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Real-Time Mixed-Integer Energy Management
Strategy for Multi-Motor Electric Vehicles

Anand Ganesan†‡, Nikolce Murgovski†, Derong Yang‡ and Sebastien Gros§

Abstract—This paper1 presents a real-time capable energy
management strategy for multi-motor electric vehicles, based
on mixed-integer model predictive control (MI-MPC). In this
strategy, torque allocation and clutch on-off are co-optimized to
minimize both the energy consumption and the frequent changes
in clutch engagement status. To be able to solve the mixed-integer
(MI) problem in real time, we propose a bi-level programming
approach in which the torque allocation subproblem is solved at
the inner level using an explicit closed-form analytical solution,
while the integer decisions are optimized at the outer level using
implicit dynamic programming (i-DP). The simulation results
show that the proposed strategy can achieve up to 11% energy
savings, depending on the load demand in a driving mission,
compared to a rule-based controller typically used in production
vehicles. In addition, the proposed approach is guaranteed to
find the global optimum for the MI problem in each MPC
update. With a mean time to solution of around 4.6ms, the
proposed strategy shows promising real-time capabilities for
online implementation in multi-motor electric vehicles.

I. INTRODUCTION

Although electric vehicles are a widely accepted solution to
tackle climate change challenges [1], [2], a major factor that
restricts the rate of mass adaptation is their driving range per
charge [2]. An effective way to improve the range per charge
of an electric vehicle (EV) is to maximize the operational
efficiency of its powertrain.

In modern EV powertrains, a distributed architecture with
multiple drivetrains is preferred due to its modularity and per-
formance benefits over a single drivetrain unit [3]–[7]. In such
multi-motor electric vehicles (MMEVs), decoupling mecha-
nisms are also included to reduce idle losses, e.g., a clutch to
isolate a drivetrain from its wheel(s) at zero torque demand
[8], [9]. However, frequent changes in the engagement status
of such mechanisms adversely affect key vehicle attributes
like driveability, passenger comfort, component warranty, etc.
[10]. Such distributed architectures offer two key categories of
controls to optimize operational efficiency: 1) Distribution of
driver demand among its electric drives and friction brakes,
called control allocation [11], and 2) Decoupling decisions.
Control allocation is further divided into distribution between
front and rear wheels (or axles) [4], [12] and distribution
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Göteborg, Sweden. {anandg,nikolce.murgovski}@chalmers.se
‡Dept. of Software Engineering, R&D, Volvo Cars, Göteborg, Sweden.
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between left and right wheels [7], [8]. In this paper, we focus
on front-rear distribution and decoupling decisions.

Depending on the chosen control variable, the control
allocation (CA) subproblem is also referred to as torque or
power or force allocation (or split or distribution) in general
[12]–[16]. Most of the energy management studies on MMEVs
have focused solely on CA and ignored decoupling decisions.
For example, the offline optimization (explicit) approaches
proposed in [5], [6], [14] find numerical solutions (like optimal
distribution maps), while those in [7], [12] derive analytical
solutions for CA. A few studies have investigated the benefits
of considering the decoupling decisions along with CA. For
example, clutch on-off decision was optimized offline along
with torque distribution in [8], while an online heuristic search
was proposed for the clutch decision in [4]. Although these
approaches showed increased energy savings compared to
optimizing CA alone, the main drawbacks of these approaches
are, 1) suboptimal solutions and ii) instantaneous clutch
decisions. Such decisions result in frequent changes in clutch
engagement (discussed in Section V-D1) that adversely affect
comfort, warranty, etc. Therefore, an energy management
strategy that considers the cost of clutch transitions while
optimizing both CA (continuous) and clutch on-off (integer)
decisions is needed and has yet to be proposed for MMEVs.

In addition, optimizing both control decisions results in a
mixed-integer (MI) problem that is generally NP-hard due to
the combinatorial nature of integer decisions. NP stands for
‘nondeterministic polynomial time’ and refers to a complexity
class of problems that can be solved in polynomial time, e.g.,
the CA problem, while NP-hard are at least as hard as the
hardest problems in NP [17]. An algorithm that guarantees
to find global solution to such an MI problem suffers from
exponential worst-case time complexity [17]. For example,
Dynamic Programming (DP) and direct methods like branch-
and-bound, cutting planes, etc., [18]–[20] are widely used to
find global solutions to such MI problems offline. However,
these methods are computationally too expensive to implement
in real time due to the combinatorial nature of the problem and
suffer from large run-time variations. Therefore, computation-
ally efficient solutions that overcome these challenges are vital
for online implementation of MI strategies in MMEVs.

