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Scattering of elastic waves by an anisotropic sphere with application to polycrystalline
materials

ATA JAFARZADEH
Department of Mechanics and Maritime Sciences
Dynamics
Chalmers University of Technology

Abstract

Scattering of a plane wave by a single spherical obstacle is the archetype of many
scattering problems in various branches of physics. Spherical objects can provide a good
approximation for many real objects, and the analytic formulation for a single sphere
can be used to investigate wave propagation in more complex structures like particulate
composites or grainy materials, which may have applications in non-destructive testing,
material characterization, medical ultrasound, etc. The main objective of this thesis is to
investigate an analytical solution for scattering of elastic waves by an anisotropic sphere
with various types of anisotropy. Throughout the thesis a systematic series expansion
approach is used to express displacement and traction fields outside and inside the sphere.
For the surrounding isotropic medium such an expansion is made in terms of the traditional
vector spherical wave functions. However, describing the fields inside the anisotropic
sphere is more complicated since the classical methods are not applicable. The first step
is to describe the anisotropy in spherical coordinates, then the expansion inside the sphere
is made in the vector spherical harmonics in the angular directions and power series in the
radial direction. The governing equations inside the sphere provide recurrence relations
among the unknown expansion coefficients. The remaining expansion coefficients outside
and inside the sphere can be found using the boundary conditions on the sphere. Thus,
this gives the scattered wave coefficients from which the transition (T) matrix can be
found. This is convenient as the T matrix fully describes the scattering by the sphere and
is independent of the incident wave. The expressions of the general T matrix elements are
complicated, but in the low frequency limit it is possible to obtain explicit expressions.

The T matrices may be used to solve more complex problems like the wave propagation
in polycrystalline materials. The attenuation and wave velocity in a polycrystalline
material with randomly oriented anisotropic grains are thus investigated. These quantities
are calculated analytically using the simple theory of Foldy and show a very good
correspondence for low frequencies with previously published results and numerical
computations with FEM. This approach is then utilized for an inhomogeneous medium with
local anisotropy, incorporating various statistical information regarding the geometrical
and elastic properties of the inhomogeneities.

Keywords: Scattering, Spherical obstacle, Anisotropy, T matrix, Polycrystalline materials,
Effective wave number, Attenuation, Phase velocity.
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Preface

The central focus of this thesis is to look into the intricate interaction of elastic waves with
anisotropic spherical objects, thereby advancing our understanding of wave scattering
phenomena. The research is conducted at the Division of Dynamics within the Department
of Mechanics and Maritime Sciences at Chalmers University of Technology between
December 2018 and August 2023. This research was funded by the Swedish Research
Council, and I gratefully acknowledge their support.
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Part I

Extended Summary

1 Introduction

Wave propagation in elastic solids with inhomogeneities is an interesting and extensive
research field. The findings in this subject have numerous applications in diverse engi-
neering fields, including material characterization, nondestructive materials testing using
ultrasound, in-situ safety and reliability control of complex structural components through
acoustic emission, dynamic fracture mechanics, seismology, and ground vibrations. Among
these subjects, the current study primarily focuses on specific areas closely related to
material characterization and nondestructive testing.

1.1 Background and motivation

Engineering materials often contain various types of inhomogeneities, hereafter referred to
as obstacles. These obstacles can appear as micro grains within metals, as well as cracks,
cavities in materials, and fibers and particles within composite materials. Such obstacles
can arise either naturally or as a result of materials processing, manufacturing, and
in-service conditions. Detecting and characterizing these obstacles is crucial in engineering
applications as they significantly impact the integrity, stiffness, and strength of the
material. Nondestructive testing techniques are commonly employed for this purpose.
These techniques often involve emitting some type of waves into a medium and studying
their propagation. This approach is highly valuable for material characterization, because
there is a direct correlation between material properties, such as distribution, density,
location, size, and orientation of the obstacles with the characteristics of the wave when
propagating through the medium, such as effective wave speed and intensity.

In contrast to wave propagation in ideally homogeneous elastic solids, waves propagating
in elastic solids with obstacles generally experience diffraction and scattering. Diffraction
refers to the deviation of the wave from its original path, while scattering refers to the
wave radiation from the obstacle. The diffraction and scattering of the incident wave
give rise to interesting phenomena in the medium. When an incident wave propagates
inside a medium, it carries energy. However, in the presence of obstacles, this energy is
converted into scattered wave energy. As a result, the incident wave experiences intensity
reduction and shape distortion, leading to attenuation and dispersion. Therefore, even
though the medium and obstacles are perfectly elastic and do not dissipate energy, an
elastic solid with elastic obstacles appears as an attenuative and dispersive medium to an
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incident wave [1]. It is important to note that wave attenuation and dispersion can be
influenced by factors other than scattering, but in this context, only the scattering effect
is considered.

The analysis of scattering by a single obstacle has long served as a fundamental prereq-
uisite for studying a medium containing a multitude of obstacles in various analytical
methodologies. Scattering of waves by a single obstacle is a fundamental problem in
various branches of mathematical physics, including acoustics, electromagnetics, and
elasticity. Despite the differences between these fields, the basic nature of the problem
remains the same: a propagating wave encounters a discontinuity in the form of an
obstacle. Techniques employed to investigate such problems in elasticity typically draw
from successful approaches used in acoustics and electromagnetics, such as separation-
of-variables, T matrix methods, integral equation methods, and finite element methods
(FEM). However, elastodynamic fields exhibit distinctive characteristics, including cou-
pled wave equations and the presence of two wave speeds. Such properties increase the
complexity of the elastodynamic equations. Therefore, most of the studies in elastic fields
are limited to isotropic materials, which results in relative ease in mathematical treatment
and still has important applications since many materials are approximately isotropic or
can be homogenized as an isotropic material. A comprehensive overview of scattering of
acoustic, electromagnetic, and elastic waves in isotropic media is covered in the literature
[2, 3]. However, recent investigations of anisotropic materials, like composites, biological
materials and grainy materials (typically metals), have demonstrated the importance of
studying wave propagation in a medium with anisotropy.

Wave propagation in a medium with anisotropic obstacles is more complicated to study
since many of the classical methods are not applicable any longer. Scattering by anisotropic
obstacles has mostly been studied for electromagnetic waves [4, 5, 6]. For mechanical
waves, most of the studies are performed for spherically and cylindrically anisotropic
obstacles [7, 8, 9, 10, 11]. Scattering of elastic waves by an anisotropic obstacle when the
anisotropy is in Cartesian coordinates is investigated in 2D by Boström [12, 13]. The
method presented there is pursued in the present thesis to extend the possible solutions
to 3D problems.

The analysis of multiple scattering has also been extensively pursued. Theoretically, a
sequence of equations moving from single obstacle scattering to the inclusion of two-
obstacle interactions, then three-obstacle interactions and upwards can be set up using,
for instance, the T matrix method. However, the complexity of the equations increases
in each step and thus it is normally pursued only for two obstacles [14] and is mostly
limited to isotropic obstacles. On the other hand, there is a wide range of materials that
contain or consist of a random distribution of anisotropic obstacles. Investigating the
detailed structure of such materials involves dealing with a large number of parameters
and leads to highly complex equations. However, in practical applications, such a detailed
investigation is often unnecessary. Instead, it is more efficient to describe these materials
using statistical characteristics, such as the density and size distribution of the obstacles.

Traditionally, the analysis of scattering in these structures has involved approximating
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the discrete medium with a continuous random inhomogeneous medium. The formal
approach for studying such a medium usually involves employing volume integral equation
methods in combination with perturbation methods. Although anisotropy of the medium
greatly complicates the mathematical formalism, the fundamental concepts for analyzing
wave propagation in these media remain the same as in simpler isotropic cases [15].
This method has been commonly employed to investigate the scattering problem and
determine the attenuation and wave speed in granular materials, including simple or
complex polycrystals with different types of grain anisotropy [15, 16, 17, 18]. However,
these studies all seem to have restrictions to more or less weak anisotropy. In chapter 4, a
more detailed exploration of this approach is provided.

Another approach for estimating the effective homogenized properties of random inho-
mogeneous materials is to utilize the scattering characteristics exhibited by individual
obstacles. The scattering characteristic is typically tied to the energy carried by the wave
as it scatters off each obstacle. Therefore, these obstacles can be considered secondary
radiation sources referred to as scatterers, being stimulated by the incident waves. In
some approximate methods, such as the theory of Foldy [19], the scattering characteristic
of the individual scatterers, along with their statistical information, is utilized to calculate
the effective wave number of the homogenized medium. This approach has been employed
to estimate the attenuation of 2D polycrystalline materials with orthotropic grain prop-
erties [20] and is followed in this study for 3D cases. These approximate methods have
demonstrated fewer limitations regarding the degree of anisotropy. However, they are
usually constrained to specific statistical information concerning the size and distribution
of obstacles. For example, they are applicable to a dilute distribution of obstacles or
small-sized obstacles relative to the wavelength of the propagating wave (also known as
low frequencies).

In addition to these analytical approaches, numerical methods like the Finite Element
Method (FEM) have been recently employed to study polycrystalline materials and
investigate their attenuation and phase velocity. Numerical approaches offer the advantage
of capturing more complex and realistic scenarios, allowing for the inclusion of multiple
scattering and addressing a wider range of anisotropy [21, 22, 23, 24, 25, 26, 27, 28].
These studies provide valuable information for exploring the behavior of polycrystalline
materials in more detail. However, it is important to note that FEM cannot provide
analytical expressions or closed form solutions, which often give valuable insights into the
studied phenomena. Additionally, FEM is subject to limitations in terms of time and
computational costs, also uncertainties regarding spatial discretization, boundary and
loading conditions which can restrict its practicality and efficiency.

