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Abstract—When we develop general-purpose robot software
components, we rarely know the full context that they will execute
in. This limits our ability to make predictions, including our
ability to detect program bugs early. Since running a robot is
an expensive task, finding errors at runtime can prolong the
debugging loop or even cause safety hazards. In this paper, we
propose an approach to help developers find bugs early with
minimal additional effort by using embedded Domain-Specific
Languages (DSLs) that enforce early checks. We describe DSL
design patterns suitable for the robotics domain and demonstrate
our approach for DSL embedding in Python, using a case study
on an industrial tool SkiROS2, designed for the composition of
robot skills. We demonstrate our patterns on the embedded DSL
EzSkiROS and show that our approach is effective in performing
safety checks while deploying code on the robot, much earlier
than at runtime. An initial study with SkiROS2 developers show
that our DSL-based approach is useful for early bug detection
and improving the maintainability of robot code.

I. INTRODUCTION

The design and coding of robotic systems to perform socio-
technical missions has never been more relevant or challeng-
ing. To ensure that robot developers can meet market demands
with confidence in the correctness of their systems, a range
of development tools and techniques is required. Specifically,
robot development tools should provide expressive program-
ming languages and frameworks that allow human developers
to describe correct robot behavior [1].

For example, SkiROS2® [2] is a skill-based knowledge
integration tool for autonomous mission execution. It allows
roboticists to write robot skills such as “pick” or “drive” skill.
Skills are defined in a modular way to allow interoperability
between different tasks and robot systems. Each skill descrip-
tion is based on pre-conditions that are checked before a skill
execution, and post-conditions that are checked after the skill
execution. In SkiROS2, these conditions are based on the
robot’s knowledge, organised into an ontology. An ontology
represents the concepts and relations in the domain to check
whether conditions necessary for the execution are met.

As a concrete example, the parameters for a “pick” skill
shown in Figure 1, have ontology relations such as “gripper is
part of the robot arm”, which are used to infer other parameters
such as “which arm to move” or “what is the location of the
object”. An object should not be part of the robot arm, as this
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Fig. 1. The robot using a pick skill with a visualization of the necessary
parameters. To run this skill, we only need the Gripper and the Object
parameters. SkiROS2 can deduce all other necessary parameters through a set
of rules in the skill description shown in Listings 3 and 4.
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would imply that the object always moves with the arm. The
developer must be careful when writing such relationships, as
bugs introduced at this stage tend to remain silent and can be
difficult to debug.

To avoid such errors, we propose to use a Domain-Specific
Language (DSL) to allow us to analyse the code for possible
errors after build time, while deploying it on the actual robot.
The benefits of using DSLs to aid debugging, visualization,
and static checking are well-known. DSLs have been used for
mission specification [3], and robot knowledge modeling [4].
Nordmann et al. [5] collect and categorise over 100 such DSLs
for robotics in their Robotics DSL Zoo®.

In this paper, we propose to help robot developers, who
write control logic in Python, to catch bugs early by embed-
ding DSLs directly in Python. We support our case through:

o A survey of Python language features that enable DSL
embedding;

o Two design patterns for embedding DSLs in general-
purpose programming languages that address common
challenges in robotics, with details on how to implement
these patterns in Python;

o A case study of a robotics software SkiROS2 , in which
we introduce our DSL EzSkiROS for early detection of
type errors and other bugs.

3https://corlab.github.io/dslzoo
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II. RELATED WORK

Several studies have explored the use of model-driven
approaches for programming robots. Buch et al. [6] describe
an internal Domain-Specific Language (DSL) over C++ to
sequence robotic skills using pre- and post-conditions. Their
DSL uses a model-driven approach to instantiate a textual
representation of the assembly sequence, which is interpreted
to execute the assembling behavior. However, it is unclear
whether the authors use early checking techniques to prevent
erroneous sequences. The authors argue in favor of a loop be-
tween simulation and active learning to overcome uncertainties
in the environment. Kunze et al. [7] propose the Semantic
Robotic Description Language (SRDL), a different model-
based approach that matches robot descriptions and actions
via static analysis of robot capability dependencies. SRDL uses
Web Ontology Language (OWL) notation to model knowledge
about robots, capabilities, and actions.

Coste-Maniere and Turro [8] propose MAESTRO, an ex-
ternal DSL for specifying reactive behavior and checking in
the robotics domain that handles complex and hierarchical
missions prone to concurrency and requiring portable solu-
tions. MAESTRO allows specification of user-defined typed
events that may or must occur before (pre-conditions), during
(hold-conditions), or after (post-conditions) task execution.
MAESTRO offers type-checking of user-defined types and
stop condition checks.