In this work, we first propose a mixed-integer model pre-
dictive control based energy management strategy that co-
optimizes both front-rear torque distribution and clutch on-
off decisions online, to improve operational efficiency of an
MMEV. In this strategy, we penalize frequent changes in
clutch engagement status using a clutch dynamics model and a
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Fig. 1: Simplified representation of a multi-motor electric vehicle powertrain
consisting of two electric drives and a battery. The Energy Management
System block hosts the proposed controller and sends optimal references to
the lower-level controllers. BMS refers to battery management system.

tunable transition cost while minimizing the energy consump-
tion of the EV. Second, we propose a bi-level programming
approach to solve the resulting MI problem in real-time,
efficiently and optimally. In this approach, the CA subproblem
is solved at the inner level using an explicit closed-form
analytical solution, while the clutch decisions are optimized
at the outer level using implicit dynamic programming (i-DP).

II. CONTROL MODEL OF BEV POWERTRAIN

This section describes the control-oriented modeling of the
multi-motor battery electric vehicle (BEV) powertrain shown
in Fig. 1. The front control unit (FCU) and rear control unit
(RCU) control the electric drive (ED) and driveline clutch of
the front and rear axles, respectively.

A. Modeling Clutch Dynamics and its Transition Cost
Clutches in an EV powertrain can be used to reduce idle

losses by isolating the drivetrain(s) from the wheels. Subse-
quently, the steady-state conditions, (referred to as engagement
status) of a dry clutch, are modeled as either engaged (on ⇔ 1)
or disengaged (off ⇔ 0). Let x = [xf xr]

T and uc = [uf ur]
T

denote the state and control vectors of the clutch dynamics
model. The subscripts f and r are used to represent front and
rear axles, respectively. The engagement status of the clutches
is then modeled as discrete states with integer controls as

x(k + 1) := x(k) + uc(k), ∀k, (1)

x(k) ∈ B ⊆ {0, 1}2, uc(k) ∈ Uc ⊆ {−1, 0, 1}2, ∀k, (2)

where k is the discrete-time instance, B and Uc denote the
feasible and admissible sets for the state and control vectors.

The transient dynamics of the clutch (slipping phases) is not
explicit in model (1). However, a non-zero control (i.e., ui ̸=
0) represents an instance of clutch transition in the ith axle
where i ∈ {f, r}. Subsequently, the power loss during these
clutch transitions Pc,i is modeled as a discrete cost function
whose value is non-zero only at instances of change, i.e.,

Pc,i(k) :=

{
0, ui(k) = 0, ∀k, i ∈ {f, r}
bc,i∥ui∥, ui(k) ̸= 0, ∀k, i ∈ {f, r}

(3)

where bc,i ∈ R+ represents the unit power loss for a single
clutch transition on the ith axle. Therefore, the total cost due
to the transition of both clutches is defined as Pc = Pc,f+Pc,r.
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Fig. 2: Contour plots comparing model estimates (solid line) and measured
(dotted line) power consumption for front and rear EDs when x = 1.

B. Electrical Power Consumption of the BEV Powertrain

Each ED comprises an electric machine (EM), an inverter,
and a fixed ratio transmission. The losses in these components,
i.e., total losses in an ED (Pls,i ∈ R≥0) and subsequently, the
power consumption of an ED (Pel,i), are approximated as a
quadratic polynomial of its EM torque (Mi ∈ R) as

Pel,i :=f1(Mi, ωi, xi) ≈ Pls,i + ωiMi, i ∈ {f, r}, (4)

Pls,i :=f2(Mi, ωi, xi) ≈ xibi0(ωi) +

2∑
j=1

bij(ωi)|Mi|(j). (5)

The bounds on the EM torque depend on the angular velocity
of the EM (ωi(k)) and the clutch status on ith axle, i.e.,

ci(ωi, k)xi(k) ≤ Mi(k) ≤ ci(ωi, k)xi(k), ∀k, ∀i, (6)

where the velocity-dependent torque limits ci, ci include the
power limitations of the EM at high speeds. This model has a
mean absolute percentage error of around 2% (refer Fig. 2).