The main aim of the present thesis is to extend the possible type of analytical solutions
by solving the canonical 3D problem of scattering of elastic waves by an anisotropic
obstacle. The obstacle has a spherical shape and its material properties are assumed
to be transversely isotropic, cubic or orthotropic. Meanwhile, the surrounding material
is considered to be isotropic. A general solution may be presented by calculating the
linear relationship between the expansion coefficient of the incident wave with those of
the scattered wave in the spherical basis. Such a relation defines the transition T matrix
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of the sphere. This is pursued in the appended papers, first for a transversely isotropic
sphere in Papers A and B. In Paper A, the problems is considered for a situation when
there is only a torsional wave incident along the symmetry axis of the anisotropic sphere.
Therefore the problem is simplified to an axisymmetric scalar situation. Using the same
methodology in Paper B, the scattering of elastic waves by a transversely isotropic sphere
with an arbitrary incident wave is studied. This is extended to the scattering by a sphere
with cubic and orthotropic anisotropy in Paper C and D, respectively. In these papers
the T matrix is calculated and presented explicitly for low frequencies. The T matrix
can then be used to calculate the scattering for any incident wave, a plane wave, a wave
from an ultrasonic probe, etc. The T matrix can also be used as a tool when considering
multiple scattering problems, like the scattering by two or more spheres, or the scattering
by a sphere close to a planar interface.

Another important purpose of the project is to use the T matrix to study grainy structured
materials in which the grains can serve as scatterers. Specifically, the T matrix may be
used to calculate the attenuation and effective wave speed in these materials as long as the
correlation among scatterers may be neglected. Such an assumption may be reasonable
for the cases with low concentrations of the grains or very small scattering by each grain.
This purpose is pursued in Papers B-D for single phased equiaxed polycrystalline materials
with various anisotropy symmetry of grains. Similarly, Paper E explores wave propagation
in single phase and multiphase polycrystalline materials with a distribution of grain size.

1.2 Outline of the thesis

The extended summary of this thesis is structured as follows.

In chapter 2, the elastodynamic relations describing a scattering problem are introduced
for general anisotropic materials. Then some special cases including isotropic, orthotropic,
cubic and transversely isotropic materials are introduced and their effect on the elas-
todynamic wave equations is discussed. Furthermore, the transformation of the wave
equations into a spherical coordinate system is explained. The study of spherical waves is
then presented, focusing on the derivation of the general solution of the wave equations
for isotropic materials. The solutions are expressed in terms of vector wave functions,
providing a comprehensive representation of the wave behavior in isotropic materials in
spherical coordinates.

Chapter 3 focuses on different scattering problems, specifically when the obstacle is not
isotropic. An analytical approach to derive the solution in terms of the T matrix is
discussed. First the general approach to study scattering of an arbitrary plane wave by
an anisotropic sphere is outlined. Then the scalar case of a torsional wave scattering by a
transversely isotropic sphere is explained giving more details.

Chapter 4 provides a brief exposition of approximate methods for studying wave prop-
agation in materials with a random distribution of scatterers. It then focuses on their
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application to analyse grainy structures, particularly polycrystalline materials. This leads
to estimates of effective properties like wave attenuation and phase velocity, offering
insight into the behavior of such materials.

A summary of the appended papers is presented in chapter 5, followed by some concluding
remarks and ideas for future work in chapter 6.

2 Elastodynamics

In this section, an outline is given of the principles of elasticity that are relevant to
elastic wave propagation and scattering. This includes stress and strain definitions,
constitutive relations, and governing equations. Isotropic media are in particular treated
and some anisotropic media are also introduced. The elastodynamic problem is expressed
in spherical coordinates and the corresponding vector wave functions are introduced.
There is a wide body of literature that covers several aspects of continuum mechanics and
elastic wave propagation ([29, 30]). One can refer to them for comprehensive explanations
of the concepts discussed in this section.

2.1 Basic equations

To start developing governing equations in an elastic medium, consider an infinitesimal
surface with normal vector n̂ and surface area dS. The traction on this surface is defined
by the force acting per unit surface area and is given by

tn = σ · n̂, (2.1)

where σ is the stress tensor and is a crucial quantity to describe the governing equation in
an elastic medium since having the stress tensor provides the force acting on any surface
using eq. (2.1). Conservation of angular momentum leads to the symmetry property of
the stress tensor, thus

σij = σji. (2.2)

In general the stress in a medium depends on the deformation of the medium. The
deformation can be defined using the displacement field u(x, t), which varies with position
x and time t. In Cartesian tensor notation the displacement is written

u = uiexi
, (2.3)

where (x1, x2, x3) are Cartesian coordinates, exi is the unit vector in xi direction and
Einstein’s summation convention is used throughout the section so that a repeated index
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is summed over i = 1, 2, 3. The quantity to describe deformation is strain and for small
displacements and deformations, the linear strain tensor is defined by

ϵij =
1

2
(∂jui + ∂iuj). (2.4)

It is obvious from this definition that the strain tensor is symmetric.

The relation between strain and resulting stress is the constitutive relation which can be
linearised for materials experiencing small deformations. Such a linearisation is expressed
by Hooke’s law and the constitutive relation can be written as

σij = Cijklϵkl. (2.5)

The fourth rank tensor Cijkl is the stiffness tensor which in three dimensions has 81 ele-
ments. However, due to symmetry of stress and strain together with energy considerations
the stiffness tensor has the following properties

Cijkl = Cjikl = Cijlk = Cklij . (2.6)

This reduces the number of independent elements of the fourth rank stiffness tensor to
the number of independent elements of a symmetric 6× 6 matrix which is 21. Such an
analogy facilitates the expression of the stiffness tensor, thus the matrix representation of
the stiffness tensor is used wherever convenient. Most natural materials have fewer than
21 independent stiffness components. For an isotropic elastic material the stiffness tensor
depends only on the Lamé parameters λ and µ

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (2.7)

where δij is the Kronecker delta. In this section a general stiffness tensor is considered
and later on the isotropic case and some examples of other constitutive relations are
discussed.

Considering the definition of traction, the force acting on a volume V due to stresses
can be calculated by integrating the traction over the surface of the volume S (

∮
tn dS).

Using eq. (2.1) and Gauss theorem it can be shown that the force due to the stress acting
on a volume is given by integrating the divergence of the stress tensor over the volume
(
∫
∂iσijdV ). In addition to this force which is resulting from the deformation of the

volume, forces like gravity or other external excitations may act on the volume. These
forces are denoted the body forces. Now considering a unit volume Newton’s second law
can be written as

∂jσij + bi = ρüi, (2.8)

where b is the body force per unit volume, ρ is the density (mass per unit volume) and
∂jσij gives the force acting on a unit volume due to the internal deformation. This is
called the wave equation and is the governing equation inside an elastic medium. By
considering eqs. (2.4) and (2.5) the governing equation can be written in terms of the
displacement field u

∂j(Cijkl∂kul) + bi = ρüi. (2.9)
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Considering time harmonic fields with a fixed angular frequency ω, the field variations in
time can be expressed as

u(x, t) = Re
(
(u(x)e−iωt

)
. (2.10)

Such a time harmonic representation simplifies all time derivatives and greatly facilitates
the solution of the wave equation. Neglecting the body force, the wave equation simplifies
to

∂j(Cijkl∂kul) + ρω2ui = 0. (2.11)

The wave equation is a second order differential equation for the displacement field u.
This differential equation needs to be supplemented by some conditions on the boundary
of the medium to complete a boundary value problem. In scattering problems the domain
of study consists of at least two different parts where the boundary conditions apply to
the interface of these domains. This interface may be a closed surface in the case of a
bounded domain. By such definition, a wide range of different boundary value problems,
like wave propagation in a half space or wave propagation in an infinite medium consisting
of a distribution of inclusions, may be considered as a scattering problem. From all these
various types of scattering problems, the main interest of this research is the type of
problems where an infinite domain, called the matrix, contains at least one finite domain
of a different material, called obstacle or scatterer.

One of the main parameters of these scattering problems is the shape of the obstacle. The
most common shapes, especially for analytical approaches, are circular shapes like spheres
and cylinders in 3D and circles in 2D. The simplicity of these shapes in comparison with
more complex ones is crucial for analytical analysis. They are useful to model grainy
materials or fiber composites or on a bigger scale buried pipelines, and other practical
problems. These types of geometry make it necessary to perform the calculation in
curvilinear system of coordinates. Of these the spherical coordinate system is explained
in detail in section 2.3.

The other main parameter is the material properties of the matrix and obstacle. The
simplest cases are those with all the material properties being isotropic. However, plenty
of synthetic and natural materials are not isotropic and this makes it necessary to study
cases with anisotropic materials. Some more common types of anisotropy, which are
particularly relevant for this study, are explained in section 2.2.

Another important parameter is the number of obstacles. The simplest case is when
there is a single obstacle in the matrix. Such problems are briefly explained for isotropic
and anisotropic obstacles in chapter 3, and a detailed discussion for anisotropic ones is
presented in Papers A-D. In cases involving multiple obstacles, the focus is primarily on
scenarios with a random distribution of a large number of obstacles. Various analytical
models to handle such a medium are explained in detail in chapter 4.
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2.2 Anisotropy of solids

As shown in eq. (2.6) the stiffness tensor which describes the material properties may have
21 independent elements. In most cases the material behaves similarly in some directions
and consequently this number of elements is reduced. The simplest case is when the
material behaviour is similar in all directions. These are called isotropic materials and
the number of independent elements are reduced to two. The independent elements are
the Lamé parameters λ and µ. In this case the equation of motion can be simplified to

(λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) = −ρω2u. (2.12)

For such a partial differential equation, Helmholtz decomposition is useful for the analysis.
The Helmholtz decomposition for an arbitrary vector field like u is

u = ∇Φ+∇×Ψ, (2.13)

where Φ and Ψ are scalar and vector potentials, respectively. Substituting eq. (2.13) into
the wave equation eq. (2.12) shows that the potentials should satisfy a Helmholtz equation

∇2Φ+ k2pΦ = 0,

∇2Ψ+ k2sΨ = 0,
(2.14)

where kp = ω
√
ρ/(λ+ 2µ) and ks = ω

√
ρ/µ. This shows that there are two types of

waves propagating in the medium. One is the wave corresponding to the scalar potential
u = ∇Φ which is a compressional wave and propagates with the wave number kp. It can
be observed that this wave is irrotational (∇× u = 0) and the displacement vector and
propagation direction are aligned for a plane wave. Therefore, it is called a longitudinal
wave and is often denoted a P wave. The other type of wave is corresponding to the
vector potential u = ∇×Ψ which is a shear wave and propagates with the wave number
ks. It can be observed that this wave is equivoluminal (∇ · u = 0) and the displacement
vector and propagation direction are perpendicular to each other for a plane wave. This
wave is called a transverse wave and is often denoted an S wave.