III. EMBEDDING ROBOTICS DSLS IN PYTHON

DSLs can help developers by simplifying notation and im-
proving performance or error detection. However, developing
and maintaining DSLs requires effort. For external DSLs (e.g.,
MAESTRO, SRDL), much of this effort comes from building
a language frontend. Internal or embedded DSLs (as in Buch
et al. [6]) avoid this overhead, and instead re-use an existing
“host” language, possibly adjusting the language’s behaviour
to accommodate the needs of the problem domain.

We look at Python as one of the three main supported
languages of the popular robotics platform ROS [9]. The other
two languages, C++ and LISP, also support internal DSLs, but
with different trade-offs.

A. Python Language Features for DSLs

While Python’s syntax is fixed, it offers several language
constructs that DSL designers can repurpose to reflect their
domain, such as freely overloadable infix operators (excluding
the type-restricted boolean operators), type annotations (since
Python 3.0), and decorator mechanisms [10].

Listing 1 illustrates some of these techniques. Class A
represents a deferred operation op with parameters args. A.
eval (Line 18) forces recursive evaluation. The @staticmethod

decorator tells Python that this method takes no implicit
self parameter. DSL designers can define other decorators to
transform the semantics of functions, methods, or classes.

The metaclass M in line 1 allows class A (line 7) to handle
references to unknown class attributes. The code in lines 2-5
checks for attributes that start with an underscore and continue
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Listing 1. DSL-friendly Python features: decorator (line 15), metaclass
(lines 1-7), overloading (lines 11,13), type annotations (line 13)

class M(type):
def __getattribute__ (self, name):
if name[0 '’ and name[1:].isdecimal():
return self(lambda x: x, int(name[1:]))
return type.__getattribute__ (self, name)

1
2
3
4
5
6
7| class A(metaclass=M):
8

9

def __init__(self, op, =args):
self.op = op
10 self.args = args
1 def __add__ (self, other):
12 return A(int.__add__, self, other)
13 def __call__(self, arg int):
14 return A(int.__mul__, self, arg)

@staticmethod
def eval(e):
if isinstance(e, A):
return e.op(~(A.eval(y) for y in e.args))

19 return e

20

ala=A._ 2+ 1 #a=A._add_ (A(X x:x, 2), 1)
»|b = a(4) #b = a.__call__(4)

sl print(A.eval (b)) # evaluates (2 + 1) « 4

in decimal digits. Line 21 shows how we can write A._2 to
construct an instance of A (via line 4).

Class A overloads infix addition in line 11 and function call
notation in line 13, which allows instances of A to participate
in addition and to behave like callable functions (lines 21
and 22). While the code is a toy example, it illustrates how
a DSL designer can construct in-memory representations of
complex computations for staging, which could (e.g., in A.
eval) perform optimisations or translate the code representation
into a more efficient format (e.g., for a GPU).

Line 13 illustrates Python’s type annotations, annotating
parameter arg with type int. By default, such annotations have
no runtime effect, but DSL designers can access and repurpose
them to collect DSL-specific information without interference
from Python. Since Python 3.5 (with extensions in 3.9), these
annotations also allow type parameters (e.g., x : list [int]).

Finally, Python permits dynamic construction of classes
(and metaclasses), which we have found particularly valuable
for the robotics domain: since the system configuration and
world model used in robotics are often specified outside of
Python (e.g., in configuration files or ontologies) but are
critical to program logic, we can map them to suitable type
hierarchies at robot launch time (just after build time).

B. Robotics DSL Design Patterns

Domain Language Mapping Our first pattern’s purpose is to
make domain notation visible in Python, to decrease notational
overhead. It is a direct application of the “Piggyback” DSL
implementation pattern documented by Spinellis [11].

As an example, the ontology specification language OWL
allows us to express the relationships and attributes of the
objects in the world, the robot hardware and the robot’s
available capabilities (skills and primitives). Existing libraries
like owlready2 [12] already expose these specifications as



Python objects, so if the ontology contains a class pkg:Robot,
we can create a new “Robot” object by writing

r = pkg.Robot("MyRobotName")
and iterate over all known robots by writing

for robot in pkg.Robot.instances(): ...

The owlready?2 library creates these classes at runtime, based
on the contents of the ontology specification files. Thus,
changes in the ontology are immediately reflected in Python:
if we rename pkg:Robot in the ontology, the code above will
trigger an error when executed.

