and demonstrated non-redundant Nyquist
sampling by establishing a curve-linear coordinate system for
the observing domain. Along this line, research has continued
in the following two decades, notably by M. Franceschetti
and M. D. Migliore [16]–[20]. Most studies, and this paper
too, consider the radiative part of a monochromatic EM field,
which requires the observing domain to be at least a few
wavelengths apart from the source region (the meaning will
become clear in Section II)1. Moreover, this paper studies
the spatially-continuous setting, and, therefore, the obtained
DOF results serve as upper limits to what can be achieved by
sampling the source and observing regions with small antennas
[1].

It is important to note that the DOF of a signal space with
limited frequency support, observed over a finite duration,
cannot be directly equated with the number of Nyquist samples
taken for the reconstruction of a signal from this space
[21], [22]. Their relation is rigorously addressed by Landau’s
eigenvalue theorem [22]. To be precise, for square-integrable
time signals with frequency support limited to [−B,B] Hertz,
observed over a duration of T seconds, the number of DOFs
of the signal space is [23, Eq. (15)]

DOFϵ = 2BT +
1

π2
log

(
1− ϵ

ϵ

)
log T + o(log T ). (1)

where 0 < ϵ < 1 represents a tolerance level needed to
rigorously define the dimensionality of the signal space (see
[21] or [18], [23]). In fact, DOFϵ is equal to the number
of eigenvalues (associated with a certain linear operator) that
exceeds ϵ. By plotting the eigenvalues (sorted in decreasing
order), one finds that it begins with a region where the
eigenvalues have similar strength, followed by a transition
region centered at 2BT and with a width that grows as log T ,

1When the observing region is close enough to capture the reactive
component, additional DOFs are available [19].
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where the eigenvalues gradually decrease to be arbitrarily close
to 0 [22]. Hence, as T → ∞, the width of the transit zone
becomes negligible compared to 2BT , regardless of the value
of ϵ. In this sense, we say that DOF is asymptotically given
by 2BT . We may also refer to 2B as the “DOF density”
per unit of time in the same asymptotic sense. A completely
symmetrical result can be obtained by fixing T and increasing
B; that is, we can think of 2T as the DOF density per unit
frequency as B becomes large. Landau’s theorem extends to
square-integrable, multidimensional, bandlimited signals and
therefore to EM fields [18], [23], which validates [13]–[15]
with a different approach2.

Unlike time signals whose frequency can be infinitely high,
the support of spatial frequency of any radiative EM field is
always confined within the interval [− 1

λ ,
1
λ ] when observed

over a 1D geometry3 [1], [24], and within a circular region of
radius 1

λ when observed over a 2D or 3D geometry [1], [12],
[25], [26], where λ represents the wavelength. The maximum
supports may come from an infinitely large source region
or, equivalently, isotropic scattering. They lead to a “spatial
DOF density” of 2

λ per meter or π
λ2 per square meter, in the

asymptotic sense (i.e., as the observation region goes to infinity
or as λ goes to 0). In practical scenarios, when the operating
frequency is given by design and the source and observation
regions are bounded, the Nyquist sampling number can be
quite small and the number of eigenvalues in the transition
zone cannot be ignored. Despite this, the Nyquist sampling
number still serves as a good measure of the number of
significant DOFs available, as shown in [23, Fig. 2] and our
own study [24, Fig. 8]4.

When the separation R between the two regions is suffi-
ciently large compared to their individual sizes, the paraxial
approximation applies [23], leading to the following well-
known results: With two linear arrays, the 1D spatial fre-
quency support has a width of approximately L′

s

λR , leading to
DOF ≈ L′

sL
′
r

λR ; while with two planar arrays, the 2D spatial
frequency support has an area of approximately A′

s

(λR)2 , leading

to DOF ≈ A′
sA

′
r

(λR)2 , where L′
s (A′

s) and L′
r (A′

r) represent the
projected length (area) of the source and receiving arrays on
a line/plane perpendicular to the direction of propagation5.
Despite varying original settings, these results can be derived
from multiple independent research works, including [29],
[30], and also through Bucci’s approach, as discussed in [24].

In the era of LSAAs, communication distances can be
comparable to or even smaller than the size of the arrays,

2Bucci et al. addressed the little-o term by making the effective bandwidth
slightly larger than the spatial frequency support.

3We choose to measure spatial frequency in cycles per meter, which
corresponds directly to measure temporal frequency in Hertz. Moreover, the
terms region/geometry/antenna/antenna array are used interchangeably in this
paper.

4For capacity evaluation, an eigenmode analysis is needed to identify the
strength of the eigenvalues in the transition zone. A rigorous formulation of
the eigenproblem that applies to any bounded array geometry can be found in
[27]. However, obtaining analytical expressions is generally unlikely, except
for a few special cases (see [28] for an example)

5When the paraxial approximation holds, the propagation directions is
sufficiently focused that any two points on the source and receiving arrays can
be chosen to draw the connecting line and perform the orthogonal projection.

and variations in the geometric relationship between the arrays
(e.g., distance, direction, orientation) have a significant impact
on the DOF performance [24]. For very short distances, while
a source LSAA can be treated as infinitely large, the orienta-
tion of the receiving array still needs to be taken into account6.
Indeed, achieving the maximum frequency support of 2

λ or
π
λ2 (that is, DOF ≈ 2Lr

λ or DOF ≈ πAr

λ2 ) is only possible
when the receiving array is parallel to the LSAA. Moreover,
the behavior of spatial bandwidth under intermediate distance
conditions remains unclear. Although numerically evaluating
spatial bandwidth and DOF using Bucci’s approach is not
difficult, it is still valuable to derive simple and interpretable
expressions for spatial bandwidth in this region.

In this paper, we study the LOS channel between a linear
LSAA and a linear receiving array, where the receiving array
length is small relative to the communication distance. In this
scenario, the DOF can be approximated as the product of
the spatial bandwidth and the length of the receiving array.
We obtain asymptotic expressions for spatial bandwidth W
in the form of (Ls/R)

B , where A and B are directional-
dependent and piecewise constant in R. Hence, log(W ) is
asymptotically piecewise linear (affine) in log(R), where the
slope is proportional to −B. We refer to this as a multi-
slope model for the spatial bandwidth. These new asymptotic
expressions are easily interpretable and provide insights and
details beyond the results found in the literature. Our main
contributions can be summarized as follows.

• We derive asymptotic expressions for spatial bandwidth
for the two orthogonal orientations that dominate the
contribution in DOF. The asymptotic expressions show
distinct multi-slope linear decay relationships with the
radial distance in the logarithmic domain. A good fit to
the exact results is shown.

• We obtain a simple dual-slope asymptotic expression
for spatial bandwidth for the general orientation, at the
cost of lower accuracy for radial distances below a few
lengths of the source LSAA. A location-and-orientation-
dependent linear decay relationship with the radial dis-
tance is observed.

• Based on the asymptotic expressions, we evaluate the
DOF performance of the channel in a simple scenario
under random orientation conditions, using two new
concepts called the maximum and the expected spatial
multiplexing regions. Different effects of 3D and 2D
orientation constraints in the optimal and expectation
senses are observed.

We will first present the problem setting and preliminary
results obtained in [24] in Section II. Asymptotic results are
given in Section III and IV, while the derivations are detailed
in the appendices. The spatial multiplexing regions are studied
in Section V. Following the tradition of the signal processing
community, column vectors are used in the paper. We adopt
the notation f(x) ∼ f̃(x) (x → x0) for the asymptotically
equivalent relation between f(x) and f̃(x), which means that

6For the sake of discussion, we consider LSAA as the source array.
Understandably, if they switch roles, the DOF of the LOS channel between
them remains the same.



3

<latexit sha1_base64="OygKAI8xeWaPmGlvHCKA6KK6vEg=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvQVZmRoi4Lbly4qGAf0BlKJs20oZlMSDJCGfobblwo4tafceffmGlnoa0HAodz7uWenFBypo3rfjuljc2t7Z3ybmVv/+DwqHp80tVJqgjtkIQnqh9iTTkTtGOY4bQvFcVxyGkvnN7mfu+JKs0S8WhmkgYxHgsWMYKNlXw/xmZCMEf3QzWs1tyGuwBaJ15BalCgPax++aOEpDEVhnCs9cBzpQkyrAwjnM4rfqqpxGSKx3RgqcAx1UG2yDxHF1YZoShR9gmDFurvjQzHWs/i0E7mGfWql4v/eYPURDdBxoRMDRVkeShKOTIJygtAI6YoMXxmCSaK2ayITLDCxNiaKrYEb/XL66R72fCuGs2HZq1VL+oowxmcQx08uIYW3EEbOkBAwjO8wpuTOi/Ou/OxHC05xc4p/IHz+QOZyJFU</latexit>Lr

<latexit sha1_base64="nz76PV/g/fsR8f0zgsy9WgAS/iI=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvQVZmRoi4Lbly4qGAf0BlKJs20oZlMSDJCGfobblwo4tafceffmGlnoa0HAodz7uWenFBypo3rfjuljc2t7Z3ybmVv/+DwqHp80tVJqgjtkIQnqh9iTTkTtGOY4bQvFcVxyGkvnN7mfu+JKs0S8WhmkgYxHgsWMYKNlXw/xmZCMEf3Qz2s1tyGuwBaJ15BalCgPax++aOEpDEVhnCs9cBzpQkyrAwjnM4rfqqpxGSKx3RgqcAx1UG2yDxHF1YZoShR9gmDFurvjQzHWs/i0E7mGfWql4v/eYPURDdBxoRMDRVkeShKOTIJygtAI6YoMXxmCSaK2ayITLDCxNiaKrYEb/XL66R72fCuGs2HZq1VL+oowxmcQx08uIYW3EEbOkBAwjO8wpuTOi/Ou/OxHC05xc4p/IHz+QObTJFV</latexit>Ls

<latexit sha1_base64="YfWw8ldhPj4IjldCKgWDaXtOIOI=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10AyrNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcrX5Ec</latexit>

or

<latexit sha1_base64="ETsvXFZNECj9hGaAIOoh2Nnmmk8=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10A6rNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcs45Ed</latexit>

os

<latexit sha1_base64="o+1ord6dVXlj55gWRoD+w21/51U=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBahp5JIUY8FLx4r2A9oQ9lsJ+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5nfudJ9BGxOoBpwn4ERspEQrO0ErtPo4B2aBccWvuAnSdeDmpkBzNQfmrP4x5GoFCLpkxPc9N0M+YRsElzEr91EDC+ISNoGepYhEYP1tcO6MXVhnSMNa2FNKF+nsiY5Ex0yiwnRHDsVn15uJ/Xi/F8MbPhEpSBMWXi8JUUozp/HU6FBo4yqkljGthb6V8zDTjaAMq2RC81ZfXSfuy5l3V6vf1SqOax1EkZ+ScVIlHrkmD3JEmaRFOHskzeSVvTuy8OO/Ox7K14OQzp+QPnM8fnxOPFw==</latexit>

✓
<latexit sha1_base64="u5G0KfRru1rpYZFi21ffAIBTYsQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHYNUY8kXjyCkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzCRBP6JDyUPOqLFS475fLLkVdwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1440+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtC4r3lWl2qiWauUsjjycwTmUwYNrqMEd1KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AKe9jMU=</latexit>

R

<latexit sha1_base64="z6nDAjD90+KwkbqU/eRL4KpqUz4=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGbEM/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOq8JBA</latexit>x

<latexit sha1_base64="S91iQAue2XyTNrBD/JyIiByOKZA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRoi4LblxWsA9ph5JJM21okhmSjDAM/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O6WNza3tnfJuZW//4PCoenzS1VGiCO2QiEeqH2BNOZO0Y5jhtB8rikXAaS+Y3eZ+74kqzSL5YNKY+gJPJAsZwcZKj0OBzVQJlI6qNbfhLoDWiVeQGhRoj6pfw3FEEkGlIRxrPfDc2PgZVoYRTueVYaJpjMkMT+jAUokF1X62CDxHF1YZozBS9kmDFurvjQwLrVMR2Mk8oF71cvE/b5CY8MbPmIwTQyVZfhQmHJkI5dejMVOUGJ5agoliNisiU6wwMbajii3BWz15nXQvG95Vo3nfrLXqRR1lOINzqIMH19CCO2hDBwgIeIZXeHOU8+K8Ox/L0ZJT7JzCHzifP6x0kEE=</latexit>y

<latexit sha1_base64="zqdQZ9jRCzN6ciHR7/99D2IU3+Y=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGaEO/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOt+JBC</latexit>z

<latexit sha1_base64="6o7mN8N+9dnV49FOCUWZ8l7MZ3w=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCVyWRoi4LblxWsA9oQplMJ+3QySTM3BRq6Je4caGIWz/FnX/jpM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+Y3uV+b8aU5rF8hHnC/IiMJQ85JWCkoV31JgQyLyIwCUI8WwztmtNwlsCbxC1IDRVoD+0vbxTTNGISqCBaD1wnAT8jCjgVbFHxUs0SQqdkzAaGShIx7WfL4At8aZQRDmNlngS8VH9vZCTSeh4FZjJPqNe9XPzPG6QQ3voZl0kKTNLVoTAVGGKct4BHXDEKYm4IoYqbrJhOiCIUTFcVU4K7/uVN0r1quNeN5kOz1qoXdZTRObpAdeSiG9RC96iNOoiiFD2jV/RmPVkv1rv1sRotWcXOGfoD6/MH2nKTJQ==</latexit>

v̂

<latexit sha1_base64="nz76PV/g/fsR8f0zgsy9WgAS/iI=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvQVZmRoi4Lbly4qGAf0BlKJs20oZlMSDJCGfobblwo4tafceffmGlnoa0HAodz7uWenFBypo3rfjuljc2t7Z3ybmVv/+DwqHp80tVJqgjtkIQnqh9iTTkTtGOY4bQvFcVxyGkvnN7mfu+JKs0S8WhmkgYxHgsWMYKNlXw/xmZCMEf3Qz2s1tyGuwBaJ15BalCgPax++aOEpDEVhnCs9cBzpQkyrAwjnM4rfqqpxGSKx3RgqcAx1UG2yDxHF1YZoShR9gmDFurvjQzHWs/i0E7mGfWql4v/eYPURDdBxoRMDRVkeShKOTIJygtAI6YoMXxmCSaK2ayITLDCxNiaKrYEb/XL66R72fCuGs2HZq1VL+oowxmcQx08uIYW3EEbOkBAwjO8wpuTOi/Ou/OxHC05xc4p/IHz+QObTJFV</latexit>Ls