Using eq. (2.13) three quantities ui are related to four new dependent variables Φ and Ψi.
Therefore, obviously one degree of arbitrariness is left unspecified for Φ and Ψ potentials.
A simple and useful additional restriction on the potentials is to take the vector potential
Ψ as divergence free i.e. ∇ ·Ψ = 0. However, other types of restrictions are considered in
the literature, especially to facilitate the solution of the vector potential by uncoupling
some components of the fields in curvilinear coordinates. Such restrictions and the solution
of scalar and vector potentials in spherical coordinates are discussed in chapter 3.

Besides the isotropic case two special cases of an orthotropic material, which have plenty
of applications, is mentioned here. An orthotropic material is characterized by three
mutually orthogonal symmetry planes. Thus the number of stiffness constants for an
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orthotropic material are reduced to nine. The constitutive relations for such a material in
matrix notation are

σxx

σyy

σzz

σyz

σzx

σxy


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C55 0
0 0 0 0 0 2C66





ϵxx
ϵyy
ϵzz
ϵyz
ϵzx
ϵxy


. (2.15)

This is the stress-strain relation of a general orthotropic material. A special case is a cubic
material where the material stiffness in all the three coordinate directions are equivalent
so the material has three independent stiffness constants and the extra relations among
the stiffness components of a general orthotropic material are

C11 = C22 = C33,

C12 = C13 = C23,

C44 = C55 = C66.

(2.16)

Another special case is a transversely isotropic material. The stiffness for such materials
are equal in all directions in a plane which is called the isotropic plane. Consequently
the number of independent constants in a transversely isotropic material is five. Taking
the xy plane as the isotropic plane the extra relations among the stiffness constants of a
general orthotropic material are

C11 = C22,

C13 = C23,

C44 = C55,

2C66 = C11 − C12.

(2.17)

In Paper A and Paper B the material properties of the obstacle (or obstacles) are assumed
to be transversely isotropic. Paper C focuses on materials with cubic properties, while
Paper D investigates general orthotropic materials.

2.3 Spherical waves

In many scattering problems it is convenient to use curvilinear system of coordinates.
Here spherical coordinates are defined and general solutions of the wave equation (wave
functions) in this system of coordinates are given.

For the spherical coordinates (r, θ, φ) the relations with Cartesian coordinates (x, y, z) are

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (2.18)
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The strain displacement relations are

ϵrr =
∂ur

∂r
, ϵφφ =

1

r sin θ

∂uφ

∂φ
+

cot θ

r
uθ +

ur

r
,

ϵθθ =
1

r

∂uθ

∂θ
+

ur

r
, ϵθφ =

1

2r

(
∂uφ

∂θ
− cot θuφ +

1

sin θ

∂uθ

∂φ

)
,

ϵφr =
1

2

(
1

r sin θ

∂ur

∂φ
+

∂uφ

∂r
− uφ

r

)
, ϵrθ =

1

2

(
∂uθ

∂r
− uθ

r
+

1

r

∂ur

∂θ

)
,

(2.19)

and the equations of motion in terms of the stresses in this system of coordinates are

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

1

r sin θ

∂σrφ

∂φ
+

1

r
(2σrr − σθθ − σrφ + cot θσrθ)− ρ

∂2ur

∂t2
= 0,

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

1

r sin θ

∂σθφ

∂φ
+

1

r
(cot θ (σθθ − σφφ) + 3σrθ)− ρ

∂2uθ

∂t2
= 0,

∂σrφ

∂r
+

1

r

∂σθφ

∂θ
+

1

r sin θ

∂σφφ

∂φ
+

1

r
(3σrφ + 2 cot θσθφ)− ρ

∂2uφ

∂t2
= 0.

(2.20)

The constitutive relations may be transformed from the Cartesian to the spherical
coordinates using the appropriate transformation matrix which is discussed in section 3.1.
However, for an isotropic medium the constitutive relations are similar in the spherical
and the Cartesian coordinate systems

σrr

σθθ

σφφ

σθφ

σφr

σrθ


=


λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ





ϵrr
ϵθθ
ϵφφ

ϵθφ
ϵφr

ϵrθ


. (2.21)

Substituting eq. (2.21) into eq. (2.20) gives the equations of motion in terms of the
displacements for an isotropic medium. This system of equations may be decomposed
into three scalar potentials as [3]

u(r) = ∇Φ+∇× (rΨ1) +∇×∇× (rΨ2), (2.22)

where Φ, Ψ1 and Ψ2 are potentials associated to P, SH and SV waves, respectively. These
potentials satisfy Helmholtz equations with wavenumbers kp for Φ and ks for Ψ1 and Ψ2.

Using separation of variables to solve the scalar Helmholtz equations in spherical coor-
dinates leads to trigonometric functions cosmφ or sinmφ, where m = 0, 1, 2, ... for the
azimuthal factor (φ), associated Legendre functions with cos θ argument as Pm

l (cos θ)
with l = m,m+ 1,m+ 2, ... for the polar factor (θ) and spherical Bessel jm or Hankel

h
(1)
m functions for the radial factor (r), and the potentials may be written as

Φ0 = jm(kpr)Yσml(θ, φ),

Ψ0
1 = jm(ksr)Yσml(θ, φ),

Ψ0
2 = jm(ksr)Yσml(θ, φ).

(2.23)
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The upper index 0 denotes that they are regular waves, containing spherical Bessel
functions jm, and the corresponding outgoing waves denoted by + contain spherical

Hankel functions h
(1)
m . The Yσml(θ, φ) are called spherical harmonics with the following

definition

Yσml(θ, φ) =

√
ϵm(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ)

{
cosmφ
sinmφ

}
, (2.24)

where σ = e is for the upper row which is even with respect to φ and σ = o is for the
lower row which is odd with respect to φ. Indices l and m run through m = 0, 1, 2, ... and
l = m,m + 1,m + 2, .... The Neumann factor ϵ0 = 1 and ϵm = 2 for m = 1, 2, .... The
spherical harmonics constitute a complete orthonormal set on the unit sphere.

Thus the general solution for the displacement field may be written in terms of the
spherical vector wave functions which are defined as

ψ0
1σml(r, θ,φ) =

1√
l(l + 1)

∇×
(
rΨ0

1

)
= jl(ksr)A1σml(θ, φ),

ψ0
2σml(r, θ,φ) =

1√
l(l + 1)

1

ks
∇×∇×

(
rΨ0

2

)
=

(
j′l(ksr) +

jl(ksr)

ksr

)
A2σml(θ, φ) +

√
l(l + 1)

jl(ksr)

ksr
A3σml(θ, φ),

ψ0
3σml(r, θ,φ) =

(
kp
ks

)3/2
1

kp
∇
(
Φ0

)
=

(
kp
ks

)3/2(
(j′l(kpr)A3σml(θ, φ) +

√
l(l + 1)

jl(kpr)

kpr
A2σml(θ, φ)

)
,

(2.25)

where the first index is denoted τ = 1, 2, 3 for SH, SV and P wave function, respectively.
Here again, the upper index 0 denotes that they are regular vector wave functions and the
corresponding outgoing wave functions denoted by + contain spherical Hankel functions

h
(1)
m . Aτσml are the vector spherical harmonics which are defined as

A1σml(θ, φ) =
1√

l(l + 1)
∇× (rYσml(θ, φ))

=
1√

l(l + 1)

(
eθ

1

sin θ

∂

∂φ
Yσml(θ, φ)− eφ

∂

∂θ
Yσml(θ, φ)

)
,

A2σml(θ, φ) =
1√

l(l + 1)
r∇Yσml(θ, φ)

=
1√

l(l + 1)

(
eθ

∂

∂θ
Yσml(θ, φ) + eφ

1

sin θ

∂

∂φ
Yσml(θ, φ)

)
,

A3σml(θ, φ) = erYσml(θ, φ).

(2.26)

The spherical vector wave functions provide a comprehensive representation of the wave
behavior in isotropic materials within the spherical coordinate system. In the following
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section, solving scattering problems is discussed with the means of concepts and quantities
described here.

3 Scattering Problems

The focus of this study is on scattering by spherical obstacles surrounded by an isotropic
medium. It is then convenient to express the displacement field in the surrounding
medium as a sum of the incident wave uin (corresponds to the regular wave) and the
wave scattered by the obstacle usc (corresponds to the outgoing wave). Using the vector
spherical wave function of eq. (2.25) the displacement field in the surrounding medium is

u(r) = uin + usc =
∑
τσml

(aτσmlψ
0
τσml(r) + bτσmlψ

+
τσml(r)). (3.1)

As the underlying problem is linear, it is possible to write [31]

bτσml =
∑

τ ′σ′m′l′

Tτσml,τ ′σ′m′l′aτ ′σ′m′l′ , (3.2)

where T is a an infinite matrix called the transition matrix. The transition matrix
characterizes the scattering properties of the obstacle and provides information about how
the obstacle scatters the incident wave and interacts with its surroundings. It is a matrix
that depends on various factors such as the shape of the obstacle, the boundary conditions,
the elastic properties of the material, and the frequency of excitation. Importantly, the
transition matrix is independent of the incident field, which makes it a valuable building
block for tackling more complex problems involving multiple obstacles.

