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Abstract
This survey gives an overview of the current research on compositional algorithms for ver-
ification and synthesis of modular systems modelled as interacting finite-state machines.
Compositional algorithms operate by repeatedly simplifying individual components of a
large system, replacing them by smaller so-called abstractions, while preserving critical
properties. In this way, the exponential growth of the state space can be limited, making it
possible to analyse much bigger state spaces than possible by standard state space explo-
ration. This paper gives an introduction to the principles underlying compositional methods,
followed by a survey of algorithmic solutions from the recent literature that use composi-
tional methods to analyse systems automatically. The focus is on applications in supervisory
control of discrete event systems, particularly on methods that verify critical properties or
synthesise controllable and nonblocking supervisors.

Keywords Supervisory control theory · Compositional verification · Finite-state machines ·
Discrete event systems

1 Introduction

Discrete event systems are a useful modelling paradigm for developing controllers of safety-
critical applications in industrial automation, automotive electronics, avionics, etc. Such
systems are typically composed of several components and subsystems that interact with
each other in a high degree of concurrency, which gives rise to a complexity that is difficult
to handle manually; and this complexity tends to increase with each added new component.
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Discrete Event Dynamic Systems

At the same time, the safety-criticality of the systems requires safe and correct functionality,
as malfunctions can have disastrous effects.

To support the development of correct control systems, supervisory control theory
(Ramadge and Wonham 1989; Cassandras and Lafortune 2008) provides a general frame-
work for constructing reactive control functions for discrete event systems. Given a model of
the plant to be controlled and a specification of the desired behaviour, methods are provided
to design or to compute a supervisor that dynamically restricts the plant behaviour while
ensuring that the specification is satisfied. The plant and specification are in general given
as several interacting finite-state machines (Balemi 1992; Krook et al. 2018; Reijnen et al.
2020).

The algorithms used by this approach, like most other algorithms to check the correctness
of finite-state systems, face a computational challenge known as state-space explosion. To
confirm correctness, it is in principle necessary to explore the complete system state space,
which grows exponentially with the number of components (Bérard et al. 2001), and this
quickly becomes intractable for many real-world applications.

Compositional reasoning can mitigate the state-space explosion by taking advantage of
the modular structure (Graf and Steffen 1990; Clarke et al. 1994). The idea is to perform
local reasoning about individual system components, simplify them as much as possible,
and only put them in a larger context when necessary. Local reasoning facilitates reuse of
analysis results: if a part of a system is modified, all results from analysing the unmodified
parts remain valid. It is also possible to reason about a system that is not yet fully defined
(Andersen et al. 1994). In addition, there are computational benefits as the simplification of
components often reduces their number of states.

Compositional reasoning is well suited for supervisory control applications if the system
is modelled by a large number of state machines that are loosely coupled through synchro-
nisation.Modular (Wonham and Ramadge 1988), hierarchical (Zhong and Wonham 1990),
concurrent (Willner and Heymann 1991), and decentralised (Rudie and Wonham 1992)
supervisory control exploit the system structure in different ways and incorporate ideas of
compositional reasoning to facilitate supervisor design. More recently, fully automatic algo-
rithms based on compositional reasoning have been proposed (Flordal and Malik 2009; Hill
et al. 2010; Su et al. 2010a; Mohajerani et al. 2014), which can solve problems of industrial
scale and handle much larger state spaces than previously possible.

This paper surveys the current state-of-the-art in compositional verification and synthesis
for discrete event systems, focusing on algorithmic solutions that take a model of synchro-
nised finite-state machines as input and compute an answer automatically with minimal user
interaction. The two tasks of verification and synthesis are considered separately.

– The goal of verification is to determine whether a system satisfies a property of interest.
Compositional verification typically follows an approach proposed by Graf and Steffen
(1990), where system components are simplified separately before they are composed
with other components. Compositional verificationmethods differ in how the components
are simplified, which is dependent on the type of properties being verified. To verify
arbitrary temporal logic properties, simplification can only be done using bisimulation
(Baier and Katoen 2008). If only safety properties are being verified, simplification can
be done using weak bisimulation (Milner 1989) or language equivalence (Ware and
Malik 2008). Other properties of interest are the absence of deadlock, which is done
using failures equivalence as simplification (Roscoe et al. 1995), and the nonblocking
property, which is done using weak bisimulation (Su et al. 2010a) or conflict equivalence
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(Malik et al. 2006; Flordal and Malik 2009). These properties and their compositional
verification are explored in Section 4.

– The goal of synthesis is to compute the control logic needed to ensure that a system
satisfies certain properties. This is a more difficult problem than verification as it cannot
be separated into different classes of properties—usually several properties have to be
enforced simultaneously and must be considered together. This paper focuses on the
standard synthesis objective in supervisory control, namely the synthesis of controllable
and nonblocking supervisors (Ramadge and Wonham 1989). Compositional synthesis
algorithms can be based on a similar framework as that of Graf and Steffen (1990)
where components are simplified and composed gradually, although additional consider-
ations are necessary. The main difference between compositional synthesis approaches
are which components are composed and how they are simplified. Local synthesis identi-
fies unsafe states within subsystems and removes them before composing the subsystems
with the rest of the system (Hill andTilbury 2008; Flordal et al. 2007).Projection removes
events from components and replaces themby deterministic abstractions (Feng andWon-
ham 2008; Schmidt andBreindl 2008). Othermethods use nondeterministic abstractions,
which can be computed by considering removed events as unobservable (Hill et al. 2010;
Su et al. 2010b) or using variations of weak bisimulation (Mohajerani et al. 2014, 2017).
Some of these methods ensure that the computed supervisors are maximally permissive
while others do not. These methods and their differences are surveyed in Section 5.

The remainder of this paper is organised as follows. Section 2 introduces the principles
of compositional reasoning and describes a general framework which is used as reference
throughout the paper. This section is intended to be generally accessible and uses only a low
level of formal notation. Section 3 brings in background on finite-state machines and tem-
poral logic. Then Section 4 surveys compositional verification algorithms with subsections
considering different classes of properties to be verified, and Section 5 surveys compositional
synthesis algorithms with subsections for different types of abstraction. Finally, Section 6
adds concluding remarks.

2 The idea of compositional methods

2.1 Verification and synthesis

Many discrete event systems are modelled as finite-state machines (FSM). Research in super-
visory control has led to modular (Wonham and Ramadge 1988) and decentralised (Rudie
and Wonham 1992) strategies, where control functions are distributed over several com-
ponents. In concurrent supervisory control, not only the control but also the system to be
controlled consists of several components (Willner and Heymann 1991). Using the compo-
sition operator ‖ to express interaction between components, a concurrent system can be
described modularly as

G = G1‖G2‖ · · · ‖Gn , (2.1)

where G is the system model, and G1,G2, . . . ,Gn are its components.
In supervisory control, the most common tasks performed on a system model are verifi-

cation and synthesis. The task of verification, or model checking, is to determine whether a
system such as Eq. 2.1 satisfies a property of interest, ϕ. This can be written as

G1‖G2‖ · · · ‖Gn |� ϕ . (2.2)
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The property ϕ can be a universal property such as controllability or being nonblocking
(Ramadge andWonham1989), or an application-specific property in the formof a permissible
language or a temporal logic expression (Pnueli 1977). The result of verification is an answer
of “yes” or “no”, indicating whether or not the system G satisfies the property ϕ.

If verification gives a negative answer, most model checking algorithms also provide a
counterexample that explains why the system fails the property that was checked. The user
then examines the counterexample and adapts the model to remove it, and verifies again.
This cycle is repeated until no more counterexamples are found, at which point the model
is considered correct. Ramadge (1983) proposes synthesis as a way to automate this cycle.
Given a system (2.1) and its desired property ϕ, synthesis computes an additional component,
the so-called supervisor that applies control to the system and restricts it so that the property
is ensured. This can be written as

synth(G1‖G2‖ · · · ‖Gn) = S . (2.3)

Here, S is the computed supervisor, which is an FSM that can be composed with the
system (2.1) to constrain its behaviour so that

G1‖G2‖ · · · ‖Gn‖S |� ϕ . (2.4)

The supervisor may also be represented by several FSMs, the composition of which make
up the global supervisor. Other supervisor representations are also possible, e.g., Ramadge
and Wonham (1989) consider a supervisor as a map that defines control decisions to enable
or disable events after observing traces of the system behaviour.

While the concurrent design approach facilitates the construction of complex systems by
composition of small components, there are algorithmic problems with verification and syn-
thesis as the number of components increases. Although the model may consist of separate
components, both verification and synthesis depend on the composed system. The straight-
forward method to perform these tasks is to first construct G according to Eq. 2.1 and then
check whether G |� ϕ or synthesise synth(G) = S. This approach, referred to as monolithic
verification or synthesis, has been implemented in various forms (Feng and Wonham 2006;
Zhang and Wonham 2002; Åkesson et al. 2006).

The simplest monolithic verification and synthesis algorithms perform an explicit state
enumeration, where every state of the composition G in Eq. 2.1 is constructed and held in
memory individually. Monolithic algorithms have been reported to solve verification prob-
lemswith 100million states on standard PCs (Malik 2016), but industrially interesting system
require much larger models.

The manageable number of states can be increased significantly using a symbolic repre-
sentation of the state space, where smart data structures are used that can store sets of states
without the need to list each element explicitly. The most common data structure for this
purpose is the binary decision diagram (BDD) (Akers 1978; Bryant 1986). Symbolic model
checking with BDDs has been reported to solve verification problems with 1020 states and
beyond (Burch et al. 1992).

Unfortunately, all monolithic algorithms suffer from state-space explosion as composition
can result in the multiplication of the number of states. If two FSMs G1 and G2 have N1

and N2 states, respectively, their composition G1‖G2 can have up to N1 · N2 states. If the
n components in Eq. 2.1 have N states each, then their composition G can have up to Nn
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states. The complexity is exponential in the number of components, and even the seemingly
large number of 1020 states can be reached with only a small number of components.

The compositional algorithms surveyed in this paper mitigate this exponential complexity
by simplifying the FSM model before passing it to monolithic analysis using explicit state
enumeration or BDDs. After simplification, the input to monolithic analysis is smaller and
the effective size of models that can be analysed increases beyond what can be achieved with
BDDs alone (Flordal and Malik 2009; Mohajerani et al. 2014).

2.2 Compositional abstraction process

Instead of constructing and analysing the full composition G of all system components (2.1),
the idea of compositional methods is to construct and analyse a smaller abstraction G̃ instead
(Clarke et al. 1994). This abstraction G̃ is constructed in such a way that it is equivalent to
the system G, which may be written as

G̃ � G . (2.5)

The symbol � denotes an abstract equivalence relation, which can take different forms. One
of the conditions that � needs to satisfy is that the result of verifying or synthesising from
the abstraction G̃ can be used to make conclusions about the original system G. In the case
of verification, this means that the abstraction G̃ satisfies the property ϕ of interest precisely
when the system G does,

G̃ |� ϕ if and only if G |� ϕ . (2.6)

Typically, the abstraction G̃ is simpler than the original system G and can be analysed
more easily by a monolithic verification or synthesis algorithm. For this approach to be
useful in practice, the abstraction needs to be constructed without first constructing the full
composition (2.1) of G.

To this end, Graf and Steffen (1990) propose to construct the abstraction G̃ gradually
by transforming the original system (2.1) in several steps, repeatedly simplifying individual
components and subsystems. This process is visualised in Fig. 1. Starting with the original
system G,

G1‖G2‖G3‖G4‖G5‖ · · · ‖Gn , (2.7)

the first step may be to simplify the first component G1 and replace it by a smaller abstrac-
tion G̃1, which is related to G1 through the equivalence (2.5), i.e., G̃1 � G1. The result of
this replacement is

G̃1‖G2‖G3‖G4‖G5‖ · · · ‖Gn . (2.8)

The remaining components Gi may be simplified likewise and replaced by equivalent com-
ponents G̃i � Gi in n − 1 steps, producing

G̃1‖G̃2‖G̃3‖G̃4‖G̃5‖ · · · ‖G̃n . (2.9)

Once all components have been simplified individually, the next step is to select two or more
components and replace them by their composition. For example, replacing G̃1 and G̃2 by
G12 = G̃1‖G̃2 results in

G12‖G̃3‖G̃4‖G̃5‖ · · · ‖G̃n . (2.10)

Next, G12 may be simplified and replaced by G̃12 � G12, resulting in

G̃12‖G̃3‖G̃4‖G̃5‖ · · · ‖G̃n . (2.11)
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Fig. 1 Compositional abstraction process for G1‖ · · · ‖Gn

The next step may be to compose G̃12 and G̃3 into G123 = G̃12‖G̃3 or to compose G̃4

and G̃5 into G45 = G̃4‖G̃5, for example. The process continues until (2.7) is transformed
into a single component

G̃, (2.12)

called the compositional abstraction of the original system G. The mathematical properties
of the underlying equivalence � ensure that the compositional abstraction G̃ is equivalent to
the original system G, i.e., G̃ � G, so that verification or synthesis produces the same result
that would be obtained from G.

By working with individual components and subsystems, the compositional abstraction
is computed without ever constructing the full composition G of the system. Considering the
way how the numbers of states are multiplied after composition, even a small reduction in
state numbers at early stages may result in a substantial reduction of the number of states of
the final compositional abstraction and the effort to analyse it afterwards.

2.3 Local events and hiding

Discrete event systems are typically synchronisedbasedon shared events. Each componentGi

is an FSMwith its own event set or alphabet Σi . If the alphabets of two or more components
share events, the shared events are executed in lock-step (Hoare 1985)when these components
are synchronised. An event can only be executed by the system if all components that have
the event in their alphabet are in a state where the event is enabled. If an event σ appears in
the alphabet Σi of some component Gi , but Gi is not in a state where it can execute σ , then
the composed system (2.1) cannot execute the event σ .

It is typical for events to be shared, but it is rare for an event to be in the alphabet of all
components. Many modular systems are coupled loosely such that several events appear in
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only a few components, and occasionally an event may appear in only one component. Events
that appear in the alphabet of only one component Gi of a composition (2.1) are called local
to Gi , and local events are of special interest when computing a compositional abstraction.

An event local to one component Gi does not affect any other component of the system
(2.1). An operation of hiding can be used to remove such events from the alphabet ofGi . Hid-
ing is denoted byGi \Υ , whereΥ ⊆ Σi is a set of events to be removed from componentGi ,
the result being a component with alphabet Σi \ Υ .

In process algebra (Bergstra and Klop 1984), hiding is done by replacing all transitions of
a hidden event by silent transitions labelled by the event τ , a special event that never partakes
in the synchronisation with other components. In discrete event systems, it is also common to
use natural projection (Cassandras and Lafortune 2008) where local events are erased from
the language, replacing a component with an FSM that accepts the language of the original
component after removal of local events. Figure 2 shows examples of these operations.

The result of hiding is not necessarily equivalent to the component before hiding, i.e., it
is not guaranteed that G1 � G1 \ Υ even if Υ only contains local events. Nevertheless, it
can often be ensured that hiding an event from a component does not change the result of
checking the property of interest of the composed system, as long as only local events are
hidden. Then hiding becomes another possible way to perform the above transformation of
(2.7) into (2.8).

This is important because local events or silent transitions often enable simplifications
that are not possible otherwise. And even though local events may be rare at the start, it is
possible to choose components for partial composition to expose local events. In the example
of Fig. 1, there may be events that appear only in G̃4 and G̃5 and in no other components.
Then composition of G45 = G̃4‖G̃5 causes the events previously shared between G̃4 and G̃5
to become local to G45, enabling further simplification.

2.4 An abstract framework

Clarke et al. (1989) and Graf and Steffen (1990) propose frameworks for compositional
verification that can be used to explain the methods that appear in this survey. This section
describes such a framework, which will be used as reference throughout.

The starting point is a set P of processes, which may be FSMs (Hopcroft et al. 2001) or
Kripke structures (Baier and Katoen 2008) or other objects. There is also a set Σ̂ of symbols
that may contain events that label FSM transitions or propositions that label states of Kripke
structures. Associated with each process A ∈ P is its alphabet ΣA ⊆ Σ̂ . Further, there are
two process operations:

– If A, B ∈ P are processes, then their composition A‖B ∈ P is a process with alphabet
ΣA‖B = ΣA∪ΣB . In this paper, composition is assumed to be associative and commuta-

Fig. 2 Examples of hiding. The FSM G has two local events Υ = {b, c}. Process-algebraic hiding G \ {b, c}
replaces their transitions with τ -transitions, while natural projection P{a,d,e}(G) produces a deterministic
FSM without these events
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tive. While this is not necessary for compositional abstraction, the assumption simplifies
the exposition and is usually satisfied in supervisory control applications.

– If A ∈ P is a process and Υ ⊆ Σ̂ is a set of symbols, then the result of hiding is a
process A \ Υ ∈ P with alphabet ΣA\Υ = ΣA \ Υ . Assumptions about hiding include
that hiding an empty set of symbols or symbols that do not appear in the alphabet of a
process has no effect, the order in which symbols are hidden does not change the result,
and hiding of local symbols commutes with composition:

A \ ∅ = A for A ∈ P ; (2.13)

A \ Υ = A \ (ΣA ∩ Υ ) for A ∈ P and Υ ⊆ Σ̂ ; (2.14)

(A \ Υ1) \ Υ2 = A \ (Υ1 ∪ Υ2) for A ∈ P and Υ1, Υ2 ⊆ Σ̂ ; (2.15)

(A \ Υ )‖B = (A‖B) \ Υ for A, B ∈ P and Υ ⊆ Σ̂ \ ΣB . (2.16)

Further, there is a notion of equivalence of processes, written A � B for A, B ∈ P .
The relation � is assumed to be an equivalence relation, i.e., it is reflexive, symmetric, and
transitive. There also is a set Φ of relevant properties and a satisfaction relation |�, which
determines for each process A ∈ P and each property ϕ ∈ Φ whether the process satisfies
the property, written A |� ϕ. Properties may also be expressed using symbols from Σ̂ , in
which case Σϕ ⊆ Σ̂ denotes the set of symbols used by property ϕ ∈ Φ.

In summary, seven components characterise the compositional framework:

CF = 〈Σ̂,P, Φ;�, ‖, \, |�〉 , (2.17)

where Σ̂ is a set of symbols, P is a set of processes, Φ is a set of properties, � ⊆ P × P
is an equivalence relation, ‖: P × P → P is the associative and commutative operation of

composition, \: P × 2Σ̂ → P is the operation of hiding that satisfies (2.13)–(2.16), and
|� ⊆ P × Φ is the property satisfaction relation.