<latexit sha1_base64="ETsvXFZNECj9hGaAIOoh2Nnmmk8=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10A6rNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcs45Ed</latexit>

os

<latexit sha1_base64="o+1ord6dVXlj55gWRoD+w21/51U=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBahp5JIUY8FLx4r2A9oQ9lsJ+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5nfudJ9BGxOoBpwn4ERspEQrO0ErtPo4B2aBccWvuAnSdeDmpkBzNQfmrP4x5GoFCLpkxPc9N0M+YRsElzEr91EDC+ISNoGepYhEYP1tcO6MXVhnSMNa2FNKF+nsiY5Ex0yiwnRHDsVn15uJ/Xi/F8MbPhEpSBMWXi8JUUozp/HU6FBo4yqkljGthb6V8zDTjaAMq2RC81ZfXSfuy5l3V6vf1SqOax1EkZ+ScVIlHrkmD3JEmaRFOHskzeSVvTuy8OO/Ox7K14OQzp+QPnM8fnxOPFw==</latexit>

✓

<latexit sha1_base64="sJWlQkXua1ACQNXtK8JiGZsAfqs=">AAAB+HicbVBNS8NAEN34WetHox69LBahgpREinosePFYxX5AG8Jmu2mXbjZhdyLW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmBYngGhzn21pZXVvf2CxsFbd3dvdK9v5BS8epoqxJYxGrTkA0E1yyJnAQrJMoRqJAsHYwup767QemNI/lPYwT5kVkIHnIKQEj+Xbpzs8ez5xJpQdDBuTUt8tO1ZkBLxM3J2WUo+HbX71+TNOISaCCaN11nQS8jCjgVLBJsZdqlhA6IgPWNVSSiGkvmx0+wSdG6eMwVqYk4Jn6eyIjkdbjKDCdEYGhXvSm4n9eN4Xwysu4TFJgks4XhanAEONpCrjPFaMgxoYQqri5FdMhUYSCyapoQnAXX14mrfOqe1Gt3dbK9UoeRwEdoWNUQS66RHV0gxqoiShK0TN6RW/Wk/VivVsf89YVK585RH9gff4AwxWScA==</latexit>

Rx,0(✓)

<latexit sha1_base64="zrvvpyZL5ieHZIQhBWioK72Do8k=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRoi4LblxWsA9ph5LJZNrQJDMkGaEM/Qo3LhRx6+e4829Mp7PQ1gOBwznnkntPkHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2BNOZO0Y5jhtJ8oikXAaS+Y3i783hNVmsXywcwS6gs8lixiBBsrPXrukNtwiEfVmttwc6B14hWkBgXao+rXMIxJKqg0hGOtB56bGD/DyjDC6bwyTDVNMJniMR1YKrGg2s/yhefowiohimJlnzQoV39PZFhoPROBTQpsJnrVW4j/eYPURDd+xmSSGirJ8qMo5cjEaHE9CpmixPCZJZgoZndFZIIVJsZ2VLEleKsnr5PuZcO7ajTvm7VWvaijDGdwDnXw4BpacAdt6AABAc/wCm+Ocl6cd+djGS05xcwp/IHz+QMXro/h</latexit>

10�

<latexit sha1_base64="L03dYH9syRno4tXYjliOXoVq/2A=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoUIv+qWyW3XnIKvEy0kZcjT6pa/eIGZphNIwQbXuem5i/Iwqw5nAabGXakwoG9Mhdi2VNELtZ/NTp+TcKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MbPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadog3BW355lbQuq95VtXZfK9creRwFOIUzqIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWtecfOYE/sD5/AGDx405</latexit>

(a)
<latexit sha1_base64="RHwx1iQS3oznCs1kzdu/XTumiBU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoRJc9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QOFTI06</latexit>

(b)

<latexit sha1_base64="0x1JvTqFwpbqcZQdMSHFjqhNZdk=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1iErkoiRV0W3LisYFuhCWUynbRDJw9mboQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fiKFRtv+tkobm1vbO+Xdyt7+wWG1dnTc03GqGO+yWMbqwaeaSxHxLgqU/CFRnIa+5H1/epP7/UeutIije5wl3AvpOBKBYBSNNKxV3QnFzA0pTvyAqPmwVreb9gJknTgFqUOBzrD25Y5iloY8Qiap1gPHTtDLqELBJJ9X3FTzhLIpHfOBoRENufayRfA5OTfKiASxMi9CslB/b2Q01HoW+mYyT6hXvVz8zxukGFx7mYiSFHnEloeCVBKMSd4CGQnFGcqZIZQpYbISNqGKMjRdVUwJzuqX10nvoulcNlt3rXq7UdRRhlM4gwY4cAVtuIUOdIFBCs/wCm/Wk/VivVsfy9GSVeycwB9Ynz/UXpMh</latexit>

r̂

<latexit sha1_base64="CuHYEvcqRuh7tOoKwFFKhvgtTDU=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoOQKtxJUMuAjYVFRBMDyRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwMxtcz//EJleaxfDCTBP2IDiUPOaPGSve3fd0vV9yaOwdZJV5OKpCj2S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukfV7zLmr1u3qlUc3jKMIJnEIVPLiEBtxAE1rAYAjP8ApvjnBenHfnY9FacPKZY/gD5/MHJ8yNpQ==</latexit>

Ls

<latexit sha1_base64="vys7xX7eyYjBKAotcBLu+XSNDVE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoOQKtxJUMuAjYVFRBMDyRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwMxtcz//EJleaxfDCTBP2IDiUPOaPGSve3fdUvV9yaOwdZJV5OKpCj2S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukfV7zLmr1u3qlUc3jKMIJnEIVPLiEBtxAE1rAYAjP8ApvjnBenHfnY9FacPKZY/gD5/MHJkiNpA==</latexit>

Lr

<latexit sha1_base64="YfWw8ldhPj4IjldCKgWDaXtOIOI=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10AyrNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcrX5Ec</latexit>

or

<latexit sha1_base64="ETsvXFZNECj9hGaAIOoh2Nnmmk8=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10A6rNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcs45Ed</latexit>

os

<latexit sha1_base64="o+1ord6dVXlj55gWRoD+w21/51U=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBahp5JIUY8FLx4r2A9oQ9lsJ+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5nfudJ9BGxOoBpwn4ERspEQrO0ErtPo4B2aBccWvuAnSdeDmpkBzNQfmrP4x5GoFCLpkxPc9N0M+YRsElzEr91EDC+ISNoGepYhEYP1tcO6MXVhnSMNa2FNKF+nsiY5Ex0yiwnRHDsVn15uJ/Xi/F8MbPhEpSBMWXi8JUUozp/HU6FBo4yqkljGthb6V8zDTjaAMq2RC81ZfXSfuy5l3V6vf1SqOax1EkZ+ScVIlHrkmD3JEmaRFOHskzeSVvTuy8OO/Ox7K14OQzp+QPnM8fnxOPFw==</latexit>

✓

<latexit sha1_base64="u5G0KfRru1rpYZFi21ffAIBTYsQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHYNUY8kXjyCkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkKleSwfzCRBP6JDyUPOqLFS475fLLkVdwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1440+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtC4r3lWl2qiWauUsjjycwTmUwYNrqMEd1KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AKe9jMU=</latexit>

R
<latexit sha1_base64="z6nDAjD90+KwkbqU/eRL4KpqUz4=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGbEM/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOq8JBA</latexit>x

<latexit sha1_base64="S91iQAue2XyTNrBD/JyIiByOKZA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRoi4LblxWsA9ph5JJM21okhmSjDAM/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O6WNza3tnfJuZW//4PCoenzS1VGiCO2QiEeqH2BNOZO0Y5jhtB8rikXAaS+Y3eZ+74kqzSL5YNKY+gJPJAsZwcZKj0OBzVQJlI6qNbfhLoDWiVeQGhRoj6pfw3FEEkGlIRxrPfDc2PgZVoYRTueVYaJpjMkMT+jAUokF1X62CDxHF1YZozBS9kmDFurvjQwLrVMR2Mk8oF71cvE/b5CY8MbPmIwTQyVZfhQmHJkI5dejMVOUGJ5agoliNisiU6wwMbajii3BWz15nXQvG95Vo3nfrLXqRR1lOINzqIMH19CCO2hDBwgIeIZXeHOU8+K8Ox/L0ZJT7JzCHzifP6x0kEE=</latexit>y

<latexit sha1_base64="zqdQZ9jRCzN6ciHR7/99D2IU3+Y=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGaEO/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOt+JBC</latexit>z

<latexit sha1_base64="0x1JvTqFwpbqcZQdMSHFjqhNZdk=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1iErkoiRV0W3LisYFuhCWUynbRDJw9mboQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fiKFRtv+tkobm1vbO+Xdyt7+wWG1dnTc03GqGO+yWMbqwaeaSxHxLgqU/CFRnIa+5H1/epP7/UeutIije5wl3AvpOBKBYBSNNKxV3QnFzA0pTvyAqPmwVreb9gJknTgFqUOBzrD25Y5iloY8Qiap1gPHTtDLqELBJJ9X3FTzhLIpHfOBoRENufayRfA5OTfKiASxMi9CslB/b2Q01HoW+mYyT6hXvVz8zxukGFx7mYiSFHnEloeCVBKMSd4CGQnFGcqZIZQpYbISNqGKMjRdVUwJzuqX10nvoulcNlt3rXq7UdRRhlM4gwY4cAVtuIUOdIFBCs/wCm/Wk/VivVsfy9GSVeycwB9Ynz/UXpMh</latexit>

r̂

<latexit sha1_base64="t5ZEQRpZP+/45V7w/+lEzfqjS48=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDiJeyKr2PAi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz0UGFnvVLZrbozkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeONnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrnVe+qenl/Ua5V8jgKcAwnUAEPrqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QOHI408</latexit>

(c)

Fig. 1. Problem setting: (a) The local coordinate system and the parameters specifying the geometric relationship between the source-receiving array pair;
(b) The minimum radial distance requirement (5). (c) The range of r̂(0, q) is indicated by the dashed arc, which obviously depends not only on Ls, but also
on R and θ. The actual range of spatial frequencies also depends on v̂.

limx→x0
f(x)/f̃(x) = 1 [31, Ch. 1.4].

II. PROBLEM SETTING AND PRELIMINARIES

A. Problem setting and assumptions

Following [24], we consider two continuous linear antenna
arrays, Ls and Lr, of lengths Ls and Lr, consisting of
infinitesimal Hertzian dipoles and study the wireless channel
between them under the condition of LOS propagation in
3D space. We also assume a perfect and interference-free
perception of the electric field using Lr. Given the time-
harmonic (with the exp(jωt) convention) current distribution
over the source array, denoted by J (s), s ∈ Ls, the electric
field perceived by the receiving array can be written as

E(p) =
∫

Ls

G(p− s)J (s) ds, p ∈ Lr (2)

where the dyadic Green’s function G : R3 → C3 is given by
[30, Appendix I]:

G(r) =−jωµ
4πr

exp(−jk0r)·
[ (

I3 − r̂r̂T
)

︸ ︷︷ ︸
“radiative”

+
( j

k0r
− 1

k20r
2

) (
I3 − 3r̂r̂T

)

︸ ︷︷ ︸
“non-radiative”

]
, (3)

where j =
√
−1, r ≜ ∥r∥ and r̂ ≜ r

r representing the
Euclidean norm and the unit vector of r, k0 = 2π

λ with
λ = 2πc

ω being the wavelength (c is the propagation speed),
and µ is the permeability of free space, I3 is the 3×3 identity
matrix, and (·)T is the transpose operation. We require the
minimum distance between Ls and Lr to be at least a few
wavelengths (≳ 10λ) so that the non-radiative (i.e., reactive)
term in (3) can be neglected. Thereby, the LOS channel can
be interpreted as a linear deterministic mapping between two
spatial signals J (s), s ∈ Ls, and E(p), p ∈ Lr, by replacing
G in (3) by

GF(r) ≜
−jωµ
4πr

exp(−jk0r)
(
I3 − r̂r̂T

)
. (4)

To unambiguously describe the geometric relationship be-
tween Ls and Lr in 3D space, in [24], we proposed the use of
R, the radial distance between the array centers os and or, θ,
the polar angle defined from Ls to the os-or connecting line,

and v̂ = (v̂x, v̂y, v̂z)
T, the unit directional vector of Lr in the

local coordinate system (LCS) defined at or, as depicted in
Fig. 1(a). The z-axis of the LCS is parallel to Ls, the x-axis
lies on the or-Ls plane and points away from Ls, and the
y-axis is perpendicular to the or-Ls plane. The unit vectors
of the three axes are denoted by êz, êx, and êy. It is the
default coordinate system used in this paper unless otherwise
noted. We restrict v̂x ≥ 0, which, since a sign change of v̂
has no impact on the spatial bandwidth analysis, does not limit
generality. Moreover, θ ∈ (0, π) is assumed to prevent the two
arrays from being colinear, and

R ≳

(
Lr

2
+ 10λ

)
1

sin θ
(5)

ensures the applicability of GF(r) for any orientation of Lr at
the location under consideration. Note that the right-hand side
of (5) is the minimum distance between Lr and Ls when Lr is
orientated in the direction of the x-axis, and that condition (5)
restricts or to be outside the infinitely-long cylindrical region
of radius Lr

2 +10λ centered around Ls, as depicted in Fig. 1(b).
When Lr is orientated in the z-axis direction, it suffices to
require R ≳ 10λ.