The T matrix elements are typically determined by applying boundary conditions. In
the case of a spherical obstacle, the boundary of the sphere with radius a can be defined
by setting r = a in a spherical coordinate system centered at the center of the sphere.
Additionally, for perfectly welded boundary conditions, the displacement and traction
fields must be continuous at the boundary which means

u(a) = u1(a),

t(r)(a) = t
(r)
1 (a),

(3.3)

where t(r) represents the traction in the radial direction, and the subscript 1 denotes the
fields and quantities inside the sphere. The radial traction for an isotropic medium can
be expressed in terms of the displacement field as

t(r) = erλ∇ · u+ µ

(
2
∂u

∂r
+ er × (∇× u)

)
. (3.4)
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With this relation, the radial traction for each spherical vector wave function can be
calculated as

t(r)
(
ψ0

1σml (r)
)
= µr

d

dr

(
jl (ksr)

r

)
A1σml (θ, φ) ,

t(r)
(
ψ0

2σml (r)
)
= µ

[
2
√
l (l + 1)

d

dr

(
jl (ksr)

ksr

)
A3σml (θ, φ)

+

(
2ksj

′′

l (ksr) +
2j

′

l (ksr)

r
− 2jl (ksr)

ksr2
+ ksjl (ksr)

)
A2σml (θ, φ)

]
,

t(r)
(
ψ0

3σml (r)
)
= µ

(
kp
ks

)3/2
[(

2kpj
′′

l (kpr) +
2k2p − k2s

kp
jl (kpr)

)
A3σml (θ, φ)

+ 2
√
l (l + 1)

d

dr

(
jl (kpr)

kpr

)
A2σml (θ, φ)

]
.

(3.5)

In the case of an isotropic sphere the displacement and traction fields inside the sphere
can be expanded in the regular spherical vector wave functions

u1(r) =
∑
τσml

cτσmlψ
0
τσml,1(r), (3.6)

t
(r)
1 (r) =

∑
τσml

cτσmlt
(r)
(
ψ0

τσml,1 (r)
)
, (3.7)

where cτσml are the unknown coefficients inside the sphere yet to be determined and
ψ0

τσml,1 are the spherical vector wave functions of the elastic medium inside the sphere.

The spherical vector wave functions are expressed in terms of the orthogonal vector
spherical harmonics. As a result, the boundary conditions given in eq. (3.3) decouple
for each order of σ, m, and l. Furthermore, the spherical vector wave function for τ = 1
depends only on A1σml and is decoupled from the vector wave functions of τ = 2 and
τ = 3, which both depend on A2σml and A3σml and are coupled. Essentially, for each
partial wave of order τ , σ, m, and l, there are two unknown coefficients, cτσml and bτσml,
and two equations from the continuity of the displacement and traction fields. This
provides sufficient information to determine the unknowns and find the T matrix elements.
This problem has been extensively discussed in the literature [3].

When the sphere is anisotropic, the classical solution in terms of the spherical vector
wave functions inside the sphere is not directly applicable, which adds complexity to the
problem. The main objective of this study is to broaden the range of possible analytical
solutions to include also the scattering of elastic waves by an anisotropic sphere. In the
upcoming section, the methodology employed to address this problem is briefly outlined,
followed by the simplest possible example, namely the scattering of a torsional (scalar)
wave by an anisotropic sphere in an axisymmetric setting.
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3.1 Scattering by an anisotropic sphere

To solve the problem of scattering by an anisotropic sphere a series expansion approach is
adopted. As the surrounding medium is isotropic, the displacement and traction field
outside the sphere are expanded as stated in eqs. (3.1) and (3.4). For the fields inside
the anisotropic sphere such expressions are not valid. In this case, the vector spherical
harmonics can serve as bases for the θφ dependence. As a result, any vector valued
function, including the displacement field, can be expressed as a sum of vector spherical
harmonics

u1(r, θ, φ) =
∑
τσml

Fτσml(r)Aτσml(θ, φ), (3.8)

where l = 1, 2, . . . for τ = 1, 2 and l = 0, 1, . . . for τ = 3. Such expansions facilitate the
application of the boundary conditions as the fields outside the sphere are also in terms
of the vector spherical harmonics. Considering the regularity condition at the center of
the sphere, the r dependent coefficients Fτσml(r) are expanded in power series in r as

F1σml(r) =

∞∑
j=l,l+2,...

f1σml,jr
j ,

F2σml(r) =

∞∑
j=l−1,l+1,...

f2σml,jr
j ,

F3σml(r) =

∞∑
j=l−1,l+1,...

f3σml,jr
j ,

(3.9)

in which f3σm0,−1 = 0. Here, fτσml,j are the unknown coefficients inside the sphere.

The radial traction inside the sphere can be calculated using the constitutive relation
based on the material properties. In the case where the sphere has anisotropic properties
in Cartesian coordinates, as explained in section 2.2, the starting point is to establish
the stress-strain relations in spherical coordinates. This is achieved by transforming the
constitutive relations from Cartesian coordinates to spherical coordinates. To do so, the
following relation for the transformation of a second rank tensor like stress and strain
from the Cartesian to the spherical coordinates is used

Ss = RTScR, (3.10)

where Ss and Sc are second rank tensors in the spherical and the Cartesian coordinates,
respectively, and R is the rotation matrix with the following appearance

R =

cosφ sin θ cosφ cos θ − sinφ
sinφ sin θ sinφ cos θ cosφ

cos θ − sin θ 0

 . (3.11)

Using the spherical strain relations as described in eq. (2.19), it is possible to express the
radial traction in terms of the displacement field in spherical coordinates. This provides
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the necessary relations to apply boundary conditions. However, there are two challenges
in solving the problem. First, after the transformation, the traction field consists of
terms involving multiplication of trigonometric functions and vector spherical harmonics.
This can make it difficult to directly apply boundary conditions due to the complexity
of these terms. Second, the unknown coefficients inside the sphere for each order of
τ , σ, m, and l are more than one, as determined by the power series expansion in the
radial direction eq. (3.9). Consequently, the number of unknowns exceeds the number of
equations imposed by the boundary conditions.

To address the first challenge, the orthogonality of the vector spherical harmonics is used.
Therefore, the traction field at the boundary r = a can be expanded as

t
(r)
1 (a, θ, φ) =

∑
τσml

Gτσml(a)Aτσml(θ, φ), (3.12)

where the coefficients Gτσml can be found using the scalar product of the traction field
and vector spherical harmonics

Gτσml(a) =

∫
S

t
(r)
1 (a, θ, φ) ·Aτσml(θ, φ)dS. (3.13)

Here S is the unit sphere. Once the displacement and traction field expansions are given
as eqs. (3.8) and (3.12), the application of boundary conditions becomes straightforward.

The scattering problem remains unsolved due to the higher number of unknowns compared
to the available boundary condition equations. To address this, it is necessary for the
fields inside the sphere to satisfy the governing equations within the sphere (eq. (2.20)).
Consequently, by substituting the stress relations into the governing equations, a system
of equations among the unknown coefficients inside the sphere is obtained. To facilitate
the analysis, it is advantageous to express the governing equations in terms of orthogonal
functions in angular directions. Using again the vector spherical harmonics, it is possible
to express the governing equations as∑

τσml

Hτσml(r)Aτσml(θ, φ) = 0, (3.14)

where Hτσml may be found using the same procedure as for Gτσml. The orthogonality of
the vector spherical harmonics forces all these coefficients, which are power series in r, to
vanish so that

Hτσml(r) = 0 for all τ, σ,m, l. (3.15)

Since the powers of r are linearly independent, it is necessary for the coefficient in front
of each power of r to vanish. This condition gives rise to recursion relations among the
unknown coefficients inside the sphere, resulting in that only one unknown remains for
each partial wave. These recursion relations reveal the coupling between different partial
waves, which is fundamentally influenced by the symmetry of anisotropy.
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The recursion relation described in eq. (3.15), along with the series expansion of the
displacement and traction fields inside the sphere, provides the necessary framework
to solve the scattering problem. By substituting these expansions into the governing
equations and applying the boundary conditions stated in eq. (3.3), the system of equations
involving the unknown coefficients can be solved. This process allows for the determination
of the T matrix element.

The approach described above is initially presented in Paper A, where the focus is on an
axisymmetric problem. This particular case is discussed briefly in the following section.
Subsequently, Papers B-D explore the general problem for various classes of anisotropy.
Each anisotropy class exhibits different coupling effects among the partial waves, which
are determined by the symmetry planes of the respective class. More detailed explanations
of these phenomena can be found in the appended papers.

3.2 Torsional (scalar) scattering by a TI sphere

In this section, the general problem described in section 3.1 is simplified to a scalar and
axisymmetric one. This can be achieved by considering a transversely isotropic sphere
with the axis of anisotropy perpendicular to the xy plane, and an incident plane torsional
wave parallel to the axis of anisotropy (z axis). Such a rotationally symmetric incident
wave together with symmetrical geometry and material properties lead to φ independent
displacement and stress fields. As a result, the sum over vector wave functions only
includes terms with m = 0 and σ = e. Furthermore, considering that the incident wave is
polarized only in the φ direction (a torsional wave), the problem reduces to a scalar one,
relating solely to the motion in the azimuthal φ direction.