In the framework of Graf and Steffen (1990), the goal is to minimise a collection of non-
deterministic FSMs and compute an equivalent FSM that only uses events in some specified
subset. In the above notation, assume processes A1, . . . , An ∈ P , and a target alphabet
Ω̂ ⊆ Σ̂ that contains the symbols that should be retained in the abstraction. Its complement
Υ̂ = Σ̂ \ Ω̂ contains symbols that can be hidden.

Graf and Steffen (1990) show that the compositional abstraction process can be used to
compute an abstraction Ã ∈ P with alphabet ΣÃ = Ω̂ such that

(A1‖ · · · ‖An) \ Υ̂ � Ã . (2.18)

The compositional abstraction Ã is computed by repeatedly applying abstraction based on
the process equivalence � to individual components, hiding local symbols from Υ̂ , and
composition until A1‖ · · · ‖An is transformed into Ã. Graf and Steffen (1990) show that this
works when the process equivalence � is weak bisimulation (Milner 1989). Using weak
bisimulation, they can compute an equivalent process with a minimal number of states, and
therefore the approach is also known as compositional minimisation.

More generally, the method produces a result that satisfies Eq. 2.18 when the process
equivalence � is a congruence with respect to composition and hiding, i.e.,

– For all processes A, B,C ∈ P , if A � B then also A‖C � B‖C .
– For all processes A, B ∈ P and all symbol setsΥ ⊆ Σ̂ , if A � B then also A\Υ � B\Υ .
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To ensure that Eq. 2.18 holds, hiding must be restricted to events that are local and that do
not appear in the target alphabet Ω̂ .

Clarke et al. (1989) describe a more general framework for compositional verification that
considers arbitrary properties. Their goal is to determine, for given processes A1, . . . , An ∈ P
and property ϕ ∈ Φ whether

A1‖ · · · ‖An |� ϕ . (2.19)

The method to solve this problem is to use the compositional abstraction process to compute
an abstraction Ã, and afterwards check using conventional methods whether Ã |� ϕ. For this
to work, the process equivalence and hiding operation must meet additional requirements to
ensure that the results of property verification are preserved, namely

– For all processes A, B ∈ P and all properties ϕ ∈ Φ, if A � B and A |� ϕ, then also
B |� ϕ.

– For all processes A ∈ P , all properties ϕ ∈ Φ, and all symbol sets Υ ⊆ ΣA \ Σϕ , it
holds that A |� ϕ if and only if A \ Υ |� ϕ.

The first condition requires that the process equivalence preserves the class of properties
considered for verification, and this shows how process equivalences are linked to specific
verification tasks. Restricting the set Φ of properties enables the use of more liberal equiva-
lence relations that allow for more abstraction.

The second condition says that hiding preserves properties provided that the hidden sym-
bols do not appear in the property. For properties expressed using symbols from Σ̂ , e.g.,
temporal logic formulas, symbols that appear in the property cannot be hidden. This can be
avoided using a target symbol set Ω̂ as in the approach of Graf and Steffen (1990) described
above.

Combining the above two conditions with the congruence requirements of Graf and Stef-
fen (1990), a framework for compositional verification can be based on the following four
assumptions.

(CV1) Process equivalence is a congruence with respect to composition. For all processes
A, B,C ∈ P , if A � B then also A‖C � B‖C .

(CV2) Process equivalence is a congruencewith respect to hiding.For all processes A, B ∈ P
and all symbol sets Υ ⊆ Σ̂ , if A � B then also A \ Υ � B \ Υ .

(CV3) Process equivalence respects properties. For all processes A, B ∈ P and all properties
ϕ ∈ Φ, if A � B and A |� ϕ, then also B |� ϕ.

(CV4) Hiding preserves properties. If A ∈ P and ϕ ∈ Φ and Υ ⊆ ΣA \ Σϕ , then A |� ϕ if
and only if A \ Υ |� ϕ.

These conditions impose restrictions on the components of a compositional framework (2.17).
If they are all satisfied, then the result of compositional abstraction satisfies any property from
the set Φ that is satisfied by the original system. Using the results of Graf and Steffen (1990)
and the axioms (2.13)–(2.16) about hiding, it can be shown that (CV1)-(CV4) are equivalent
to the conditions given by Clarke et al. (1989).

Figure 3 gives an overview of the transformations used in the compositional abstraction
process in the form of rewrite rules. Each of the three operations of abstraction, hiding, and
composition rewrites a system of n composed processes

A1‖A2‖A3‖ · · · ‖An , (2.20)

where the alphabet of process Ai is Σi , into a new system. (It is enough to consider only the
first component or the first two components as the components can be rearranged arbitrarily
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Fig. 3 Rewrite rules of compositional abstraction

due to the assumption of associativity and commutativity of composition.) The repeated
application of these transformations, in any order, results in an abstraction Ã that is equivalent
to the original system (2.20), provided that the framework satisfies the conditions (CV1)–
(CV4). Then checking whether the original system (2.20) satisfies a property ϕ ∈ Φ is
equivalent to checking whether the abstraction Ã satisfies this property.

The following proposition states these observations formally.

Proposition 2.1 Assume a compositional framework CF = 〈Σ̂,P, Φ;�, ‖, \, |�〉 satisfies
assumptions (CV1)-(CV4). For any processes A1, . . . , An ∈ P and property ϕ ∈ Φ, if the
repeated application of abstraction based on the equivalence �, hiding of local symbols,
and composition transforms A1‖ · · · ‖An into Ã, it holds that A1‖ · · · ‖An |� ϕ if and only if
Ã |� ϕ.

Some compositional synthesis methods allow for a component to be used more than once.
Considering Fig. 1 this means that, after composing G123 = G̃12‖G3, the component G3

is still available for composition with other components such as G45. This reuse may be
beneficial for computational or structural reasons. In the compositional framework, reuse
can be expressed by the replacement of a process A with A‖A. For this replacement to be
sound, it is required that A � A‖A. While this equivalence holds for deterministic FSMs
where A = A‖A, in general it depends on the process equivalence and composition operation
used.

Section 4 below considers specific verification tasks, each of which leads to a different
instance of the compositional framework.

2.5 Computational complexity and practical considerations

The goal of compositional algorithms is to improve on conventional algorithms that produce
the same results, and therefore complexity and performance are important considerations.
This section starts with an analysis of the computational complexity of compositional abstrac-
tion in relation tomonolithic verification or synthesis and concludeswith a discussion of some
practical considerations for the implementation of efficient compositional algorithms.

The worst-case time complexity to verify a property or synthesise a supervisor for a
composed system (2.1) is polynomial in the number of states of the composed system using
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a straightforward monolithic algorithm, for the cases considered in this paper1. However,
the number of states in the composed system is exponential in the number of components.
Gohari and Wonham (2000) show that standard supervisory control problems are NP when
measured by the number of components, so it is unlikely that there exists any algorithm
with better than exponential time complexity to solve these problems. Thus, the only hope
for compositional algorithms—and other methods to improve performance—is to produce
results faster for practically relevant cases.

Assume compositional abstraction is applied to a system (2.1) and produces a result G̃.
In the worst case, the size of G̃ is of the same order of magnitude as the composition of the
original system, and G̃ is subjected to verification or synthesis by a monolithic algorithm.
Thus, the worst-case time complexity of the compositional algorithm cannot be better than
that of amonolithic algorithm. Fortunately, the final abstraction often is exponentially smaller
than the composition of the original system, and this gives hope for substantial performance
improvement.

On the other hand, compositional abstraction requires additional computation steps. Con-
sidering Fig. 1, the compositional abstraction of a system with n components involves up to
2n − 1 hiding and abstraction steps and n − 1 composition steps. The input to each of these
steps is a subsystem of the original systemwhich, assuming that abstraction does not increase
the size of components, has at most the size of the original system. If each abstraction opera-
tion can be performed in the same time complexity as the monolithic verification or synthesis
of the final abstraction G̃, then the overall worst-case time complexity for compositional
analysis is greater than monolithic analysis by a linear factor in the number of components.
If this linear increase is compensated by an exponential reduction in size through abstraction,
the performance improvement can be substantial.

In practice, performance improvements have also been reported (Flordal and Malik 2009;
Mohajerani et al. 2014) when the complexity of abstraction is a polynomial of higher order
than that of monolithic analysis, and even exponential-complexity abstraction methods have
been used successfully in some cases (Roscoe et al. 1995; Ware and Malik 2008).

Another important practical question concerns the order in which the components are
processed during compositional abstraction. Considering Fig. 1, there are many possible
choices as to which components are selected and composed in the next step.While all choices
lead to a correct result, the order of compositionmay have a significant impact on performance
and, in the case of synthesis, on the size and structure of the computed supervisor.

In many cases, the components are grouped logically to reflect the structure of the system
being modelled. Then it makes sense for system designers to determine what components
should be composed in what order, choosing an order that reflects the system structure. In the
case of synthesis, this approach can be used to construct distributed supervisors that match
the physical system layout. An example of this is Hierarchical Interface-Based Supervisory
Control (Leduc et al. 2005), where the system is structured into modules from the start, and
the whole verification or synthesis process is guided by this structure.

In other cases, the logical relation between components may be nonexistent or unknown.
For verification, the primary concern is to determine as quickly as possible whether a property
is satisfied or not, and intermediate results are of little interest. Then it makes sense to
determine the order of composition by an algorithm, so that compositional abstraction can
be performed automatically without user interaction. Unfortunately, it is not straightforward

1 If properties are specified in temporal logic, the time complexity may also be exponential in the size of the
temporal logic formula.
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to find an order that guarantees the best performance. A number of best-guess or heuristic
approaches have been proposed for this purpose.

Su et al. (2010c) describe a sequential abstraction procedure (SAP) where the next com-
ponent is always composed with the result of the previous abstraction step. Flordal andMalik
(2009) propose a more flexible approach to support tree-like composition as suggested by
Fig. 1. They evaluate various candidate sets of components and use heuristics to select a
most promising candidate for the next step, usually by increasing local events or reducing the
number of states in intermediate results. This approach is further developed with additional
heuristics by Pilbrow and Malik (2015). As an alternative, Goorden et al. (2020) propose to
build up a tree structure in advance using a clustering algorithm.

If the order of composition is determined by an algorithm, the time to make the deci-
sions also affects the computational complexity. Most implementations limit the number of
evaluated options to be linear or at most quadratic in the number of components or events,
and use simple criteria such as numbers of states, transitions, or shared events. The exper-
imental results in the above-mentioned papers suggest a negligible impact on computation
time for evaluating heuristics, while different composition orders have a significant impact
on performance.

3 Notation

This section provides notational background for the following sections. The material is com-
piled from a variety of sources. Supervisory control concepts are mainly based on Ramadge
and Wonham (1989) and Cassandras and Lafortune (2008), and model checking concepts
are primarily based on Baier and Katoen (2008).

3.1 Languages and finite-state machines

The behaviour of discrete event systems can be described using events and languages. Events
represent incidents that cause transitions from one state to another and are taken from a global
alphabet Σ̂ . This alphabet is assumed finite and contains two special events, namely the silent
event τ and the termination event ω.

Given a set Σ ⊆ Σ̂ of events, the set of all finite traces over Σ is denoted Σ∗, which
includes the empty trace ε. A subset L ⊆ Σ∗ is called a language overΣ . The concatenation
of two traces s, t ∈ Σ̂∗ is written as st . A trace s ∈ Σ̂∗ is called a prefix of t ∈ Σ̂∗, written
s � t , if t = su for some u ∈ Σ̂∗. The prefix-closure of a language L ⊆ Σ∗ is the set
of all the prefixes of its traces, Pre(L) = { s ∈ Σ∗ | s � t for some t ∈ L }, and L is
prefix-closed if L = Pre(L). For Ω ⊆ Σ̂ , the projection PΩ : Σ̂∗ → Ω∗ is the operation
that removes all events not inΩ from traces s ∈ Σ̂∗. As a special case, the natural projection
P = P

Σ̂\{τ } : Σ̂∗ → (Σ̂ \ {τ })∗ removes all silent (τ ) events from traces.

Definition 3.1 A (nondeterministic) finite-state machine (FSM) is a tuple G=〈Σ, Q,→, Q◦,
Qω〉, where Σ ⊆ Σ̂ \ {τ, ω} is the FSM’s alphabet, Q is a finite set of states, →⊆ Q × (Σ ∪ {τ }) × Q
is the transition relation, Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is the set of marked or
accepting states.

The transition relation is written in infix notation x
σ→ y, and extended to traces in

(Σ ∪{τ })∗ by letting x ε→ x for all x ∈ Q, and x
sσ→ z if x

s→ y and y
σ→ z for some y ∈ Q.

Furthermore, x
s→ means that x

s→ y for some y ∈ Q, and x → y means that x
s→ y for
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some s ∈ (Σ ∪ {τ })∗, and x � s→ means that x
s→ does not hold. These notations also apply

to state sets, X
s→ for X ⊆ Q means that x

s→ for some x ∈ X , and to FSMs, G
s→ means

that Q◦ s→, etc.
An FSMG is deterministic, if it has atmost one initial state, |Q◦| ≤ 1, no silent transitions,

→⊆ Q × Σ × Q, and the transition relation defines at most one successor for any given
source state and event, i.e., x

σ→ y1 and x
σ→ y2 always implies y1 = y2.

While the completion of tasks is commonly expressed by reaching an accepting state, some
abstraction relations can be expressed more conveniently when termination is represented by
an event. Therefore, this paper also uses the following alternative FSM definition based on
the termination event ω instead the set Qω of accepting states.

Definition 3.2 An FSM with ω-transitions is a tuple G = 〈Σ, Q,→, Q◦〉, where Σ ⊆
Σ̂ \ {τ, ω} is an alphabet, Q is a finite set of states, → ⊆ Q × (Σ ∪ {τ, ω}) × Q is the
transition relation, Q◦ ⊆ Q is the set of initial states, and states reached by ω do not have
any outgoing transitions, i.e., if x

ω→ y then there does not exist σ ∈ Σ ∪ {τ, ω} such that
y

σ→.

The termination event ω denotes completion of a task and does not appear anywhere else
but to mark such completions. States reached by ω do not have any outgoing transitions, so
that the termination event, if it occurs, is always the final event of any trace. An FSM with
ω-transitions can be transformed into an equivalent FSM with accepting states by defining
Qω = { x ∈ Q | x ω→ } and deleting all ω-transitions. Conversely, an FSM with accepting
states is transformed into an FSMwith ω-transitions by adding a new state⊥with transitions
x

ω→⊥ for all accepting states x ∈ Qω.

Example 3.1 The diagram to the left in Fig. 4 represents an FSM G = 〈Σ, Q,→, Q◦, Qω〉
with alphabet Σ = {f, r, s} and state set Q = {I,D,W}. State I is initial and accepting,

Q◦ = Qω = {I}. Its transitions are I s→ W,W
f→ I,W

τ→ D, and D
r→ I. The diagram to the

right shows an equivalent FSM with ω-transitions, where state I is designated as accepting
through the transition I

ω→ ⊥.

Some abstraction criteria are based on always enabled events. An event σ ∈ Σ̂ is enabled
at state x of an FSM G if x

σ→ or σ ∈ Σ̂ \ Σ . If σ is enabled at all reachable states, i.e., all
states x where G

s→ x for some s ∈ (Σ ∪ {τ })∗, then σ is said to be always enabled in G.
For FSMs with ω-transitions, the requirement s ∈ (Σ ∪ {τ })∗ means that σ does not need to
be enabled after termination. Otherwise, if σ ∈ Σ and there exists a reachable state x such
that x

σ
�, then G is said to disable σ .

A second transition relation ⇒ is introduced to capture the special meaning of the silent
event τ . For s ∈ (Σ ∪ {ω})∗, the relation x

s⇒ y denotes the existence of a trace t ∈
(Σ ∪ {τ, ω})∗ such that x

t→ y and P(t) = s. That is,
s→ denotes a path with exactly the

events in s, while
s⇒ denotes a path with an arbitrary number of τ events shuffled with the

events in s. The relation ⇒ is applied to state sets and FSMs in the same way as →.

Fig. 4 An FSM G =
〈{f, r, s}, {I,D,W}, →, {I}, {I}〉
and its equivalent representation
with ω-transitions
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In the context of this paper where event sets are frequently changed through hiding, it is
convenient to extend the transition relation to traces over the global alphabet Σ̂ , with the
understanding that events not in the alphabet of an FSM can always be executed without
state change. Therefore, it is defined that x

σ→ x for all states x ∈ Q and all events σ ∈
Σ̂ \ (Σ ∪ {τ, ω}). As a result,

x
s⇒ y if and only if x

PΣ∪{ω}(s)�⇒ y for all s ∈ (Σ̂ \ {τ })∗ . (3.1)

Moreover, G is said to enable a trace s if G
s⇒. The behaviour or language of an FSM

consists of all traces over the global alphabet that it enables. In supervisory control, it is
common to distinguish the prefix-closed language L(G) that contains all enabled traces,
and the marked or accepted language M(G) that contains traces that take the FSM to an
accepting state.

L(G) = { s ∈ (Σ̂ \ {τ, ω})∗ | G s⇒ } ; (3.2)

M(G) = { s ∈ (Σ̂ \ {τ, ω})∗ | G s⇒ Qω } . (3.3)

For FSMs with ω-transitions, the accepted language contains traces that can be continued by
appending the termination event ω, but its traces do not include ω:

M(G) = { s ∈ (Σ̂ \ {τ, ω})∗ | G sω⇒ } . (3.4)

When FSMs are brought together to interact, lock-step synchronisation in the style of
Hoare (1985) is used.

Definition 3.3 Let G1 = 〈Σ1, Q1,→1, Q◦
1, Q

ω
1 〉 and G2 = 〈Σ2, Q2,→2, Q◦

2, Q
ω
2 〉 be

FSMs. The synchronous composition of G1 and G2 is

G1‖G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2, Q
ω
1 × Qω

2 〉 , (3.5)

where

(x1, x2)
σ→ (y1, y2) if σ ∈ (Σ1 ∩ Σ2) ∪ {ω} and x1

σ→1 y1 and x2
σ→2 y2 ; (3.6)

(x1, x2)
σ→ (y1, x2) if σ ∈ (Σ1 \ Σ2) ∪ {τ } and x1

σ→1 y1 ; (3.7)

(x1, x2)
σ→ (x1, y2) if σ ∈ (Σ2 \ Σ1) ∪ {τ } and x2

σ→2 y2 . (3.8)

Synchronous composition imposes synchronisation for transitions with events shared
between two composed FSMs, which are either executed by both components together or not
at all. Transitions with silent τ events or events that appear in only one of the composed FSMs
are only executed by the FSM that contains the transition while leaving the state of the other
unchanged. For the synchronous composition of FSMs with ω-transitions, the termination
event ω is considered as shared and treated according to Eq. 3.6.