B. Spatial bandwidth and spatial multiplexing regions

Consider a source point s(q) on Ls with q ∈ [−Ls

2 ,
Ls

2 ],
and a perception point p(l) on Lr with l ∈ [−Lr

2 ,
Lr

2 ]. Let
r(l, q) = p(l)− s(q) and denote its Euclidean norm and unit
vector by r(l, q) and r̂(l, q) respectively. We refer to E(l, q) ≜
GF(r(l, q))J (s(q)) dq as the wave component generated by
the Hertzian dipole at s(q) in the electric field E(p(l)). The
spatial frequency of E(l, q), denoted by κv̂(l, q), is defined as
the directional derivative of the phase term 2π

λ r(l, q) along v̂,
divided by 2π [24, Definition 1]. It can be easily verified that

κv̂(l, q) =
1

λ
⟨r̂(l, q), v̂⟩ [cycle per meter], (6)

where ⟨r̂, v̂⟩ = r̂Tv̂. The range of κv̂(l, q) is thus bounded
by [− 1

λ ,
1
λ ]. When Ls is large enough, the change in r̂(l, q),

and therefore in κv̂(l, q), can not be ignored for a fixed l but
different q. The local spatial bandwidth of E(p(l)), denoted by
wv̂(l;Ω), where Ω is a shorthand notation for the geometric
parameters (Ls, Lr, R, θ), is defined as the difference between



4

the maximum and minimum spatial frequencies of all the wave
components in E(p(l)). Namely,

wv̂(l;Ω) ≜ max
|q|≤Ls

2

κv̂(l, q)− min
|q|≤Ls

2

κv̂(l, q). (7)

Note that (7) differs from Bucci’s original definition [15] only
by a factor of 2π, which arises from our choice to measure
spatial frequency in cycles per meter rather than radians per
meter. Moreover, spatial bandwidth is “double-sided” in the
sense of (7), in contrast to the convention that time signals
with frequency support [−B,B] is said to have bandwidth B.

Based on (6) and (7), we can intuitively understand the
spatial bandwidth geometrically, since κv̂(l, q) is determined
by the projection of the unit vector r̂(l, q) onto another
unit vector v̂. In Fig. 1(c), for an arbitrary location for the
receiving array center or, we represent the range of r̂(0, q),
i.e., {r̂(0, q) : q ∈ [−Ls

2 ,
Ls

2 ]}, using a dashed arc of unit
radius. Obviously, this range depends not only on Ls, but
also on R and θ. For different v̂, the values of q that lead
to the maximum and minimum projections are different, and
thus the spatial bandwidth is also different. Therefore, it is
conceivable that, for different θ and v̂, the decay of wv̂(0;Ω)
with R will show different patterns. For example, although the
largest range of r̂(0, q) occurs at θ = π

2 , two receive arrays
oriented along v̂ = êz and v̂ = êx will have very different
spatial bandwidth behaviors as R increases, as our analysis
will show later.

When Lr is long enough relative to R, for different locations
on Lr, the range of r̂(l, q), i.e., {r̂(l, q) : q ∈ [−Ls

2 ,
Ls

2 ]}, will
vary. Hence, in general, wv̂(l;Ω) varies with l. As a result, the
number of samples given by non-redundant Nyquist sampling,
which we will call the K number in this paper, is given by [17]

Kv̂(Ω) =

∫ Lr
2

−Lr
2

wv̂(l;Ω) dl. (8)

If Lr is short relative to R, it is conceivable that the range
of r̂(l, q) will not vary much with l. In this case, the spatial
bandwidth can be considered constant, denoted by Wv̂(Ω),
and the K number is calculated by simple multiplication (the
analogy with the 2BT formula is clear):

Kv̂(Ω) ≈Wv̂(Ω)Lr. (9)

This is the case when the paraxial approximation applies, as
discussed in Section I. We also demonstrated in [24] in a
specific example with Lr = 40λ and Ls = 400λ, that this
constant spatial bandwidth approximation is applicable under
mild conditions on R for two orthogonal orientations: êz and
êx, see [24, Fig. 7]. We already know from [24] that the spatial
bandwidth along êz and êx are significantly larger than along
êy. Hence, we will ignore the contribution of the êy direction
to the DOF7.

7For very small R, the êy direction can also contribute in DOF, albeit much
less than the other two directions. To actually compute this contribution, the
change in the wy(l;Ω) cannot be ignored. In fact, [24, Eq. (44)] shows that
the minimum value of wy(l;Ω) appears at the array center and is always
0. On the other hand, Wy(Ω) = wy(0;Ω) = 0 may also be regarded as
a valid approximation, considering the relative small K number wy(l;Ω)
actually lead to.

When the constant spatial bandwidth approximation holds,
the local spatial bandwidth at any position l can essentially be
used as Wv̂(Ω). A convenient choice is wv̂(0;Ω). The exact
closed-form expressions of wv̂(l;Ω) for v̂ = êz and v̂ = êx
derived in [24] are given in (10) and (11) at the bottom of
next page. For convenience, we denote them by wz(l;Ω) and
wx(l;Ω). For a general orientation v̂, the exact derivation of
wv̂(l;Ω) is challenging, even just for l = 0. We will therefore
first perform asymptotic analysis to wz(0;Ω) and wx(0;Ω),
and then formulate an asymptotic expression for wv̂(0;Ω) that
is valid for arbitrary v̂.

III. ASYMPTOTIC FUNCTIONS FOR z AND x DIRECTIONS

We define Wz(R; θ) = wz(0;Ω) and Wx(R; θ) = wx(0;Ω)
as functions of R with a parameter θ. We sometimes omit the
argument (R; θ) for brevity. By plotting log(Wz) and log(Wx)
against log(R), we observe θ-dependent linear relationships
for different ranges of R. This observation motivates the
asymptotic analysis detailed in Appendices A and B, and
leads to two asymptotic functions W̃z(R; θ) and W̃x(R; θ)
summarized in Table I and Table II. These functions are
formed by three or two asymptote segments, in the form of
power-law functions (k = 1, 2, or 3):

W̃ (k)(R; θ) = A(θ) ·
(
Ls

R

)B(θ)

, (12)

that are valid in different R regimes. We refer to B(θ) as the
spatial bandwidth exponent (SBE) in this paper. Necessary ex-
planations will be given in the first two subsections, followed
by an examination of the goodness-of-fit. For the convenience
of discussion, we will focus on the range θ ∈ (0, π2 ], since
Wz(R; θ) and Wx(R; θ) are both symmetric about θ = π

2 .

A. Asymptotic expressions for W̃z(R; θ)

The asymptotic analysis in Appendix A results in three
asymptotes respectively for the small, medium, and large R
regimes, which are referred to as segments 1, 2, and 3 in
Table I. The SBEs of segments 1 and 3 are constant and given
by Bz,1 = 0 and Bz,3 = 1, while the SBE of segment 2 is θ
dependent and given by

Bz,2(θ) =
1

2

[
η2(θ) + η−1(θ)

]
, (13)

where

η(θ) =
sin θ√

1 + 3 cos2 θ
. (14)

The curve of Bz,2(θ) is plotted in Fig. 2 (a) for θ ∈ (0, π2 ].
It can be seen that as θ increases, Bz,2(θ) drops rapidly in
the beginning and to below 1 after a critical value θz,1, but
eventually increases to 1 again at θ = π

2 . By solving equation
Bz,2(θ) = 1, it is found that θz,1 = arccos

(√
1

2
√
5−1

)
≈

0.3197π.
The applicability of segment 2 is determined by where the

three straight lines described by the three asymptotes intersect
in the log(W )-log(R) plane. In particular, as justified in detail
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TABLE I
ASYMPTOTE SEGMENTS AND CRITICAL DISTANCES FOR THE MULTI-SLOPE ASYMPTOTIC FUNCTION W̃z(R; θ), VALID FOR R ≳ 10λ; WITH

η(θ) = sin θ√
1+3 cos2 θ

IN THE EXPRESSIONS.

Segment Expression

1 W̃
(1)
z (R; θ) = 2

λ

2 W̃
(2)
z (R; θ) = 1

λ
·

√
1−η2(θ)

(2 | cos θ| )Bz,2(θ) ·
(
Ls
R

)Bz,2(θ)

where Bz,2(θ) =
1
2

[
η2(θ) + η−1(θ)

]
3 W̃

(3)
z (R; θ) = 1

λ
· sin2 θ · Ls

R

Critical distances

Rz,1,2(θ) =
Ls

2 | cos θ|

(√
1−η2(θ)

2

) 1
Bz,2(θ)

Rz,2,3(θ) =
Ls

2 | cos θ|

( √
1−η2(θ)

2 sin2 θ| cos θ|

) 1
Bz,2(θ)−1

Rz,1,3(θ) =
1
2
Ls sin

2 θ

Formation rule for W̃z(R; θ): For θ ∈ (0, 0.3197π) ∪ (0.3285π, 0.5π) ∪ (0.5π, 0.6715π) ∪ (0.6803π, π), use segments 1, 2, 3 with
critical distances Rz,1,2(θ) and Rz,2,3(θ); for θ ∈ [0.3197π, 0.3285π] ∪ {0.5π} ∪ [0.6715π, 0.6803π], use segments 1, 3 with critical
distance Rz,1,3(θ).

TABLE II
ASYMPTOTE SEGMENTS AND CRITICAL DISTANCES FOR THE MULTI-SLOPE ASYMPTOTIC FUNCTION W̃x(R; θ), VALID FOR R ≳

(Lr
2

+ 10λ
)

1
sin θ

, WITH

η(θ) = sin θ√
1+3 cos2 θ

IN THE EXPRESSIONS.

Segment Expression

1 W̃
(1)
x (R; θ) = 2

λ

2 W̃
(2)
x (R; θ) = 1

λ
· 1−η(θ)

(2 | cos θ| )Bx,2(θ) ·
(
Ls
R

)Bx,2(θ)

where Bx,2(θ) =
1
2

[
η2(θ) + η(θ)

]
3 W̃

(3)
x (R; θ) = 1

λ
· sin2 θ · Ls

R

3∗ W̃
(3∗)
x (R; θ) = 1

8λ
·
(
Ls
R

)2

Critical distances

Rx,1,2(θ) =
Ls

2 | cos θ| (1− η(θ))
1

Bx,2(θ)

Rx,2,3(θ) =
Ls

2 | cos θ|

(
1−η(θ)

2 sin θ cos2 θ

) 1
Bx,2(θ)−1

Rx,1,3(θ) = Ls sin θ | cos θ|

Rx,1,3∗(θ) =
Ls√
8

Formation rule for W̃x(R; θ): For θ ∈ (0, 0.0225π] ∪ [0.9775π, π), use segments 1 and 3 with critical distance Rx,1,3(θ); for
θ ∈ (0.0225π, π

2
)∪ (0.5π, 0.9775π), use segments 1, 2, and 3 with critical distances Rx,1,2(θ) and Rx,2,3(θ); for θ = π

2
, use segments

1 and 3∗ with critical distance Rx,1,3∗(θ).

in Appendix A, one of the following conditions must be met
to make segment 2 applicable:

0 < Bz,2 < 1, Rz,1,2(θ) < Rz,1,3(θ), (15a)
Bz,2 > 1, Rz,1,2(θ) > Rz,1,3(θ), (15b)

where Rz,1,2(θ) and Rz,1,3(θ) (expressions given in Table I)
are the critical distances at which segment 1 intersects seg-
ments 2 and 3, respectively. From the curves of Rz,1,2(θ) and
Rz,1,3(θ) plotted in Fig. 2 (b) we see that they intersect at
a critical angle θz,2, Rz,1,3(θ) < Rz,1,2(θ) for θ ∈ (0, θz,2),
and Rz,1,3(θ) > Rz,1,2(θ) for θ ∈ (θz,2,

π
2 ). The equation

Rz,1,2(θ) = Rz,1,3(θ) translates to

1− η2(θ) = (2 sin2 θ cos θ)Bz,2(θ), (16)

which, unfortunately, does not lead to a simple explicit ex-
pression for its root (i.e., for θz,2). Solving (16) numerically,
we obtain θz,2 ≈ 0.3285π > θz,1.

Based on the above discussion, we conclude that for θ ∈
[θz,1, θz,2] ∪ {π

2 }, the asymptotic function W̃z(R; θ) is dual-

slope, formed by segments 1 and 3 with respective applicable
R ranges separated by critical distance Rz,1,3(θ); whereas for
θ ∈ (0, θz,1)∪(θz,2, π2 ), W̃z(R; θ) is triple-slope, formed by all
three segments with respective applicable R ranges separated
by Rz,1,3(θ) and Rz,2,3(θ), where Rz,2,3(θ) is the critical
distance at which segments 2 and 3 intersect. The expression
of Rz,2,3(θ) is also given in Table I, and its curve plotted in
Fig. 2 (b). Note that the expression of Rz,2,3(θ) is not defined
for θ = θz,1 and θ = π

2 , for which segments 2 and 3 are
parallel to each other. Finally, we recall the condition R ≳ 10λ
to ensure the validity of all asymptote segments.