While Moghadam et al. expressed concern about “syntactic
noise” for DSL embedding in earlier versions of Python [10]
compared to external DSLs, found such noise to be modest
in modern Python, and instead emphasise the advantages of
embedding in a language that is already integrated into the
ROS environment and that developers are familiar with.

In tools like SkiROS2, combining Python code, ontologies
and configuration files at runtime introduces points of failure.
To detect such failures early, we propose a second pattern:
Early Dynamic Checking The purpose of this pattern is fo
detect type and configuration errors in a critical piece of code
early, such as during robot launch time, with no or minimal
extra effort for developers. The conditions for this pattern are:

e We can collect all critical pieces of code at a suitably
early point during execution

o The critical code does not depend on return values of
operations that we cannot predict at robot deployment

The behaviour of this pattern is as follows:

o We execute all critical pieces of code early, while redefin-
ing the semantics of the predetermined set of operations
(e.g. ontology relations from our previous example) to
immediately return or to only perform checking

In Python, configuration and type errors only trigger soft-
ware faults once we run code that depends on faulty data.
In robotics, we might find such code in operations that (a)
run comparatively late (e.g., several minutes after the start
of the robot) and (b) are difficult to unit-test (e.g., due to
their coupling to specific ROS functionality and/or robotics
hardware). For robotics developers, both challenges increase
the cost of verification and validation [13]: a fault might trigger
only after a lengthy robot program and require substantial
manual effort to reproduce. For example, a software module
for controlling an arm might take a configuration parameter
that describes the target arm pose. If arm control is triggered
late (e.g., because the arm is part of a mobile platform that
must first reach its goal position), any typos in the arm pose
will also trigger the fault late. If the pose description comes
from a configuration file or ontology, traditional static checkers
will also be ineffective. We can only check for such bugs after
we have loaded all relevant configuration.

Through careful software design, developers can work
around this problem, e.g., by checking that code and con-
figuration are well-formed as soon as possible, before they
run the control logic. If the critical code itself is free of
external side effects, the check can be as simple as running the

Listing 2. Constructing the behavior tree of a drive skill in SkiROS2. It is a
sequential execution of the compound drive skill "Navigate" and a primitive
skill to update the world model ("WmSetRelation").

def expand(self, skill):
skill .setProcessor(Sequential ())

skill(
self.skill ("Navigate", ""),
self.skill ("WmSetRelation", "wm_set_relation",

remap={ 'Dst’: 'TargetLocation’},
specify={"'Src’: self.params["Robot"].value,
"Relation’: ’'skiros:at’, 'RelationState :
True}) ,)
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critical code twice. For example, SkiROS2 composes behavior
trees (BTs) [14] within such critical Python code (Listing 2):
composing (as opposed to running) these objects has no side
effects, so we can safely construct them early to detect simple
errors (e.g., typos in parameter names). This is a typical
example that eludes static checking but is amenable to Early
Dynamic Checking: line 7 depends on self.params['Robot
"].value, which is a configuration parameter that we cannot
access until the robot is ready to launch. Not all robotics code
is similarly declarative. Consider the following example, in a
hypothetical robotics framework in which all operations are
subclasses of RobotOp and must provide a method run() that
takes no extra parameters:

1 class MyRobotOp (RobotOp) :

2 def __init__(self, config): # Configure
3 self.config = config

4 def check(self): # Check configuration
5 assert self.config.mode in ["A", "B"]
6 assert isinstance(self.config.v, int)
7 def run(self): # Run with configuration
8 if self.config.mode == "A":

9 self.runA();

10 elif self.config.mode == "B":

1 self.runB(self.config.v + 10);

12 else:

fail ()

13

Here, the developers introduced a separate method check()
that can perform early checking during robot initialisation or
launch. However, check() and run() both have to be maintained
to make the same assumptions.

The Early Dynamic Checking pattern instead uses internal
DSL techniques to allow developers to use the same code in
two different ways: (a) for checking, and (b) for logic.

In our example, calling run() “normally” captures case (b).
For case (a), we can also call run(), but instead of passing an
instance of MyRobotOp, we pass a mock instance of the same
class, in which operations like runA() immediately return:

1 class MyRobotOpMock :

2 def __init__(self, parent):
3 self.parent = parent
4 @property

5 def config(self):

6 # self.config self.parent.config
7 return self.parent.config

8 def runA(self):

9 pass # mock operation: do nothing
10 def runB(self, arg):

1 pass # mock operaiton: do nothing




If we execute MyRobotOpMock.run() with the same con-
figuration as MyRobotOp, run() will execute almost as for
MyRobotOp but immediately return from any call to runA or
runB. If the configuration is invalid, e.g., if config.mode ==
"C" or config.v == false, running MyRobotOpMock.run() will
trigger the error early.