Given a finite set or multiset G = {G1, . . . ,Gn} of FSMs, its synchronous composition
is denoted as

‖(G) = G1‖ · · · ‖Gn . (3.9)

The use of multisets is important to preserve multiple copies of the same component when
working with nondeterministic FSMs, because in general G‖G = G only holds for deter-
ministic FSMs.
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3.2 Supervisory control

For the purpose of supervisory control, the global event alphabet Σ̂ is partitioned into two
disjoint subsets, the set Σ̂c of controllable events and the set Σ̂u of uncontrollable events.
A supervisor is a controlling agent that restricts the behaviour of a system represented as
an FSM (called the plant). The supervisor observes the sequence of events occurring in
the plant and then enables or disables certain controllable events, but it cannot disable any
uncontrollable events.

Supervisory control theory (Ramadge andWonham1989;Cassandras andLafortune 2008)
is concerned with questions about what behaviour can be achieved by such supervisors. This
is closely linked to the property of controllability.

Definition 3.4 (Ramadge and Wonham 1989) Let K , L ⊆ Σ̂∗ be prefix-closed2 languages,
and let Σu ⊆ Σ̂ . Then K is said to be Σu-controllable with respect to L if KΣu ∩ L ⊆ K .

In this definition, L represents the possible behaviour of the plant, and K represents a
desired specification behaviour to be achieved by control. Controllability means that every
uncontrollable event that is possible in the plant is also possible in the specification.

Definition 3.4 is parameterised with an uncontrollable event set Σu to allow for changing
alphabets in compositional synthesis. This will often be the set of all uncontrollable events,
Σu = Σ̂u, in which case K is simply called controllable with respect to L .

In addition to controllability, the behaviour of a supervised system is typically also required
to be nonblocking or nonconflicting to avoid livelocks or deadlocks.

Definition 3.5 (Ramadge andWonham 1989) Two languages K , L ⊆ Σ̂∗ are nonconflicting
if Pre(K ) ∩ Pre(L) = Pre(K ∩ L).

As Pre(K ∩ L) ⊆ Pre(K )∩Pre(L) always holds, Definition 3.5 is equivalent to Pre(K )∩
Pre(L) ⊆ Pre(K ∩ L). Thus, the (not necessarily prefix-closed) languages K and L being
nonconflicting means that every prefix of their synchronised behaviour can be extended to a
trace accepted by both K and L . In other words, every incomplete task can be completed by
extending it to an accepted trace. The nonconflicting property is weaker than typical liveness
properties in model checking, as it only requires that it always remains possible to complete
tasks, not that every task is completed eventually.

When using FSMswithω-transitions to define the languages K and L , the interpretation of
a nonconflicting supervisor based onDefinition 3.5 is captured by considering the termination
event ω as controllable. This corresponds to marking supervisory control (Wonham 2013),
where the supervisor decides whether or not the system has completed its tasks and is allowed
to terminate. Alternatively, ω could be considered as uncontrollable for a model where only
the plant decides whether the system terminates.

Ramadge and Wonham (1989) show that the specified behaviour K can be achieved by
a supervisor controlling the plant if and only if K is controllable with respect to L , and K
and L are nonconflicting. If K fails to be controllable or nonconflicting, then this behaviour
cannot be enforced. Either the supervisor would attempt to disable some uncontrollable event
although it is possible in the plant, or it would enter a livelock or deadlock situation where it
is no longer possible to reach a trace accepted by the plant and specification together.

If K fails to be controllable or nonconflicting, the next best solution is to restrict K to
some sublanguage K ′ ⊆ K , removing any behaviour that leads to violation of controllability

2 The original definition of Ramadge and Wonham (1989) is not restricted to prefix-closed languages and
includes aspects of the nonconflicting property described below.
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or to conflict. Ramadge andWonham (1989) show that controllability and the nonconflicting
property with respect to L are closed under union of languages, and therefore a unique largest
such language K ′ exists.

Definition 3.6 (Ramadge and Wonham 1989) Let K , L ⊆ Σ̂∗. The supremal controllable
sublanguage of K with respect to L is

sup C(K , L) =
⋃

{ K ′ ⊆ K | Pre(K ′) is controllable with respect to

Pre(L), and K ′ and L are nonconflicting } . (3.10)

Ramadge and Wonham (1989) show that this supremal controllable sublanguage is again
controllable and nonconflicting. It is the largest possible sub-behaviour of the specification K
that can be achieved by a supervisor controlling the plant L in a nonconflicting way. It may
be the empty language, in which case the supervisory control problem has no solution for
the given plant and specification. Much of supervisory control theory is devoted to proving
the existence of such supremal languages, and finding ways to synthesise or compute them.

The standard synthesis problem in supervisory control theory is to find a maximally
permissive controllable and nonblocking supervisor, which amounts to the computation
of supC(K , L). If the languages K and L are given by two FSMs, this problem is solved by
a monolithic algorithm that explores the synchronous composition of the FSMs. In a com-
positional setting, it is more challenging to synthesise a maximally permissive supervisor.
Maximal permissiveness is not essential for all applications, and it may be worth to forego
it and only synthesise a controllable and nonblocking supervisor, which amounts to finding
an element of the set C(K , L) of controllable and nonconflicting sublanguages of K .

For algorithmic processing, it is more convenient to work with states and transitions of an
FSM instead of languages. To this end, Flordal et al. (2007) use a sub-FSM relationship to
define controllability.

Definition 3.7 Let G1 = 〈Σ1, Q1,→1, Q◦
1, Q

ω
1 〉 and G2 = 〈Σ2, Q2,→2, Q◦

2, Q
ω
2 〉 be

FSMs. G1 is a sub-FSM of G2, written G1 ⊆ G2, if Σ1 = Σ2, Q1 ⊆ Q2,→1⊆ →2, Q◦
1 ⊆ Q◦

2,
and Qω

1 ⊆ Qω
2 .

Definition 3.8 (Flordal et al. 2007) Let G = 〈Σ, Q,→, Q◦, Qω〉 be an FSM, let E ⊆ G
be a sub-FSM of G, and let Σu ⊆ Σ̂ . Then E is Σu-controllable in G if, for every event

μ ∈ Σu ∩ Σ and all states x, y ∈ Q such that E → x and G → x
μ→ y, it holds that

E → x
μ→ y.

A sub-FSM E is controllable in G if every reachable uncontrollable transition of G
also exists in E . Here, G is the plant and E the specification. More generally, if the plant
and specification behaviours are represented using different state spaces, G and E can be
constructed using synchronous composition.

Definitions 3.4 and 3.8 are equivalent for deterministic FSMs: if E is a sub-FSM of a
deterministic FSM G, then E is controllable in G if and only if L(E) is controllable with
respect to L(G). In the nondeterministic case, Definition 3.8 assumes that a supervisor can
disable transitions rather than events. For example, if G contains two transitions x

σ→ y1 and
x

σ→ y2 from state x with controllable event σ , then a supervisor can allow the system to enter
state y1 but not y2. This makes sense under the assumption that the nondeterministic model
is an abstraction of an originally deterministic system, so that the supervisor can distinguish
transitions using knowledge about the global state.
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Definition 3.9 An FSM G = 〈Σ, Q,→, Q◦, Qω〉 is nonblocking if, for every state x such
that G → x it holds that x → Qω. Two FSMs G and H are nonconflicting if G‖H is
nonblocking.

An FSM is nonblocking, if it is possible to reach an accepting state from every reachable

state. For an FSM with ω-transitions to be nonblocking, it is required that G
s→ x with

s ∈ Σ∗ implies that there exists t ∈ Σ∗ such that x tω→, i.e., every trace that does not contain
the termination event can be extended to a trace that ends with termination. Definition 3.9
extends the language-based Definition 3.5 of the nonconflicting property for deterministic
FSMs: two nonblocking deterministic FSMsG and H are nonconflicting if and only ifM(G)

and M(H) are nonconflicting. This does not hold for nondeterministic FSMs. The use of
the transition relation in Definition 3.9 ensures that the nonblocking property is preserved by
hiding.

Definition 3.10 (Flordal et al. 2007) Let G be an FSM, and let E ⊆ G be a sub-FSM. The
supremal controllable and nonblocking sub-FSM of G with respect to E is

supC(E,G) =
⋃

{ E ′ ⊆ E | E ′ is controllable in G and nonblocking } . (3.11)

Definition 3.10 redefines synthesis based on sub-FSMs. The operator ∪ denotes the least
upper bound in the lattice of FSMs with the sub-FSM relation (Definition 3.7). It can be
shown that the least upper bound of controllable and nonblocking FSMs is again controllable
and nonblocking. Therefore supC(E,G) is the supremal controllable and nonblocking sub-
FSM of E . It can be computed by removing transitions until a fixpoint is reached (Flordal
et al. 2007).

3.3 Abstraction by state merging

This subsection describes abstraction by state merging, which is a foundation for several
more specific abstraction procedures that appear later in the paper. The idea of state merging
is to identify certain states of an FSM as equivalent and group equivalent states together to
form a new FSM, called the quotient FSM.

Definition 3.11 Let Z be a set. A relation ∼ ⊆ Z × Z is called an equivalence relation
on Z if it is reflexive, symmetric, and transitive. Given an equivalence relation ∼ on Z , the
equivalence class of z ∈ Z is [z] = { z′ ∈ Z | z ∼ z′ }, and Z/∼ = { [z] | z ∈ Z } is the set
of all equivalence classes modulo ∼.

Definition 3.12 Let G = 〈Σ, Q,→, Q◦〉 be an FSM with ω-transitions3, and let ∼ ⊆
Q × Q be an equivalence relation on its state set. The quotient FSM of G modulo ∼ is
G/∼ = 〈Σ, Q/ ∼,→ / ∼, Q̃◦〉, where →/∼ = { ([x], σ, [y]) | x σ→ y } and Q̃◦ = { [x◦] |
x◦ ∈ Q◦ }.

The state space of the quotient FSM consists of equivalence classes, each representing a
set of equivalent states that have been merged. The quotient FSM G/∼ contains a transition
between two such sets if the original FSM G contains a transition from a state in the source
set to a state in the target set.

3 The definitions in this subsection use ω-transitions for conciseness, as this avoids extra conditions for
accepting states.
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The language of a quotient FSM always includes the language of the original FSM, i.e.,
L(G) ⊆ L(G/∼) and M(G) ⊆ M(G/∼) for every FSM and equivalence relation. This
fact is used in model checking to verify certain properties, for example, if a quotient FSM
satisfies a particular safety property, then the original FSM satisfies the same property. The
converse inclusionL(G/∼) ⊆ L(G) does not hold in general, so statemerging only preserves
verification results in one direction (Bérard et al. 2001).

Several compositional methods use quotient FSMs modulo specific equivalence relations,
to ensure that the abstraction is in some sense equivalent to the original FSM. One such
relation is known as bisimulation.

Definition 3.13 (Milner 1989) Let G1 = 〈Σ, Q1,→1, Q◦
1〉 and G2 = 〈Σ, Q2,→2, Q◦

2〉 be
two FSMs with equal event sets. A relation ≈ ⊆ Q1 × Q2 is a bisimulation between G1

and G2, if for all x1 ∈ Q1 and x2 ∈ Q2 and all σ ∈ Σ ∪ {τ, ω} such that x1 ≈ x2, the
following conditions hold:

– If x1
σ→1 y1 for some y1 ∈ Q1, then there exists y2 ∈ Q2 such that x2

σ→2 y2 and
y1 ≈ y2.

– If x2
σ→2 y2 for some y2 ∈ Q2, then there exists y1 ∈ Q1 such that x1

σ→1 y1 and
y1 ≈ y2.

It is important to note that Definition 3.13 does not directly define a relation ≈, it merely
provides conditions to determine whether a given relation can be called a bisimulation. For a
global relation, two states x1 and x2 are called bisimilar if there exists a bisimulation ≈ such
that x1 ≈ x2. This means that two states are bisimilar if they have exactly the same enabled
events, with transitions leading to states that are again bisimilar, or in other words bisimilar
states have the exact same branching structure of their future transitions. Furthermore, two
FSMs are bisimilar if they have bisimilar initial states.

Definition 3.14 (Milner 1989) TwoFSMsG1=〈Σ1, Q1,→1, Q◦
1〉 andG2=〈Σ2, Q2,→2, Q◦

2〉
with equal event sets are called bisimilar, written G1 ≈ G2, if there exists a bisimulation ≈ between
G1 and G2, such that for every initial state x◦

1 ∈ Q◦
1 there exists x

◦
2 ∈ Q◦

2 such that x◦
1 ≈ x◦

2 , and vice
versa.

Relationships between two FSMs as given here are useful to define process equivalences,
while algorithmic computation typically works with a relation on the state set of a single
FSM. Formally, given an FSM G, a relation is a bisimulation on G if it is a bisimulation
between G and itself. A useful property of bisimulation is that the bisimilarity between an
FSM and its quotient is guaranteed.

Proposition 3.1 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ≈ ⊆ Q × Q be a bisimulation
on G. Then G ≈ (G/≈).

A limitation of bisimulation is that it treats the silent event τ like an ordinary event and fails
to exploit the fact that silent transitions do not engage in synchronous composition with other
components. As an alternative,weak bisimulation or observation equivalence recognises this
special meaning of the silent event. It is defined in a similar way to bisimulation.

Definition 3.15 (Milner 1989) Let G1 = 〈Σ, Q1,→1, Q◦
1〉 and G2 = 〈Σ, Q2,→2, Q◦

2〉 be
two FSMs with equal event sets. A relation ∼ ⊆ Q1 × Q2 is a weak bisimulation between
G1 and G2, if for all x1 ∈ Q1 and x2 ∈ Q2 and all σ ∈ Σ ∪ {τ, ω} such that x1 ∼ x2, the
following conditions hold:
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– If x1
P(σ )⇒ 1 y1 for some y1 ∈ Q1, then there exists y2 ∈ Q2 such that x2

P(σ )⇒ 2 y2 and
y1 ∼ y2.

– If x2
P(σ )⇒ 2 y2 for some y2 ∈ Q2, then there exists y1 ∈ Q1 such that x1

P(σ )⇒ 1 y1 and
y1 ∼ y2.

G1 andG2 are calledweakly bisimilar, writtenG1 ∼ G2, if there exists aweak bisimulation∼
between G1 and G2, such that for every initial state x◦

1 ∈ Q◦
1 there exists x2 ∈ Q2 such that

Q◦
2

ε⇒2 x2 and x◦
1 ∼ x◦

2 , and vice versa.

The main difference between bisimulation and weak bisimulation is that the transition
relation → is replaced by the extended transition relation ⇒. That is, for two states to be
weakly bisimilar, they must be able to execute the same events and reach weakly bisimilar
states afterwards, while possibly executing an arbitrary number of silent transitions before
and/or after the event. Additionally for weak bisimulation, states are considered as initial if
they can be reached by a sequence of silent transitions from an actual initial state.

When simplifying an FSM using a quotient modulo a weak bisimulation on its state set,
it is common to limit the occurrence of τ -transitions. An equivalent result to Proposition 3.1
holds for weak bisimulations on FSMs with accepting states. When using ω-transitions, care
needs to be taken not to merge the state reached after ω with other states. For example, if
x

ω→ y and z
τ→ z with no other transitions from z, then y and z are weakly bisimilar states,

resulting in a τ -selfloop after ω in the quotient and violating the requirement that there can
be no transitions after ω. The following alternative quotient construction avoids the problem
by removing all τ -selfloops, which preserves weak bisimulation.

Definition 3.16 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ∼ ⊆ Q × Q be an equivalence
relation. The τ -loop free quotient is G/◦∼ = 〈Σ, Q/∼,→◦, Q̃◦〉 where [x] σ→◦ [y] for
σ ∈ Σ ∪ {ω} if x σ→ y, and [x] τ→◦ [y] if x τ→ y and [x] �= [y], and Q̃◦ = { [x] ∈ Q/∼ |
x ∈ Q◦ }.
Proposition 3.2 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ∼ ⊆ Q × Q be a weak
bisimulation on G. Then G ∼ (G/◦∼).

FollowingPropositions 3.1 and 3.2, an FSMcan be simplified by computing an appropriate
equivalence relation on its state set, and then forming a quotient. Fernandez (1990) describes
an efficient O(m log n) partition refinement algorithm to compute a coarsest bisimulation
relation on a given FSM, where m is the number of transitions and n is the number of states
of the FSM. This algorithm can also be used for weak bisimulation, except that it must be
based on the extended transition relation ⇒. This poses a computational challenge, because
to determine whether x

σ⇒ y holds, it is necessary to explore all the states reached by zero or
more τ -transitions from x , which usually involves transitive closure computation. The time
complexity to compute the relation ⇒ is O(n3), which also becomes the worst-case time
complexity to compute a coarsest weak bisimulation relation.

3.4 Temporal logic

Temporal logic is commonly used in model checking to express critical properties of systems
(Baier and Katoen 2008). Through the language of formal logic, various aspects of behaviour
can be expressed concisely. Research in model checking has shown how to determine options
for verification of particular properties by analysing the structure of their temporal logic
formulas (Bérard et al. 2001).
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The basic building blocks of temporal logic formulas are atomic propositions, which are
primitive statements known to be true or false in a given state. For example, a propositionmay
express that the door of an elevator is open or that the temperature of a reactor exceeds a certain
threshold. The propositions are combined using logical operators or connectives to build up
more complex formulas. Temporal logic includes well-known propositional connectives such
as ¬ (“not”), ∧ (“and”), ∨ (“or”), and ⇒ (“implies”), the literal true, and a set of temporal
connectives and path quantifiers. The most common temporal connectives are:

Gϕ (“globally ϕ”). For a temporal logic formula ϕ, the expression Gϕ means that ϕ is
true in the current state and in all future states.
Fϕ (“finally ϕ”). The expression Fϕ means that ϕ is true in the current or some future
state.
Xϕ (“next ϕ”). The expression Xϕ means that ϕ will be true in the next state, i.e., after
execution of a single transition.
ϕUψ (“ϕ until ψ”). For temporal logic formulas ϕ and ψ , the expression ϕUψ means
that ψ is true in the current or some future state, and ϕ is true in all states starting from
the current state up to, but not necessarily including, the first state where ψ holds.

The temporal connectives capture the sequencing of actions in time and are best interpreted
over an infinite sequence of states representing a possible execution of a state machine. For
example, if p is an atomic proposition, then an infinite path x0 → x1 → · · · satisfies G p if
p is true in every state xi on the path.

In addition to the temporal connectives, path quantifiers capture the idea that the future
can evolve in different ways:

Aϕ (“all ϕ”). The expression Aϕ means that the temporal logic formula ϕ is true for
every possible future behaviour.
Eϕ (“exists ϕ”). The expression Eϕ means that the temporal logic formula ϕ is true for
some possible future behaviour.