B. Asymptotic expressions for W̃x(R; θ)

For θ ̸= π
2 , the asymptotic analysis in Appendix B results

in three asymptotes for W̃x(R; θ) of the form (12), for small,
medium, and large R regimes respectively. They are summa-
rized in Table II and referred to as segments 1, 2, and 3. The
SBEs of segments 1 and 3, Bx,1 = 0 and Bx,3 = 1, are the
same as their counterparts for W̃z(R; θ). The SBE of segment

wz(l;Ω) =
1

λ

(
l +R cos θ + Ls

2√
(l+R cos θ+ Ls

2
)2+(R sin θ)2

−
l +R cos θ − Ls

2√
(l+R cos θ− Ls

2
)2+(R sin θ)2

)
, (10)

wx(l;Ω) =


wx1(l;Ω) = 1

λ

(
1− l+R sin θ√

(l+R sin θ)2+(R| cos θ|+Ls
2

)2

)
, R| cos θ| ≤ Ls

2
,

wx2(l;Ω) = 1
λ

(
l+R sin θ√

(l+R sin θ)2+(R| cos θ|−Ls
2

)2
− l+R sin θ√

(l+R sin θ)2+(R| cos θ|+Ls
2

)2

)
, R| cos θ| > Ls

2
.

(11)
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Fig. 2. SBE Bz,2(θ) and critical distances (divided by Ls) for W̃z(R; θ);
with θz,1 ≈ 0.3197π and θz,2 ≈ 0.3285π.
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0 0.1 0.2 0.3 0.4 0.5
10-2

10-1

100

101

102

(b) Critical distances

Fig. 3. SBE Bx,2(θ) and critical distances (divided by Ls) for W̃x(R; θ);
with θx ≈ 0.0225π.

2 is given by

Bx,2(θ) =
1

2

[
η2(θ) + η(θ)

]
, (17)

where η(θ) is given by (14). The curve of Bx,2(θ) is plotted
in Fig. 3 (a) for θ ∈ (0, π2 ). As can be seen, Bx,2(θ) increases
gradually from 0 to 1 with θ in this range. Since Bx,2(θ) < 1
always holds, the condition corresponding to (15a) should be
met to make segment 2 applicable.

The critical radial distances at which each pair of segments
intersect are given by Rx,1,2(θ), Rx,1,3(θ), and Rx,2,3(θ) in
Table II, and their curves are plotted in Fig. 3 (b) for θ ∈
(0, π2 ). We can see that the condition Rx,1,2(θ) < Rx,1,3(θ)
is violated when θ ≤ θx, where the critical angle θx can be
found by solving equation Rx,1,2(L, θ) = Rx,1,3(L, θ), which
translates to

1− η(θ) = (2 sin θ cos2 θ)Bx,2(θ). (18)

Again, no simple expression has been found. Solving the
equation numerically, we obtain θx ≈ 0.0225π. We can now
conclude that for θ ∈ (0, θx], the asymptotic expression for
W̃x(R; θ) is dual-slope, formed by segments 1 and 3 with their
respective applicable R ranges separated by critical distance
Rx,1,3(θ); whereas for θ ∈ (θx,

π
2 ), the asymptotic expres-

sion is triple-slope, formed by all three segments with their
respective applicable R ranges separated by critical distances
Rx,1,3(θ) and Rx,2,3(θ).

For the special case8 of θ = π
2 , we obtain in Appendix B

a different asymptote for the large R regime, denoted by
W̃

(3∗)
x (R; θ), referred to as segment 3∗ in Table II. No

applicable asymptote for medium R is obtained. This leads
to a dual-slope asymptotic function, formed by segments 1
and 3∗ with respective applicable R ranges separated by the
critical distance Rx,1,3∗(θ) =

Ls√
8

.
We also remark that for those θ values close to π

2 , the triple-
slope asymptotic function formed by segments 1, 2, and 3 will
lead to large errors in medium R regime (see Appendix B for
an explanation). Nevertheless, we do not aim for more accurate
asymptotic expression for these θ conditions since they admit
much smaller spatial bandwidth than those favorable angles
(near π

4 ) for the same R. In other words, one should avoid
the combination of θ ≃ π

2 and v̂ = êx for good spatial DOF
performance. Finally, we note the condition R ≥ Rx,0 (see
(5)) to ensure the validity of all the derived asymptotes.

C. Goodness-of-fit evaluation

In Fig. 4, we compare the log-log plots of λ W̃z(R; θ) and
λ W̃x(R; θ) against R/Ls (the results are frequency indepen-
dent in this way) with their exact counterparts computed based
on (10) and (11) for four evenly-spaced θ values. It can be
seen that the asymptotic curves fit the exact results well for
these θ values. In Fig. 5, the colormaps of the normalized
approximation errors, (W̃z −Wz)/Wz and (W̃x −Wx)/Wx,
are displayed in the R-θ plane for θ ∈ (0, π2 ] and R ≤ 5Ls.
As noted already, the asymptotic expression W̃x(R; θ) fit badly
when θ is near π

2 . Otherwise, larger errors occur only for small
R, either near the critical distances (plotted in white dash-
dotted lines) or when θ is small. For those θ values that admit
a larger spatial bandwidth (near π

2 for Wz or near π
4 for Wx),

the asymptotic expressions exhibit a good fit.
From Fig. 4 and Fig. 5, we observe that the last asymptote

segments, which have SBE 1, fit the exact curve tightly as soon
as R exceeds a few Ls. We also note that, although the critical
distances Rz,2,3 and Rx,2,3 can be very large under certain θ

8This case is special because the second expression in (11), wx2(l;Ω),
will never apply no matter how large R becomes.
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(b) λW̃x(R; θ) v.s. λWx(R; θ)

Fig. 4. Log-domain comparison of the multi-slope asymptotic spatial band-
width results (dash-dotted line) and exact results (solid line). Turning points
of the asymptotic curves at critical distances are depicted using diamond
markers. Ls = 1000λ is assumed to ensure the applicability of the asymptotic
expressions.

conditions, the SBEs of the second asymptotes Bz,2(θ) and
Bx,2(θ) are nevertheless close to 1 under the same conditions,
as can be verified from Fig. 2 and Fig. 3. Fig. 6 presents the
colormaps of the normalized computation error caused by the
dual-slope expressions (formed by segments 1 and 3 (or 3∗))
applied to the entire (0, π2 ] range. Compared to Fig. 5, the
additional large errors only occur for small R.

IV. DUAL-SLOPE ASYMPTOTIC FUNCTION FOR THE
GENERAL ORIENTATION

The above observations motivate us to obtain a dual-slope
asymptotic expression for Wv̂(R; θ) ≜ wv̂(0,Ω), for an
arbitrary orientation v̂ = (v̂x, v̂y, v̂z)

T ̸= êy. This is done
through a geometric interpretation of its asymptotic behavior
for very small and very large R.

When R is small, we expect Wv̂(R; θ) to be asymptotically
constant. As R → 0+, Lr is very close to the center of Ls

for any θ. Due to the large Ls assumption, asymptotically,
the set {r̂(0, q)}|q|≤Ls

2
forms a semiring of unit radius on

the +x-z half-plane, as shown in Fig. 7 (a). As a result, the
maximum spatial frequency κmax

v̂ = 1
λ∥v̌∥ = 1

λ

√
v̂2x + v̂2z is

achieved by r̂ = v̌
∥v̌∥ , where v̌ ≜ (v̂x, 0, v̂z)

T is the projection
of v̂ on the x-z plane; whereas the minimum spatial frequency
κmin
v̂ = −|v̂z| is caused when r̂ = −sign(v̂z) êz. Following the

(a) (W̃z −Wz)/Wz

(b) (W̃x −Wx)/Wx

Fig. 5. Normalized spatial bandwidth approximation errors caused by the
derived multi-slope asymptotic functions. Contour lines of λWz and λWx at
0.2, 0.1, and 0.05 (white solid thin lines, obtained approximately using the
last asymptote segments) show that the θ ranges near π

2
and near π

4
admit

larger spatial bandwidths for the two orientations respectively.

definition spatial bandwidth (7), we obtain

W c
v̂(R) ∼ κmax

v̂ − κmin
v̂ =

1

λ

(√
v̂2x + v̂2z + |v̂z|

)
(R→ 0+).

(19)
When R is very large, the expressions of W̃ (3)

z (R; θ) and
W̃

(3)
x (R; θ) given in Table I and Table II lead to the same

DOF results as the paraxial approximation does. For v̂ = êz,
we have that K̃z = Ls sin θ

λR · Lr sin θ. We see that Ls sin θ
and Lr sin θ are the projected lengths of Ls and Lr onto
the line on the x-z-plane that is perpendicular to the os-or
connecting line. The direction of this line is given by the unit
vector û ≜ (− cos θ, 0, sin θ)T, as shown in Fig. 7 (b). Also,
for v̂ = êx, we have that K̃x = Ls sin θ

λR · Lr| cos θ|, where
Ls sin θ and Lr| cos θ| are the projected lengths of Ls and
Lr onto û. Hence, K̃z and K̃x are the results given by the
paraxial approximation, as discussed in the Section I. We use
this equivalence to obtain the asymptote for Wv̂(R; θ) for large
R. However, it is important to note that in the specific case of
v̂ = êx and θ = π

2 , the projection method leads to K̃x = 0,
which clearly is incorrect. Our analysis has identified this
discrepancy and provides a separate expression W̃

(3∗)
x (R; θ)

for this case, which exhibits a decay rate twice as large as the
others (i.e., SBE 2). The correct SBE cannot be found by just
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(a) (W̃ds
z −Wz)/Wz

(b) (W̃ds
x −Wx)/Wx

Fig. 6. Normalized spatial bandwidth approximation errors caused by the
dual-slope asymptotic functions (formed using segments 1 and 3 for both
orientations, labeled using superscript ‘ds’) applied to the entire θ range.
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<latexit sha1_base64="RHwx1iQS3oznCs1kzdu/XTumiBU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoRJc9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr2rau2+Vq5X8jgKcApnUAEPrqEOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QOFTI06</latexit>

(b)

<latexit sha1_base64="6o7mN8N+9dnV49FOCUWZ8l7MZ3w=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCVyWRoi4LblxWsA9oQplMJ+3QySTM3BRq6Je4caGIWz/FnX/jpM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q+NUUdahsYhVPyCaCS5ZBzgI1k8UI1EgWC+Y3uV+b8aU5rF8hHnC/IiMJQ85JWCkoV31JgQyLyIwCUI8WwztmtNwlsCbxC1IDRVoD+0vbxTTNGISqCBaD1wnAT8jCjgVbFHxUs0SQqdkzAaGShIx7WfL4At8aZQRDmNlngS8VH9vZCTSeh4FZjJPqNe9XPzPG6QQ3voZl0kKTNLVoTAVGGKct4BHXDEKYm4IoYqbrJhOiCIUTFcVU4K7/uVN0r1quNeN5kOz1qoXdZTRObpAdeSiG9RC96iNOoiiFD2jV/RmPVkv1rv1sRotWcXOGfoD6/MH2nKTJQ==</latexit>

v̂

<latexit sha1_base64="z6nDAjD90+KwkbqU/eRL4KpqUz4=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGbEM/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOq8JBA</latexit>x

<latexit sha1_base64="S91iQAue2XyTNrBD/JyIiByOKZA=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRoi4LblxWsA9ph5JJM21okhmSjDAM/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O6WNza3tnfJuZW//4PCoenzS1VGiCO2QiEeqH2BNOZO0Y5jhtB8rikXAaS+Y3eZ+74kqzSL5YNKY+gJPJAsZwcZKj0OBzVQJlI6qNbfhLoDWiVeQGhRoj6pfw3FEEkGlIRxrPfDc2PgZVoYRTueVYaJpjMkMT+jAUokF1X62CDxHF1YZozBS9kmDFurvjQwLrVMR2Mk8oF71cvE/b5CY8MbPmIwTQyVZfhQmHJkI5dejMVOUGJ5agoliNisiU6wwMbajii3BWz15nXQvG95Vo3nfrLXqRR1lOINzqIMH19CCO2hDBwgIeIZXeHOU8+K8Ox/L0ZJT7JzCHzifP6x0kEE=</latexit>y

<latexit sha1_base64="oDcHPrtx3ydJ5eEwc7bMAJpxuIU=">AAAB+HicbVBNSwMxFMzWr1o/WvXoJViEnsquFPVY8OKxgm2F7lKyabYNzWaX5EWoS3+JFw+KePWnePPfmG33oK0DgWHmPd5kwlRwDa777ZQ2Nre2d8q7lb39g8Nq7ei4pxOjKOvSRCTqISSaCS5ZFzgI9pAqRuJQsH44vcn9/iNTmifyHmYpC2IyljzilICVhrWqPyGQ+TGBSRhhMx/W6m7TXQCvE68gdVSgM6x9+aOEmphJoIJoPfDcFIKMKOBUsHnFN5qlhE7JmA0slSRmOsgWwef43CojHCXKPgl4of7eyEis9SwO7WSeUK96ufifNzAQXQcZl6kBJunyUGQEhgTnLeARV4yCmFlCqOI2K6YToggF21XFluCtfnmd9C6a3mWzddeqtxtFHWV0is5QA3noCrXRLeqgLqLIoGf0it6cJ+fFeXc+lqMlp9g5QX/gfP4A2O2TJA==</latexit>

û <latexit sha1_base64="zqdQZ9jRCzN6ciHR7/99D2IU3+Y=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGaEO/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOt+JBC</latexit>z

<latexit sha1_base64="oDcHPrtx3ydJ5eEwc7bMAJpxuIU=">AAAB+HicbVBNSwMxFMzWr1o/WvXoJViEnsquFPVY8OKxgm2F7lKyabYNzWaX5EWoS3+JFw+KePWnePPfmG33oK0DgWHmPd5kwlRwDa777ZQ2Nre2d8q7lb39g8Nq7ei4pxOjKOvSRCTqISSaCS5ZFzgI9pAqRuJQsH44vcn9/iNTmifyHmYpC2IyljzilICVhrWqPyGQ+TGBSRhhMx/W6m7TXQCvE68gdVSgM6x9+aOEmphJoIJoPfDcFIKMKOBUsHnFN5qlhE7JmA0slSRmOsgWwef43CojHCXKPgl4of7eyEis9SwO7WSeUK96ufifNzAQXQcZl6kBJunyUGQEhgTnLeARV4yCmFlCqOI2K6YToggF21XFluCtfnmd9C6a3mWzddeqtxtFHWV0is5QA3noCrXRLeqgLqLIoGf0it6cJ+fFeXc+lqMlp9g5QX/gfP4A2O2TJA==</latexit>