Since Python can reflect on a class or an object to iden-
tify all fields and methods, we can construct classes like
MyRobotOpMock at run-time: instead of writing them by hand,
we can implement a general-purpose mock class generator
that constructs methods like runA and accessors like config
automatically. If the configuration objects may themselves
trigger side effects, we can apply the same technique to them.

However, the above implementation strategy is only effec-
tive if we know that the critical code will only call methods
on self and other Python objects that we know about ahead of
time. We can relax this requirement by controlling how Python
resolves nonlocal names: '

FunctionType(MyRobotOp.run.__code__, globals() | { 'print’ : g})(obj)

This code will execute obj.run() via the equivalent MyRobotOp
.run(obj), but replace all calls to print by calls to some function
g. The same technique can use a custom map-like object to
detect at runtime which operations the body of the method
wants to call and handle them suitably.

However, the more general-purpose we want to allow the
critical code to be, the more challenging it becomes to apply
this pattern. For instance, if the critical code can get stuck in
an infinite loop, so may the check; if this is a concern, the
check runner may need to use a heuristic timeout mechanism.
A more significant limitation is that we may not in general
know what our mocked operations like runA() should return,
if anything. If the critical code depends on a return value (e.g.,
if it reads ROS messages), the mocked code must be able to
provide suitable answers. The same limitation arises when the
critical code is in a method that takes parameters. If we know
the type of the parameter or return value, e.g. through a type
annotation, we can exploit this information to repeatedly check
(i.e., fuzz-test) the critical code with different values; however,
without further cooperation from developers, this method can
quickly become computationally prohibitive.

If we know that the code in question has simple control flow,
we may be able to apply the next pattern, Symbolic Tracing.
Symbolic Tracing The purpose of this pattern is fo detect
bugs in a critical piece of code early, if that code depends
on parameters or operation return values, with minimal extra
effort for developers. The conditions for this pattern are that

o We can access and execute the critical code

o We have access to sufficient information (via type anno-
tations, properties, ...) to simulate parameter values and
operation return values symbolically (see below)

o The number of control flow paths through the critical
code is small (see below)

Python’s eval function offers similar capabilities, but as of Python 3.10
does not appear to allow passing parameters to code objects.
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The behaviour of this pattern is as follows:

1) We execute the critical code while passing symbolic
values as parameters and/or returning symbolic values
from operations of relevance

2) We collect any constraints imposed by operations on the
symbolic values

3) After executing the critical code, we verify the con-
straints against the problem domain

Here, a symbolic parameter is a special kind of mock param-
eter that we use to record information [15].

Consider the following RobotOp subclass:
class SetArmSpeedOp (RobotOp) :

def run(self, speedup):

self.setArmSpeed (speedup)
self.setArmSafety (speedup)

This class only calls two operations, but its run operation
depends on a parameter speedup about which we know
nothing a priori — thus, we cannot directly apply the Early
Dynamic Checking pattern.

In cases where we lack prior knowledge about an operation,
it may still be possible to obtain useful insights about it. For
example, if we are aware that setArmSpeed accepts only
numeric parameters and setArmSafety only accepts boolean
parameters, we can flag this code as having a type error.
To avoid blindly testing various parameters, we can pass a
symbolic parameter to the run function and employ a modified
version of the mock-execution strategy used in Early Dynamic
Checking. The mock objects can be adapted as follows:

TYPE_CONSTRAINTS = []

class SetArmSpeedOpMock :
def setArmSpeed(self, obj):
TYPE_CONSTRAINTS. append (( obj ,
def setArmSafety(self, obj):

float))

TYPE_CONSTRAINTS. append (( obj, bool))
We can now (1) create a fresh object obj and an
SetArmSpeedOpMock instance that we call mock, (2)
call SetArmSpeedOp.run(mock, obj), and (3) read out

all constraints that we collected during this call from
TYPE_CONSTRAINTS, and check them for consistency,
which makes it easy to spot the bug. If the constraints come
from accesses to obj (e.g., method calls like obj.__add__ (1)
that result from code like obj + 1), obj itself can collect the
resultant constraints.

Depending on the problem domain, constraint solving can
be arbitrarily complex, from simple type equality checks to
automated satisfiability checking [16]. It can involve depen-
dencies across different pieces of critical code (e.g., to check
if all components agree on the types of messages sent across
ROS channels, or to ensure that every message that is sent
has at least one reader). However, this approach requires
information about specific operations like setArmSpeed and
setArmSafety, which can be providedto Python in a variety of
ways, e.g., via type annotations.