The path quantifiers are best interpreted for a given state of a state machine. For example,
Aϕ is true in a state if every path starting from that state satisfies ϕ.

The Computation Tree Logic CTL∗ (Emerson and Halpern 1986) is built from the above
connectives. Its formulas can take the forms

true | p | ¬ϕ | ϕ ∧ ψ | Xϕ | ϕUψ | Eϕ , (3.12)

where p is an atomic proposition and ϕ and ψ are CTL∗ formulas. Some of the above-
mentioned connectives do not appear in (3.12) because they can be expressed using the
others: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ , Fϕ ≡ trueUϕ, Gϕ ≡ ¬F¬ϕ, and
Aϕ ≡ ¬E¬ϕ.

Example 3.2 Various properties can be expressed in CTL∗ by combining the propositional
and temporal connectives and path quantifiers. For example, if req and grant are atomic
propositions, then AG ¬(req∧ grant) means that all the states on all the paths starting from
the current state satisfy ¬(req∧grant), i.e., req and grantwill never be true simultaneously
in any reachable state. As another example, AG (req ⇒ AF grant) means that all paths
starting from any reachable state where req is true also contain a state where grant holds,
i.e., visiting a req state is guaranteed to be followed by visiting a grant state.

A formal definition of the semantics of CTL∗ is typically based on Kripke structures
(Clarke et al. 1986), which are FSMs whose states are labelled with propositions.
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Definition 3.17 A Kripke structure is a tuple K = 〈Σ,Π, Q,→,Q◦, L〉 where 〈Σ, Q,→,

Q◦〉 is an FSM, Π is a finite set of propositions, and L : Q → 2Π is the state labelling
function.

The state labelling function defines at what states the propositions are true or false: propo-
sition p ∈ Π is true in state x ∈ Q if p ∈ L(x). This can be viewed as a generalisation
of FSMs with several sets of accepting states, one for each proposition. The availability of
propositions makes it possible to express behaviour without reference to events, and indeed
Kripke structures are often defined without an event alphabet Σ . Definition 3.17 retains the
events, which is more convenient for supervisory control applications.

Given a Kripke structure K = 〈Σ,Π, Q,→, Q◦, L〉 and a CTL∗ formula ϕ that uses
propositions from Π , the semantics of CTL∗ defines whether or not the Kripke structure K
satisfies the formula ϕ. A precise definition (Baier and Katoen 2008) distinguishes path
formulas and state formulas and proceeds in several steps. Path formulas such as ϕUψ

are defined to be true or false for a given sequence of states as explained above, and state
formulas are defined to be true or false in a given state. The simplest state formulas are the
atomic propositions, whose truth value is determined by the state labelling function. The path
quantifiers are applied to path formulas to produce state formulas, for example, Aϕ is true in
a state if ϕ is true on every infinite4 path starting from that state. Finally, a Kripke structure K
satisfies a state formula ϕ, written K |� ϕ, if ϕ is true in every initial state of K .

The CTL∗ model checking problem is to determine for a given Kripke structure K and
state formula ϕ whether K |� ϕ holds. For compositional verification, the problem becomes
to determine whether

K1‖ · · · ‖Kn |� ϕ (3.13)

for Kripke structures K1, . . . , Kn , which requires a definition of the composition of Kripke
structures.

Definition 3.18 Let K1 = 〈Σ1,Π1, Q1,→1, Q◦
1, L1〉 and K2 = 〈Σ2,Π2, Q2,→2, Q◦

2, L2〉
be Kripke structures. Their synchronous composition is

K1‖K2 = 〈Σ1 ∪ Σ2,Π1 ∪ Π2, Q1 × Q2,→, Q◦
1 × Q◦

2, L〉 , (3.14)

where → is as defined in Definition 3.3 and the labelling function L is such that p ∈
L((x1, x2)) if and only if one of the following conditions holds:

– p ∈ Π1 ∩ Π2 and p ∈ L1(x1) and p ∈ L2(x2);
– p ∈ Π1 \ Π2 and p ∈ L1(x1);
– p ∈ Π2 \ Π1 and p ∈ L2(x2).

According to this definition, a synchronised state is labelled by a proposition shared
between two composed Kripke structures if both state components are labelled by that
proposition, whereas the labelling of states with propositions that appear in only one of
the composed Kripke structures only depends on the Kripke structure containing it.

For Kripke structures without events, their synchronous composition can be be defined
based on propositions (Clarke et al. 1999). In this case, a transition (x1, x2) → (y1, y2)
exists in a synchronous composition K1‖K2, if x1 →1 y1 and x2 →2 y2 and L1(x1)∩Π2 =
4 The restriction to infinite paths is necessary for path formulas such as Fϕ, but it causes problems for Kripke
structures with deadlock states, i.e., states without outgoing transitions. To allow for deadlocks, it is possible to
considermaximal paths instead, which are either infinite or finite in such a way that the last state is a deadlock
state.
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L2(x2) ∩ Π1 and L1(y1) ∩ Π2 = L2(y2) ∩ Π1, i.e., the source and target states evaluate
shared propositions in the same way. Both the definitions of synchronous composition of
Kripke structures based on events or propositions are associative and commutative, and can
be used in the compositional framework.

CTL∗ model checking is usually based on state labels, but in supervisory control it is more
common to reason about the sequencing of events. Baier and Katoen (2008) propose a way
to transform an FSM with event set Σ into a Kripke structure with proposition set Σ . In this
transformation, a state y is labelled with σ ∈ Σ if and only if it is entered by a transition
x

σ→ y. That is, the proposition σ is true precisely when the event σ has occurred on the
previous transition; initially or after a silent τ transition all propositions are false. At most
one such proposition is true in each state—states entered by transitions with different events
are replicated. This transformation does not commute with synchronous composition and
therefore cannot be used compositionally. It is only applied to the final result of compositional
abstraction. Fortunately, it is rarely needed for supervisory control applications. The following
example shows how controllability (Definition 3.4) can be expressed more directly in CTL∗.

Example 3.3 Consider a system composed of deterministic plant and specification FSMs
G = G1‖ · · · ‖Gn and E = E1‖ · · · ‖Em . To expressΣu-controllability, two propositions gμ

and eμ are defined for each uncontrollable event μ ∈ Σu, where gμ means that μ is enabled
byG and eμ means thatμ is enabled by E . This meaning is achieved by converting each plant
component Gi = 〈Σi , Qi ,→i , Q◦

i 〉 to a Kripke structure G ′
i = 〈Σi ,Πi , Qi ,→i , Q◦

i , Li 〉
with Πi = {gμ | μ ∈ Σi ∩ Σu } and Li (x) = {gμ ∈ Πi | x μ→i }. Similarly, specification
components E j are converted to E ′

j with Π j = { eμ | μ ∈ Σ j ∩ Σu } and L j (x) = { eμ ∈
Π j | x μ→ j }. Then the Σu-controllability of L(E) with respect to L(G) is expressed by the
CTL∗ formula

AG
∧

μ∈Σu

(gμ ⇒ eμ) . (3.15)

This formula states that, in every reachable state of the synchronous composition of G
and E , every uncontrollable event μ enabled by all plant components Gi is also enabled by
all specification components E j .

4 Compositional verification

Compositional verification can be carried out by repeatedly hiding symbols, simplifying
components, and composing subsystems as described by the compositional framework in
Section 2. Depending on the type of property to be verified, simplification is based on a
different process equivalence �. Table 1 gives an overview of the process equivalences and
associated properties, which are explained in the following subsections.

For each of these equivalence relations, there is a normalisation algorithm that transforms
a given FSM into a unique equivalent normal form. This normal form constitutes a possible
abstraction that can replace the original FSM in compositional verification, although it is not
always guaranteed to be smaller. For example, the minimal deterministic FSM that accepts
the same language as a given nondeterministic FSM may have exponentially more states
(Hopcroft et al. 2001). In these cases, there are alternative methods to simplify FSMs while
ensuring a reduction of the number of states, which are also explained in the following
subsections.
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Table 1 Process equivalences used for compositional verification

Process equivalence Preserved Normalisation Guaranteed Explained
Name Symbol properties complexity reduction in

Bisimulation ≈ CTL∗ O(| →| · log |Q|) yes Section 4.1

Language equivalence �L safety O(| →| · 2|Q|) no Section 4.2

Failures equivalence �F absence of deadlock O(| →| · 2|Q|) no Section 4.3

Conflict equivalence �conf nonblocking O(|Σ | · 25|Q|) no Section 4.4

Weak bisimulation ∼ safety, nonblocking O(|Q|3) yes Section 4.4.1

4.1 CTL∗ model checking

The compositional CTL∗ model checking problem is to determine whether a composed
system satisfies a CTL∗ formula,

G1‖ · · · ‖Gn |� ϕ . (4.1)

The components G1, . . . ,Gn may be Kripke structures or FSMs. For Kripke structures, the
property ϕ is expressed using their atomic propositions, and for FSMs, the property uses their
events as atomic propositions.

Baier and Katoen (2008) show that bisimulation (Definition 3.14) is the coarsest equiv-
alence of FSMs that preserves all CTL∗ properties. Therefore, bisimulation can be used as
a process equivalence to define a framework according to Section 2.4 for the compositional
verification of (4.1). The components of this framework are

CF = 〈Σ̂,P, Φ;≈, ‖, \, |�〉 , (4.2)

where:

– The set Σ̂ of symbols is a global event or proposition alphabet.
– The set P of processes is either the set of Kripke structures or the set of nondeterministic
FSMs with any event alphabet Σ ⊆ Σ̂ .

– The set Φ of properties is the set of CTL∗ formulas ϕ expressed either using the atomic
propositions of the Kripke structures or using events in Σ̂ .

– Process equivalence is bisimulation. For FSMs, A ≈ B is defined according to
Definition 3.14. For Kripke structures, the definition is strengthened to ensure that only
states with the same labels are bisimilar. That is, a relation ≈ ⊆ Q1 × Q2 between
the state sets of two Kripke structures is a bisimulation if it satisfies the conditions of
Definition 3.13 and additionally x1 ≈ x2 implies L(x1) = L(x2). This condition can be
limited to propositions used in properties.

– Composition ‖ is either lock-step synchronous composition of nondeterministic FSMs
(Definition 3.3) or its extended version for Kripke structures (Definition 3.18).

– Hiding G \Υ is the standard replacement of events in Υ by the silent event τ . For FSMs,
this is restricted to events not used in properties.

– Property satisfaction G |� ϕ is given by the CTL∗ semantics in Section 3.4.

It can be shown that this choice satisfies conditions (CV1)–(CV4). Bisimulation is known
(Milner 1989) to be a congruence with respect to synchronous composition (CV1) and hid-
ing (CV2). Baier and Katoen (2008) show that bisimulation of FSMs and Kripke structures
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preserves CTL∗ properties (CV3). The preservation of CTL∗ under hiding (CV4) is imme-
diate for Kripke structures as the truth values of CTL∗ formulas only depend on atomic
propositions that are not affected by hiding. For FSMs, where properties use event labels as
atomic propositions, it is important that property events are not hidden so that the relevant
propositions can be added correctly to the final result of compositional abstraction.

Accordingly, compositional reasoning using hiding and bisimulation can be used to ver-
ify arbitrary CTL∗ properties. This is the most general verification method and works for
all properties that can be expressed in CTL∗—a large set that includes all the properties
considered in the remainder of this paper.

On the other hand, bisimulation is a fine equivalence of nondeterministic state machines:
for two states to be bisimilar, they must have identical branching structures including τ

transitions. This fact greatly limits the amount of state space reduction. More simplification
can be achieved by restricting the setΦ of properties that can be checked. One possibility is to
remove the “next” connective X , which is only neededwhen the precise number of transitions
leading from one state to another is relevant. Clarke et al. (1989) and Baier and Katoen
(2008) propose relaxations of bisimulation that preserve CTL∗ without the connective X .
For supervisory control, the classes of properties can be limited further.

4.2 Safety properties

Safety properties are described informally as properties that require a system never to do
anything “bad”, or equivalently that the system must always remain within a “safe” subset of
the state space (Bérard et al. 2001). In temporal logic, this is expressed using the “globally”
connective, for example in CTL∗

AG ϕ (4.3)

means thatϕmust be true at all times.Here,ϕ is a purely propositional formula (i.e.,ϕ contains
no temporal connectives or path quantifiers) that describes the safe states. In supervisory
control, the most common safety property is controllability (Ramadge and Wonham 1989),
which can be expressed in the form (4.3) as shown in Example 3.3.

Safety properties of FSMs can also be characterised as language inclusion. If the system
behaviour is given by an FSM G with language L(G) ⊆ Σ∗, a safety property can be
specified as a prefix-closed language representing the maximally permitted behaviour. This
language can be specified through a property FSM E , in which case the system G is said to
satisfy the property E if

L(G) ⊆ L(E) . (4.4)

As termination is not a concern with safety properties, it is enough to use the prefix-closed
languages L(G) and L(E), i.e., marked states are not relevant here.

Example 4.1 Figure 5 shows an example of a property FSM E . Here, a two-element buffer
is specified, where event put indicates that an item is placed in the buffer and get indicates
that an item is removed. The property E specifies that the buffer should not overflow by
disallowing the event put when there are two items in the buffer. By verifying (4.4), a
language inclusion check determines whether a system G avoids buffer overflow.

For compositional verification of such a property, it is again assumed that the system G
is given as the synchronous composition of n components (2.1) synchronised through events
in the global alphabet Σ̂ . The property FSM E is assumed to be defined over some subset
Ω ⊆ Σ̂ of the global alphabet. Then the goal of safety property verification is to determine
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Fig. 5 Properties for overflow prevention in a two-element buffer. Property E describes that put cannot occur
more than twice without get. Equivalently, G⊥ distinguishes put and put⊥, with property E⊥ specifying that
the overflow case put⊥ should not occur

whether
PΩ(L(G1‖G2‖ · · · ‖Gn)) ⊆ L(E) . (4.5)

These observations suggest to define a framework for the compositional verification of
safety properties according to Section 2.4. Its components are

CF = 〈Σ̂,P, Φ;�, ‖, \, |�〉 ,

where Σ̂ is the global system alphabet, the set P of processes is the set of nondeterministic
FSMs 〈Σ, Q,→, Q◦〉 with Σ ⊆ Σ̂ , and the set Φ of properties is the set of prefix-closed
languages or the set of FSMs over the set Ω of property events. Composition ‖ is standard
lock-step synchronisation (Definition 3.3), and property satisfaction is defined by (4.4), or
more precisely G |� E if and only if PΩ(L(G)) ⊆ L(E).

It remains to determine an appropriate process equivalence and hiding operation. It is clear
from (4.5) that it is sufficient if the language of components is preserved by abstraction. As
the equivalence relation must also be a congruence with respect to synchronous composi-
tion (CV1), the coarsest feasible equivalence for safety properties is language equivalence,

G1 �L G2 if and only if L(G1) = L(G2) . (4.6)

If (CV1) did not need to be satisfied, it would be enough to use PΩ(L(G1)) = PΩ(L(G2))

instead of L(G1) = L(G2) in (4.6).
HidingG \Υ must be restricted to non-property events, i.e.,Υ ∩Ω = ∅, and also needs to

preserve languages. This is ensured by the standard replacement of hidden events in Υ with
the silent event τ , and by natural projection. It is clear that language equivalence, hiding, and
natural projection are congruences with respect to synchronous composition, and conditions
(CV1)–(CV4) are satisfied.

This framework has been implemented in several variations to verify safety properties
compositionally. Aziz et al. (1994) compute abstractions based on bisimulation (Defini-
tion 3.14). As bisimulation implies language equivalence (4.6), this is a valid realisation of
the above framework. While bisimulation allows for efficient computation of abstractions, it
is much stronger than language equivalence and the reduction in state numbers by abstraction
is limited.

Cheung and Kramer (1999) verify safety properties compositionally using weak bisimu-
lation (Definition 3.15) as abstraction. This works because weak bisimulation also implies
language equivalence. While the time complexity to compute abstractions is higher, the
potential for state reduction is greatly increased, particularly for large systems where many
events are hidden.

Yet, weak bisimulation remains a stronger equivalence than needed for safety properties.
Flordal and Malik (2009) transform controllability verification problems into equivalent
nonblocking verification problems, and then perform a compositional nonblocking check
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to verify this safety property. This makes it possible to use conflict-preserving abstraction
rules (described in more detail in Section 4.4 below) to achieve simplification beyond weak
bisimulation.

As yet another approach, Ware and Malik (2008) use language equivalence (4.6) directly
as their abstraction. After hiding local events, they use the subset construction algorithm
(Hopcroft et al. 2001) to compute a language-equivalent deterministic FSM, which is then
minimised to obtain the deterministic FSM with the fewest states possible that accepts the
same language as the FSM before abstraction. This approach uses the most general equiva-
lence possible for safety properties and therefore has the strongest potential for state space
reduction. However, the subset construction algorithm has exponential time complexity,
O(2n). And unlike bisimulation and weak bisimulation, which guarantee that the result of
abstraction is smaller or equal to the FSMbefore abstraction, the smallest language-equivalent
deterministic FSM may be exponentially larger than the original.

To avoid the exponential complexity, Ware and Malik (2008) limit the number of states
that can be constructed during abstraction. If the number of states exceeds a set limit while
computing an abstraction, that computation is aborted, and another set of FSMs is composed
instead. If no more abstractions are feasible, compositional minimisation stops early and
defers to monolithic verification. The experiments of Ware and Malik (2008) suggest that
this pragmatic approach works because the exponential worst-case of subset construction is
rare in practice.

One concern when verifying safety properties with all these methods is the potentially
large number of property events inΩ . Events inΩ cannot be removed andmust be retained in
all abstraction steps, reducing the effectiveness of compositional abstraction. To mitigate the
problem, Cheung and Kramer (1999) express safety properties using a trap or dump state as
shown in Fig. 5. Here, the language inclusion property E is transformed into a componentG⊥,
such that checking whether event put can occur in state 2 becomes equivalent to checking
whether the trap state ⊥ can be reached when the system G is composed with G⊥. This can
be expressed using a property ϕ with only one symbol, such as AG ¬⊥ in CTL∗, allowing
all local events to be hidden within the system G and the transformed property G⊥.

Ware andMalik (2008) extend this approach for language-based specifications. This is also
shown in Fig. 5. The critical transition with event put to the dump state has been relabelled
using a new event put⊥. At the same time, a parallel transition labelled with this event put⊥
is added to all transitions labelled put that appear in the system model G outside of G⊥.
As a result, the combined system G‖G⊥ can execute put⊥ when put is possible in G but
not allowed by the property E . Therefore, the system G satisfies the property E if and only
if put⊥ is never enabled in G‖G⊥. This can be verified with a different language inclusion
check, checking whether

L(G‖G⊥) ⊆ L(E⊥) , (4.7)

where E⊥ = 〈{put⊥}, {0},∅, {0}〉 is a property that always disables put⊥, represented as a
one-state FSM without any transitions and with put⊥ in the alphabet.