C. Vehicle Dynamics and Torque Demand Estimation

This study focuses on the front-rear torque distribution and
therefore, we consider only the longitudinal vehicle dynamics
and assume linear operation of tires. Subsequently, we ignore
the effect of load transfer, and wheel and tire slip losses.
Furthermore, we assume that vehicle speed v and road slope
α are perfectly known a priori as optimizing v is not a focus.
Then, the traction force demand for the mission is given by

Ft(k) =a(k)me(x, k) + cdAfρav
2(k)/2 + Fb(k)

+mg (sinα(k) + cr cosα(k)) ,
(7)

where a denotes acceleration, cd and cr refer to air and rolling
resistance coefficients, Af refers to frontal area, ρa refers to
air density, m refers to vehicle mass, and Fb is the force
dissipated in friction brakes. The equivalent mass is stated as

me(k) = m+
( (

Jw + xf(k)JfR
2
f + xr(k)JrR

2
r

)
/r2w

)
, (8)

where rw refers to wheel radius, R(·) and J(·) refer to the
fixed transmission ratio and the inertia of ED in an axle, and
Jw denotes the inertia of wheels and driveline components.
Given that the brake control unit (BCU) always ensures that

Fb(k) =

{
0, Ft(k) > F rg,pt(k),

Ft(k)− F rg,pt(k), otherwise,
(9)



the wheel torque demand (Md), and the velocities of the wheel
(ωw) and the ED (ωi, ∀i) are calculated a priori as

Md(k) = max
(
Ft(k), F rg,pt(k)

)
rw, (10)

F rg,pt(k) = F rg,f(v, xf , k) + F rg,r(v, xr, k)), (11)

ωw(k) = v(k)/rw, ωi(k) = xi(k)ωw(k)Ri, ∀i. (12)

where F rg,pt, F rg,f , F rg,r ∈ R− denote the regeneration
limits of the powertrain and the EDs, respectively. The prior
estimation of the terms me, F rg,i and ωi for all i is made
conservative by deriving the cumulative load under closed
clutches (x = 1). This overestimates me, but the effect is
negligible since Jf , Jr ≪ mr2w/R

2
(·).

III. MI ENERGY MANAGEMENT PROBLEM

A. Control Architecture and the Proposed Controller

We use a hierarchical three-layer control framework similar
to that in [21, Fig. 4]. At the top level, an oracle optimizes v
and battery state of energy (xb) for the entire mission based
on route and traffic predictions from cloud-based navigation
services. The bottom level controllers transmit the current-
state estimates to the upper levels. In the middle layer, the
supervisory co-optimization controller (SCC) that hosts the
proposed energy management strategy uses this information to
optimize the MI decisions and minimize energy consumption.

B. Mixed-Integer MPC (MI-MPC) Problem Formulation

The goal of the energy management problem is to deliver
the wheel torque demand at each instant using the five controls
u = [uf ur Mf Mr Mb]

T so that both the energy consumption
of the powertrain and the frequent changes in the clutch
engagement status are minimized, while adhering to the clutch
dynamics (x). Among these controls, the torque allocated to
the friction brakes M∗

b is already factorized in (10) using (9)
which minimizes the energy lost in braking. Therefore, the
demand (10) must be met by the remaining actuators. This
leads to a demand balance constraint as, RfMf+RrMr = Md.
Note that this constraint is implicitly affected by state x via
the torque bounds in (6). Then, a variable substitution as
Mr = (Md − MfRf)/Rr simplifies the control vector as
ũ = [uf ur Mf ]

T and the EM torque limits in (6). Then, from
(4), the rate of powertrain energy consumption is defined as

Pb(k) = Pls,f(xf , k) + xr(k)Md(k)ωw(k)

+ Pls,r(xr, k) + (xf(k)− xr(k))ωw(k)RfMf(k).
(13)

Finally, the MI-MPC implementation of the energy manage-
ment problem to be solved online by the SCC is,

min
x,ũ

N∑
k=1

ϕ (x, ũ, θ, k) ∆t (14a)

s.t (1) and (2), (14b)
c(x, θ, k) ≤ 1Mf(k) ≤ c(x, θ, k), ∀k, (14c)

where index (k) 7→ (k|j), k ∈ {1, 2, ..., N} denotes time step,
j ∈ {1, 2, ..., (tf/∆t) − N} refers to the MPC instance, ∆t
is the sampling interval, θ refers to the parameter vector, and

tf , N ∈ Z>0 refers to the final time and prediction window,
respectively. The stage cost (ϕ) and the bounds (c, c) are