As an example, consider an operation that picks up a coffee
from the table with a gripper, where we annotate all parameters
to run with Web Ontology Language (OWL) ontology types:



class PickCoffeeTableOp (RobotOp) :
def run(self, robot rob.Robot,
gripper rob.Gripper,
coffee_table : world.Furniture):
/] bug:
assert coffee_table.robotPartOf(robot);

1
2
3
4
5
6
7

This example is derived from the SkiROS2 ontology, with
minor simplifications. In the above SkiROS2 code, the devel-
oper intended to write a precondition that to be able to pick
a coffee cup, the robot should be close to the table. Instead,
the developer mistakenly wrote that a robot should be a part
of the coffee table.

The ontology requires that robotPartOf is a relation between
a technical Device and a Robot. However, Furniture is not a
subtype of Device, so the assertion in line 6 is unsatisfiable.

We can again detect this bug through symbolic tracing.
This time we must construct symbolic variables for robot,
gripper, and coffee_table that expose methods for all applicable
relations, as described by their types. For instance, gripper
will contain a method robotPartOf(gripper, obj) that records
on each call that gripper and obj should be in a robotPartOf

relation. Meanwhile, coffee_table will not have such an
operation. When we execute run(), we can then defer to
Python’s own type analysis, which will abort execution and
notify us that coffee_table lacks the requisite method.

Key to this symbolic tracing is our use of mock objects as
symbolic variables. Symbolic variables reify Python variables
to objects that can trace the operations that they interact with,
in execution order, and translate them into constraints.

The main limitation of this technique stems from its in-
teraction with Python’s boolean values and control flow, e.g.
conditionals and loops. Python does not allow the boolean
operators to return symbolic values, but instead forces them
(at the language level) to be bool values; similarly, conditionals
and loops rely on access to boolean outcomes. Thus, when we
execute code of the form if x: ..., we must decide right there
and then if we should collapse the symbolic variable that x is
bound to True or False. While we can re-run the critical code
multiple times with different decisions per branch, the number
of runs will in general be exponential over the number of times
that a symbolic variable collapses to a bool.

C. Alternative Techniques for Checking

Internal DSLs are not the only way to implement the kind
of early checking that we describe. The mypy tool® is a
stand-alone program for type-checking Python code. Mypy
supports plugins that can describe custom typing rules, which
we could use e.g. to check for ontology types. Similarly, we
could use the Python ast module to implement our own
analysis over Python source code. However, both approaches
require separate passes and would first have to be integrated
into the ROS launch process. Moreover, they are effectively
static, in that they cannot communicate with the program under
analysis; thus, we cannot guarantee that the checker tool will
see the same configuration (e.g., ontology, world model).

Zhttps://mypy-lang.org/
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Listing 3. An excerpt of the parameters, pre- and post-conditions of a pick
skill in SkiROS2 without EzSkiROS. It depends heavily on the usage of string
to refer to parameters or classes in the ontology.

class Pick(SkillDescription):

def createDescription(self):

self.addParam("Robot", Element("cora:Robot"),

ParamTypes. Inferred)
addParam("Arm", Element("rparts:ArmDevice"),
ParamTypes. Inferred)
addParam (" StartPose", Element("skiros:
TransformationPose"), ParamTypes. Inferred)
addParam ( "GraspPose", Element("skiros:
GraspingPose"), ParamTypes. Inferred)
addParam ( "ApproachPose", Element("skiros:
ApproachPose"), ParamTypes. Inferred)
addParam (" Workstation", Element("scalable:
Workstation"), ParamTypes. Inferred)
addParam (" ObjectLocation", Element("skiros:
Location"), ParamTypes. Inferred)
addParam("Object", Element("skiros:Product"),
ParamTypes. Required)
addParam (" Gripper", Element("rparts:
GripperEffector"), ParamTypes.Required)

W

self.
5 self.
self.
self.
self.
self.
self.

self.