The above approach to verify language inclusion can be adapted to verify controllability.
Recall that a specification E is controllable with respect to plantG if all uncontrollable events
enabled in G are also enabled in E . This can be considered as a relaxed language inclusion
check, where only uncontrollable events can cause the property to fail. In practice there often
are several uncontrollable events distributed over a composed specification E = E1‖ · · · ‖Em .
In this case, the controllability check can be done separately for each uncontrollable eventμ,
and each time the above transformation can be used to replace the relevant specification
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components by plants and then check whether an event μ⊥ is enabled (Ware and Malik
2008).

While the compositional approach works for safety properties, it is not the only way to
verify them. Safety properties have amodularity property according towhich a composed sys-
tem G satisfies a safety property if some subsystem of G satisfies the same property (Bérard
et al. 2001). This principle makes it possible to form abstractions by selecting groups of
components, which is often simpler than compositional abstraction. Clever selection strate-
gies based on counterexamples often make it possible to verify controllability and language
inclusion by considering only a small part of the system (Åkesson et al. 2002; Brandin et al.
2004). Yet, there are cases where a property check can only be completed by considering a
large subsystem, and in such cases compositional abstraction can help by simplifying that
subsystem (Ware 2007).

4.3 Absence of deadlock

A deadlock is a situation where two or more processes are stuck in a state waiting for each
other indefinitely (Tanenbaum 1992). Deadlocks have been studied extensively by Hoare
(1985) in the language of Communicating Sequential Processes (CSP), and have been used
as liveness criteria in supervisory control with FSMs and Petri nets (Li 1997; Li et al. 2008). In
an FSM, a deadlock state is a state without any outgoing transition, and an FSM that contains
a reachable deadlock state is said to have a deadlock. Otherwise, if there are no reachable
deadlock states, the FSM is deadlock-free. This absence of deadlocks can be expressed in
CTL∗ as

AG EX true . (4.8)

EX true describes a state with at least one next state, so this formula means that every
reachable state has at least one successor state.

A compositional framework for the absence of deadlocks can be defined with a single
property. The set of properties is simply Φ = {dlf}, where G |� dlf means that an FSM G is
deadlock-free. As this property does not depend on any events, all local events can be hidden
during compositional verification. Thus, there is no target event set Ω as was needed in the
previous sections.

The main question for compositional verification of the absence of deadlock is about the
process equivalence. Unlike safety properties, the language of a nondeterministic FSM is not
enough to capture its potential for deadlock. Instead, the more refined failuresmodel (Hoare
1985) is used.

Definition 4.1 Let G = 〈Σ, Q,→, Q◦〉 be an FSM. The set of stable failures or simply
failures of G is

F(G) = { (s, F) ∈ Σ∗ × 2Σ | there exists x ∈ Q such that G
s⇒ x

τ
�

and there does not exist σ ∈ F such that x
σ→ } . (4.9)

The set of failures contains pairs consisting of a trace s ∈ L(G) and a so-called refusal F .
The trace s takes G to a state x without outgoing τ -transitions, where it will block when
synchronised with another component that can only execute events in F . This implies that
refusals are closed under set inclusion, i.e., if (s, F) ∈ F(G) and F ′ ⊆ F then also (s, F ′) ∈
F(G). Therefore, the failures model can also be defined using maximal refusals.

It is clear that an FSMG with alphabetΣ has a deadlock state if and only if (s,Σ) ∈ F(G)

for some s ∈ Σ∗. It is also known (Hoare 1985) that the failures of a process resulting from
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synchronous composition or hiding can be obtained from the failures of its constituents:

F(G1‖G2) = { (s, F1 ∪ F2) | (s, F1) ∈ F(G1) and (s, F2) ∈ F(G2) } ; (4.10)

F(G \ Υ ) = { (PΣ\Υ (s), F) | (s, F) ∈ F(G) and F ∩ Υ = ∅ } . (4.11)

Definition 4.2 LetG and H be two FSMs.G and H are said to be failures equivalent, written
G �F H , if F(G) = F(H).

It follows from the above observations that failures equivalence is a congruence with
respect to synchronous composition and hiding that preserves the existence or absence of
deadlocks. A compositional framework

CF = 〈Σ̂,P, {dlf};�F , ‖, \, |�〉 (4.12)

satisfies conditions (CV1)–(CV4). Thismeans that the absence of deadlocks in a synchronous
composition of nondeterministic FSMs can be verified compositionally using standard syn-
chronous composition and process-algebraic hiding of local events, and any abstraction that
preserves the failures of an FSM.

For practical implementation of abstractions using the failures model, Roscoe et al. (1995)
use generalised labelled transitions systems instead of FSMs.

Definition 4.3 A generalised labelled transition systems (GLTS) is a structure G =
〈Σ, Q,→, Q◦,minaccs〉 where 〈Σ, Q,→, Q◦〉 is an FSM and minaccs is a map

minaccs : Q → 22
Σ

. (4.13)

The function minaccs assigns to each state a set of minimal acceptances. Given an FSM
G = 〈Σ, Q,→, Q◦〉, a set M ⊆ Σ is an acceptance of state x ∈ Q, written M ∈ accs(x),
if either x

τ
� and M consists of the events enabled at x , i.e., M = { σ ∈ Σ | x

σ→ }, or
there exists a state y ∈ Q \ {x} such that x

ε⇒ y
τ
� and M ∈ accs(y). An acceptance

M ∈ accs(x) is a minimal acceptance of x , written M ∈ minaccs(x), if there is no strict
subset of M that also is an acceptance of x . Acceptance sets of reachable states are the
complements of refusals, i.e., if M ∈ accs(x) then there exists s ∈ L(G) such that G

s⇒ x
and (s,Σ \ M) ∈ F(G). Noting that the subsets of refusals are again refusals, it follows
that the failures F(G) of an FSM can be reconstructed from its language and the minimal
acceptances of its reachable states.

To check whether a composed system (2.1) has a deadlock, Roscoe et al. (1995) first
convert each component FSM to a GLTS, and then perform compositional abstraction with
the GLTS. Composition and hiding are defined for GLTS based on (4.10) and (4.11). Further,
the following GLTS abstractions preserve failures equivalence.

Normalisation. Roscoe (1994) describes an operation of normalisation that transforms
a GLTS into a failures equivalent form by converting the FSM structure of the GLTS
into an equivalent deterministic FSM using the subset construction algorithm (Hopcroft
et al. 2001), and assigning to each subset state the minimal acceptances of its constituent
states. Normalisation removes all τ -transitions and often reduces the number of states,
but the latter cannot be guaranteed. As with subset construction, the worst case for the
number of states in the abstraction is exponential in the number of states in the original
GLTS.
Diamond elimination. Roscoe et al. (1995) describe the abstraction of diamond elim-
ination, which also eliminates τ -transitions but avoids subset construction. States are
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assigned additional outgoing transitions and minimal acceptances from all other states
reachable by sequences of τ -transitions, and afterwards all τ -transitions are removed.
The resultant GLTS may be nondeterministic due to branching non-τ transitions. Dia-
mond elimination is guaranteed to result in at most the same number of states as the
original GLTS.
Bisimulation. As bisimulation (Definition 3.14) preserves all CTL∗ properties, it also
preserves the existence of deadlocks, and it preserves failures equivalence of GLTS
provided that only states with the same minimal acceptances are considered bisimilar.
A minimal bisimilar GLTS can be computed with the same algorithm as for FSMs
(Fernandez 1990).

The FDR model checker (Roscoe et al. 1995) uses these ideas to verify the absence of dead-
locks compositionally. After composition and hiding, the τ -transitions of GLTS components
are removed by normalisation or diamond elimination, and the result is minimised based on
bisimulation. The original system (2.1) is determined to have a deadlock if and only if the
final compositional abstraction has an empty minimal acceptance.

4.4 The nonblocking property

The nonblocking property is commonly used in supervisory control to express liveness. An
FSM is nonblocking if it can always reach some state that belongs to the designated set of
marked or accepting states (Definition 3.9). By requiring the reachability of a marked state,
the nonblocking property does not only rule out most deadlocks but also most livelocks. A
deadlock occurs when a system gets stuck in a state with no transitions enabled, and a livelock
occurs when a system continues to execute without ever completing its task (Tanenbaum
1992).

In CTL∗, the nonblocking property is expressed as

AG EF marked (4.14)

where “marked” is a proposition that is true preciselywhen the system is in an accepting state.
The use of “exists finally” (EF) means that there always exists a path to an accepting state,
but it is not guaranteed that such a path will be taken. Therefore, this property is weaker than
the liveness properties commonly used in computing, where it is required that termination
occurs eventually. While a nonblocking system retains the possibility to achieve termination,
it may also cycle indefinitely without terminating. Also, the nonblocking property allows
termination in an accepting state, thus not completely ruling out deadlock.

The nonblocking property is popular in supervisory control, where a supervisor is a safety
device that prevents the system from entering unsafe states. This includes the prevention of
states from where termination is impossible, but it does not enforce termination. For finite-
state systems, termination is guaranteed under an additional assumption of strong fairness
(Arnold 1994). If it is assumed that every transition that gets enabled indefinitely often will
occur eventually, then a finite-state nonblocking system is guaranteed to reach an accepting
state eventually.

A compositional framework to verify the nonblocking property can be defined in a similar
way as the framework for deadlocks in Section 4.3. There is just one property, Φ = {nbl},
where G |� nbl means that an FSM G is nonblocking. The set of property events is Σnbl =
{ω}, so all local events can be hidden except for the termination event ω.
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Once again, the main question for compositional verification is the search for an appropri-
ate process equivalence. Malik et al. (2006) introduce conflict equivalence, which describes
the required condition in an abstract and general way.

Definition 4.4 (Malik et al. 2006) Let G and H be two FSMs. G and H are said to be conflict
equivalent, written G �conf H , if for every FSM T it holds that G‖T is nonblocking if and
only if H‖T is nonblocking.

The idea of conflict equivalence is derived from process-algebraic testing theory
(De Nicola and Hennessy 1984), which defines equivalences relating processes based on
the results of tests. Two processes are considered as equivalent if the results of all tests are
equal. In Definition 4.4, the FSMsG and H are considered as processes under test, T is a test,
and the test result is the observation whether or not the test is nonblocking in composition
with the process under test. Alternatively, T can be viewed as the unknown remainder of the
system (2.1) or the part not subject to abstraction, T = G2‖ · · · ‖Gn . Then Definition 4.4
ensures that the nonblocking property is preserved in every possible context.

Malik et al. (2006) show that conflict equivalence is a congruence with respect to syn-
chronous composition and hiding while also preserving the nonblocking property, and it is
the coarsest process equivalence with these properties. It is also clear that the nonblocking
property is preserved by process-algebraic hiding. Therefore, a compositional framework

CF = 〈Σ̂,P, {nbl};�conf , ‖, \, |�〉
satisfies conditions (CV1)–(CV4).

While conflict equivalence is the coarsest possible equivalence for use in composi-
tional verification of the nonblocking property, it is not immediately clear how to compute
abstractions that preserve this relation. Unlike bisimulation or language equivalence, con-
flict equivalence does not come with readily accessible minimisation algorithms. Because of
the popularity of the nonblocking property in supervisory control, much research has been
devoted to finding means to simplify FSMs while preserving the nonblocking property of the
global system. The following subsections describe some of these methods.

4.4.1 Weak bisimulation and variants

As the nonblocking property can be expressed in temporal logic, it is clear from results
about model checking (Baier and Katoen 2008) that bisimulation (Definition 3.14) preserves
the nonblocking property and also conflict equivalence. Moreover, since the nonblock-
ing property does not imply strong liveness—its CTL∗ formula (4.14) only uses the EF
connective—the property is insensitive to the presence of cycles of τ -transitions. Therefore,
weak bisimulation (Definition 3.15) also preserves conflict equivalence. Weak bisimulation
has been used frequently in compositional nonblocking verification, and accounts for a large
part of state space reduction (Flordal and Malik 2009).

As explained in Section 3.3, the bisimulation algorithm (Fernandez 1990) can be used
to compute a weak bisimulation ∼ on an FSM G, and then an abstracted FSM is obtained
as an FSM quotient. However, the computation depends on the extended transition rela-
tion ⇒, which can be much larger than the explicit transition relation →, increasing the time
complexity to O(n3).

If the extended transition relation ⇒ is computed, it can replace the original transition
relation →. Unfortunately this approach, also known as saturation, can cause a substantial
increase in the number of transitions. Eloranta (1991) proposes to minimise the number of
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transitions while preserving weak bisimulation instead, removing explicit transitions that are
implied by the relation ⇒.

Example 4.2 FSMs G and H in Fig. 6 are weakly bisimilar. For every two states x and y,
the relations x

ε⇒ y and x
a⇒ y and x

ω⇒ y are equivalent between G and H . The FSM G

is saturated in the sense that it contains an explicit transition x
a→ y whenever x

a⇒ y holds,
and all states with x

ω⇒ are accepting states. The FSM H has minimal sets of transitions and
accepting states while achieving the same relation ⇒.

Both saturation andminimisation of the transition relation are useful during compositional
minimisation. Saturation makes it easier to explore transitions and determine whether x

σ⇒ y
holds for given states, but increases the memory needed to store transitions. Minimisation
reduces the memory requirements and facilitates transition-based abstractions such as those
considered in Section 4.4.2 below, but makes it more difficult to compute a weak bisimulation
relation or other abstractions that depend on the extended transition relation ⇒.

Su et al. (2010c) propose a modification to weak bisimulation that makes it possible to
removemore states. Their abstraction, calledweak observation equivalence, can be described
as a relation similar to weak bisimulation.

Definition 4.5 Let G1 = 〈Σ1, Q1,→1, Q◦
1〉 and G2 = 〈Σ2, Q2,→2, Q◦

2〉 be two FSMs
with equal event setsΣ1 = Σ2. A relation∼w ⊆ Q1×Q2 is aweak observation equivalence
betweenG1 andG2, if for all x1 ∈ Q1 and x2 ∈ Q2 and all σ ∈ Σ1∪{ω} such that x1 ∼w x2,
the following conditions hold:

– If x1
σ⇒1 y1 for some y1 ∈ Q1, then there exists y2 ∈ Q2 such that x2

σ⇒2 y2 and
y1 ∼w y2.

– If x2
σ⇒2 y2 for some y2 ∈ Q2, then there exists y1 ∈ Q1 such that x1

σ⇒1 y1 and
y1 ∼w y2.

G1 and G2 are weakly observation equivalent, written G1 ∼w G2, if there exists a weak
observation equivalence ∼w between G1 and G2, such that for every initial state x◦

1 ∈ Q◦
1

there exists x2 ∈ Q2 such that Q◦
2

ε⇒2 x2 and x◦
1 ∼w x2, and vice versa.

The difference between this definition and weak bisimulation (Definition 3.15) is the
restriction to σ ∈ Σ ∪ {ω}, i.e., not including τ . While two weakly bisimilar states with
outgoing τ -transitions must be able to reach equivalent states via sequences of τ -transitions,
weak observation equivalence only considers transition sequences that include a non-τ event.
A coarsest weak observation equivalence relation can be computed using the bisimulation
algorithm, but due to the exclusion of τ -transitions, a different quotient is needed to construct
a reduced FSM.

Fig. 6 Saturation and
minimisation of transitions while
preserving weak bisimulation
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Definition 4.6 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ∼ ⊆ Q × Q be an equivalence
relation. Theweak observation equivalence quotient isG/w∼ = 〈Σ, Q/∼,→w, Q◦

w〉where
[x] σ→w [y] if σ ∈ Σ ∪ {ω} and x

σ⇒ y, and Q◦
w = { [x] ∈ Q/∼ | Q◦ ε⇒ x }.

Proposition 4.1 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ∼w ⊆ Q × Q be a weak
observation equivalence on G. Then G ∼w (G/w∼w).

Example 4.3 FSMs G and H in Fig. 7 are weakly observation equivalent. For example,

considering states 1, it holds that 1
a⇒ 3 and 1

b⇒ 3 in both G and H . A relation ∼w

with x ∼w x for x ∈ {0, 1, 2, 3} is a weak observation equivalence between G and H , and
(G/w∼w) = H .While the number of states or transitions does not change in this case, an FSM
that contains G and H as substructures can be reduced effectively using weak observation
equivalence. It is worth noting that G and H are not weakly bisimilar because 1

ε⇒ 2 in G,
and no state equivalent to 2 can be reached by τ -transitions from state 1 in H .

Two weakly observation equivalent FSMs are also conflict equivalent (Malik and Leduc
2013), so weak observation equivalence can be used as abstraction in compositional non-
blocking verification. While a weak observation equivalence relation is easier to compute
than a weak bisimulation, the elimination of τ -transitions by the weak observation equiv-
alence quotient can increase the number of transitions with other events substantially. A
more careful quotient construction can limit the increase, as elimination of τ -transitions is
only needed for states where weak bisimulation and weak observation equivalence differ.
Su et al. (2010c) implement compositional nonblocking verification with weak observation
equivalence as the only abstraction and use it to verify large discrete event systems.

Considering another variant of weak bisimulation, Pena et al. (2009) perform compo-
sitional nonblocking verification using deterministic FSMs and natural projection. Unlike
hiding, natural projection does not preserve the nonblocking property, so that not all local
events can be projected out in compositional nonblocking verification. The search for a pro-
jection that preserves conflict equivalence leads to the observer property (Wong andWonham
1996).

Definition 4.7 Let G = 〈Σ, Q,→, Q◦〉 be a deterministic FSM, and let Ω ⊆ Σ . The
natural projection PΩ : Σ∗ → Ω∗ is said to have the observer property (OP) for G, if for
all s ∈ L(G) and all t ∈ Ω∗ such that PΩ(s)t ∈ PΩ(L(G)), there exists u ∈ Σ∗ such that
PΩ(su) = PΩ(s)t and su ∈ L(G).

That is, if after some trace s the behaviour of G can be continued with a trace whose
projection is t , then after every trace with equal projection as s the behaviour of G can be
continued with some trace whose projection also is t . The observer property appears in a
few variations in the literature. Definition 4.7 uses the prefix-closed language L(G) instead

Fig. 7 Two weakly observation equivalent FSMs (Malik and Leduc 2013)
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of the accepting language, ensuring that conflict equivalence is also preserved for a blocking
FSM G.

Wong and Wonham (1996) show that, if a projection has the observer property, then the
deterministic FSM resulting from the projection is weakly bisimilar to the original FSM.
This ensures that the number of states cannot be increased, ruling out the exponential worst
case of subset construction, and it also implies that conflict equivalence is preserved. Malik
et al. (2007) show that the observer property is the weakest condition that can be imposed on
natural projection if conflict equivalence is to be preserved.