û

<latexit sha1_base64="ne0MNILlQKm4zRDJj/DlHpqWjhM=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSJ0VRLxtSy4cVnBPqAJZTKdtEMnkzAzqZTYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7RT3t3bPzi0K0dtFaeS0BaJeSy7AVaUM0FbmmlOu4mkOAo47QTj29zvTKhULBYPeppQP8JDwUJGsDZS3654ZETJOPMirEdBiCazvl116s4caJW4BalCgWbf/vIGMUkjKjThWKme6yTaz7DUjHA6K3upogkmYzykPUMFjqjys3n0GTozygCFsTRPaDRXf29kOFJqGgVmMk+olr1c/M/rpTq88TMmklRTQRaHwpQjHaO8BzRgkhLNp4ZgIpnJisgIS0y0aatsSnCXv7xK2ud196p+eX9RbdSKOkpwAqdQAxeuoQF30IQWEHiEZ3iFN+vJerHerY/F6JpV7BzDH1ifP1Vpk/s=</latexit>

v̌<latexit sha1_base64="YfWw8ldhPj4IjldCKgWDaXtOIOI=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10AyrNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcrX5Ec</latexit>

or
<latexit sha1_base64="z6nDAjD90+KwkbqU/eRL4KpqUz4=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGbEM/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOq8JBA</latexit>x

<latexit sha1_base64="zqdQZ9jRCzN6ciHR7/99D2IU3+Y=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvQVZmRUl0W3LisYB/SDiWTZtrQJDMkGaEO/Qo3LhRx6+e482/MtLPQ1gOBwzn3knNPEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mR+95EqzSJ5b2Yx9QUeSxYygo2VHgYCm4kS6GlYrrg1dwG0TrycVCBHa1j+GowikggqDeFY677nxsZPsTKMcDovDRJNY0ymeEz7lkosqPbTReA5urDKCIWRsk8atFB/b6RYaD0TgZ3MAupVLxP/8/qJCa/9lMk4MVSS5UdhwpGJUHY9GjFFieEzSzBRzGZFZIIVJsZ2VLIleKsnr5POZc1r1Op39UqzmtdRhDM4hyp4cAVNuIUWtIGAgGd4hTdHOS/Ou/OxHC04+c4p/IHz+QOt+JBC</latexit>z

<latexit sha1_base64="0x1JvTqFwpbqcZQdMSHFjqhNZdk=">AAAB+HicbVDLSsNAFL2pr1ofrbp0M1iErkoiRV0W3LisYFuhCWUynbRDJw9mboQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fiKFRtv+tkobm1vbO+Xdyt7+wWG1dnTc03GqGO+yWMbqwaeaSxHxLgqU/CFRnIa+5H1/epP7/UeutIije5wl3AvpOBKBYBSNNKxV3QnFzA0pTvyAqPmwVreb9gJknTgFqUOBzrD25Y5iloY8Qiap1gPHTtDLqELBJJ9X3FTzhLIpHfOBoRENufayRfA5OTfKiASxMi9CslB/b2Q01HoW+mYyT6hXvVz8zxukGFx7mYiSFHnEloeCVBKMSd4CGQnFGcqZIZQpYbISNqGKMjRdVUwJzuqX10nvoulcNlt3rXq7UdRRhlM4gwY4cAVtuIUOdIFBCs/wCm/Wk/VivVsfy9GSVeycwB9Ynz/UXpMh</latexit>

r̂

<latexit sha1_base64="AupCD75jbuXlAyHKNe51lAX/SiE=">AAAB/HicbVC7TsMwFHXKq5RXoCOLRYXUqUoQr7ESCwNDkehDakPkuE5raseR7SBFUfgVFgYQYuVD2PgbnLYDtBzJ0tE59+oenyBmVGnH+bZKK6tr6xvlzcrW9s7unr1/0FEikZi0sWBC9gKkCKMRaWuqGenFkiAeMNINJleF330kUlER3ek0Jh5Ho4iGFCNtJN+u3vjyPhtwpMeSZ7EUD3nu2zWn4UwBl4k7JzUwR8u3vwZDgRNOIo0ZUqrvOrH2MiQ1xYzklUGiSIzwBI1I39AIcaK8bBo+h8dGGcJQSPMiDafq740McaVSHpjJIqVa9ArxP6+f6PDSy2gUJ5pEeHYoTBjUAhZNwCGVBGuWGoKwpCYrxGMkEdamr4opwV388jLpnDTc88bZ7WmtWZ/XUQaH4AjUgQsuQBNcgxZoAwxS8AxewZv1ZL1Y79bHbLRkzXeq4A+szx+z6JVk</latexit>

Lproj
r

<latexit sha1_base64="YfWw8ldhPj4IjldCKgWDaXtOIOI=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10AyrNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcrX5Ec</latexit>

or

<latexit sha1_base64="s5RPiNwSD8m+Tf2Jirg6RM5pFzw=">AAAB+nicdVDLSsNAFJ34rPWV6tLNYBG6Cmn6dFdw47KCfUATymQ6aYdOJmFmUimxn+LGhSJu/RJ3/o2TtoKKHhg4nHMv98zxY0alsu0PY2Nza3tnN7eX3z84PDo2CyddGSUCkw6OWCT6PpKEUU46iipG+rEgKPQZ6fnTq8zvzYiQNOK3ah4TL0RjTgOKkdLS0Cy4eELwNHVDpCZ+AGeLoVm0rctm3ak50LZsu+FU6hlxGlWnAstayVAEa7SH5rs7inASEq4wQ1IOynasvBQJRTEji7ybSBIjPEVjMtCUo5BIL11GX8ALrYxgEAn9uIJL9ftGikIp56GvJ7OE8reXiX95g0QFTS+lPE4U4Xh1KEgYVBHMeoAjKghWbK4JwoLqrBBPkEBY6bbyuoSvn8L/SdexynWrdlMttkrrOnLgDJyDEiiDBmiBa9AGHYDBHXgAT+DZuDcejRfjdTW6Yax3TsEPGG+fuFKUPw==</latexit>

v̌
<latexit sha1_base64="Q8/5SSM1LtgjmqmdBHkIsbLTl7c=">AAAB/HicbVC7TsMwFHXKq5RXoCOLRYXUqUoQr7ESCwNDkehDakPkuE5raseR7SBFUfgVFgYQYuVD2PgbnLYDtBzJ0tE59+oenyBmVGnH+bZKK6tr6xvlzcrW9s7unr1/0FEikZi0sWBC9gKkCKMRaWuqGenFkiAeMNINJleF330kUlER3ek0Jh5Ho4iGFCNtJN+u3vjqPhtwpMeSZ7EUD3nu2zWn4UwBl4k7JzUwR8u3vwZDgRNOIo0ZUqrvOrH2MiQ1xYzklUGiSIzwBI1I39AIcaK8bBo+h8dGGcJQSPMiDafq740McaVSHpjJIqVa9ArxP6+f6PDSy2gUJ5pEeHYoTBjUAhZNwCGVBGuWGoKwpCYrxGMkEdamr4opwV388jLpnDTc88bZ7WmtWZ/XUQaH4AjUgQsuQBNcgxZoAwxS8AxewZv1ZL1Y79bHbLRkzXeq4A+szx+1fJVl</latexit>

Lproj
s

Fig. 7. The geometric interpretation of the dual-slope asymptotic analysis
for arbitrary orientation v̂. (a) As R → 0+, the set of r̂ asymptotically
forms a semi-ring of unit radius on the +x-z half-plane; (b) For large R, it
is equivalent to consider the pair of perfectly aligned linear arrays given by
projecting Ls and Lr in the direction of û ≜ (− cos θ, 0, sin θ)T.

changing the direction of the projection.
The projected length of Ls depends only on θ, and hence,

we denote by Lproj
s (θ) = Ls sin θ. The projected length of Lr

depends additionally on its orientation, and we denote it by
Lproj
r (θ, v̂). Using v̂ = (v̂x, v̂y, v̂z)

T, its explicit expression
can be derived:

Lproj
r (θ, v̂) = Lr|⟨v̂, û⟩| = Lr|v̂x cos θ − v̂z sin θ|. (20)

Replacing Ls and Lr in LsLr

λR using Lproj
s and Lproj

r (θ, v̂)
respectively and divide the results by Lr, we obtain the
following asymptote:

Wv̂(R; θ) ∼
1

λ
|v̂x cos θ − v̂z sin θ| sin θ ·

Ls

R
(R→ ∞).

(21)
The critical distance Rv̂, given in Table III, at which the two

asymptotes (19) and (21) intersect, can be easily computed.
This completes all the information needed to form the dual-
slope asymptotic expression for W̃v̂(R; θ) for θ ∈ (0, π), as
summarized in Table III. By substituting v̂ = êz or v̂ = êx, it
can be easily verified that the resultant dual-slope asymptotic
expressions are exactly the same as the two formed using
asymptotes 1 and 3 for z and x directions.

Finally, we note that Rv̂ ≤ Ls

2 holds for any given θ and v̂.
For v̂x = 0, the proof is trivial and hence omitted. For v̂x ̸= 0,
we let ζ = arctan(v̂z/v̂x), which makes v̂z = ∥v̌∥ sin ζ and
v̂x = ∥v̌∥ cos ζ. Since ∥v̌∥ =

√
v̂2x + v̂2z > 0 (since v̂ ̸= êy)

and sin θ > 0, Rv̂ can be rewritten as

Rv̂ =
Ls| cos ζ cos θ − sin ζ sin θ| sin θ

1 + | sin ζ|

=
Ls| cos(ζ + θ)| sin θ

1 + | sin ζ| =
Ls| sin(ζ + 2θ)− sin ζ|

2(1 + | sin ζ|) ≤ Ls

2
,

where equality is achieved when sin(ζ+2θ) = 1 if sin ζ ≤ 0,
or when sin(ζ + 2θ) = −1 if sin ζ > 0.

V. SPATIAL MULTIPLEXING REGION EVALUATION

In this section, we demonstrate the usage of the asymptotic
expression given in Table III in the evaluation of spatial
multiplexing region in a simple communication scenario under
random orientation conditions of the receiving array.

A. Performance metrics

The spatial multiplexing region [24, Definition 3], as a
fundamental measure of the DOF performance of the LOS
channel between two antenna arrays, is defined as the set of
locations surrounding Ls where the K number given by (8)
exceeds a given threshold K0, indicating that the required
spatial multiplexing capability can be met. The definition is
given with respect to a specific orientation of the receiving
array. In what follows, we first extend the definition to arbitrary
orientation conditions. To make the definitions concrete, we
let (φ, γ) be the pair of zenith and azimuth angles that
parameterize v̂ and denote their valid value range by O, which
is a subset of [0, π] × [0, 2π). We note the following: first,
the reference coordinate system for (φ, γ) can be arbitrary;
secondly, (φ, γ) can be treated as random variables, and
thirdly, O can have a dependency on the location of Lr.

Definition 1 (Maximum Spatial Multiplexing Region). Given
a pair of linear arrays (Ls,Lr) and the valid value range O
for (φ, γ), the maximum spatial multiplexing region, denoted
by Rmax(K0), is the set of positions in the 3D space, where
when or is placed, the maximum value of K number achievable
in the LOS channel between Ls and Lr is equal to or greater
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TABLE III
DUAL-SLOPE ASYMPTOTIC FUNCTION W̃v̂(R; θ), VALID WHEN v̂ ̸= êy AND R >

(
Lr
2

+ 10λ
)

1
sin θ

Expression

W̃v̂(R; θ) =

{
1
λ

(√
v̂2x + v̂2z + |v̂z|

)
, R ∈ (0, Rv̂],

1
λ
|v̂x cos θ − v̂z sin θ| sin θ · Ls

R
, R ∈ (Rv̂,∞).

Critical distances

Rv̂ = Ls|v̂x cos θ−v̂z sin θ| sin θ√
v̂2
x+v̂2

z+|v̂z|
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<latexit sha1_base64="ETsvXFZNECj9hGaAIOoh2Nnmmk8=">AAAB8nicbVDLSgMxFM3UV62vqks3wSJ0VWakqMuCG5cVbCu0Q8mkmTY0jyG5I5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu6JEsEt+P63V9rY3NreKe9W9vYPDo+qxyddq1NDWYdqoc1jRCwTXLEOcBDsMTGMyEiwXjS9zf3eEzOWa/UAs4SFkowVjzkl4KT+QBKYGIn10A6rNb/hL4DXSVCQGirQHla/BiNNU8kUUEGs7Qd+AmFGDHAq2LwySC1LCJ2SMes7qohkNswWkef4wikjHGvjngK8UH9vZERaO5ORm8wj2lUvF//z+inEN2HGVZICU3T5UZwKDBrn9+MRN4yCmDlCqOEuK6YTYggF11LFlRCsnrxOupeN4KrRvG/WWvWijjI6Q+eojgJ0jVroDrVRB1Gk0TN6RW8eeC/eu/exHC15xc4p+gPv8wcs45Ed</latexit>

os

<latexit sha1_base64="o+1ord6dVXlj55gWRoD+w21/51U=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBahp5JIUY8FLx4r2A9oQ9lsJ+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5nfudJ9BGxOoBpwn4ERspEQrO0ErtPo4B2aBccWvuAnSdeDmpkBzNQfmrP4x5GoFCLpkxPc9N0M+YRsElzEr91EDC+ISNoGepYhEYP1tcO6MXVhnSMNa2FNKF+nsiY5Ex0yiwnRHDsVn15uJ/Xi/F8MbPhEpSBMWXi8JUUozp/HU6FBo4yqkljGthb6V8zDTjaAMq2RC81ZfXSfuy5l3V6vf1SqOax1EkZ+ScVIlHrkmD3JEmaRFOHskzeSVvTuy8OO/Ox7K14OQzp+QPnM8fnxOPFw==</latexit>
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Fig. 8. Scenario illustration for the case study.

than a given threshold K0. Namely,

Rmax(K0) ≜
{
(R, θ) : max(φ,γ)∈O {Kv̂(R, θ)} ≥ K0

}
.