self.addPreCondition(self.getRelationCond ("
ObjectLocationContainObject", "skiros:contain",
ObjectLocation", "Object", True))
addPreCondition(self.getRelationCond ("
GripperAtStartPose", "skiros:at", "Gripper",
StartPose", True))
addPreCondition(self.getRelationCond ("
NotGripperContainObject", "skiros:contain",
Gripper", "Object", False))
addPreCondition(self.getRelationCond ("
ObjectHasAApproachPose" ," skiros :hasA",
"ApproachPose", True))

addPreCondition (self.getRelationCond ("
ObjectHasAGraspPose", "skiros:hasA", "Object", "
GraspPose", True))
addPreCondition(self.getRelationCond ("
RobotAtWorkstation", "skiros:at", "Robot", "
Workstation", True))

addPreCondition (self.getRelationCond ("
WorkstationContainObjectLocation", "skiros:
contain", "Workstation", "ObjectLocation",
addPostCondition (self.getRelationCond ("
NotGripperAtStartPose", "skiros:at", "Gripper",
StartPose", False))
addPostCondition(self.getRelationCond ("
GripperAtGraspPose", "skiros:at", "Gripper",
GraspPose", True))

addPostCondition (self.getRelationCond ("
NotObjectContainedObjectLocation", "skiros:
contain", "ObjectLocation", "Object", False))
addPostCondition (self.getRelationCond ("
GripperContainObject", "skiros:contain", "Gripper
", "Object", True))

self.

self.

self.
"Object",

self.

self.

self.

True))

20 self.

"

21 self.

22 self.

self.

Another alternative would be to implement static analysis
over the bytecode returned by the Python disassembler dis,
which can operate on the running program. However, this API
is not stable across Python revisions?.

An external DSL such as MAESTRO [8] would similarly
require a separate analysis pass. However, it would be able to
offer arbitrary, domain-specific syntax and avoid any trade-
offs induced by the embedding in Python (e.g., boolean
coercions). The main downside of this technique is that it
requires a completely separate DSL implementation, including
maintenance and integration.

3https://docs.python.org/3/library/dis.html
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Fig. 2. A diagram with the different components of SkiROS2, their relations and the additions by EzSkiROS. Previously, a bug that has been introduced in a
skill description by a developer will often only trigger at runtime. EzSkiROS addresses these costs and risks by finding a wide range of bugs at launch time

when the skills are loaded at launch time.

Listing 4. The skill description of the pick skill shown in Listing 3 with
EzSkiROS. We respresent OWL classes in Python as identifiers in type
declarations.

1| class Pick(SkillDescription):
2| def description(self,

3 Robot: INFERRED[cora.Robot],

4 Arm: INFERRED[rparts.ArmDevice],

5 StartPose: INFERRED[skiros.TransformationPose],

6 GraspPose: INFERRED[skiros.GraspingPose],

7 ApproachPose: INFERRED[skiros.ApproachPose],
8 Workstation : INFERRED[scalable.Workstation] ,

9 ObjectLocation: INFERRED[skiros.Location],
10 Object: skiros.Product,

11 Gripper: rparts.GripperEffector) :

13 self.pre_conditions += ObjectLocation.contain (Object)
14 self.pre_conditions += Gripper.at(StartPose)

15 self.pre_conditions += ~ Gripper.contain(Object)

16 self.pre_conditions += Object.hasA(ApproachPose)

17 self.pre_conditions += Object.hasA(GraspPose)

18 self.pre_conditions += Robot.at(Workstation)

19 self.pre_conditions += Workstation.contain(ObjectLocation)
20 self.post_conditions += ~ Gripper.at(StartPose)

21 self.post_conditions += Gripper.at(GraspPose)

2 self.post_conditions += ~ ObjectLocation.contain (Object)
23 self.post_conditions += Gripper.contain(Object)

IV. CASE STUDY: AN OPEN SOURCE SOFTWARE FOR SKILL
BASED ROBOT EXECUTION

As a case study, we implement our patterns on the skill-
based robot control platform SkiROS2 [2]. SkiROS2 is used by
several research institutions in the context of industrial robot
tasks [17], [18], [19], [20]. It is implemented in Python, on
top of the Robot Operating System (ROS) [9] middleware.
SkiROS2 uses behavior trees (BTs) [14] formalism to rep-
resent procedures. We refer the reader to [14] for a general
introduction to BTs, to [21] for a thorough introduction to
SkiROSI and to [2] for BTs in SkiROS2.

SkiROS2 implements a layered, hybrid control architec-
ture (Fig. 2) to define and execute parametric skills for
robots [22], [23]. As the figure shows, SkiROS2 represents
knowledge about the skills, the robot and the environment
in a World Model (WM) with the Ontologies specified in
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OWL format. This explicit representation, built upon the World
Wide Web Consortium’s Resource Description Framework
standard(RDF), allows the use of existing ontologies.