It is easy to determine whether a given projection has the observer property (Wong and
Wonham 1996; Pena et al. 2014). But sometimes hiding all local events does not ensure the
observer property, in which case more complicated search algorithms (Schmidt and Moor
2006; Feng andWonham2010; Pena et al. 2010) are needed to determine an appropriate target
event set Ω . The observer property is important when working with deterministic FSMs, but
the use of nondeterministic FSMs allows for better abstraction at lower computational cost
(Malik et al. 2007).

4.4.2 Transition-based abstraction rules

Conflict equivalence is a weaker relation than weak bisimulation or weak observation equiv-
alence, and this implies the possibility to perform simplification beyond what has been
described in the previous section. In the absence of general minimisation algorithms, Flordal
and Malik (2009) propose a collection of abstraction rules that identify and simplify spe-
cific configurations of transitions. Most of these rules are concerned with τ -transitions, and
another recurring concept is that of incoming equivalent states.

Definition 4.8 (Flordal and Malik 2009) Let G = 〈Σ, Q,→, Q◦〉 be an FSM. Two states
y1, y2 ∈ Q are incoming equivalent, written y1 ∼inc y2, if

– Q◦ ε⇒ y1 if and only if Q◦ ε⇒ y2.
– For all σ ∈ Σ and all x ∈ Q, it holds that x

σ⇒ y1 if and only if x
σ⇒ y2.

Two states are incoming equivalent if they both can be reached from the same states with
the same non-τ events. This is a stronger requirement than weak observation equivalence
which would imply reachability from equivalent rather than the same states. One way how
incoming equivalent states arise is through nondeterministic branching: if some state has
multiple successors reached by the same event, which are not also reached from other states,
then these successors are incoming equivalent.

This idea is used by the Active Events Rule, which merges incoming equivalent states that
also have the same active, or enabled, events. The idea is that, in order to preserve blocking,
only the strings leading to accepting states are important. Therefore, if a nondeterministic
choice leads to states with the same enabled events, the nondeterministic choice can be
postponed by one step.

Active Events Rule (Flordal and Malik 2009) If two states are incoming equivalent and have
the same non-τ events enabled, then they are conflict equivalent and can be merged. More
precisely, if x ∼inc y and for all σ ∈ Σ ∪ {ω} it holds that x σ⇒ if and only if y

σ⇒, then x
and y can be merged into a single state.

That is, two incoming equivalent states can be merged if they both allow continuations
via the same events, possibly preceded with τ -transitions. As the termination event ω is
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included, the two states must also have the same accepting state status—or more precisely
either both or none must be able to reach an accepting state via a possibly empty sequence
of τ -transitions.

Example 4.4 In Fig. 8, states 1 and 2 in G have incoming transitions from state 0 associated
with event a and from state 1 associated with b, which establishes incoming equivalence.
Furthermore, they both have the same active event b. Therefore, the Active Events Rule can
be applied, states 1 and 2 are conflict equivalent and can be collapsed into a single state 12
as shown in H .

Another way how incoming equivalent states arise is through τ -transitions. The source
and target states of a τ -transition are incoming equivalent provided that there are no other
transitions to the target state. This is used by the next rule, the Silent Continuation Rule,
which is the first of several abstraction rules that seek to collapse sequences of τ -transitions.

Silent Continuation Rule (Flordal and Malik 2009) Two states that are incoming equivalent
and from which stable states, i.e., states without outgoing τ -transitions, can be reached via a
nonempty sequence of τ -transitions, are conflict equivalent and can be merged into a single
state.

Example 4.5 In Fig. 9, states 0 and 1 inG are both considered initial since they can be reached
silently from the initial state 0. Thismakes them incoming equivalent in this case, since neither
state is reachable by any event other than τ . Moreover, both states can, by executing at least
one silent transition, reach the stable state 3, which has no outgoing τ transitions. Thus, by
the Silent Continuation Rule, states 0 and 1 in G are conflict equivalent and can be collapsed
into state 01 as shown in H .

There are two further abstraction rules to reduce states with τ -transitions. TheOnly Silent
IncomingRule andOnly SilentOutgoingRule both apply to stateswith outgoing τ -transitions,
in the first case seeking to merge them into predecessor states and in the second case into
successor states. Both rules assume a τ -loop free FSM, i.e., an FSM without any cycles of
τ -transitions. As all states on a cycle of τ -transitions are weakly bisimilar, such cycles can
first be collapsed into a single state while preserving weak bisimulation and thus conflict
equivalence.

Only Silent Incoming Rule (Flordal and Malik 2009) In a τ -loop free FSM, let x be a state
with an outgoing τ -transition, forwhich all incoming transitions are τ -transitions. This state x
can be removed if its outgoing transitions are copied to all its predecessor states.

Example 4.6 State 3 in G in Fig. 10 has only τ -transitions incoming and an outgoing τ -
transition to state 0. This state can be removed while adding both its outgoing transitions
with a and τ to its predecessor states 1 and 2, resulting in H .

Fig. 8 Example application of the
Active Events Rule (Flordal and
Malik 2009)
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Fig. 9 Example application of the Silent Continuation Rule (Flordal and Malik 2009)

Only Silent Outgoing Rule (Flordal and Malik 2009) In a τ -loop free FSM, let x be a state
whose outgoing transitions are all τ -transitions. This state x can be removed if its incoming
transitions are redirected to all its successor states.

Example 4.7 State 1 inG in Fig. 11 has only τ -transitions outgoing. This state can be removed
after redirecting its two incoming transitions to both the successor states 2 and 3, resulting
in H .

By combining the four abstraction rules in this section, Flordal and Malik (2009) can
collapse many sequences of τ -transitions into a single transition. This often reduces the
number of states, while limiting the increase in the number of transitions that would result
from saturation. The effect is similar to diamond elimination (see Section 4.3), but with
conflict equivalence being more complicated, the abstractions are less systematic and only
work under specific conditions.

Malik and Leduc (2013) propose a similar set of abstraction rules, which is derived dif-
ferently based on the generalised nonblocking property. Malik (2015) relaxes some of the
conditions for the above abstraction rules tomake them applicable undermore circumstances,
particularly in FSMs that have selfloop transitionswith events other than τ . Pilbrow andMalik
(2015) propose yet another way to relax the conditions by not only considering local events
but also taking into account special events that are always enabled or selfloop-only in the
FSMs not currently being simplified.

4.4.3 Certain conflicts

The possibility for an FSM to include blocking states, i.e., states from where it is impossible
to reach an accepting state, gives rise to a different kind of abstraction rules specifically for
compositional nonblocking verification. Every FSM can be associated with a language of
certain conflicts (Malik 2004), which contains all traces that, when executed by the FSM in
any context, necessarily lead to a blocking situation. Traces that lead to blocking states are

Fig. 10 Example application of the Only Silent Incoming Rule (Flordal and Malik 2009).
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Fig. 11 Example application of
the Only Silent Outgoing Rule
(Flordal and Malik 2009).

traces of certain conflicts, and the following example shows that other traces can have this
property as well.

Example 4.8 Consider the FSM G in Fig. 12. Trace ab is a trace of certain conflicts because
it leads to the blocking state 2. Then a also is a trace of certain conflicts: after execution
of a, the FSM can enter state 1, from where the only way to reach an accepting state is to
execute b, and enablement of ab entails the potential to block by entering state 2. Therefore,
G is blocking in composition with any FSM that enables ab or a, i.e., these are traces of
certain conflicts of G.

For nonblocking verification, it is enough to determine that a blocking state can be reached,
and there is no need to differentiate details of the blocking behaviour. Therefore, it is enough
to identify shortest traces of certain conflicts, and represent all certain conflicts behaviour
with a blocking state.

Malik (2010) describes an algorithm that effectively computes the language of certain
conflicts of a given FSM and modifies the FSM in such a way that all traces of certain
conflicts lead to a single blocking state. Unfortunately, the number of states of the FSM
representation of the language of certain conflicts is in the worst case exponential in the
number of states of the original FSM, possibly resulting in a much bigger abstracted FSM.
An implementation of this abstraction by Lindsey (2012) fails to achieve faster compositional
nonblocking verification.

Certain conflicts can improve compositional nonblocking verification if used in a more
pragmatic way. Flordal and Malik (2006) introduce a couple of simple rules that identify and
merge states of certain conflicts without computing the full language of certain conflicts. It
is clear that blocking states are certainly conflicting. In addition to that, states with outgoing
τ -transitions to a certainly conflicting state, and transitions with nondeterministic branches
to a certainly conflicting state as in Example 4.8 are certainly conflicting. Malik and Ware
(2020) combine these conditions in the Limited Certain Conflicts Rule.

Limited Certain Conflicts Rule An FSM G can be replaced by the limited certain conflicts
abstraction Lcc(G) in Definition 4.9, which is conflict equivalent to G.

Fig. 12 Example application of
the Limited Certain Conflicts
Rule (Malik and Ware 2020).
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Definition 4.9 (Malik and Ware 2020) Let G = 〈Σ, Q,→, Q◦〉 be an FSM. Define sets of
limited certain conflict states inductively:

lcc0G = { x ∈ Q | there does not exist t ∈ (Σ ∪ {τ })∗ such that x
tω→ } ; (4.15)

lcci+1
G = { x ∈ Q | for every path x = x0

σ1→ · · · σk→ xk
ω→ there exists j ≥ 0

such that j ≤ k and x j
ε⇒ lcciG , or j < k and x j

σ j+1⇒ lcciG } ; (4.16)

lccG =
⋃

i≥0

lcciG . (4.17)

The limited certain conflicts abstraction of G is Lcc(G) = 〈Σ, Qlcc,→lcc, Q◦
lcc〉 where

Qlcc = (Q \ lccG) ∪ {⊥} (with ⊥ /∈ Q); x
σ→lcc y if x, y �= ⊥ and x

σ→ y and x
P(σ )�⇒ lccG

does not hold, or x �= ⊥ = y and x
σ→ lccG ; and Q◦

lcc = Q◦ if Q◦ ∩ lccG = ∅ and
Q◦

lcc = {⊥} otherwise.
The set lcc0G of level-0 limited certain conflict states is the set of blocking states (4.15).

Level i + 1 adds to this states that can only reach accepting states by passing through a
state that can reach a level-i limited certain conflict state using τ -transitions, or using a
transition that may lead to a level-i state (4.16). These sets form an increasing sequence,
lcc0G ⊆ lcc1G ⊆ · · · , which in the finite-state case converges against the set lccG . The
abstraction Lcc(G) is constructed by merging these states into a new state ⊥, and deleting
some transitions.

Example 4.9 Consider again the FSM G in Fig. 12. It holds that lcc0G = {2} and lccG =
lcciG = {1, 2} for i ≥ 1. This results in the limited certain conflicts abstraction Lcc(G) = H
(the unreachable state 3 is not shown in the figure).

The Limited Certain Conflicts Rule has been implemented in a few variations for com-
positional nonblocking verification. Flordal and Malik (2009) use it together with weak
bisimulation and the transition-based abstractions in Section 4.4.2, and Pilbrow and Malik
(2015) combine it with weak observation equivalence and a different set of transition-based
abstractions. Experiments suggest that the amount of state space reduction from certain
conflicts is significant, slightly less than what is achieved by weak bisimulation or weak
observation equivalence, but often more than by transition-based abstractions.

4.4.4 Normal forms

A normal form is a unique form equivalent to the original FSM, which can be computed
by a well-defined algorithm. For the previously discussed cases of safety properties and
deadlocks, it is relatively easy to identify such normal forms and use them as abstractions.
Normal forms are more difficult to establish for conflict equivalence, and this has resulted in
the large proliferation of abstraction rules for compositional nonblocking verification shown
in the previous sections.

In search for amore uniformapproach,Ware andMalik (2012) performcompositional non-
blocking verification using generalised labelled transition systems (GLTS,Definition 4.3). By
eliminating τ -transitions and recording minimal acceptance sets instead, several abstraction
rules can be formulated more concisely and more generally for GLTS. The resulting conflict-
preserving abstraction rules are more comprehensive and more general, without achieving a
normal form.
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Ware and Malik (2013) describe a normal form for the generalised nonblocking property
and use it for compositional verification. The generalised nonblocking property introduces
a set of precondition states and requires that an accepting state be reachable from every
reachable precondition state (Malik and Leduc 2008). This is weaker than the standard non-
blocking property considered here, which requires that an accepting state be reachable from
every reachable state. The size of the generalised nonblocking normal form is in the worst
case exponential in that of the original FSM, but this worst case seems rare in practice.
Ware and Malik (2013) use this normal form to verify the generalised nonblocking property
compositionally, and as the generalised nonblocking property includes the standard non-
blocking property as a special case, the method can also be used for the standard nonblocking
property.

The normal form of Ware and Malik (2013) is a unique equivalent FSM with respect to
generalised nonblocking equivalence but notwith respect to conflict equivalence.Ware (2014)
describes a more complicated normal form that defines a unique conflict equivalent FSM.
This normal form is more difficult to compute and has not yet been used for compositional
verification.

4.5 Counterexamples

The verification approach based on compositional abstraction is effective at determining
whether or not a property is satisfied. If the property is not satisfied, it is also common for
model checkers to produce a counterexample to explain the cause of the detected problem.
Counterexamples are a crucial feature ofmodel checking that greatly helps users to understand
and fix faults. While counterexamples are routinely computed by standard model checking
algorithms, the loss of information after abstraction makes this difficult for compositional
methods.

For the case of FSM models, a counterexample is a trace that takes the system to bad
state, i.e., an unsafe, deadlock, or blocking state depending on the property being checked. If
the final result of compositional abstraction is analysed and found not to satisfy the property,
then most model checking algorithm also produce a counterexample trace in addition to the
answer that the property is not satisfied. But this trace only applies to the final compositional
abstraction, and after several steps of hiding and abstraction, it is unlikely to provide a helpful
explanation for the designer of the original system. To be helpful, the trace needs to expanded
to produce a trace with events and transitions the designer is familiar with.

The process of counterexample expansion involves going back through all the abstraction
steps and bringing back the information that was abstracted away. Starting with the last
abstraction step, the counterexample for the result of compositional abstraction is modified
so that it applies to the system before the last step, and this is repeated for each abstraction
step until the original system is reached. Precisely how the counterexample is expanded at
each step depends on the particular kind of abstraction performed.

For the language-preserving abstractions used when verifying safety properties, it is
enough to find a trace that uses the same sequence of events as the counterexample for the
abstract system, possibly with inserted τ -transitions. Such a trace can be found by searching
through the FSM before abstraction while using the trace accepted by the abstracted system
as guidance (Yeh and Young 1993; Ware and Malik 2008). As each of these expansion steps
involves only a single component, the process is fairly efficient.

In general, every abstraction method needs to be analysed individually to determine how
it affects counterexamples. Malik and Ware (2020) investigate counterexamples in compo-
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sitional nonblocking verification and devise a criterion that covers abstractions based on
weak bisimulation and most transition-based abstraction rules. For these rules, the coun-
terexample can be expanded using an algorithm similar to the above for language-preserving
abstraction, which only considers the component that has been abstracted. Yet there are also
abstraction rules—most importantly those based on certain conflicts—where it is necessary
to also consider the unchanged remainder of the system to decide how a counterexample is
to be expanded, and this may result in substantial computational overhead.

5 Compositional synthesis

5.1 Plants and specifications

As described in Section 3.2, the standard synthesis problem in supervisory control theory is
defined by a plant language L and specification language K . The goal is to find the supremal
controllable sublanguage supC(K , L). In a compositional setting, these languages are given
through FSMs, e.g., L = M(H) and K = M(E), which in turn are represented as the
synchronous composition of several FSMs,

Plant: H = H1‖ · · · ‖Hk ; (5.1)

Specification: E = E1‖ · · · ‖Em . (5.2)

In the following, it is assumed that these plant and specification components are deterministic
FSMs. They may then be transformed into nondeterministic abstractions during composi-
tional synthesis.

The assumption of an initially deterministic model corresponds to total observations, i.e.,
the supervisor to be synthesised is always aware of the exact system state. Synthesis with
nondeterministic plants and specifications has also been considered, e.g., by Heymann and
Lin (1998) and Takai (2019). This leads to partial observations (Cieslak et al. 1988), where
the supervisor is not fully aware of the plant’s state. While Komenda and Masopust (2020)
have recently reported results about projection-based abstraction for hierarchical control
under partial observations, algorithms for compositional synthesis under partial observations
are yet to be developed. This survey only considers total observations.

It is difficult to use compositional abstraction to simplify the plant (5.1) and specifica-
tion (5.2) separately as interactions between specification and plant components are common.
Instead, most methods compose a specification component Ei with some of the plant compo-
nents Hj , then compute an abstraction and compose the result withmore plant or specification
components. This means that compositional synthesis algorithmsmust distinguish plants and
specifications in some way.

On the other hand, a synthesis problem with plants and specifications can be trans-
formed automatically into an equivalent problem to synthesise a nonblocking supervisor
for a composition of plants only (Cassandras and Lafortune 2008). This transformation,
called plantification by Flordal et al. (2007), can be used as a pre-processing step to replace
specifications by plants and then use algorithms that do not have to distinguish plants and
specifications.

Definition 5.1 (Flordal et al. 2007) Let E = 〈Σ, Q,→, Q◦〉 be an FSM. The complete plant
FSM for E is E⊥ = 〈Σ, Q ∪ {⊥},→⊥, Q◦〉 where ⊥ /∈ Q is a new state and

→⊥ = → ∪{ 〈x, μ,⊥〉 | x ∈ Q and μ ∈ Σ ∩ Σ̂u and x � μ→ } . (5.3)
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Plantification transforms a specification component E into a plant component E⊥ by
adding, for every uncontrollable event that is not enabled in a state, a transition to the new
trap state ⊥. This means that an uncontrollable system, i.e., one where the plant allows
an uncontrollable event to occur while some specification component disables it, becomes
blocking after the transformation. In this way, initial controllability problems are transformed
into blocking problems. Still, the controllability of events remains important during synthesis
as the supervisor cannot disable uncontrollable events.

Example 5.1 Figure 13 shows an example of plantification. The uncontrollable event !put is

disabled in state 2 of specification E . Accordingly, plantification adds a transition 2
!put−−→ ⊥,

resulting in the complete plant FSM E⊥.
FollowingDefinition 5.1, the added trap state⊥ in E⊥ is not accepting and has no outgoing

transitions. Figure 13 also shows an equivalent form E ′⊥ where all events are enabled at the
trap state ⊥. This is equivalent in compositional synthesis as the blocking state ⊥ cannot be
reached under any form of nonblocking control. The standard form E⊥ has fewer transitions,
while the alternative E ′⊥ has the benefit of all uncontrollable events being enabled in all
states.