ϕ :=Pb (x,Mf , θ, k) + Pc (uc, θ, k) , (15)

c := [ cf(k)xf(k), (Md(k)− xr(k)cr(k)Rr)/Rf ]
T
, (16)

c := [ cf(k)xf(k), (Md(k)− xr(k)cr(k)Rr)/Rf ]
T
. (17)

IV. SOLVING THE MIXED-INTEGER PROBLEM

In this section, we describe the proposed bi-level program-
ming approach to solve the MI-MPC problem (14) online. In
this approach, the torque allocation subproblem is solved at
the inner level, while integer decisions are optimized at the
outer level using implicit dynamic programming (i-DP).

A. Closed-Form Analytical Solution for the CA Subproblem

When the clutch engagement status x is known, the problem
(14) simplifies to a static optimization problem at each k as

min
Mf

{(
Pb(x,Mf , θ, k)

) ∣∣ M(k) ≤ Mf(k) ≤ M(k)
}
, (18)

where M = max
(
c(x, θ, k)

)
and M = min

(
c(x, θ, k)

)
.

Notice that the term (xf−xr)ωwRfMf in (13) becomes 0 in all-
wheel-drive mode (x = 1). This simplifies the problem (18) to
a static power loss minimization problem whose cost function
is quadratic over the variable Mf (based on the models in (5)).
Then, its closed-form analytical solution is derived as

M̂∗
f :=


M(k), M̂ub

f (·) ≥ M(k),

M(k), M̂ub
f (·) ≤ M(k),

M̂ub
f (x, θ, k), otherwise,

(19)

M̂ub
f :=

{
(br1RfRr−bf1R

2
r+2 br2Rf |Md|(k))sgn(Md)

2 bf2R2
f +2 br2R2

r
, x = 1,

xf Md(k)/Rf , x ̸= 1,

where M̂∗
f and M̂ub

f denote optimal and unbounded policies,
respectively. For powertrains with identical ED on both axles,
the solution simplifies to M̂ub

f = 0.5Md/Rf for x = 1.

B. Solving the Clutch On-Off Decisions at the Outer Level

A bi-level formulation of the MI problem (14) is stated as

[x∗(k), ũ∗(k)] = argmin
x,ũ

N∑
k=1

ϕ (x, ũ, θ, k) ∆t (20a)

s.t (1) and (2), (20b)
xf(k) + xr(k) ≥ p(k), (20c)

Mf(k) ∈ M̂∗
f (x, k). (20d)

where, p = {0 |Md(k) = 0} and p = {1 |Md(k) ̸= 0}.
The constraint (20c) ensures that at least a clutch is closed if
Md ̸= 0. This bi-level problem is solved in real time using
the i-DP method. Note that the constraint (20d) denotes the
optimal policy (19) of the torque allocation subproblem (18).
Consequently, i-DP optimizes clutch on-off decisions online
based on the policy (19). This proposed bi-level approach has
two key benefits: 1) The i-DP guarantees a global optimum for
the MI problem (14) since the policy (19) provides an exact



TABLE I: Parameters used in the simulation study

Parameter Value Parameter Value
Af 1.92 m2 Jw 2.5 kgm2

cd 0.019 Jf = Jr 0.06 kgm2

cr 0.01 Rf 10
m 1800 kg Rr 8
g 9.82 m/s2 bc,f = bc,r 0.10 kW
ρa 1.18 kg/m3 ∆t , th 1 s, 5 s
rw 0.37 m EM Max Torque ≈ 230 Nm
Top Speed 160 km/h ED Peak Power ≈ 120 kW (Front)
EM Type PMSM ≈ 110 kW (Rear)

TABLE II: Test cycles used to evaluate the performance of proposed strategy
Scenarios Driving / Test Cycle Acronym

City/Urban
Driving

Gothenburg City Cycle [8] GCC

Common Artemis Driving Cycle (CADC) urban C-Urbn

Mixed
Driving

Worldwide Harmonised Light Vehicles Test Procedure WLTC

Common Artemis Driving Cycle (CADC) Rural C-Rurl

Highway
Driving

US06 supplemental federal test procedure (SFTP) US06

Common Artemis Driving Cycle (CADC) Motorway150 C-Hway

optimum for the continuous decision variable (M∗
f ) which

enables to avoid the loss in optimality typically associated
with the need to discretize such variables in DP. 2) The
online computational demand is significantly reduced as i-
DP searches only over the two binary variables instead of the
decision space of the three variables.