With these assumptions, the incident and scattered wave displacement and traction fields
of the surrounding medium from eq. (3.1) and eq. (3.5) are reduced to the case with
τ = 1,m = 0 and σ = e as

uin
φ (r, θ) =

∞∑
l=1

alψ
0
1e0l(r, θ) · eφ =

∞∑
l=1

alwljl(ksr)P
1
l (cos θ), (3.16)

usc
φ (r, θ) =

∞∑
l=1

blψ
+
1e0l(r, θ) · eφ =

∞∑
l=1

blwlh
(1)
l (ksr)P

1
l (cos θ), (3.17)

σin
rφ =

∞∑
l=1

a1lµrwl
d

dr

(
jl(ksr)

r

)
P 1
l (cos θ), (3.18)

σsc
rφ =

∞∑
l=1

b1lµrwl
d

dr

(
h
(1)
l (ksr)

r

)
P 1
l (cos θ), (3.19)

where wl =
√
(2l + 1)/(4πl(l + 1)). In this section, the indices τ = 1, m = 0, and

σ = e are omitted for brevity. As a result, the notation A1e0l(θ) simplifies to Al(θ).
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Furthermore, since Al(θ) only depends on the associated Legendre function of order 1,
denoted as P 1

l (cos θ), this function is used in place of Al(θ) throughout this section. The
T matrix then is simplified to

bl =

∞∑
l′=1

Tl,l′al′ . (3.20)

Inside the sphere the governing equation becomes

∂σrφ

∂r
+

1

r

∂σθφ

∂θ
+

1

r
(3σrφ + 2 cot θσθφ) + ρω2uφ = 0. (3.21)

The stress-strain relations in spherical coordinates are derived from the transformation
of the constitutive relation for a transversely isotropic medium (eqs. (2.15) and (2.17))
from Cartesian to spherical coordinates according to eq. (3.10). In the specific problem at
hand, the non-zero stress relations are

σrφ = αϵrφ − β (ϵrφ cos 2θ − ϵθφ sin 2θ) , (3.22)

σθφ = αϵθφ + β (ϵθφ cos 2θ + ϵrφ sin 2θ) , (3.23)

where α = 1
2 (C11 − C12 + 2C44) and β = 1

2 (C11 − C12 − 2C44). In the isotropic limit
α = 2µ1 (µ1 being the Lamé parameter of the sphere), and β = 0 which eliminates all the
terms with trigonometric functions.

Considering the fields inside the sphere and the orthogonality of the associated Legendre
functions, the displacement field is expanded in the θ direction as

uφ(r, θ) =
∞∑
l=1

Fl(r)P
1
l (cos θ). (3.24)

The function Fl(r) can be expanded according to eq. (3.9)

Fl(r) =
∑

j=l,l+2,...

fj,lr
j . (3.25)

Substituting such an expansion of the displacement field into the radial traction (eq. (3.22))
and the governing equation (eq. (3.21)) leads to

σrφ =
α

2

∞∑
l=1

(1 + β̄)(F ′
l (r)−

Fl(r)

r
)P 1

l (cos θ)− 2β̄ cos2 θP 1
l (cos θ)F

′
l (r)

− 2β̄
dP 1

l (cos θ)

d cos θ
sin2 θ cos θ(

Fl(r)

r
),

(3.26)
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∞∑
l=1

[
P 1
l (cos θ)

[
(1 + β̄)F ′′

l (r) +
2

r
F ′
l (r)−

(
l(l + 1) + β̄

(
2− l(l + 1)

)) 1

r2
Fl(r)

]
+ P 1

l (cos θ) cos
2 θ

[
2β̄
(
− F ′′

l (r) +
1

r
F ′
l (r)− l(l + 1)

1

r2
Fl(r)

)]
+

dP 1
l (cos θ)

d cos θ
sin2 θ cos θ

[
2β̄(−2

r
F ′
l (r) +

1

r2
Fl(r))

]
+ k2Fl(r)P

1
l (cos θ)

]
= 0,

(3.27)

where β̄ = β/α and k = ω
√
2ρ1/α.

As discussed in the previous section these functions may be expanded in terms of the
associated Legendre functions P 1

l (cos θ) as

σr,φ(r) =
α

2

∑
l

Gl(r)P
1
l (cos θ), (3.28)

∑
l

HlP
1
l (cos θ) = 0. (3.29)

with

Gl(r) =
∑

j=l,l+2,...

[
fj,lN1j,l + fj,l+2N2j,l + fj,l−2N3j,l

]
rj−1, (3.30)

Hl(r) =
∑

j=l,l+2,...

(
fj,lM1j,l + fj,l+2M2j,l + fj,l−2M3j,l + fj+2,lk

2

)
rj−2. (3.31)

The coefficients Nij,l and Mij,l, where i = 1, 2, 3, are functions of l, j, and β̄. The detailed
definition and derivation of these coefficients can be found in Paper A. It is noteworthy
that these relations demonstrate coupling among the orders l, l + 2, and l − 2, which
arises as a consequence of anisotropy in the system. However, in the isotropic limit when
β̄ = 0, the parameters simplify to Nij,l = Mij,l = 0 for i = 2 and 3, and no coupling
among different orders remains.

By utilizing the series expansions given in eqs. (3.24) and (3.28) for the fields inside
the sphere, and eqs. (3.16) to (3.19) for the fields outside the sphere, the following two
equations are obtained for each order of l from the boundary conditions∑

j=l,l+2,...

fj,la
j = alwljl(ksa) + blwlh

(1)
l (ksa), (3.32)

∑
j=l,l+2,...

α

(
fj,lN1j,l + fj,l+2N2j,l + fj,l−2N3j,l

)
aj−1 =

2µrwlal
d

dr

(
jl(ksr)

r

)∣∣∣∣
r=a

+ 2µrwlbl
d

dr

(
h
(1)
l (ksr)

r

)∣∣∣∣
r=a

.

(3.33)
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Furthermore, the powers of r are linearly independent and eqs. (3.29) and (3.31) yields

fj,lM1j,l + fj,l+2M2j,l + fj,l−2M3j,l + fj+2,lk
2 = 0, (3.34)

for all l = 1, 2, .., and j = l, l+2, .., with the condition fj,l = 0 for all j < l. This recursion
relation can be used to determine all fj,l for j = l + 2, l + 4, . . . in terms of fl,l, leaving
only one unknown inside the sphere for each l. With one unknown outside the sphere bl,
the system of equations eqs. (3.32) and (3.33) is sufficient to solve the problem and find
the T matrix elements. In the low-frequency limit, it is sufficient to study the system
only for l = 1, and 2 and explicitly derive the leading order elements of the T matrix as

T11 = − ik5sa
5

45
(1− ρ1

ρ
),

T22 = − iks
5a5(C44 − µ)

45(C44 + 4µ)
.

(3.35)

In this case, the leading order T matrix elements for SH waves are of order k5s , which is
higher compared to the leading order for P-SV waves, shown to be k3p. As a result, SH
waves have limited significance in low frequency evaluations. Additionally, T11 for l = 1 is
solely dependent on the density of the sphere, which is reasonable since the l = 1 case at
low frequencies is associated with the rigid body rotation of the sphere. For l = 2, T22 is
solely dependent on the shear modulus C44.

In this simplified problem, it is possible to derive the system of equations for arbitrary
orders of l. However, in the more general problems addressed in Papers B-D, the system
of equations is explicitly derived only for the orders of l and m that are relevant for
low-frequency studies. For higher orders, numerical methods are employed to solve the
problem, as the complexity increases and explicit analytical solutions become hard to
derive and less practical.

4 Inhomogeneous Media

In an inhomogeneous medium the physical properties exhibit spatial variations, resulting
in complex wave propagation phenomena. This is in contrast to a homogeneous medium,
where the physical properties remain uniform and constant throughout. Inhomogeneous
media appears in many forms and find applications in fields like geophysics, medical imag-
ing, and material science. In material science, various types of inhomogeneous materials
exist, including composite materials composed of multiple phases and polycrystalline
materials characterized by a grainy structure of constituent crystals.

Early investigations into inhomogeneous materials focused on cases where the structure
of the inhomogeneities followed a periodic pattern or had a deterministic distribution, as
seen in laminated and fibrous composite media. However, this assumption overlooked the
fact that many materials exhibit inhomogeneities that are random in nature.
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The theory of wave propagation in random media focuses on the study of wave behavior
in materials with intricate spatial variations in their properties. These variations make
it challenging to describe the materials properties deterministically, and instead their
properties are characterized statistically. The theory of wave propagation in random media
includes two main approaches: the continuous random media, which are referred to as the
macroscopic approach by Frisch [32], and the multiple scattering theory which explores the
scattering of waves by randomly distributed discrete scatterers and is called the microscopic
approach [32]. In the continuous random medium, the medium is approximated by a
reference homogeneous medium with a zero-mean fluctuation. The average field inside
the medium is then estimated by considering the fluctuation and employing perturbation
methods. On the other hand, in the multiple scattering theory, wave propagation in
the inhomogeneous medium is analysed based on the scattering properties of individual
scatterers.

In this section, first a brief description of the fundamental concepts and assumptions of
each of these approaches is presented for simple scalar waves. Then their application
in propagation of elastic waves in grainy structured materials such as polycrystalline
materials is discussed.

4.1 Multiple scattering

Early studies on multiple scattering include those by Foldy [19], Lax [33], and Snyder and
Scott [34] which is developed further by Twersky [35] and Waterman and Truell [36]. It
is not within the scope of this study to discuss the physical and mathematical merits of
different methods. Instead, only the Foldy theory is considered for the investigation of
wave propagation in random inhomogeneous media, and thus its concepts and derivation
are discussed in this section. For recent studies and comparison of different multiple
scattering theories one can refer to Anson and Chivers [37] and Martin [31]. For simplicity
the main concepts are described here for the Helmholtz scalar wave equation as

(∇2 + k2)u0 = 0, (4.1)

where k is the wave number and u0 is the displacement field in the medium without any
scatterer. Supposing the medium include N point scatterers, the propagating field inside
the medium satisfies the following equation [19]

u(r) = u0(r) +

N∑
j=1

T (rj)u
j(r)E(r, rj), (4.2)

where u(r) represents the field at point r in the medium, uj(r) is the field acting on
the scatterer located at rj , T (rj) represents the scattering characteristic of the scatterer
located at rj , and E(r, rj) = exp(ik|r − rj |)/|r − rj | represents the far field propagation
of the scattered wave in the k medium. The field acting on the jth scatterer is then
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depending on the scattering of other scatterers and can be expressed as

uj(r) = u0(r) +

N∑
j′=1,j′ ̸=j

T (rj′)u
j′(r)E(r, rj′). (4.3)

The eqs. (4.2) and (4.3) can be interpreted as describing consecutive scattering processes.
The first equation indicates that the field scattered by a scatterer at point rj depends
on the scattering characteristic of the scatterer (T ) and the field acting on it (uj). The
second equation indicates that the field action on the scatterer j is equal to the sum of
the incident and the scattered field contributed by other scatterers, excluding scatterer j.
Equations (4.2) can be iterated any number of times, and each iteration can be related to
a specific event of scattering (see fig. 4.1).