Plantification can be realised as a fully automatic process. Thus, designers can model a
system in terms of plants and specifications, while algorithms benefit from the uniform struc-
ture of a model consisting of plants only. After plantification, a synthesis problem becomes
a composition

G = G1‖G2‖ · · · ‖Gn (5.4)

of plant components. The problem of synthesis is reduced to finding a supremal nonblocking
sub-FSM of a plant FSM.

Definition 5.2 Let G be an FSM. The supremal nonblocking sub-FSM of G is

supC(G) = supC(G,G) . (5.5)

Here, supC(G,G) is the supremal controllable and nonblocking sub-FSM according to
Definition 3.10. In cases where plants and specifications are distinguished, the synthesis
result can be characterised using plantification as

supC(E, H) = supC(E⊥‖H) , (5.6)

which gives the correct result even if the specification E is not a sub-FSM of the plant H .
Some of the compositional synthesis methods described in this survey work with plantified
specifications, while others require separate plants and specifications. The following sub-
section describes frameworks for both cases, which can be converted into each other using
relations such as (5.6).

Fig. 13 Example of plantification. E⊥ is the complete plant FSM of specification E , and E ′⊥ is an equivalent
form where the uncontrollable event !put is always enabled.
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5.2 Frameworks for compositional synthesis

This subsection explores options for a general formal framework for compositional synthesis
similar to the verification framework in Section 2.4. That framework is definedwith a setΦ of
properties to be verified and a relation |� to determine whether a system satisfies a property.
This does not directly fit the needs of synthesis where the objective is to compute a supervisor
rather than check whether some property is true or false.

One possible solution is to use the set of all languages as the set of properties, Φ = 2Σ̂∗
,

and define that a system G satisfies a property L ⊆ Σ̂∗ if the supremal controllable and
nonblocking behaviour is equal to L ,

G |� L if and only if L(supC(G)) = L . (5.7)

This captures the synthesis result through verification, converting the synthesis problem to
the problem of checking whether the result of synthesis is equal to a given language L . The
next step for a compositional framework is to identify an appropriate process equivalence,
which leads on to abstraction and hiding operations. The process equivalence corresponding
to (5.7) is synthesis equivalence (Flordal et al. 2007)

G �synth H
if and only if

L(supC(G‖T )) = L(supC(H‖T )) for all FSMs T .

(5.8)

Two FSMs are synthesis equivalent if the supremal controllable and nonblocking behaviours
are equal after synthesis in composition with any arbitrary FSM T .

At this point it can be confirmed that synthesis equivalence is a congruence with respect
to synchronous composition and preserves properties, so that conditions (CV1) and (CV3)
of the compositional framework are satisfied. Therefore, compositional synthesis without
hiding is feasible using synchronous composition and any abstraction that preserves synthesis
equivalence.

It is possible to define hiding operations such that synthesis equivalence is a congruence
with respect to hiding and satisfies (CV2), but synthesis results are not preserved by hiding and
(CV4) does not hold when using (5.7). Even if the hidden events Υ are local and regardless
of how exactly hiding is defined, L(supC(G)) = L(supC(G \ Υ )) does not hold in general,
because the synthesis result supC(G) usually depends on the events in G. Then it is not clear
whether hiding is possible in a compositional framework based on synthesis equivalence.

Another idea is to use an equivalence that considers only the nonemptiness of the synthesis
result, such as

G � H
if and only if

L(supC(G‖T )) �= ∅ ⇔ L(supC(H‖T )) �= ∅ for all FSMs T .

(5.9)

In this case, synthesis is replaced by a verification problem to determine whether or not
a controllable and nonblocking supervisor exists. It is possible to define hiding operations
that preserve this equivalence and derive a compositional framework where local events can
be hidden. This approach can effectively determine whether or not a synthesis problem has
a solution, but unfortunately there is no easy way to construct a supervisor if a solution is
found to exist. The supervisor has to be obtained by processing all abstraction steps backwards
similarly to counterexample computation in compositional verification (Section 4.5), and this
is more difficult for supervisors than for counterexamples.
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To avoid these complications,most currentmethods for compositional synthesis follow the
verification frameworkonly partially. Synthesis equivalence (5.8) or stronger equivalences are
used instead of (5.9), with additional assumptions and reasoning to facilitate the construction
of a supervisor. To capture such reasoning, Mohajerani et al. (2014) describe a framework
that incorporates abstraction and supervisor construction in a uniform notation. A partially
abstracted system is represented as a synthesis pair5

〈G,S〉 , (5.10)

where G is a set of deterministic plant FSMs representing the partially abstracted system
and S is a set of deterministic FSMs that form a partially constructed supervisor. An
initial system (5.4) is represented as 〈{G1, . . .Gn},∅〉 with the plants G1, . . .Gn and no
supervisor components, and compositional abstraction is used to rewrite this into the form
〈∅, {S1, . . . Sm}〉 such that the synchronous composition of the supervisors S1, . . . Sm solves
the original synthesis problem, i.e.,

L(supC(G1‖ · · · ‖Gn)) = L(S1‖ · · · ‖Sm) . (5.11)

To characterise requirements for sound abstraction steps, synthesis equivalence is defined
for synthesis pairs by

〈G1,S1〉 �synth 〈G2,S2〉
if and only if

L(supC(
∥∥(G1))‖

∥∥(S1)) = L(supC(
∥∥(G2))‖

∥∥(S2)) .

(5.12)

That is, two synthesis pairs are equivalent if the synthesis result for the plants composed
with the components of the partial supervisors yields the same closed-loop behaviour in both
cases. If all abstraction steps adhere to this equivalence, then the correctness (5.11) of the
final result is ensured.

The rewrite operations in Section 2.2 can be formalised and analysed in this notation. It is
clear that synchronous composition preserves synthesis equivalence of pairs. For example,
two components G1 and G2 can be replaced by their synchronous composition G1‖G2,

〈{G1,G2, . . . ,Gn},S〉 �synth 〈{G1‖G2, . . . ,Gn},S〉 . (5.13)

Abstraction of a single component subject to synthesis equivalence of FSMs (5.8) also pre-
serves synthesis equivalence of pairs. For example, a component G1 can be replaced by a
synthesis equivalent abstraction G̃1,

〈{G1,G2, . . . ,Gn},S〉 �synth 〈{G̃1,G2, . . . ,Gn},S〉 if G1 �synth G̃1 . (5.14)

If two plant components are synthesis equivalent FSMs, they can be substituted with each
other within the plant set of a synthesis pair.

The inclusion of the partial supervisors in the pairs allows for abstraction operations that
do not respect synthesis equivalence of FSMs such as hiding and partial synthesis operations.
The simplest example of this is monolithic synthesis where a supervisor for all remaining
components Gi is computed and added to the set S of supervisors. This supervisor replaces
the components Gi to produce a final result,

〈{G1, . . . ,Gn},S〉 �synth 〈∅, {supC(G1‖ · · · ‖Gn)} ∪ S〉 . (5.15)

5 Mohajerani et al. (2014) define synthesis triples that also include a renaming, which is specific to their
synthesis procedure and not always needed.
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Monolithic synthesis is typically used as the last step of compositional synthesis to compute
a supervisor for the final result of compositional abstraction.

So far, synthesis pairs have been assumed to consist of sets of deterministic FSMs. For
abstractions that produce nondeterministic FSMs, G and S must be treated as multisets,
and additional reasoning may be necessary to interpret the contents of S as a deterministic
supervisor.

The above also assumes that all components in G are plants or plantified specifications.
Alternatively, specifications and plants can be distinguished using synthesis triples

〈E,H,S〉 , (5.16)

where E = {E1, . . . , Em} consists of specification components,H = {H1, . . . , Hk} consists
of plant components, and S are the components of a partially computed supervisor as above.
The equivalence of such triples can be expressed as synthesis equivalence of pairs using
plantification,

〈E1,H1,S1〉 �synth 〈E2,H2,S2〉
if and only if

〈(E1)⊥ ∪ H1,S1〉 �synth 〈(E2)⊥ ∪ H2,S2〉
(5.17)

where (Ei )⊥ = { E⊥ | E ∈ Ei } for i = 1, 2.
Using synthesis triples, plantification canbe expressed as the replacement of a specification

component by its complete plant FSM, which is then treated as a plant. Following Flordal
et al. (2007), this results in an equivalent triple,

〈{E1, E2, . . . , Em},H,S〉 �synth 〈{E2, . . . , Em}, {(E1)⊥} ∪ H,S〉 . (5.18)

With synthesis pairs or triples, it is also possible to describe more advanced abstrac-
tions that simplify components while producing parts of the supervisor at the same time.
This includes partial synthesis and hiding operations, which are the subject of the following
sections.

5.3 Local synthesis

Many compositional methods perform synthesis locally, for example by composing one of
the specification components with some of the plants and then computing a supervisor. In a
compositional framework, this can be described as replacing a component such asG1 in (5.4)
by its supremal controllable and nonblocking sub-FSM supC(G1), resulting in

supC(G1)‖G2‖ · · · ‖Gn . (5.19)

The result supC(G1) becomes a component of a modular supervisor that forms the final
synthesis result, and is also used to participate in further abstraction steps. In synthesis pair
notation,

〈{G1,G2, . . . ,Gn},S〉
is transformed into

〈{supC(G1),G2, . . . ,Gn}, {supC(G1)} ∪ S〉 .

(5.20)

That is, the local synthesis result supC(G1) is included both in the plants G and in the super-
visors S after the abstraction. In settings where plants and specifications are distinguished,
supC(G1) is treated as plant after abstraction as its control decisions are now part of the
supervisor S being computed and do not need to be enforced again by further synthesis
steps.
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The question is whether local synthesis preserves the final result of compositional syn-
thesis, or equivalently whether synthesis equivalence of pairs (5.12) is preserved by the
transformation (5.20). This is the case if

L(supC(supC(G1)‖G2‖ · · · ‖Gn)) = L(supC(G1‖ · · · ‖Gn)) . (5.21)

This is clearly true if G1 and supC(G1) are synthesis equivalent (5.8), but G1 �synth

supC(G1) does not hold in general. Yet it is known that L(supC(G1)) ⊆ L(G1), which
implies L(supC(supC(G1)‖G2‖ · · · ‖Gn)) ⊆ L(G1‖ · · · ‖Gn), and the final synthesis
result supC(supC(G1)‖G2‖ · · · ‖Gn) is also controllable and nonblocking by construction.
Therefore, local synthesis guarantees a final synthesis result that constrains the original
behaviour (5.4) in a controllable and nonblocking way—a correct supervisor.

Yet, the resulting supervisor is not maximally permissive in general. If G1 includes a
transition with an uncontrollable event μ that leads to an unsafe state, then the source state
of this transition is considered as unsafe and deleted when computing supC(G1). However,
if another plant component within G2‖ · · · ‖Gn disables this uncontrollable eventμ, then the
transition in G1 cannot occur and its source state does not need to be deleted.

Fortunately, simple assumptions can be imposed on the input system to ensure a max-
imally permissive result of compositional synthesis while using local synthesis. Maximal
permissiveness only fails when some plant component disables an uncontrollable event that
appears in the component subjected to local synthesis. This can be ruled out by an assumption
of event disjointness.

Definition 5.3 Two FSMs G1 = 〈Σ1, Q1,→1, Q◦
1, Q

ω
1 〉 and G2 = 〈Σ2, Q2,→2, Q◦

2, Q
ω
2 〉

are event-disjoint if Σ1 ∩ Σ2 = ∅.
Two event-disjoint FSMs do not have any events in common. If all the components in

a system (5.4) are pairwise event-disjoint, then local synthesis can be performed for each
component separately, and the composition of the resulting supervisors gives the maximally
permissive controllable and nonblocking solution. However, all components being pairwise
event-disjoint is a strong assumption that rarely holds in practice.

It is more reasonable to assume that only the plant components are pairwise event-disjoint.
For example, Hill and Tilbury (2008) compose a specification with all the plant components
it shares events with and perform local synthesis for the resulting subsystem. Under the
assumption that the plants are pairwise event-disjoint, this subsystem cannot share events
with other plants; it may share uncontrollable events with other specifications, but this cannot
break maximal permissiveness as specifications cannot disable uncontrollable events without
violating controllability. If a plant shares events with more than one specification, this plant
is reused for more than one composition, which is sound for an initially deterministic model.
Therefore, under the assumption of event-disjoint deterministic plants, a specification that is
composed with all components it shares events with can be abstracted using local synthesis
while preserving maximal permissiveness. In the notation of synthesis triples, the results of
Hill and Tilbury (2008) imply the following proposition.

Proposition 5.1 Let H, E , and S be sets of deterministic FSMs where all elements of H are
pairwise event-disjoint, let E ′ ∈ E , and let

H′ = { H ′ ∈ H | H ′ and E ′ are not event-disjoint } (5.22)

be the set of FSMs in H that share events with E ′. Then

〈E,H,S〉 �synth 〈E \ {E ′}, (H \ H′) ∪ {S′},S ∪ {S′}〉 , (5.23)
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where S′ = supC(E ′,
∥∥(H′)) is the local synthesis result.

Thus, after selecting a specification E ′ and all the plant components inH′ that share at least
one event with E ′, local synthesis is performed with the plants inH′ and the specification E ′.
The resultant supervisor S′ replaces the components it was synthesised from, and after the
abstraction is considered both as a plant and a supervisor. Under the assumption of pairwise
event-disjoint plants, this abstraction preserves the correctness and maximal permissiveness
of the final synthesis result.

The assumption of event-disjointness can be relaxed. Åkesson et al. (2002) show that only
shared uncontrollable events can affect maximal permissiveness, so it is enough to assume
that plants do not share uncontrollable events and specifications are composed with plants
sharing uncontrollable events.

Definition 5.4 Two FSMs G1 = 〈Σ1, Q1,→1, Q◦
1, Q

ω
1 〉 and G2 = 〈Σ2, Q2,→2, Q◦

2, Q
ω
2 〉

are uncontrollable event-disjoint if Σ̂u ∩ Σ1 ∩ Σ2 = ∅.
The requirement of event disjointness in Proposition 5.1 can be replaced by uncontrollable

event disjointness. Event disjointness can be relaxed further by only considering an event as
shared with another component if that component disables the event in a state where it would
otherwise remain enabled. This leads to the idea of mutual controllability.

Definition 5.5 (Lee and Wong 2002) Let G1 = 〈Σ1, Q1,→1, Q◦
1, Q

ω
1 〉 and G2 =

〈Σ2, Q2,→2, Q◦
2, Q

ω
2 〉 be two FSMs. G1 and G2 are mutually controllable if G1 is

(Σ̂u ∩Σ1 ∩Σ2)-controllable with respect to G2 and G2 is (Σ̂u ∩Σ1 ∩Σ2)-controllable with
respect to G1.

Two plants are mutually controllable if neither disables a shared uncontrollable event
in a state where it would be enabled by the other. Schmidt and Breindl (2011) show that
least restrictiveness is preserved by local synthesis if all plant components are pairwise
mutually controllable and specifications are composed with the plants they share events
with. Combining this with the idea of uncontrollable event disjointness, Proposition 5.1 can
be relaxed as follows.

Proposition 5.2 Let H, E , and S be sets of deterministic FSMs where all elements of H are
pairwise mutually controllable, let E ′ ∈ E , and let

H′ = { H ′ ∈ H | H ′ and E ′are not uncontrollable event-disjoint} . (5.24)

Then (5.23) holds.

Here, after selecting a specification E ′ and all the plant components in H′ that share at
least one uncontrollable event with E ′, local synthesis is performed with the plants in H′
and the specification E ′. The resultant supervisor supC(E ′⊥‖∥∥(H′)) replaces the components
it was synthesised from, and after the abstraction is considered both as a plant and a super-
visor. Under the assumption of mutually controllable plants, this abstraction preserves the
correctness and maximal permissiveness of the final synthesis result.

Mutual controllability is a weaker condition than uncontrollable event disjointness, but
it can only be applied to original plants and does not support plantification. Both mutual
controllability and uncontrollable event disjointness are global assumptions that must be
satisfied by the entire model before compositional synthesis can start. If such an assumption
is not satisfied, it is suggested to compose components until it is satisfied, although this may
result in large components and defeat the purpose of the compositional approach.
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In an attempt to avoid global assumptions, Flordal et al. (2007) propose to change the
algorithm to compute local synthesis by only considering events as uncontrollable when
least restrictiveness is known to be preserved. This leads to the idea of halfway synthesis.

Definition 5.6 (Flordal et al. 2007) Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let Υu ⊆ Σ .
The result of halfway synthesis of G with respect to Υu is

hsupC(G, Υu) =
⋃

{G ′ ⊆ G | G ′ is Υu-controllable in G and nonblocking } . (5.25)

Given a plant or plantified specification G and a set Υu of uncontrollable events, halfway
synthesis computes the maximally permissive controllable and nonblocking sub-FSM under
the assumption that only the events inΥu are uncontrollable while all other events are control-
lable. This over-approximates the standard synthesis result and may fail to be controllable by
disabling an uncontrollable event from the full set Σ̂u that is not included in the considered
subset Υu. Therefore, unlike local synthesis with supC, the result of halfway synthesis cannot
be used as an abstraction, but this can be rectified using a modified version of plantification.

Definition 5.7 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, let Υu ⊆ Σ be a set of events, and
let hsupC(G, Υu) = 〈Σ, Q,→hsupC, Q◦〉. The halfway synthesis abstraction of G with
respect to Υu is hsupC⊥(G, Υu) = 〈Σ, Q ∪ {⊥},→⊥, Q◦〉 where ⊥ /∈ Q is a new state and

→⊥=→hsupC ∪ { 〈x, μ,⊥〉 | x ∈ Q and μ ∈ (Σ ∩ Σ̂u) \ Υu and x � μ→hsupC }.
The halfway synthesis abstraction is obtained by plantifying the halfway synthesis result

from Definition 5.6 in a way similar to Definition 5.1, with the difference that only uncon-
trollable events not in Υu are used to generate transitions to the trap state ⊥.

Example 5.2 Figure 14 shows the differences between local synthesis and halfway synthesis.
The plant component G contains two uncontrollable events !u and !v. Standard synthesis
removes states 1 and 2, both of which can uncontrollably reach the blocking state 3. This is
the result of local synthesis, shown as supC(G).

Now assume that event !u is shared with another plant component while !v is not. Then
!u could be disabled by the plant while G is in state 1. That would mean that state 1 can be
reached by amaximally permissive supervisor, and using supC(G) as a supervisor component
is more restrictive than necessary.