(22)

Definition 2 (Expected Spatial Multiplexing Region). Given
a pair of linear arrays (Ls,Lr) and a joint probability
distribution of (φ, γ) over the valid value range O, denoted
by pφ,γ(φ, γ;O), the expected spatial multiplexing region,
denoted by Rexp(K0), is the set of positions in the 3D space,
where when or is placed, the expected value of the achievable
K number in the LOS channel between Ls and Lr is equal to
or greater than a given threshold K0. Namely,

Rexp(K0) ≜
{
(R, θ) : Epφ,γ(φ,γ;O) {Kv̂(R, θ)} ≥ K0

}
.

(23)

We remark that each pair of (R, θ) values describes a circle
surrounding Ls, and therefore, Rmax

O (K0) and R̄O(K0) are
3D regions that are rotationally symmetric around Ls. They
are the sets of locations where a satisfactory DOF can be
achieved in the expectation and optimal sense.

B. Scenario description

We consider a simple scenario shown in Fig. 8, and adopt a
global coordinate system (GCS) X-Y-Z, whose X-Y plane is
regarded the ground plane, for its description. The source array
Ls is placed parallel to the X-axis at a height Zs >

Ls

2 . Its
center is then given by os = (0, 0, Zs)

T. The location of the
receiving array Lr is restricted in the X-Y plane. In particular,
or = (Xr, Yr, 0)

T, where Yr ≥ 0, is assumed. It is easy to
obtain

R =
√
Z2
s +X2

r + Y 2
r , θ = arccos

(
Xr

R

)
. (24)

We use the zenith and azimuth angles (φ, γ) defined in the
GCS, as shown in Fig. 8, to specify the orientation of Lr. The

unit directional vector in the GCS is hence given by

v̂G = (sinφ cos γ, sinφ sin γ, cosφ)T. (25)

Denote the angle between the X-Y plane and the Ls-or plane
by ψ. The above notations readily lead to cosψ = Yr√

Z2
s+Y 2

r

and sinψ = Zs√
Z2

s+Y 2
r

. Following the definition of the LCS

given in Section II-A, it is not difficult to verify that the trans-
formation between GCS and LCS can be performed using a
rotation matrix Q = [0, cosψ,− sinψ; 0, sinψ, cosψ; 1, 0, 0].
Specifically, the unit directional vector is given by v̂ = Qv̂G

in the LCS.
We consider two orientation conditions for Lr, representing

two different potential application scenarios. In the first, Lr

can rotate freely in 3D, so (φ, γ) ∈ O3D = [0, π] × [0, 2π),
which can happen on a handheld terminal. In the second, the
rotation of Lr is restricted in the X-Y plane, i.e., (φ, γ) ∈
O2D = {π

2 } × [0, 2π), which may happen if mounted on
a car roof. To compute the expected spatial multiplexing
region, we assume that the orientation is uniformly distributed.
Specifically, the 3D uniform orientation, denoted by uni3D,
assumes that v̂ is uniformly distributed over the unit sphere
centered at or. That is, (φ, γ) follows the joint probability
density function (PDF) puni3Dφ,γ (φ, γ) = pγ(γ)pφ(φ), where

pγ(γ) =
1

2π
, for 0 ≤ γ < 2π, (26a)

pφ(φ) =
sinφ

2
, for 0 ≤ φ ≤ π. (26b)

The 2D uniform orientation, denoted by uni2D, assumes that
v̂ is uniformly distributed over the unit circle centered at
or in the X-Y plane. That is, (φ, γ) follows the joint PDF
puni2Dφ,γ (φ, γ) = pγ(γ)δ(φ− π

2 ) where pγ(γ) is given in (26a)
and δ(·) is the Dirac delta function.

C. Expected and maximum K number

We now derive the maximum and expected values of the
K number following (9) and Table III. Recall that the critical
distance Rv̂ given in Table III is upper bounded by Ls

2 . Since
Zs >

Ls

2 is assumed, we adopt the approximation

K̃v̂(R, θ) = |v̂x cos θ − v̂z sin θ| sin θ
LsLr

λR
(27)

for any location of Lr. Given or, θ is determined, and the
analysis is performed only on |v̂x cos θ − v̂z sin θ|.

1) Maximum values: Recall that |v̂x cos θ − v̂z sin θ| ≡
|⟨v̂, û⟩|, where û = (− cos θ, 0, sin θ)T. Given the 3D orien-
tation freedom, (27) is maximized when v̂ = −sign(cos θ) û,
such that |v̂x cos θ − v̂z sin θ| = 1. Consequently, an approxi-
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mation of max(φ,γ)∈O3D
{Kv̂(R, θ)} is

K̃max
3D (R, θ) =

sin θLsLr

λR
. (28)

When Lr is restricted to be in the X-Y plane, the max-
imum value of |⟨v̂, û⟩| is achieved when v̂ aligns with the
projection of û in the X-Y plane. Since ûG = QTû =
(sin θ,− cos θ cosψ, cos θ sinψ)T, it is computed that

max(φ,γ)∈O2D

{
|⟨v̂, û⟩|

}
=

√
sin2 θ + cos2 θ cos2 ψ

=

√
1− cos2 θ sin2 ψ

Accordingly, an approximation of max(φ,γ)∈O2D {Kv̂(R, θ)}
is given by

K̃max
2D (R, θ) =

√
1− cos2 θ sin2 ψ

sin θLsLr

λR
. (29)

From (28) and (29) we can see that K̃max
uni2D(R, θ) ≤

K̃max
uni3D(R, θ) always holds. This is expected since O3D of-

fers more freedom for orientation control. The gap between
K̃max

uni2D(R, θ) and K̃max
uni3D(R, θ) shrinks as ψ → 0 (e.g., when

Yr is large), which can also be reasoned from geometry: the
x-z plane of LCS, which dominates the contribution in spatial
DOF, approaches the X-Y plane of GCS as ψ → 0.

Remark 1. The above discussion suggests two low-complexity
near-optimal orientation control strategies for Lr based on its
position under the 3D and 2D orientation constraints, respec-
tively. However, from the discussion in Section III, we know
that when Lr and Ls are very close (Zs needs to be small),
it is best to always align them in parallel regardless of the
actual value of θ. Following the same approach as we identify
the critical distances for the asymptotic functions, we suggest
R3D(θ) = L sin θ

2 and R2D(θ) =
√
1− cos2 θ sin2 ψ sin θL

2
as the distance thresholds that divide the small and large R
regimes for these orientation control strategies to apply.

2) Expected values: Under the assumption of 3D uniform
orientation, the statistics of |v̂x cos θ − v̂ sin θ| is independent
of ψ, which can be verified based on the rotational symmetry
of the distribution of v̂ around the z-axis at or. Therefore, we
can simplify the analysis by letting ψ = 0, which leads to
v̂ = Qv̂G = (sinφ sin γ, cosφ, sinφ cos γ)T. The expected
value of |v̂x cos θ − v̂z sin θ| is thus given by

Epuni3D
φ,γ

{|v̂x cos θ − v̂ sin θ|}

=
1

4π

∫ 2π

0

∫ π

0

| sinφ sin γ cos θ − sinφ cos γ sin θ| sinφdφdγ

=
1

4π

∫ 2π

0

| sin γ cos θ − cos γ sin θ|
∫ π

0

sin2 φdφdγ =
1

2
.

Accordingly, an approximation of Epuni3D
φ,γ

{Kv̂(R, θ)} is ob-
tained:

K̃exp
uni3D(R, θ) =

1

2

sin θLsLr

λR
. (30)

Under the assumption of 2D uniform orientation, v̂ =
Qv̂G = (cosψ sin γ, sinψ sin γ, cos γ)T is obtained by sub-
stituting φ = π

2 into (25). The expected value of |v̂x cos θ −

v̂ sin θ| can be computed

Epuni2D
φ,γ

{|v̂x cos θ − v̂z sin θ|}

=
1

2π

∫ 2π

0

| cosψ sin γ cos θ−cos γ sin θ|dγ

=
2

π

√
1− cos2 θ sin2 ψ.

Consequently, an approximation of Epuni2D
φ,γ

{Kv̂(R, θ)} is
given by

K̃exp
uni2D(R, θ) =

2

π

√
1− cos2 θ sin2 ψ

sin θLsLr

λR
. (31)

From (30) and (31), we notice that K̃exp
uni2D(R, θ) can be

greater or smaller than K̃exp
uni3D(R, θ) depending on θ and ψ.

When ψ → 0,
√
1− cos2 θ sin2 ψ → 1, and K̃exp

uni2D(R, θ) →
4
π K̃

exp
uni3D(R, θ), showing that the 3D uniform orientation

distribution leads to a K number performance penalty in the
expectation sense.

D. Spatial multiplexing regions on the ground plane

We examine the intersections of spatial multiplexing regions
with the X-Y plane based on (28), (29), (30), and (31), since
or is restricted in it. We begin with the expected spatial mul-
tiplexing region under the 3D uniform orientation assumption.
Substituting sin θ =

√
Z2
s + Y 2

r /R and cos θ = Xr/R, which
follows directly from (24), into K̃exp

uni3D(R, θ) given by (30),
the intersecting region can be written explicitly as follows:

Rexp
uni3D(K0;Zs) =

{
(Xr, Yr) :

√
Z2
s + Y 2

r

2R2
≥ 1

G0

}
, (32)

where R =
√
Z2
s +X2

r + Y 2
r , and G0 ≜ LsLr

λK0
. The solution

to the corresponding equation in the condition gives the
boundary of this region, denoted by Bexp

uni3D(K0;Zs). After
some simple algebra, it is found that Bexp

uni3D(K0;Zs) is given
by the set of (Xr, Yr) satisfying

X2
r =

G0

2

√
Z2
s + Y 2

r − (Z2
s + Y 2

r ), 0 ≤ Y 2
r ≤ G2

0

4
− Z2

s .

(33)

Thus, to ensure a nonempty Rexp
uni3D(K0;Zs), the condition

Zs < G0/2 should be met.
From (28) and (30), K̃max

3D (R, θ) = 2K̃exp
uni3D(R, θ) is

observed. Therefore, replacing K0 by K0/2, (32) and (33)
describe the intersection and its boundary of the maximum
spatial multiplexing region with the X-Y plane for the same
threshold K0. We denote them by

Rmax
3D (K0;Zs) = Rexp

uni3D(K0/2;Zs), and
Bmax
3D (K0;Zs) = Bexp

uni3D(K0/2;Zs).

Next, we consider the expected spatial multiplexing region
under the 2D uniform orientation assumption. By substituting
sin θ =

√
Z2
s + Y 2

r /R and cos θ = Xr/R into (31), the
intersection of K̃exp

uni2D(R, θ) with the X-Y plane can be
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explicitly formulated as follows:

Rexp
uni2D(K0;Zs) =

{
(Xr, Yr) :

2

π

1

R2

√
Z2
s + Y 2

r − Z2
sX

2
r

R2
≥ 1

G0

}
. (34)

Its boundary, denoted by Bexp
uni2D(K0;Zs), can be found by

solving the corresponding equation in the condition. The
explicit expression for (Xr, Yr) forming the boundary is
complicated in this case. Nevertheless, it can be easily verified
that to ensure a nonempty Rexp

uni2D(K0;Zs), the condition
Zs < 2

πG0 should be met. From (29) and (31), it can be
seen that K̃max

2D (R, θ) = π
2 K̃

exp
uni2D(R, θ). Consequently, the

intersection for the maximum spatial multiplexing region and
the boundary are given by

Rmax
2D (K0;Zs) = R̄uni2D(2K0/π;Zs), and

Bmax
2D (K0;Zs) = B̄uni2D(2K0/π;Zs).

In Fig. 9, these boundaries are presented for the setting
with Ls = 1000λ, Lr = 20λ, and K0 = 1. Five different
values of Zs, increasing from 500λ to 8500λ in steps of 2000λ,
are selected. We see that for any given Zs, Rmax

3D (K0;Zs) is
always larger than Rmax

uni2D(K0;Zs). This is expected since
the 3D condition offers more freedom for orientation control
than the 2D restriction. In contrast, Rexp

3D (K0;Zs) is much
smaller than Rexp

uni2D(K0;Zs) for any given Zs. This is also
not a surprise (although it might seem so). Recall that the
x-z plane of the LCS dominates the contribution in spatial
DOF, and this plane approaches the ground plane for large
Yr. Therefore, roughly speaking, restricting Lr to the ground
plane actually helps to avoid many orientations that lead to
a very small K number. Moreover, with optimal control, the
difference between 3D and 2D orientation restrictions is more
significant for locations closer to the X axis (with small Yr);
while in the expectation sense, the difference made by the 3D
and 2D uniform orientation assumptions is more significant for
locations further away from the X axis. Finally, we emphasize
the impact of Zs on spatial multiplexing regions. Both the
shape and the area of the coverage are affected.