V. SIMULATION RESULTS AND DISCUSSION

This section describes the simulation setup and the evalua-
tion results of the proposed MI energy management strategy
and the solution strategy based on bi-level programming.

A. Simulation Setup and Reference Controller

To validate the proposed strategies, we perform a dynamic
simulation using the plant models of the BEV powertrain. The
only difference between the plant and control models is the
approximation of me in the latter, as stated in Section II-C.
A feedback mechanism is used to compensate for speed de-
viations arising from this modeling uncertainty. Furthermore,
we assume a perfect prediction of v and α to estimate demand
trajectories, as prediction uncertainties are not the focus in this
work. The model and simulation parameters are provided in
Table I. Since, we consider only the discrete clutch dynamics
the chosen horizon covers 4 future states which was found to
be sufficient for this study. The control and prediction horizons
are kept the same for simplicity.

Table II shows the six driving profiles used to evaluate per-
formance under three different driving scenarios. In addition, a
rule-based controller typically used in production vehicles was
simulated for comparison and is referred to as equal torque
distribution (ETD). The heuristic rules used by ETD to decide
clutch on-off and torque allocation decisions are expressed as

xi :=

{
0, Mi = 0, ∀i,
1, otherwise, ∀i,

(21)

Mi :=max(ci, min(ci, 0.5Md/Ri)), ∀i. (22)
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Fig. 3: Optimal trajectories of proposed MI strategy for WLTC. The mode is
post processed based on Table III. The states and controls are within bounds.

TABLE III: Relation between operating mode and clutch engagement status

Operating Mode Mode
Number

Front Clutch
Status (xf )

Rear Clutch
Status (xr)

Powertrain Disabled (OFF) 0 0 0
Rear Wheel Drive (RWD) 1 0 1
Front Wheel Drive (FWD) 2 1 0
All Wheel Drive (AWD) 3 1 1

B. MI Optimal Solution of the Proposed Strategy

Fig. 3 shows the solution trajectories of the proposed MI
strategy for the WLTC Class-3b. The wheel torque subplots
denote the front-rear torque distribution w.r.t. the demand Md.
Operating mode subplot shows that FWD or RWD is chosen
mostly, whereas AWD is chosen only at a few points. Such
mode choices were found to depend on the policy (19), Md,
v and the chosen bc,i. We will analyze how these factors
influence mode selection in our future work. Also, note that the
OFF mode (x = 0) is not chosen during the mission (except at
the start), i.e., at least one clutch remains engaged, as there are
no losses in EDs when both the speed (v) and torque demand
(Md) are zero. Furthermore, the front wheel torque limits are
higher than the rear wheel limits, as the front ED has a higher
ratio than that at the rear, as stated in Table I. In addition, note
that x also affects torque limits as stated in (6).



(a) The proposed i-DP based MI strategy consistently realizes significant cost
and energy savings across the driving missions. The contribution of clutch
changes in the total cost depends on the chosen penalty bc,i. The total cost
of ETD is post processed based on (15).

(b) The MI strategy shows significant increase of over 100% in total clutch
changes in almost all cycles, with the worst performance observed in GCC.

Fig. 4: Comparison of the total cost and its principal components (energy
consumption and total clutch transitions) for the proposed MI strategy w.r.t.
the values of the ETD strategy, for the chosen penalty of 0.1 kW. The proposed
strategy compromises on clutch transitions to achieve significant energy and
total cost savings across driving missions.

C. Energy Savings Against No. of Clutch Transitions

The comparison of the total cost and its two principal
components (energy consumption and total clutch transitions)
of the strategies, in Fig. 4, shows that the proposed i-DP
based MI strategy consistently realizes the best cost and
energy savings across different driving missions. However, the
controllers show an opposite trend for total clutch changes,
where ETD performs the best. The results in Fig. 4 yield two
important findings. 1) The MI strategy can lead to significant
savings, but at the cost of increased clutch transitions for the
chosen bc,i. Achieving a balance between these two conflicting
factors depends on their relationship and is therefore further
analyzed in Section V-D1. 2) The effectiveness of the MI
strategy in achieving energy savings depends on the severity of
the missions parameters such as the load demand and speed.