Equations (4.2) and (4.3) are useful for understanding the scattering processes involved,
but is impractical for the evaluation of the effective quantities when there are large number
of scatterers which are randomly distributed throughout the medium. To deal with the
randomness, the average field is studied instead. For this purpose, the statistical data of
the scatterers are used to evaluate the average of any desired field in the medium.

With a collection of N scatterers, each with distinct scattering characteristics T (rj , sj)
where the parameter sj define the state of the scatterer such as shape, size, orientation, and
mechanical properties and rj indicates the location of the scatterer in the spatial domain.
The probability of these scatterers existing within the volume elements dr1dr2 . . . drN ,
while their respective states fall within the region ds1ds2 . . . dsN can be expressed as [33]

P (r1r2...rN ; s1s2...sN )dr1dr2...drNds1ds2...dsN . (4.4)

This quantity is defined in a way that its integral is normalized to unity. With this
definition, the probability distribution of a scatterer comes form the integration over all
the remaining scatterers

P (r1; s1) =

∫
Vt

∫
P (r1r2...rN ; s1s2...sN )dr2...drNds2...dsN , (4.5)

where Vt is the total volume accessible to the scatterers.

Probability distributions are normally converted to density distribution n(r1; s1) by
considering the total number of scatterers as

n(r1; s1) = NP (r1; s1). (4.6)

Assuming that the probability distribution of each scatterer is not influenced by other
scatterers, meaning that

P (r1r2...rN ; s1s2...sN ) = P (r1; s1)P (r2; s2)...P (rN ; sN ), (4.7)
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Figure 4.1: (a) Events of scattering going through different scatterers, and (b) events of
scattering which a scatterer contributes more than once [38].

the ensemble average of a field is

< u(r) > =

∫
V

∫
u(r; r1, r2...rn; s1, s2, sN )

P (r1; s1)P (r2; s2)...P (rN ; sN )dr1dr1...dr1ds1ds2...dsN .

(4.8)

With such a definition, eq. (4.2) can be expressed for the average field as [19]

< u(r) > = u0(r) +
∑
j

∫
V

∫
P (rj ; sj)T (rj , sj) < uj(r) >j E(r, rj)drjdsj , (4.9)

where < u(r) > is the coherent field propagating in the medium and < uj(r) >j is
the effective field acting on the jth scatterer. The effective field is the average over all
scatterers excluding the jth scatterer. Foldy [19] approximately considered the effective
field to be equal to the coherent field (< uj(r) >j=< u(r) >). Twersky [35] showed
that this approximation is valid for the scattering events in which a scatterer contributes
in the scattering process only once. This is shown in fig. 4.1 where Foldy approach is
valid for the scattering events in fig. 4.1(a) [38]. The scattering events of fig. 4.1(b) are
effective when the scatterers are close to each other and back scattering is considerable.
For such cases Lax [33] considered correlation between pairs of scatterers and defined a
constant c so that < uj(r) >j= c < u(r) > to distinguish between the effective field and
the coherent field. Waterman and Truell [36] also derived a more complex relation for the
effective field by considering back scattering of the scatterers.

Here only the Foldy approximation is considered. Hence, the eq. (4.9) can be written as

< u(r) > = u0(r)+ < u(r) >

∫
V

∫
n(rj ; sj)T (rj , sj)E(r, rj)drjdsj . (4.10)

For many problems the state of a scatterer is not related to its location and n(rj ; sj) =
n(rj)α(sj). Furthermore for a homogeneous distribution of scatterers nr(rj) = n = N/V .

22



Applying the operator ∇2 + k2 to eq. (4.10) and taking the integration leads to

(∇2 + k2) < u(r) > = −4πn < u(r) > T̄ (r), (4.11)

where

T̄ (r) =

∫
α(s)T (r, s)ds. (4.12)

For a macroscopically homogeneous medium T̄ (r) is constant and can be considered as
the average forward scattering amplitude of the scatterers (f̄) [33, 39]. Therefore eq.
(4.11) becomes

(∇2 +K2) < u(r) >= 0,

K2 = k2 + 4πnf̄(K),
(4.13)

where K is the effective wave number of the coherent field in the medium and f̄(K)
indicates that the effective field acting on the scatterers is considered to be equal to the
coherent field as considered by Foldy. A simpler approximation is to consider u0(r) as the
field acting on all scatterers (f̄(k)). This is then referred to as simple Foldy theory [37].

Generally, the parameter f̄(K) is complex even for a lossless scatterer. So the average
effective field < u > attenuates as it propagates through the medium. This is of course
due to scattering and is related to the scattering amplitude. Clearly in this approximation
it is assumed first that the effective field acting on each scatterer is the same for every
scatterer and also that the scattered wave propagates in the k medium as if there is no
other scatterer. These assumptions together with the far field approximation of E(r, rj)
are more reliable for a dilute distribution of scatterers (small values of N). Overall, the
validity of these approximations are best to be justified by actual physical behaviour of the
medium and the experimental results. Such studies have shown that there are cases that
even the simpler approximations like Foldy and Lax theory show better estimation of the
effective field properties than more refined theories [40]. For a comprehensive comparison
among different approximation regarding the effective field acting on scatterers one can
refer to [37].

4.2 Continuous random media

In the macroscopic approach the Helmholtz equation (eq. (4.1)) is substituted by an
equation with a random coefficient [32]

(∇2 + k2 + ϵ(r)k2)u = 0, (4.14)

where k is the wave number of the mean homogeneous field and ϵ(r) is the centered
random fluctuation with respect to k. Considering the radiation condition and the outward
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radiating Green function of the homogeneous medium

G(0)(r, r′) =
eik|r−r′|

4π|r − r′|
, (4.15)

the following random integral equation can be used instead of the wave equation

G(r, r′) = G(0)(r, r1)− k2
∫
Vt

G(0)(r, r′)ϵ(r1)G(r1, r
′)dr1, (4.16)

where G(r, r′) is the Green’s function of the inhomogeneous medium. This equation is
solved by formal iteration which leads to the following perturbation series

G(r, r′) = G(0)(r, r1)− k2
∫
Vt

G(0)(r, r′)ϵ(r1)G
(0)(r1, r

′)dr1

+ k4
∫
Vt

∫
Vt

G(0)(r, r2)ϵ(r2)G
(0)(r2, r1)ϵ(r1)G

(0)(r1, r
′)dr1dr2 + ....

(4.17)

The second integral in this equation corresponds to a wave which propagates freely from
r′ to r1, is scattered by the random inhomogeneity at r1, propagates freely from r1 to
r2, is scattered at r2 and propagates to r; similarly for higher orders of the perturbation
series. Therefore the equation has a physical interpretation in terms of multiple scattering.
Solving the series of integral equations (4.17) for the mean Green function leads to the
Dyson integral equation [32]

< G(r, r′) > = G(0)(r, r′)− k2
∫
Vt

G(0)(r, r′)G(0)(r1, r
′) < ϵ(r1) > dr1

+ k4
∫
Vt

∫
Vt

G(0)(r, r2)G
(0)(r2, r1)G

(0)(r1, r
′) < ϵ(r1)ϵ(r2) > dr1dr2 + ....

(4.18)

Normally the random fluctuations are defined to have zero mean, meaning < ϵ(r1) >= 0
and the first integral in the perturbation series is zero and the others depend on higher
orders moments of ϵ(r) as < ϵ(r1)ϵ(r2)...ϵ(rn) >. Taking a spatial Fourier transform of
the Dyson integral equation leads to the following dispersion equation for the effective
wave number of the inhomogeneous medium [32]

K2 = k2 −M(K), (4.19)

where M(K) is the Fourier transform of the mass operator related to the sum of all integral
terms in the perturbation series which can also be expressed using the diagrammatic
method [32]. A common approximation introduced by Bourret [41] is to only consider
the first term of the mass operator, which means that only the covariance of the random
fluctuations (< ϵ(r1)ϵ(r2) >) is considered. This approximation is consistent with the
first order smoothing approximation in the method of smoothing as followed by Keller
for random differential equations [42]. The covariance of random fluctuations is then
calculated by a two point correlation function showing the probability of two points lying
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in the same inhomogeneity. The details of this approach and its analogy with other
methods like smoothing and multiple scattering theory is comprehensively discussed by
Frisch [32]. It is worth mentioning that the Dyson integral equation (4.18) and the integral
equation for multiple scattering theory (eq. (4.10)) exhibit a clear analogy with each
other. The fundamental difference lies in the definition of the scattering characteristics.
In multiple scattering theory, it is defined by the scattering amplitude of individual
scatterers, while in the Dyson equation, it is defined by the covariance of the elastic
properties fluctuation between two arbitrary points in the random medium.

Most of the early studies on wave propagation in an inhomogeneous medium are considering
a medium which is locally isotropic. For the case that inhomogeneities are anisotropic,
e.g. polycrystalline materials, only the macroscopic approach has been applied, thus
defining the anisotropy by fluctuations with respect to a reference isotropic homogeneous
medium. The objective of the present study is to examine the influence of incorporating
the scattering characteristics of an anisotropic scatterer in the approximation of the mean
field in an inhomogeneous material. This investigation is carried out within the framework
of the simple and self consistent Foldy approach. This is particularly investigated for single
phased polycrystalline materials with randomly oriented grains of different anisotropy
symmetry. The application of the microscopic and macroscopic approach for the elastic
waves propagating in polycrystalline materials is discussed in the next section.