The distributions of the maximum and expected values of
the K number as the mobile user traverses the respective
spatial multiplexing regions over grids of size 50λ × 50λ
are also evaluated. In particular, the simulated cumulative
density function (CDF) curves of K̃max

3D (R, θ), K̃max
2D (R, θ),

K̃exp
uni3D(R, θ), and K̃exp

uni2D(R, θ) computed following (28),
(29), (30), and (31), are compared with the results given by
their exact counterparts computed using numerical integration
based on (7) and (8). Zs = 4500λ is chosen. For random
orientation, (ϕ, γ) are generated following puni3Dφ,γ (φ, γ) and
puni2Dφ,γ (φ, γ) described in Section V-B; the true optimal orien-
tation is found by exhaustive search. The obtained CDFs are
shown in Fig. 10. A good match between the asymptotic and
exact results can be seen in all cases, proving the goodness-
of-fit of the asymptotic expression for the general v̂ for this
application. Combining Fig. 10 and Fig. 9, we can conclude
that with optimal orientation control, the 3D freedom results
in a slightly better K number distribution in a larger spatial
multiplexing region; while under the 3D and 2D uniform
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(a) 3D orientation
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(b) 2D orientation

Fig. 9. Boundaries of the expected spatial multiplexing regions (dash-dotted
lines) and the maximum spatial multiplexing regions (solid lines) on the X-
Y-plane under the 3D and 2D orientation restrictions, with Ls = 1000λ,
Lr = 20λ, and K0 = 1. The short blue bar centered at (0, 0) depicts the
source array, which is lifted by height Zs off the plane.

orientation conditions, the latter leads to a better distribution
of the expected values of the K number in a significantly larger
spatial multiplexing region.

VI. CONCLUSIONS

Based on the exact closed-form expressions for the spatial
bandwidth at the center of the receiving array, located in
the radiative region of an LSAA and orientated in êx and
êz directions, we have derived asymptotic expressions of
the form W (R; θ) = A(θ) · (Ls/R)

B(θ), where A(θ) and
B(θ) are piecewise constant in R, creating two or three
asymptote segments depending on θ. See Table I and II for
details. When an expression has three asymptote segments,
the middle segment ends at a distance that is at most a few
times Ls. For this reason, we have also provided a two-
segment asymptotic expression for the spatial bandwidth for
an arbitrary orientation v̂, at the expense of reduced accuracy
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Fig. 10. Simulated CDFs of the maximum and expected values of the K
number when or is located inside the respective spatial multiplexing regions.
Ls = 1000λ, Lr = 20λ, Zs = 4500λ.

for distances comparable to Ls. These expressions provide
additional insight and detail beyond previously known results.
For instance, the effect of orientation on the spatial bandwidth
for very short distances is captured, the θ- and orientation-
dependent SBE of the middle segment is revealed, and the
breakpoints of the distance ranges are made mathematically
precise.

If Lr is small relative to R, the product of Lr and the
spatial bandwidth provides an approximation of the available
spatial DOF in the LOS channel. Under this condition, we
applied the two-segment expression in a case study with a
horizontally deployed source LSAA for spatial multiplexing
region evaluation, see Table III. Some interesting results asso-
ciated with the 3D and 2D orientation constraints have been
revealed. For instance, it is obvious that the optimal control of
the receive array orientation in 3D is better than (or equally
good as) optimal control in 2D. However, in the average sense,
the DOF performance under uniform random orientation in 3D
is actually worse than uniform random orientation in the 2D
ground plane, and the spatial multiplexing region is larger in
the later case.

APPENDIX A
ASYMPTOTIC ANALYSIS FOR Wz(R; θ)

A. Asymptotes derivation

Two functions f(x) and f̃(x) are said to be asymptotically
equivalent as x→ x0, if and only if limx→x0

f(x)/f̃(x) = 1.
This relation is denoted by f(x) ∼ f̃(x) (x → x0). We
aim to find functions asymptotically equivalent to Wz(R; θ) ≜
wz(0;Ω) in different regimes of R, based on the expression
of wz(l;Ω) given by (10). For convenience, we focus on θ ∈
(0, π2 ] in the analysis such that sin θ ≥ 0 and cos θ ≥ 0, and
extend the results to θ ∈ (π2 , π) by symmetry. Moreover, we
let x = R/Ls and consider fz(x; θ) = λWz(xLs; θ) instead.
Based on (10), we obtain

fz(x; θ) =
x cos θ + 0.5

g1(x)
− x cos θ − 0.5

g2(x)
, (35)

where

g1(x) =
√
x2 + x cos θ + 0.25, (36a)

g2(x) =
√
x2 − x cos θ + 0.25. (36b)

We treat θ as a given parameter and look for linear relation-
ships between log(f̃z) and log(x):

log(f̃z(x)) = log(Az)−Bz log(x), i.e. f̃z(x) = Azx
−Bz ,

where Bz is what we call SBE.
1) Small R regime: As x→ 0+, both x cos θ and x sin θ be-

come negligible compared to Ls

2 . As a result, fz(x) ∼ 2 (x→
0+). Accordingly, we obtain an asymptote of Wz(R; θ) for
small R values (with Bz,1 = 0):

Wz(R; θ) ∼ W̃ (1)
z (R; θ) =

2

λ
(R→ 0+). (37)

2) Large R regime: We rewrite (35) as

fz(x; θ) =
0.5 [g1(x) + g2(x)]− x cos θ [g1(x)− g2(x)]

g1(x)g2(x)
,

where g1(x) − g2(x) can be easily shown to be
2 cos θ√

1+cos θx−1+0.25x−2+
√
1−cos θx−1+0.25x−2

. As x → ∞,
g1(x) − g2(x) ∼ cos θ since the “1” term in the square-root
operators dominates, whereas g1(x) + g2(x) ∼ 2x and
g1(x)g2(x) ∼ x2 since the “x2” term in the square-root
operators in their expressions given in (36) dominates. As a
result, fz(x; θ) ∼ x−x cos2 θ

x2 = sin2 θ
x (x→ ∞), which lead to

an asymptote of Wz(R; θ) for large R values (with Bz,3 = 1):

Wz(R; θ) ∼ W̃ (3)
z (R; θ) =

sin2 θ

λ
· Ls

R
(R→ ∞). (38)

3) Medium R regime: By observing (35) - (36), we expect
the tangent line of log(fz(x)) at log(x = x0), where x0 =

1
2 cos θ , to be a plausible asymptote candidate for intermediate
values of x. Note that we need to assume θ ̸= π

2 for the
derivation and will run into trouble when θ → π

2 , since then
x0 corresponds to a value in the large R regime. Fortunately,
as we will see in a moment, as θ → π

2 , the SBE of the obtained
asymptote, denoted by Bz,2, approaches 1, and the asymptote,
denoted by W̃ (2)

z (R, θ) approaches W̃ (3)
z (R; π

2 ). This prevents
large approximation errors when applying W̃

(2)
z (R, θ) for θ
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B1 = 0

<latexit sha1_base64="fTTAaAk42XGZLEtI4IOPhrdzByc=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahp7Lr90UoevFYwW0L7VKyabYNTbJLkhXK0t/gxYMiXv1B3vw3pu0etPXBwOO9GWbmhQln2rjut1NYWV1b3yhulra2d3b3yvsHTR2nilCfxDxW7RBrypmkvmGG03aiKBYhp61wdDf1W09UaRbLRzNOaCDwQLKIEWys5N/2zm68Xrni1twZ0DLxclKBHI1e+avbj0kqqDSEY607npuYIMPKMMLppNRNNU0wGeEB7VgqsaA6yGbHTtCJVfooipUtadBM/T2RYaH1WIS2U2Az1IveVPzP66Qmug4yJpPUUEnmi6KUIxOj6eeozxQlho8twUQxeysiQ6wwMTafkg3BW3x5mTRPa95l7eLhvFKv5nEU4QiOoQoeXEEd7qEBPhBg8Ayv8OZI58V5dz7mrQUnnzmEP3A+fwCqUY3e</latexit>

B3 = 1

<latexit sha1_base64="RfarqRZPrB977KqTHK0MRk1MysE=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBAiSNgNvo4BLx6jmAckS5idzCZDZmfWmdlAWPIdXjwo4tWP8ebfOEn2oIkFDUVVN91dQcyZNq777aysrq1vbOa28ts7u3v7hYPDhpaJIrROJJeqFWBNORO0bpjhtBUriqOA02YwvJ36zRFVmknxaMYx9SPcFyxkBBsr+R0u+6WHbuqdVyZn3ULRLbszoGXiZaQIGWrdwlenJ0kSUWEIx1q3PTc2foqVYYTTSb6TaBpjMsR92rZU4IhqP50dPUGnVumhUCpbwqCZ+nsixZHW4yiwnRE2A73oTcX/vHZiwhs/ZSJODBVkvihMODISTRNAPaYoMXxsCSaK2VsRGWCFibE55W0I3uLLy6RRKXtX5cv7i2K1lMWRg2M4gRJ4cA1VuIMa1IHAEzzDK7w5I+fFeXc+5q0rTjZzBH/gfP4ATcCREw==</latexit>

log(R1,2)
<latexit sha1_base64="9rpOiGpg0D6LxEIf/yMmsViWnIE=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBAiSNj1fQx48RjFPCBZwuxkNhkyO7POzAbCku/w4kERr36MN//GSbIHTSxoKKq66e4KYs60cd1vZ2l5ZXVtPbeR39za3tkt7O3XtUwUoTUiuVTNAGvKmaA1wwynzVhRHAWcNoLB7cRvDKnSTIpHM4qpH+GeYCEj2FjJb3PZKz10Uu/0fHzSKRTdsjsFWiReRoqQodopfLW7kiQRFYZwrHXLc2Pjp1gZRjgd59uJpjEmA9yjLUsFjqj20+nRY3RslS4KpbIlDJqqvydSHGk9igLbGWHT1/PeRPzPayUmvPFTJuLEUEFmi8KEIyPRJAHUZYoSw0eWYKKYvRWRPlaYGJtT3obgzb+8SOpnZe+qfHl/UayUsjhycAhHUAIPrqECd1CFGhB4gmd4hTdn6Lw4787HrHXJyWYO4A+czx9PRpEU</latexit>

log(R1,3)

<latexit sha1_base64="AK7AgpVxr3DfKiVqkR6AfHRliMw=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0Wom5KIr2XBjcsK9gFtLJPJTTt0MgkzE6GGfIkbF4q49VPc+TdO2yy09cCFwzn3cu89fsKZ0o7zba2srq1vbJa2yts7u3sVe/+greJUUmjRmMey6xMFnAloaaY5dBMJJPI5dPzxzdTvPIJULBb3epKAF5GhYCGjRBtpYFf6mvEAsk7+kNXc03xgV526MwNeJm5BqqhAc2B/9YOYphEITTlRquc6ifYyIjWjHPJyP1WQEDomQ+gZKkgEystmh+f4xCgBDmNpSmg8U39PZCRSahL5pjMieqQWvan4n9dLdXjtZUwkqQZB54vClGMd42kKOGASqOYTQwiVzNyK6YhIQrXJqmxCcBdfXibts7p7Wb+4O682akUcJXSEjlENuegKNdAtaqIWoihFz+gVvVlP1ov1bn3MW1esYuYQ/YH1+QNJAJLG</latexit>

W̃ (1)

<latexit sha1_base64="fbw42b1OM47rX5SsHgJlinS6tPw=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxC3ZSk+FoW3LisYB/QxjKZTNuhk0mYuRFqyJe4caGIWz/FnX/jtM1CWw9cOJxzL/fe48eCa3Ccb6uwtr6xuVXcLu3s7u2X7YPDto4SRVmLRiJSXZ9oJrhkLeAgWDdWjIS+YB1/cjPzO49MaR7Je5jGzAvJSPIhpwSMNLDLfeAiYGkne0ir9bNsYFecmjMHXiVuTiooR3Ngf/WDiCYhk0AF0brnOjF4KVHAqWBZqZ9oFhM6ISPWM1SSkGkvnR+e4VOjBHgYKVMS8Fz9PZGSUOtp6JvOkMBYL3sz8T+vl8Dw2ku5jBNgki4WDROBIcKzFHDAFaMgpoYQqri5FdMxUYSCyapkQnCXX14l7XrNvaxd3J1XGtU8jiI6Rieoilx0hRroFjVRC1GUoGf0it6sJ+vFerc+Fq0FK585Qn9gff4ASoaSxw==</latexit>

W̃ (2)

<latexit sha1_base64="6omniPFNL0E+EXjUnHui+5+VN6k=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEuimJ72XBjcsK9gFtLJPJtB06mYSZiVBDvsSNC0Xc+inu/BunbRbaeuDC4Zx7ufceP+ZMacf5tgorq2vrG8XN0tb2zm7Z3ttvqSiRhDZJxCPZ8bGinAna1Exz2oklxaHPadsf30z99iOVikXiXk9i6oV4KNiAEayN1LfLPc14QNN29pBWz06yvl1xas4MaJm4OalAjkbf/uoFEUlCKjThWKmu68TaS7HUjHCalXqJojEmYzykXUMFDqny0tnhGTo2SoAGkTQlNJqpvydSHCo1CX3TGWI9UoveVPzP6yZ6cO2lTMSJpoLMFw0SjnSEpimggElKNJ8Ygolk5lZERlhiok1WJROCu/jyMmmd1tzL2sXdeaVezeMowiEcQRVcuII63EIDmkAggWd4hTfryXqx3q2PeWvBymcO4A+szx9MDJLI</latexit>

W̃ (3)

<latexit sha1_base64="4lK0mrxS+DCQbTKLwqQx5uZjA+I=">AAACD3icbVDLSsNAFJ3UV62vqEs3waKkICVpfS0LblxWsQ9oYphMJu3QyYOZiVBC/sCNv+LGhSJu3brzb5y0WWjrgQuHc+7l3nvcmBIuDONbKS0tr6yuldcrG5tb2zvq7l6XRwlDuIMiGrG+CzmmJMQdQQTF/ZhhGLgU99zxVe73HjDjJArvxCTGdgCHIfEJgkJKjnps0WhouWSoW4JQD6e97D7Vm7VMv3XSxkkzq+VmzVGrRt2YQlskZkGqoEDbUb8sL0JJgEOBKOR8YBqxsFPIBEEUZxUr4TiGaAyHeCBpCAPM7XT6T6YdScXT/IjJCoU2VX9PpDDgfBK4sjOAYsTnvVz8zxskwr+0UxLGicAhmi3yE6qJSMvD0TzCMBJ0IglEjMhbNTSCDCIhI6zIEMz5lxdJt1E3z+tnN6fVll7EUQYH4BDowAQXoAWuQRt0AAKP4Bm8gjflSXlR3pWPWWtJKWb2wR8onz/74ptE</latexit>

log
�
W̃ (3)(R2,3)

�
<latexit sha1_base64="4lK0mrxS+DCQbTKLwqQx5uZjA+I=">AAACD3icbVDLSsNAFJ3UV62vqEs3waKkICVpfS0LblxWsQ9oYphMJu3QyYOZiVBC/sCNv+LGhSJu3brzb5y0WWjrgQuHc+7l3nvcmBIuDONbKS0tr6yuldcrG5tb2zvq7l6XRwlDuIMiGrG+CzmmJMQdQQTF/ZhhGLgU99zxVe73HjDjJArvxCTGdgCHIfEJgkJKjnps0WhouWSoW4JQD6e97D7Vm7VMv3XSxkkzq+VmzVGrRt2YQlskZkGqoEDbUb8sL0JJgEOBKOR8YBqxsFPIBEEUZxUr4TiGaAyHeCBpCAPM7XT6T6YdScXT/IjJCoU2VX9PpDDgfBK4sjOAYsTnvVz8zxskwr+0UxLGicAhmi3yE6qJSMvD0TzCMBJ0IglEjMhbNTSCDCIhI6zIEMz5lxdJt1E3z+tnN6fVll7EUQYH4BDowAQXoAWuQRt0AAKP4Bm8gjflSXlR3pWPWWtJKWb2wR8onz/74ptE</latexit>
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Fig. 11. Possible geometric relationships of three asymptotes W̃ (k),
log(W̃ (k)) ∝ (log(R))−Bk , for k = 1, 2, 3. The dashed lines represent
the situations where W̃ (2) is not applicable.

values close to π
2 .