Skills in SkiROS2 are parametric procedures that modify
the world state from an initial state to a final state according
to pre- and post-conditions [24]. Skills can be either primitive
or compound skills. Primitive skills are atomic actions that
implement functions that change the real world, such as
moving a robot arm. Whereas, compound skills allow to use
primitive skills and other compound skills in a BT to build
more complex behaviors. An example for such a connection
is shown in Listing 2. All of these skills are loaded by the
Skill Manager at robot launch time (shown in Fig. 2.

Every skill implements a Skill Description and a Skill
Implementation as shown in Fig. 2. Skill Description consists
of four elements:

1) Parameters define input and output of a skill

2) Pre-conditions must hold before the skill is executed
3) Hold-conditions must be fulfilled during the execution
4) Post-conditions are checked once the execution finished

Listing 3 shows how developers define these skills in
SkiROS2 by calling the Python method addParam to set
parameters and similarly to define pre- and post-conditions.
Parameters are typed, using a primitive (e.g., str) and WM
element types (e.g., Element("concept")), and can be optional
or inferred from the world model.

Pre-conditions allow SkiROS2 to check requirements for
skill execution, and to automatically infer skill parameters.
For example, in the pick skill shown in Listing 3, the pa-
rameter “Object” in line 10 is Required, i.e., it must be set
before skill execution. At execution time, SkiROS?2 infers the
parameter “container” by reasoning about the pre-condition
rule “ObjectLocationContainObject” (line 13). If “Object” is
semantically not at a location in the WM, the pre-conditions
are not satisfiable: the skill cannot be executed.



V. CONCISE AND VERIFIABLE ROBOT SKILL INTERFACE
EzSKIROS

We have validated our design patterns in an internal
DSL EzSkiROS, which adds Early Dynamic Checking (Sec-
tion III-B) to Skill Descriptions. Following a user-centered
design methodology, we developed EzSkiROS by first iden-
tifying needs for early bug checking via semi-structured in-
terviews with skilled roboticists who use SkiROS2, reviewed
documentation, and manual code inspection. We found that
even expert skill developers made errors in writing Skill
Descriptions, and that Python’s dynamic typing only identified
bugs when they triggered faults during robot execution.

We designed EzSkiROS to simplify how Skill Descriptions
are specified, with the intent to increase their readability,
maintainability, and writability. We map ontology objects and
relations into Python’s type system. Skill Descriptions can then
directly include ontology information in type annotations. List-
ing 4 illustrates the EzSkiROS syntax on the example of the
pick skill from Listing 3. The EzSkiROS variant avoids several
redundant syntactic elements and specifies type information
through type annotations instead of string encodings.

A. EzSkiROS implementation

We follow owlready2’s approach to Domain Language
Mapping in exposing the ontology as Python types and
objects. For instance in Listing 4, line 3 describes a param-
eter Robot with the type annotation INFERRED[cora.Robot].
Here, cora.Robot is a Python class that we dynamically gen-
erate to mirror an OWL class ‘Robot’ in the OWL namespace
‘cora’. INFERRED is a parametric type that tags inferred
parameters. We mark optional parameters analogously as
OPTIONAL; all other parameters are required. At robot launch
time, we use Python’s reflection facilities to extract and check
this parameter information, both to link with SkiROS2’ skill
manager and for part of our Early Dynamic Checking.

For additional checking, we utilise Symbolic Tracing as
described in Section III-B, deferring Python’s own language
semantics to identify any mistyped names in the skill condi-
tions. This step collects all pre-, post-, and hold conditions via
the overloaded Python operator ‘+=" (lines 13-23). We then
check for ontology type errors among these conditions.

B. Validation

We validate our DSL implementation by integrating it with
SkiROS2 to see how it behaves with a real skill running on
a robot*. To demonstrate the effectiveness of EzSkiROS, we
use a ‘pick’ skill written in EzSkiROS (Listing 4) and load it
while launching a simulation of a robot shown in Figure 1.

Listing 5 shows that the ObjectProperty ‘hasA’ is a relation
allowed only between a ‘Product’ and a ‘TransformationPose’.
If we introduce a nonsensical relation like Object.hasA(Gripper
), then the early dynamic check in EzSkiROS over ontology
types returns a type error:

4Available online in https:/github.com/lu-cs-sde/EzSkiROS

Listing 5. The definition of the object property ‘hasA’ in the SkiROS ontology.