D. Sensitivity and Computation Demand of Proposed Strategy

1) Effect of Clutch Transition Penalty on Competing Objec-
tives: As the results in Fig. 4 revealed that energy consumption
and the number of clutch transitions are indeed conflicting
objectives, the proposed MI energy management strategy leads
to a multi-objective (or Pareto) optimization problem.

Fig. 5(a) shows the sensitivity of the two conflicting objec-
tives w.r.t. the choice of the cost per clutch transition (penalty)
bc,i,∀i, for WTLC. It can be seen that the total cost always
increases as the penalty increases. However, minimal energy
consumption requires zero penalty, but maximizes clutch tran-
sitions. Such high transitions with zero penalty are expected
since the MI problem (14) reduces to a static optimization
problem and clutch decisions become instantaneous with zero

(a) Effect of the choice of clutch penalty on the total cost and its two sub costs:
consumption and clutch transitions, for WTLC. The total cost always increases
with the penalty. However, zero penalty minimizes energy consumption but
maximizes clutch transitions and vice-versa. Notice that the penalty of optimal
balance, chosen in Fig. 5(b), almost corresponds to the intersection of the two
sub costs in this plot. This observation of chosen penalty is consistent across
all the missions.

(b) This figure shows the Pareto front of the conflicting objectives for WLTC.
To find an optimal balance of the two costs, we choose the point that is closest
to the origin, i.e., the utopia point of the frontier. Subsequently, the penalty
that corresponds to this chosen point is 0.2 kW which is shown in the figure.

Fig. 5: This figure shows the effect of the choice of cost per clutch transition
(penalty) on the competing objectives for WTLC. Based on the Pareto
front, we choose 0.2 kW as the penalty to optimally balance both energy
consumption and clutch transitions.

penalty, as clutch dynamics (1) and transition cost (3) become
irrelevant. Such high transitions adversely affect passenger
comfort, warranty, etc. [10] and are therefore not preferred.
(Notice that this reduced static problem is similar to the static
problem solved offline in [8] and the instantaneous online
heuristics in [4]. Hence, these strategies suffer from such high
transitions and their effects.)

In contrast, Fig. 5(a) also shows that the clutch transitions
decrease with a sufficiently high penalty, but energy consump-
tion increases. Note that the choice of a high penalty of 1 kW
results in a controller that operates purely in AWD mode in
all cases and may lead to higher consumption than the ETD.

To avoid such extremes, we use the Pareto frontier of the
costs shown in Fig. 5(b) to choose a penalty that balances the
costs for WLTC. All points in the frontier are Pareto-optimal.
But the penalty of 0.2 kW corresponds to the closest point to
the origin (the utopian point of this frontier) [22] that optimally
balances the costs. This analysis shows that the cost per clutch
transition can be adjusted to achieve a balance between energy
savings and comfort.

2) Computational Demand of the Proposed Strategies: All
simulations in the study were performed in matlab environ-
ment on a computer with 32GB of RAM and an octa-core
processor operating at 2.3GHz. The proposed MI solution
strategy performs well in terms of computational efficiency



Fig. 6: Computational time statistics for a prototype implementation of the
proposed bi-level approach based MI solution strategy. Mean computation
time is less than 4.6ms. Worst-case time is less than 6ms.

with a mean and worst-case time of less than 4.6ms and 6ms,
respectively, in all missions considered. These results should
be seen as a proof-of-concept, as they are based only on a
prototype implementation of the DP method used in the pro-
posed solution strategy. Subsequently, the order of magnitude
of runtimes in Fig. 6 depicts pessimistic upper bounds for
the algorithms, since further improvements are possible with
software tailored for real-time MPC implementation. However,
the actual runtime of an embedded EV onboard depends on
its processing and memory capacities.

VI. CONCLUSION

A computationally efficient energy management strategy is
proposed that co-optimizes control allocation and clutch on-
off decisions online based on mixed-integer model predictive
control for a multi-motor EV. The proposed strategy shows
significant cost and energy savings of up to 11% compared to
a rule-based controller typically used in production vehicles.
These savings vary depending on the severity of load demand
in driving missions. However, these savings come at the cost
of increased clutch transitions. The Pareto analysis shows that
the cost per transition can be adjusted to achieve a balance
between energy savings and comfort.

With a mean time to solution of around 4.5ms and a worst-
case time of less than 6ms, the proposed bi-level approach
that is guaranteed to find the global solution to the MI energy
management problem shows promising performance and real-
time capabilities for online implementation in multi-motor
electric vehicles.
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