4.3 Polycrystalline materials

Polycrystalline materials are solids that consist of many small crystals which are usually
called grains. The grains are usually anisotropic, have often random orientations and
are separated by grain boundaries. When the anisotropic grains are oriented randomly,
the macroscopic behaviour of the medium is isotropic. Propagation of a wave through
polycrystalline materials can be considered as a special case of a random inhomogeneous
medium with local anisotropy. The interest of the current study is mainly to investigate
the overall average response of the polycrystalline material, rather than the local effects
of individual grains. Therefore, the basic idea is to model the original, inhomogeneous
polycrystal as a statistically homogeneous and isotropic medium, which should have the
same overall average response.

Most recent studies model polycrystalline materials as a continuous medium with an
isotropic reference medium and anisotropic random fluctuations. The method of solution
then follows the concepts discussed in section 4.2. However, as the anisotropy of the grains
increases, the fluctuations with respect to the reference medium also increase, causing
this method to lose its accuracy. In the present research another approach based on the
theory of Foldy [19] is used to calculate attenuation and effective phase velocity of the
waves in polycrystalline materials. This theory was developed for waves propagating in an
acoustic medium with a distribution of point scatterers, but has been generalized to the
elastic case with bounded obstacles [43, 44]. In this section first a review of the former
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approach is presented, then application of the Foldy theory is discussed for polycrystalline
materials.

Stochastic model for polycrystalline materials

A classical approach to study polycrystalline materials is to replace the micro-inhomogeneous
elastic polycrystal with a continuous random medium described by a local elastic stiffness
tensor Cijkl(r) = cijkl+δijkl(r) with mean isotropic stiffness cijkl and random fluctuations
δijkl(r). The fluctuations with respect to the mean elastic tensor δijkl(r) are considered
to be small and the mean elastic medium with tensor cijkl is called the reference medium
and for a single phase polycrystalline is normally considered to be the Voigt average of the
grain properties [23]. The elastodynamic differential equations with random coefficients
are then solved using the diagrammatic method and the Bourret approximation of the
Dyson integral equation [40] or the Keller first order smoothing approximation [15], which
are shown to be equivalent to each other [23]. Following the diagrammatic method as
described in section 4.2, the elastodynamic equation can be reduced to the Dyson integral
equation for the mean Green function as [23]

< Gkα(r, r
′) > = G

(0)
kα(r, r

′) +

∫
Vt

∫
Vt

G
(0)
kβ (r, r2)Mβj(r2, r1) < Gjα(r1, r

′) > dr1dr2,

(4.20)

where Gkα(r, r
′) is the k direction displacement response at r due to α direction impulse

at r′, G
(0)
kα(r, r

′) is the same for the reference isotropic medium and Mβj is the mass
operator for the j direction impulse and β direction response waves. The mass operator is
a function of the random fluctuation covariance < δijkl(r), δαβγζ(r) >. A vital element of
the theory is the incorporation of the covariance of the elastic tensor in the mass operator
using a statistical two-point correlation (TPC) between r and r′. For a statistically
homogeneous polycrystal, the covariance can be factored into elastic and spatial parts by
< δijkl(r), δαβγζ(r) >=< δijkl, δαβγζ > w(r − r′). The elastic part is solely determined
by the elastic constants of the polycrystal. The spatial part w(r − r′) is the well-known
spatial TPC function describing the probability of two points being in the same grain.
The spatial TPC function is related to the size and shape of the grains. The TPC function
can also be defined in a way to capture various volume distribution of grains or even
non equiaxed grains [25, 45, 46, 47]. This model is generally called the second order
approximation (SOA) since it is accurate when second-order degrees of inhomogeneity is
small. Using the Fourier transform in the Dyson equation leads to the following dispersion
equation for the perturbed wavenumber K [23]

K2
i = k2i −

mi(K)

V0i
. (4.21)

Here K is the effective wave number of the polycrystalline medium, K = Kp is the vector
wave number with p being the wave propagation direction, and V0i and mi =

∑
j=P,S mij

are the Voigt phase velocity and mass operator respectively, with i = S for transverse
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waves and i = P for longitudinal waves. The mass operator includes different scattering
events and are generally in form of Cauchy integrals which can be studied numerically for
different classes of anisotropy [17, 25, 48, 49]. Using the far field approximation, the mass
operator is approximated with an explicit expression without involving calculation of
Cauchy integrals [50]. These methods normally do not lead to a closed form solution for the
perturbed wave number K unless invoking more assumptions like the Born approximation,
the Rayleigh asymptote (valid for low frequencies) or the stochastic asymptote (valid for
high frequencies).

Foldy theory for polycrystalline materials

Foldy theory, which is described in section 4.1 for scalar waves and point scatterers, is
developed for elastic waves and bounded obstacles as [43, 44]

K2
i = k2i + 4πnf̄i, (4.22)

where the index i can be P or S for longitudinal and transverse waves, Ki and ki are
the wave numbers of the effective medium and the medium surrounding the scatterers,
respectively. For a case with all scatterers having same volume Vs and relative density d,
n = d/Vs. The average forward scattering amplitude f̄i can be related to the transition
matrix defined in chapter 3 as [51]

f̄p = − i

kp

∑
σml

T3σml,3σml,

f̄s = − i

2ks

∑
τσml
τ=1,2

Tτσml,τσml.
(4.23)

The average dynamic response of the medium including attenuation and phase velocity
can be described by the real and imaginary parts of the effective wave number

αi

ki
= Im

Ki

ki
,

Ci

ci
= Re

ki
Ki

.

(4.24)

In polycrystalline materials, the grains fill the medium, and the surrounding medium of
each grain is not a known homogeneous medium, as required by the Foldy theory. Thus,
single phase polycrystalline materials first need to be homogenized through some form of
averaging over the elastic properties of the grains. This assumption is generally referred to
as the effective medium approach and differs from the effective field approach as described
in section 4.1. A comprehensive overview of both the effective field and effective medium
approaches is available in the literature [52].

In this context, a homogeneous medium is initially defined for the polycrystalline material,
followed by the utilization of the simple Foldy theory to evaluate attenuation and phase
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velocity within the medium. In summary, the following assumptions for the medium and
the propagating wave are considered.

1. Each grain is considered to be isolated from all other grains, and they all experience
the same incident wave.

2. The simple Foldy theory is followed in which the forward scattering amplitude is
evaluated for an exciting field similar to a field propagating in the homogenized reference
medium without any grains. This implies that each grain contributes to scattering only
once, and the scattered field of one grain does not affect the fields acting on other grains.

3. The scattered wave is studied in the far field of the grains.

4. As the grains fill the medium in the polycrystalline materials, their distribution density
is d = 1. Therefore the total number density of the inclusions is calculated as n = 1/Vs,
Vs being the average volume of the grains.

5. The size of the scatterers is much smaller than the wavelength of the incident wave.

The best way to validate these assumptions is to compare the results with experimental
data. However, the approach in this study, instead, compares with numerical FEM results,
which have demonstrated reasonable correspondence with empirical investigations [22].
This comparison is studied in Papers B, C, and D for polycrystalline materials with
transversely isotropic, cubic, and orthotropic grain properties, respectively. In these
papers, the properties of the homogenized medium are considered to be the Voigt average
of the grain properties. Furthermore, in Papers C and D, a self consistent effective medium
approach is also adopted, where the approximated homogenized medium k is equated to
the effective homogenized medium K in the static limit. With such an assumption, the
effective field acting on the grains is the coherent field propagating in the inhomogeneous
medium which fulfills the assumption of Foldy theory. In Paper E, the effects of grain
size are investigated by incorporating a grain size distribution instead of a single grain
size Vs. Additionally, in Paper E, the application of the present approach is extended to
encompass multiphase polycrystalline materials.

5 Summary of Appended Papers

5.1 Paper A

In this paper, a single anisotropic spherical obstacle contained in a three-dimensional,
homogeneous, isotropic and infinite elastic medium is considered. For this canonical
problem a transversely isotropic sphere is considered in which the axis of material symmetry
is perpendicular to the xy plane. A spherical coordinate system (r, θ, φ) is set at the center
of the sphere and an incident plane wave propagates in the z direction. Such a restriction
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on the incident wave makes the problem rotationally symmetric and consequently the
displacement and stress fields are independent of the azimuthal angle φ. Based on the
polarization of the incident wave the problem can be decomposed into two independent
problems, one relating to motion in the φ direction (torsional waves, also known as SH
waves) and the other relating to motion in the rθ plane (P-SV waves). Only the SH waves
which is a scalar case is considered in Paper A.

To solve the problem, the displacement field in the isotropic medium outside the sphere
is constructed as a superposition of incident and scattered waves, which are expanded
in spherical vector wave functions. In the anisotropic sphere first the elastodynamic
equations are transformed into spherical coordinates and then the displacement field
is expanded in associated Legendre functions in θ and powers in r. Substituting the
expansion into the equation of motion inside the sphere leads to recursion relations for
the expansion coefficients that couple different polar orders (in contrast to an isotropic
sphere where there is no such coupling). Using the boundary conditions on the surface
of the sphere results in a system of equations for all the expansion coefficients for the
fields outside and inside the sphere. As a result, the transition (T) matrix elements are
calculated and given explicitly for low frequencies. Some numerical examples of scattered
far fields are also presented.

5.2 Paper B

Paper B continues the work presented in Paper A. In this paper, the same problem as
in Paper A is addressed; however, this time, no restrictions are imposed on the incident
wave. This means that the incident wave can take the form of a plane wave of any type
in any direction. Consequently, the axisymmetric assumption made in Paper A becomes
invalid, and all fields now depend on all spherical coordinates.