The tangent line can be written explicitly as:

log(f̃z(x)) = log(fz(x0))−Bz,2[log(x)− log(x0)], (39)

where

Bz,2 = −d log fz(x)

d log(x)

∣∣∣∣∣
x=x0

= −
[

1

fz(x)
· dfz(x)

dx
· x

] ∣∣∣∣∣
x=x0

(40)

is θ dependent. Based on (35), it can be directly obtained that

fz(x0) =
1

g1(x0)
=

√
1− η2(θ), (41)

where η(θ) ≜ sin θ√
1+3 cos2 θ

, as given by (14). Following the
quotient rule, we derive

dfz(x)

dx
=

cos θ

g1(x)
− (x cos θ + 0.5)(x+ 0.5 cos θ)

g1(x)3

− cos θ

g2(x)
+

(x cos θ − 0.5)(x− 0.5 cos θ)

g2(x)3
. (42)

Substituting (41) and (42) into (40) and letting x = x0,
we obtain Bz,2(θ) = 1

2

[
η2(θ) + η−1(θ)

]
as given in (13).

Substituting Bz,2(θ) and (41) into (39), and recalling x = R
Ls

,
we obtain the following asymptote:

W̃ (2)
z (R; θ) =

1

λ

√
1− η2(θ)

(
Ls

2 cos θ R

)Bz,2(θ)

, (43)

such that Wz(R; θ) ∼ W̃
(2)
z (R; θ) (R→ Ls

2 cos θ ).
It is easy to see that η(θ) is an increasing function over θ ∈

(0, π2 ) and η(θ) ∼ 1 (θ → π
2 ). Hence, Bz,2(θ) ∼ 1 (θ → π

2 ).
With this and

√
1− η2(θ) = 2 cos θ√

1+3 cos2 θ
, it can be verfied that

W̃
(2)
z (R; θ) ∼ W̃

(3)
z (R; θ) (θ → π

2 ).

B. Applicability discussion

Whether two or three of the derived asymptote segments,
W̃

(1)
z (R; θ), W̃ (2)

z (R; θ), and W̃
(3)
z (R; θ), should be used to

form the asymptotic function depends on how they inter-
sect. It can be easily seen that W̃ (1)

z (R; θ) always intersects
W̃

(2)
z (R; θ) and W̃

(3)
z (R; θ). However, when θ approaches

θz,1 or π
2 , Bz,2(θ) → 1, which implies that W̃ (2)

z (R; θ) and
W̃

(3)
z (R; θ) are asymptotically parallel. We therefore exclude

W̃
(2)
z (R; θ) from the asymptotic function. Intersection be-

tween W̃
(2)
z (R; θ) and W̃

(3)
z (R; θ) is guaranteed under any

other θ conditions, but W̃ (2)
z (R; θ) should only be included if

the intersection is below W̃
(1)
z .

By drawing the possible locations of the three asymptotes
in the log(W )-log(R) plane, which is shown in Fig. 11, we
can see that this requirement translates to the two conditions
given by (15a) and (15b), quoted below:

0 < Bz,2 < 1, Rz,1,2(θ) < Rz,1,3(θ),

Bz,2 > 1, Rz,1,2(θ) > Rz,1,3(θ).

The critical distances where any two asymptotes intersect
can be easily found. Since W̃

(1)
z (R; θ), W̃

(2)
z (R; θ), and

W̃
(3)
z (R; θ) can all be expressed in the form of AR−B , and

the solution of equation A1R
−B1 = A2R

−B2 is given by
R = (A1

A2
)

1
B1−B2 , the critical distances Rz,1,2(θ), Rz,2,3(θ),

and Rz,1,2(θ), given in Table I, can be easily derived.
From the expression for Bz,2(θ), we see that to solve

Bz,2(θz,1) = 1 we need first to solve the equation x2 +

x−1 = 2. Two positive roots are obtained: x1 =
√
5−1
2

and x2 = 1. Letting η(θz,1) = x1, the expression θz,1 =

arccos
(√

1
2
√
5−1

)
≈ 0.3197π is obtained. When θ < θz,1,

Bz,2 > 1; and when θ > θz,1, 0 < Bz,2 < 1. Moreover, as
shown in Fig. 2(b), for θ ∈ (0, θz,2), Rz,1,3(θ) < Rz,1,2(θ);
and for θ ∈ (θz,2,

π
2 ), Rz,1,3(θ) > Rz,1,2(θ), where θz,2 ≈

0.3285π > θz,1. As a result, for θ ∈ [θz,1, θz,2], asymptote
W̃

(2)
z (R; θ) should not be used in the asymptotic function.
Since Wz(R; θ) is symmetric about θ = π

2 , by replacing
cos θ using | cos θ| in (38) and (43), the applicability of the
obtained asymptote functions is also extended to the range θ ∈
(π2 , π). Having all the above discussions, the formation rule
of multi-slope asymptotic function for Wz(R; θ), summarized
in the last paragraph of Section III-A and also in Table I, can
be concluded.

APPENDIX B
ASYMPTOTIC ANALYSIS FOR Wx(R; θ)

A. Asymptotes derivation

We first derive functions asymptotically equivalent to
Wx(R; θ) ≜ wx(0;Ω) in different regimes of R, based on the
exact expression of wx(l;Ω) given by (11). For convenience,
we again focus on θ ∈ (0, π2 ], define x = R

Ls
, and discuss

fx(x; θ) = λWx(xLs; θ) instead. Based on (11), we obtain

fx(x; θ) =

{
fx1(x; θ) = 1− x sin θ

g1(x)
, x ≤ 1

2 cos θ

fx2(x; θ) =
x sin θ
g2(x)

− x sin θ
g1(x)

, x ≥ 1
2 cos θ

(44)

where g1(x) and g2(x) are given in (36). Treating θ as a given
parameter, we look for linear relationships between log(f̃x(x))
and log(x) of the form

log(f̃x(x)) = log(Ax)−Bx log(x), or f̃x(x) = Axx
−Bx .

Note that when θ = π
2 , fx2(x; θ) in (44) will never apply

since cos θ = 0. Therefore, special attention is required for
this particular θ value.

1) Small R regime: As x → 0+, it can be easily see that
for any θ ∈ (0, π2 ], fx(x; θ) = fx1(x; θ) ∼ 1. Accordingly,
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we obtain an asymptote of Wx(R; θ) for small R values (with
Bx,1 = 0):

Wx(R; θ) ∼ W̃ (1)
x (R; θ) =

1

λ
(R→ 0+). (45)

2) Large R regime: As x → ∞, fx(x; θ) = fx2(x; θ) if
θ ∈ (0, π2 ). Recalling that g1(x) + g2(x) ∼ 2x, g1(x)g2(x) ∼
x2, and g1(x)− g2(x) ∼ cos θ as x→ ∞, we have

fx2(x; θ) =
x sin θ [g1(x)− g2(x)]

g1(x)g2(x)
∼ sin θ cos θ

x
(x→ ∞).

Accordingly, we obtain an asymptote of Wx(R; θ) for large R
values for θ ∈ (0, π2 ) (with Bx,3 = 1):

Wx(R; θ) ∼ W̃ (3)
x (R; θ) =

sin θ cos θ

λ
· Ls

R
(R→ ∞).

(46)

When θ = π
2 , no matter how large x is, we always have

fx(x;
π
2 ) = fx1(x;

π
2 ), which can be written as

fx1(x;
π

2
) =

0.25

x2
√
1 + 0.25x−2(

√
1 + 0.25x−2 + 1)

.

As x → ∞,
√
1 + 0.25x−2 → 1, and thus fx1(x; π

2 ) ∼ 1
8x2 .

Accordingly, we obtain an asymptote of Wx(R; θ) for large R
values for θ = π

2 (with Bx,3∗ = 2):

Wx(R; θ) ∼ W̃ (3∗)
x (R; θ) =

1

8λ
·
(
Ls

R

)2

(R→ ∞). (47)

3) Medium R regime: Observing (44), we expect the tan-
gent lines of log(fx1(x)) or log(fx2(x)) at log(x = x0), where
x0 = 1

2 cos θ , to be plausible candidates of the asymptote. We
again assume θ ̸= π

2 first, and after derivation following the
same steps as for the z direction, it is found that log(fx1(x))
and log(fx2(x)) share the same tangent line at log(x0). Below
we will only provide the derivation regarding log(fx1(x)) in
detail. Specifically, we aim to obtain

log(f̃x(x)) = log(fx1(x0))−Bx,2[log(x)− log(x0)], (48)

where

Bx,2 = −d log fx1(x)

d log(x)

∣∣∣∣∣
x=x0

= −
[

1

fx1(x)
· dfx1(x)

dx
· x

] ∣∣∣∣∣
x=x0

(49)

has dependency in θ. It is easily computed that

fx1(x0) = 1− sin θ√
1 + 3 cos2 θ

= 1− η(θ), (50)

where η(θ) is given by (14). Following the quotient rule,

dfx1(x)

dx
=− sin θ

g1(x)
+
x sin θ(x+ 0.5 cos θ)

g1(x)3
. (51)

Substituting (50) and (51) into (49) and letting x = x0,
we obtain Bx,2(θ) = 1

2

[
η2(θ) + η(θ)

]
as given in (17).

Substituting Bx,2(θ) and (50) into (48), and recalling x = R
Ls

,
we obtain the following asymptote:

W̃ (2)
x (R, θ) =

1

λ

[
1− η(θ)

]
·
(

Ls

2 cos θ R

)Bx,2(θ)

, (52)

such that Wx(R, θ) ∼ W̃
(2)
x (R, θ) (R→ Ls

2 cos θ ).
As noted already, when deriving W̃

(2)
z (R, θ), x0 corre-

sponds to a value in the large R regime when θ → π
2 . We

do not have the same luck as for the z direction. By applying
W̃

(2)
x (R, θ) for θ → π

2 , large approximation errors will occur
because Bx,2(θ) no longer captures the correct decay rate in
the actual medium R regime. As we have already derived,
fx1(x;

π
2 ) decays with SBE Bx,3∗ = 2 for large x. In fact,

by plotting the curve of fx1(x; θ) for some θ value very close
to π

2 , one can observe that before decaying with exponent
Bx,2(θ) ≈ 1 at x = x0, fx1(x; θ) first decays with an exponent
2 for some smaller R values; and as R increases, the exponent
gradually evolves to Bx,2(θ). Nevertheless, at the same R
in the medium regime, the spatial bandwidth admitted under
these θ conditions is much smaller than under those favorable
conditions, that is, when θ ≃ π

4 . Therefore, we do not aim for
more accurate asymptotes for medium R for θ ≃ π

2 .

B. Applicability discussion

Asymptotic functions can now be formed using the four de-
rived asymptotes. For θ = π

2 , W̃ (1)
x (R, θ) and W̃ (3∗)

x (R, θ) are
used to form a dual-slope asymptotic function, and their ap-
plicable ranges are separated by critical distance Rx,1,3∗(θ) =
Ls√
8

, at which the two asymptotes intersect. For θ ∈ (0, π2 ), two

or three of W̃ (1)
x (R, θ), W̃ (2)

x (R, θ), and W̃ (3)
x (R, θ) are used,

depending on how they intersect. Since 0 < Bx,2(θ) < 1,
the segments always intersect, and the critical distances of
the intersections: Rx,1,2(θ), Rx,2,3(θ), and Rx,1,2(θ) given in
Table II, can be easily derived. However, W̃ (2)

x (R, θ) is used
only when Rx,1,2(θ) < Rx,1,3(θ). As shown in Fig. 3 (b), this
condition is violated when θ ≤ θx, where θx ≈ 0.0225π is the
numerical solution to Rx,1,2(θ) = Rx,1,3(θ). Due to the sym-
metry of Wx(R; θ) with respect to θ = π

2 , by replacing cos θ
with | cos θ| in (46) and (52), the applicability of the obtained
asymptote functions is extended to the range θ ∈ (π2 , π). With
the above discussion in mind, the formation rule of multi-
slope asymptotic function for Wx(R; θ), summarized in the
last paragraph of Section III-B and also in Table II, can be
concluded.
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