<owl:ObjectProperty rdf:about="http://rvmi.aau.dk/
ontologies/skiros .#hasA">
<rdfs:subPropertyOf rdf:resource="http://rvmi.aau.dk/
ontologies/skiros.#spatiallyRelated"/>
<rdfs:range rdf:resource="#TransformationPose"/>
<rdfs:domain rdf:resource="#Product"/>
</owl:ObjectProperty>
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TypeError: Gripper: <class ’ezskiros.param_type_system.
rparts . GripperEffector ’> is not a (skiros.
TransformationPose | skiros.TransformationPose)

C. Evaluation

To evaluate the effectiveness and usability of the Domain
Specific Language (DSL) in detecting bugs at launch time, we
conducted a user study with robotics experts. Seven robotic
skill developers participated in our user study, including one
member of the SkiROS2 development team. The user study
consisted of three phases: an initial demonstration, a follow-
up discussion, and a feedback survey’. Due to time limitations,
we defer a detailed study, with exercises for users to write new
skills in EzSkiROS, to the future.

To showcase the embedded DSL and the early bug checking
capabilities of EzSkiROS, we presented a video showing (1)
a contrast between the old and new skill description written
in EzSkiROS and (2) demonstrating how errors in the skill
description are detected early at launch time by intentionally
introducing an error in the skill conditions.

During the follow-up discussion, we encouraged partici-
pants to ask any questions or clarify any confusion they had
about the EzSkiROS demonstration video.

After the discussion, we invited the participants to complete
a survey to evaluate the readability and effectiveness of the
early ontology type checks implemented in EzSkiROS. The
survey included Likert-scale questions about readability, mod-
ifiability, and writability. Six participants answered ‘strongly
agree’ that EzSkiROS improved readability, and one answered
’somewhat disagree’. For modifiability, four of them ’strongly
agree’ but three participants answered ’somewhat agree’ and
‘neutral’. All the participants answered ’strongly agree’ or
’somewhat agree’ that EzSkiROS improved writability.

To gain more in-depth insights, the survey also included
open-ended questions, e.g.: (a) “Would EzSkiROS have been
beneficial to you, and why or why not?”, (b) “What potential
benefits or concerns do you see in adopting EzSkiROS in your
work?”, and (c) “What potential benefits or concerns do you
see in beginners, such as new employees or M.Sc. students
doing project work, adopting EzSkiROS?”.

For question (a), all participants agreed that
EzSkiROS would have helped them. Participants liked
the syntax of EzSkiROS, they thought that it takes less time
to read and understand the ontology relations than before.
One of them claimed that “pre- and post- conditions are easy
to make sense”. They also found that mapping the ontology

5 A replication of the surveyhttps:/github.com/lu-cs-sde/EzSkiROS




to Python types would have helped reduce the number of
lookups required in the ontology. One of the participants said,
“in my experience, SkiROS2 error messages are terrible, and
half the time they are not even the correct error messages
(i.e. they do not point me to the correct cause), so I think the
improved error reporting would have been extremely useful.”.

For question (b), the majority of participants reported that
EzSkiROS’s concise syntax is a potential benefit, which they
believe would save coding time and effort. One participant
found EzSkiROS’s specific error messages useful, responding
that “the extra checks allow to know some errors before
the robot is started” while one participant answered that
EzSkiROS does not benefit their current work but it might be
useful for writing a new skill from scratch. None of the par-
ticipants expressed any concerns about adopting EzSkiROS in
their work.

For question (c), one developer acknowledges the benefits
of EzSkiROS by saying “In addition to the error reporting, it
seems much easier for a beginner to learn this syntax, particu-
larly because it looks more like “standard” object oriented pro-
gramming (OOP)”. One person claimed that EzSkiROS would
help beginners, describing SkKiROS2 as “it is quite a learning
curve and needs some courage to start learning SkiROS2 from
the beginning autonomously”.

In summary, the results of the user evaluation survey indi-
cate a positive perception of EzSkiROS in terms of readability
and writability. Most respondents found EzSkiROS to be easy
to read and understand, with only one exception. In addition,
respondents found EzSkiROS’s early error checking to be
particularly useful in detecting and resolving errors in a timely
manner. This suggests that EzZSkiROS is an effective tool for
improving code quality and productivity.

VI. CONCLUSION AND FUTURE WORK

Our work demonstrates how embedded DSLs can help
robotics developers detect bugs early, even when the analysis
depends on data that is not available until run-time. Our
evaluation with EzSkiROS further suggests that embedded
DSLs can achieve this goal while simultaneously increasing
code maintainability. In the future, we plan to do a de-
tailed user study where the users write the skill descriptions
in EzSkiROSthemselves. We also plan to apply the DSL
patterns explained in this paper to enable early bug checking in
other areas of robot software development, such as compound
skill construction with behaviour trees or safety monitoring,
without requiring developers to move from their main devel-
opment language to an external specification language.
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