The general methodology employed in this paper closely resembles that of Paper A.
Here again the elastodynamic equations inside the sphere are transformed to spherical
coordinates and the displacement field is expanded in the vector spherical harmonics in
the angular coordinates and powers in the radial coordinate. Then recurrence relations
among the expansion coefficients can be found using the governing equations inside the
sphere. In the surrounding medium the displacement and traction fields are expanded in
terms of the spherical vector wave functions. All the remaining expansion coefficients for
the fields outside and inside the sphere are found using the boundary conditions on the
surface of the sphere. As a result, the transition (T) matrix elements are calculated and
given explicitly for low frequencies.

In Paper B, this T matrix is utilized to investigate wave propagation within polycrystalline
materials characterized by transversely isotropic grains. Foldy theory is employed to derive
an explicit expression for the effective complex wave number of such materials, particularly
focusing on low frequencies. The paper considers the macroscopic homogenized medium
to be the Voigt average of the grain properties.
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Subsequently, the attenuation coefficients and phase velocities of waves within the material
are directly deduced from the effective wave number. These quantities are numerically
compared with previously published results and with recent FEM results. The comparison
with FEM for low frequencies shows a good agreement regardless of the degree of anisotropy
while the validity of other published methods is restricted to weakly anisotropic materials.

5.3 Paper C

In Paper C, the same problem addressed in Paper B is considered, with the distinction
that the anisotropic sphere exhibits cubic anisotropy. The approach to solving the
problem remains identical with the methodology outlined in Paper B. The adoption of
cubic anisotropy brings about an advantage in mathematical computations, as it involves
only three independent elastic coefficients. In contrast, transversely isotropic materials
are characterized by five elastic constants. However, it is noteworthy that transversely
isotropic materials exhibit a rotationally symmetric behavior, leading to the absence of
coupling between different orders of incident and scattered waves in the φ direction. On
the other hand, this symmetry is not present in cubic materials. Consequently, coupling
arises among orders of m and m± 4 of the incident and scattered waves in the azimuthal
direction, as detailed in the paper. In the low-frequency limit, where only orders of
m = 0, 1, and 2 are relevant, such coupling becomes negligible, and the T matrix elements
are derived in a similar manner as described in Paper B.

Furthermore, similar to Paper B, this paper investigates single phase equiaxed polycrys-
talline materials. The focus here is on polycrystalline materials with grains exhibiting
cubic anisotropy. An advancement in this study is related to the treatment of macro-
scopic homogenized properties. In addition to the conventional Voigt average, which is
commonly employed in this context, a self consistent approach is adopted in Paper C. It
is assumed that the macroscopic homogenized medium has the same properties as the
effective medium in the low frequency limit. It is demonstrated that this is equivalent
to defining the surrounding medium of the sphere in such a manner that, in the low
frequency limit, the average far field scattering amplitude possesses only an imaginary
component. Consequently, this approach leads to a set of polynomial equations that
govern the elastic constants of the effective homogenized medium in the low frequency
limit. When comparing the results with FE evaluations, it indicates that this method
yields a better agreement than the Voigt average.

5.4 Paper D

In Paper D, the previous studies are extended to encompass a more general scenario,
involving the orthorhombic symmetry of the spherical obstacles. A material exhibiting
such symmetry can be characterized by nine distinct elastic coefficients, which significantly
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elevate the complexity of the governing equations. Expressing the constituent relation of
such a medium in spherical coordinates reveals that coupling exists among m, m± 2, and
m± 4 orders of the incident and scattered waves in the azimuthal direction. Consequently,
it becomes evident that in the low frequency limit, the orders m = 0 and m = 2 become
coupled, resulting in a larger system of equations that need to be simultaneously solved.

The resulting T matrix elements exhibit interesting dependence on the elastic coefficients
of the spherical obstacles. As discussed in the paper, for dipole elements (l = 1), the
T matrix only depends on the density of the sphere (ρ1). This is well understood as it
corresponds to rigid body translation. For monopole elements (l = 0), which are coupled
with even quadrupole elements (l = 2 with σ = e), the T matrix elements only depend
on the elasticity of the sphere and its surrounding medium but not on the density or
shear moduli (C44, C55, and C66). For odd quadrupole elements (l = 2 with σ = o), the T
matrix elements only depend on the shear moduli of the sphere.

These T matrix elements are subsequently employed to investigate 50 distinct single
phase polycrystalline materials with various type of anisotropy. The established system
of polynomial equations, employed for determining the effective medium properties in the
static limit, is demonstrated to yield results consistent with the conventional self consistent
averaging of an anisotropic crystal. Furthermore, the FE evaluation of phase velocity and
attenuation within these materials highlights a good agreement with the present method.
This agreement is particularly evident when the macroscopic homogenized medium is
regarded as equivalent to the effective medium.

5.5 Paper E

Paper E aims to investigate attenuation and phase velocity within polycrystalline materials,
incorporating diverse statistical information concerning the properties of the grains. By
adopting the Foldy methodology, the statistical details are encompassed in the ensemble
average of the forward scattering amplitude of the grains. Specifically, two scenarios
are considered for the cases where the average is calculated across grains with varying
mechanical properties or when this average encompasses a distribution of grain sizes.

The examination of the grain size distribution reveals that the low frequency phase velocity
remains unaffected by the grain size distribution. Conversely, the attenuation within
polycrystalline materials displays a dependency on the third moment of the grain size
distribution. When comparing the method presented here with previously analytical
published results, a good correspondence is observed within the low frequency limit
for weakly anisotropic crystals. For materials exhibiting strong anisotropy, however,
significant differences occur as expected. These results confirm that the influence of the
grain size distribution remains independent of the degree of anisotropy.

Furthermore, an examination of the variation in the mechanical properties of the grains
is conducted for duplex polycrystalline materials. Two cases are studied: one with a
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significant difference and another with a minor difference in the mechanical properties
between the two phases. The evaluation is conducted for attenuation and phase velocity
in the low frequency limit for different volume concentrations of the distinct phases. A
comparison with published findings demonstrates a reasonable agreement.

6 Concluding Remarks and Future Work

This thesis demonstrates an analytical approach to study scattering by an anisotropic
sphere. An advantage of analytical approaches is the valuable insights of the various
aspects of the problem. Particularly noteworthy is the dependence of stresses in spherical
coordinates on the trigonometric functions of the angular coordinates. The thesis highlights
how such dependence results in coupling between different orders of the incident wave,
a phenomenon absent in isotropic cases. By employing a systematic series expansion
involving suitable orthogonal functions in the angular directions and power series in
the radial direction, recursion relations are established among the expansion coefficients.
The boundary conditions on the sphere are then used to determine the elements of the
transition matrix (T).

Another insight comes from the explicit expressions of the T matrix elements for low
frequencies. It can clearly be observed that for low frequencies it is the P-SV waves that
play a dominant role and the SH waves are of limited interest. To be more specific, the
leading order T matrix elements of the SH waves behave as (ka)5 while for the P-SV
waves they behave as (ka)3. Furthermore, such explicit expressions clearly demonstrate
how different T matrix elements depend on the stiffness constants and density of the
sphere and the surrounding medium.

One important application of these Tmatrices is to derive the forward scattering amplitude
of an anisotropic obstacle. With the analytical expression of this parameter and using Foldy
theory explicit expressions for attenuation coefficients and effective phase velocities in a
polycrystalline materials with various anisotropy of the grains are derived. Although these
expressions are limited to low frequencies, they have no restriction on the polycrystalline
degree of anisotropy in contrast to other published analytical approaches.

An inherent advantage of possessing explicit expressions for the forward scattering ampli-
tude is the capability to seamlessly incorporate an inhomogeneous medium, where the
scatterers may exhibit a range of distinct forward scattering amplitudes. This feature
proves particularly valuable, as it allows for the evaluation of the average forward scat-
tering amplitude in the presence of a specific distribution of scatterers. While this idea
has been extensively explored in the existing literature, with a primary focus on isotropic
scatterers, the findings of this study contribute to the extension of these methodologies to
encompass scenarios involving anisotropic scatterers. This is specifically followed for a
grain size distribution of the scatterers and a medium with multiple type of scatterers
in polycrystalline materials. There is no particular problem in extending the study for
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other scenarios such as volume concentration of the scatterers in particulate composites.
Generally, extension of the forward scattering amplitude for an isotropic obstacle to an
anisotropic one, marks a step forward in broadening the applicability of the existing
approaches for analysing dynamic response of inhomogeneous materials to a wider array
of real world situations.

A possible extension of the current work is to explore somewhat higher frequencies. This
requires deriving explicit expressions for the traction on the surface of the sphere for
any desired expansion of the displacement field within the sphere. Additionally, it is
necessary to have the recursion relation among the expansion coefficients analytically as
well. Although this was followed in the simple case of Paper A, for the general case, it
remained unsolved due to the complexity of the mathematical relations. Alternatively,
the T matrix and forward scattering amplitude can be computed numerically. When
applying them to inhomogeneous media, the limitations of the Foldy approach used so far
may become important. Therefore, other multiple scattering theories, briefly mentioned
here, may offer better accuracy at higher frequencies and can be considered.

The proposed approach can be extended to address a more intricate scenario, involving an
isotropic elastic interface in conjunction with an anisotropic sphere positioned within an
isotropic matrix featuring properties that differ from those of the interface. This is followed
in the literature for an isotropic sphere [53] and an extension for an anisotropic sphere
would be valuable. This may have particular interest in polycrystalline materials when
there is an interface with distinct material properties around the grains. Furthermore,
an effective medium approach to evaluate particulate composite dynamic response is to
study scattering by a single sphere when it is located in a matrix with effective properties
of the constituent while in the vicinity of the sphere there is a layer with mechanical
properties of the actual hosting medium of the composite [52].

Another interesting research problem involves examining the scattering behavior of a sphere
with electro-magneto-elastic properties, situated within an elastic and isotropic medium.
Since electro-magneto-elastic mediums are typically anisotropic, the proposed approach
remains applicable, though with additional complexities related to the propagation of
electric and magnetic waves and their coupling with elastic waves in the sphere.
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