If halfway synthesis is performed with Υu = {!v}, then the uncontrollable event !u is

treated as controllable for the purpose of synthesis, the transition 1
!u→ 3 can be disabled,

and state 1 is not deleted. The result is shown as hsupC(G, {!v}) in Fig. 14. Disabling the

Fig. 14 Examples of local and halfway synthesis. Given plantG and uncontrollable events Σ̂u = {!u, !v}, local
synthesis results in supC(G). Assuming only !v is local, Υu = {!v}, halfway synthesis results in the supervisor
hsupC(G, {!v}) and the abstraction hsupC⊥(G, {!v})
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uncontrollable event !u means that this FSM may fail to be controllable if !u was to occur

while in state 1. The halfway synthesis abstraction hsupC⊥(G, {!v})with its transition 1 !u→ ⊥
retains this possibility so that state 1 can be removed later and only if !u is enabled.

Flordal et al. (2007) show that halfway synthesis preserves the maximal permissiveness
of the final synthesis result if the set Υu of events considered as uncontrollable consists of the
local uncontrollable events. That is, events are only considered as uncontrollable if they do
not appear in any other component outside of the one being simplified. Uncontrollable events
that are used in some other component are treated as controllable during halfway synthesis,
and if their transitions get disabled, the halfway synthesis abstraction includes a transition to
the blocking state ⊥ to inform future steps about the possible uncontrollability.

Newer results make it possible to relax the requirement for the set Υu of events considered
as uncontrollable.Malik andTeixeira (2020) point out that only plant components that disable
an uncontrollable event can affect maximal permissiveness, so shared uncontrollable events
that are enabled in all states of all components outside of the one being simplified can also be
included in Υu. Moreover, if plantification is used in such a way that uncontrollable events
are enabled in all states of a plantified specification, then specifications are transformed into
FSMs with all uncontrollable events always enabled, which means halfway synthesis can
treat uncontrollable events in plants as local independently of specifications. Combination of
the result of Flordal et al. (2007) with the idea of always enabled uncontrollable events leads
to the following proposition.

Proposition 5.3 Let G = {G1, . . . ,Gn} contain FSMs Gi = 〈Σi , Qi ,→i , Q◦
i 〉, and let

Υu ⊆ Σ̂u ∩ Σ1 be a set of uncontrollable events such that, every event μ ∈ Υu is always
enabled in G2, . . . ,Gn. Then

〈G,S〉 �synth 〈{hsupC⊥(G1, Υu),G2, . . . ,Gn}, {hsupC(G1, Υu)} ∪ S〉 . (5.26)

According to Proposition 5.3, to abstract a component G1 using halfway synthesis, the
first step is to determine which events can be considered as uncontrollable. Originally uncon-
trollable events that are always enabled by all components outside of G1 are assigned to
the set Υu, and all other events are treated as controllable. The resulting supervisor is added
to the synthesis result S, and the plant component G1 is replaced by the halfway synthesis
abstraction obtained by adding the transitions to ⊥ to the supervisor.

Halfway synthesis avoids global assumptions of event disjointness or mutual controlla-
bility by adjusting the set of uncontrollable events, increasing flexibility at the expense of a
more conservative abstraction. As the halfway synthesis abstraction cannot be treated purely
as a plant or specification, themethod does not distinguish plants and specifications and relies
on plantification instead.

Ware et al. (2013) propose a further improvement to the algorithm of halfway synthesis
by identifying certainly uncontrollable states. By considering that certain uncontrollable
transitions must remain enabled for the system to be nonblocking, they can treat additional
transitions as uncontrollable and remove states beyond those removed by standard synthesis
algorithms.

To summarise, the synthesis operator supC can be used as an abstraction during com-
positional synthesis while ensuring a correct but not necessarily maximally permissive
result. Maximal permissiveness can be maintained under additional assumptions of event
disjointness or mutual controllability of plants, if specifications are composed with certain
plants beforehand. Alternatively, halfway synthesis guarantees amaximally permissive result
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provided that events are only treated as uncontrollable if they are always enabled in all com-
ponents except for the one being simplified.

Compositional synthesis is possible using local or halfway synthesis as the only means
of abstraction. In this case, the final result of compositional abstraction produces exactly
the same supervisor as monolithic synthesis does, with the same number of states. Still, the
compositional abstraction process results in early elimination of unsafe or blocking states,
which must otherwise be visited and removed during the final synthesis, and this can improve
performance (Flordal et al. 2007).More substantial state space reduction is possible by hiding
of local events, which is considered in the following subsections.

5.4 Projection

Hiding of events poses several challenges for compositional synthesis. Even though a local
event is not used in any other component, it is conceivable that a synthesised supervisor
observes such an event and uses it to make control decisions. A controllable local event may
even be disabled by the supervisor, and the need for this disablement may be discovered
several steps after hiding. More generally, hiding results in nondeterministic state machines
and, while nondeterminism is only a minor issue in compositional verification, it can cause
major problems when attempting to construct a deterministic supervisor from abstractions.

Several of these problems are avoided by restricting all abstractions to be deterministic.
In this case, hiding is performed by natural projection. This section considers the abstraction
of a component G1 whose alphabet is separated into hidden events Υ and shared events Ω ,
and then G1 is replaced by PΩ(G1), which is a minimal deterministic FSM that accepts the
projection PΩ(L(G1)) of the language of G1 with the events in Υ removed. In synthesis pair
notation,

〈{G1,G2, . . . ,Gn},S〉
is transformed into

〈{PΩ(G1),G2, . . . ,Gn}, {G1} ∪ S〉 .

(5.27)

The component G1 is replaced by its abstraction within the system G and also added to
the supervisors S. As events in Υ are erased in PΩ(G1) and do not appear in G2, . . . ,Gn ,
it is clear that no supervisor component constructed after this step includes these events.
By including G1 as a supervisor in S, it is ensured that the final supervisor includes any
necessary disablements of controllable events in Υ . The inclusion ofG1 in S may not always
be needed in practice, as G1 may be the result of local or halfway synthesis and already in S
following (5.20).

In general, the naive transformation (5.27) does not ensure a maximally permissive or
even correct synthesis result. As explained in Section 4.4, natural projection is not a sound
abstraction for compositional nonblocking verification, and it does not ensure a nonblocking
result of compositional synthesis either. In the same way as with verification, the issue can
be addressed with the observer property.

Wong and Wonham (1996) show that the observer property ensures nonblocking control
after abstraction. According to their result, if the set Υ of hidden event is chosen such that it
only contains events local to G1 and such that the projection PΩ has the observer property
for G1 (Definition 4.7), then the transformation (5.27) ensures that the final supervisor is
nonblocking.

Hill and Tilbury (2008) use this result for compositional synthesis. They hide local events
subject to the observer property and perform abstraction by natural projection. All plant com-
ponents are abstracted individually in this way, and afterwards local synthesis is performed
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by composing abstracted specifications with all abstracted plants they share events with. The
result from this local synthesis becomes a supervisor component as well as a plant whose
local events can be projected out again. This method produces a correct supervisor that is
controllable and nonblocking, but not necessarily maximally permissive.

Example 5.3 Figure 15 shows an example where projection of local events subject to the
observer property fails to ensure maximal permissiveness. The FSM G1 shares events c
and !uwith the rest of the system,G2, suggesting that events d and e are local and can be hid-
den. Projecting them out results in P{c,!u}(G1), which satisfies the observer property because,
independently of whether the hidden events occur or not, it remains possible to reach the
accepting state by executing c or !u. The abstraction P{c,!u}(G1) enables the shared uncon-
trollable event !u in its initial state, meaning that the synthesis result supC(P{c,!u}(G1)‖G2)

is empty. However, the synthesis result supC(G1‖G2) for the system before abstraction is
nonempty because the unsafe occurrence of !u can be prevented by disabling the controllable
event e, leaving three safe states.

The reason why the observer property is insufficient to ensure a maximally permissive
result is because it does not distinguish adequately between controllable and uncontrollable
events, and the removal of controllable transitions can remove opportunities for the supervisor
to prevent subsequent uncontrollable transitions. This suggests that a maximally permissive
result can be achieved by allowing only uncontrollable events to be projected out. Feng
and Wonham (2008) identify the weaker condition of output control consistency that can be
imposed on the projection while still achieving maximal permissiveness.

Definition 5.8 (Feng and Wonham 2008) Let G = 〈Σ, Q,→, Q◦〉 be a deterministic FSM
and let Σ = Ω∪̇Υ . The natural projection PΩ is output control consistent (OCC) for G, if
for all s ∈ Σ∗ and all u ∈ Υ ∗ and all μ ∈ Ω ∩ Σ̂u such that suμ ∈ L(G), it holds that
u ∈ Σ̂∗

u .

In words, for the projection to be output control consistent, for every subtrace uμ allowed
by the system that consists of local events u followed by a shared uncontrollable event μ, the
local events u must all be uncontrollable. Feng and Wonham (2008) show that maximally
permissive nonblocking control is achieved if the projection has the observer property and is
output control consistent.

Fig. 15 Observer property with and without output control consistency. G1 and G2 share events c and !u, and
Σ̂u = {!u}. The projection P{c,!u}(G1) has the observer property, but produces an empty synthesis result. The
projection P{c,e,!u}(G1) is additionally output control consistent and gives a maximally permissive synthesis
result
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Fig. 16 Output control consistency vs. local control consistency. G1 and G2 share events c and !u, and
Σ̂u = {!u, !v}. The projection P{c,d,!u}(G1) is locally control consistent but not output control consistent

Example 5.4 Considering G1 in Fig. 15 again, the projection P{c,!u} is not output control
consistent because d e !u ∈ L(G) with d e ∈ Υ ∗ and !u ∈ Ω ∩ Σ̂u but d e /∈ Σ̂∗

u . The
projection P{c,e,!u}, which also has the observer property, is output control consistent, because
the only event that can precede the uncontrollable event !u is e, which is retained by this
projection. Synthesis with this abstraction and the remainder G2 of the system results in the
disablement of ewhile leaving d enabled, correctly retaining the behaviour of supC(G1‖G2).

Schmidt and Breindl (2008) introduce local control consistency, which is weaker than
output control consistency and achieves the same results.

Definition 5.9 (Schmidt and Breindl 2008) LetG = 〈Σ, Q,→, Q◦〉 be a deterministic FSM
and let Σ = Ω∪̇Υ . The natural projection PΩ is locally control consistent (LCC) for G, if
for all s ∈ Σ∗ and all u ∈ Υ ∗ and all μ ∈ Ω ∩ Σ̂u such that suμ ∈ L(G), there exists a
trace v ∈ (Υ ∩ Σ̂u)

∗ such that svμ ∈ L(G).

In words, a natural projection is locally control consistent if for any state with a shared
uncontrollable event μ feasible following some local events u, the same uncontrollable
event μ is also feasible after some local uncontrollable events v. The difference to out-
put control consistency is that local control consistency allows for shared uncontrollable
transitions to be preceded with controllable local transitions, as long as there is an alternative
path of local uncontrollable transitions.

Example 5.5 Consider the FSM G1 in Fig. 16, which shares events c and !u with the rest of
the system G2. This leaves three local events d, e, and !v, but d cannot be projected out for
similar reasons as in Example 5.3. ConsideringΥ = {e, !v}, the projection P{c,d,!u}(G1) is not
output control consistent, because d e !u ∈ L(G) with e ∈ Υ ∗ and !u ∈ Ω ∩ Σ̂u but e /∈ Σ̂∗

u .
Yet this projection is locally control consistent. For d e !u ∈ L(G) there exists d !v !u ∈ L(G)

with !v ∈ (Υ ∩ Σ̂u)
∗. Synthesis with this abstraction and the remainder G2 of the system

results in the disablement of d, which is equivalent to synthesis with the unabstracted system.

Feng and Wonham (2008) and Schmidt and Breindl (2011) describe methods of com-
positional synthesis using projection as abstraction. After composing each specification
with all plants it shares events with and performing local synthesis, the resulting supervisor
components are simplified using a projection that satisfies the observer property and either
output control consistency (Feng and Wonham 2008) or local control consistency (Schmidt
and Breindl 2011); further synthesis steps are performed afterwards. These methods make
additional assumptions about the plants for the local synthesis steps to ensure maximal per-
missiveness, for example Schmidt and Breindl (2011) assume mutually controllable plants.
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Fortunately, such assumptions are not needed when the abstraction is isolated in synthesis
pair notation. The following is a consequence of the results of Schmidt and Breindl (2011).

Proposition 5.4 LetG = {G1, . . . ,Gn} be a set of deterministic FSMsGi = 〈Σi , Qi ,→i , Q◦
i 〉,

and letΥ ⊆ Σ1 be such thatΥ ∩(Σ2∪· · ·∪Σn) = ∅. If the projection PΣ1\Υ has the observer property
and is locally control consistent for G1, then

〈G,S〉 �synth 〈{PΣ1\Υ (G1),G2, . . . ,Gn}, {G1} ∪ S〉 . (5.28)

Accordingly, if only local events are projected out by a projection that satisfies the observer
property and local control consistency, then the resulting abstraction can be used in composi-
tional synthesis while ensuring a maximally permissive result. As output control consistency
implies local control consistency (Schmidt and Breindl 2011), Proposition 5.4 also holds if
local control consistency is replaced by output control consistency. This shows that local or
halfway synthesis can be combined with natural projection for a comprehensive method of
compositional synthesis.

A problem that remains with projection-based methods is the need to identify an appro-
priate subset Υ of events to be projected out. While it is easy to identify local events, it is in
general not possible to project out all local events. The observer property and output or local
control consistency must be satisfied, and it is not straightforward to find an appropriate and
ideally large set of events that satisfies these conditions. A variety of search algorithms have
been proposed to identify projections that satisfy the needed properties (Schmidt and Moor
2006; Feng and Wonham 2010).

5.5 Nondeterministic abstractions with partial observations

More general approaches to the removal of local events in compositional synthesis are pos-
sible by at least temporarily allowing for nondeterministic state machines as abstractions.
Then process-algebraic hiding can be used to remove all local events. In the terminology of
synthesis pairs, the projection PΩ(G1) in (5.27) is replaced by the result of hiding, G1 \ Υ ,
where Υ is the set of all events local to G1.

Hiding means that events are replaced by the silent event τ , and it needs to be determined
how the silent event is treated by synthesis. The standard interpretation of silent transitions
is that no other component can synchronise with them, and this includes the synthesised
supervisor. Based on this assumption, the silent event τ is not only treated as uncontrollable
but also as unobservable (Lin and Wonham 1988). Treating τ as uncontrollable means that
supervisors synthesised after abstraction cannot disable hidden events, and treating τ as
unobservable means that supervisors cannot change their state to base other control decisions
on the occurrence of hidden events. Unfortunately, this interpretation does not preserve the
maximal permissiveness of synthesis results.

Example 5.6 Consider plants G1 and G2 with controllable events Σ̂c = {b, c,d} in Fig. 17.
The supremal controllable and nonblocking sub-behaviour is shown as supC(G1‖G2). The
controllable event b must be disabled, because plant G2 does not allow the two consecutive
occurrences of c needed to reach the accepting state after b. Hiding the local events !a
and b from G1 results in G1 \ {!a,b}. If the silent event τ is uncontrollable, a supervisor
cannot disable it. As one of its transitions leads to a blocking state, a nonblocking supervisor
must prevent its source state from being reached. As the source state is the initial state, the
maximally permissive supervisor supC((G1 \ {!a,b}) ‖ G2) is empty.

Despite the inability to producemaximally permissive supervisors, Su et al. (2010a, b) and
Hill et al. (2010) propose compositionalmethodswith hiding andunobservable silent events to
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synthesise controllable and nonblocking supervisors. To handle the unobservable transitions
resulting from abstraction, synthesis needs to respect observability (Lin and Wonham 1988)
in addition to controllability and the nonblocking property. In this case the only unobservable
event, τ , is also uncontrollable, and observability is equivalent to normality (Wonham 2013).

This suggests that local synthesis can be performed by computing a normal supervisor. In
synthesis pair notation, the local synthesis operation (5.20) ismodified by replacing supC(G1)

with supCN (G1), the supremal controllable, nonblocking, and normal sub-behaviour of G1.
It is computed as a deterministic FSM, which can be used both as a supervisor component
and as a plant to continue the compositional synthesis process. The algorithm to synthesise
a supremal normal supervisor is exponential in the number of states (Brandt et al. 1990).
To avoid the exponential complexity, Su et al. (2010a, b) and Hill et al. (2010) replace
supCN (G1) by approximations which are less permissive than the supremal controllable,
nonblocking, and normal supervisor but can be computed in polynomial time.

In addition to hiding and local synthesis, the above methods perform abstraction to reduce
the number of states further. In the case of uncontrollable and unobservable silent events,
where the maximal permissiveness is not guaranteed, it is enough for abstraction to preserve
the nonblocking property of the final synthesis result. Hill et al. (2010) compute abstrac-
tions using two conflict-preserving rules from Flordal and Malik (2009). Similarly, Su et al.
(2010a, b) use a special form of weak observation equivalence (Definition 4.5), which also
implies conflict equivalence (Definition 4.4).

Indeed, if a componentG1 is replaced by a conflict equivalent abstraction G̃1 �conf G1, it
follows from the congruence of conflict equivalencewith respect to synchronous composition
that any nonblocking supervisor for the abstraction is also nonblocking when composed
with the original system. Although conflict equivalence does not preserve the language, it
does preserve the nonconflicting part of the language (Malik et al. 2006), and therefore the
controlled behaviour after synthesis from a conflict equivalent abstraction is also preserved.
It follows that a plant component in a synthesis pair can be replaced by a conflict equivalent
abstraction while ensuring a controllable and nonblocking synthesis result whose behaviour
is contained in that of the original specifications.

5.6 Nondeterministic abstractions with observable silent events

Flordal et al. (2007) propose a different approach to hide events and handle nondeterminism
after abstraction in compositional synthesis. They replace the silent event τ by two events:

Fig. 17 Hiding in compositional synthesis. Synthesis with plants G1 and G2 and controllable events Σ̂c =
{b, c,d} gives a nonempty result, but if the local events !a and b in G1 are replaced by an uncontrollable
event τ , the synthesis result becomes empty
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the silent controllable event τc ∈ Σ̂c and the silent uncontrollable event τu ∈ Σ̂u. The natural
projection is changed to P : Σ̂∗ → (Σ̂ \ {τc, τu})∗, deleting both these events from traces.

Definition 5.10 (Flordal et al. 2007) Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let Υ ⊆ Σ .
The result of controllability-preserving hiding of Υ from G is G\!Υ = 〈Q,Σ!,→!, Q◦〉
where Σ! = Σ \ Υ and →! ⊆ Q × (Σ! ∪ {τc, τu}) × Q is obtained from → by replacing

each transition x
σ→ y with σ ∈ Υ by x

τc→ y if σ ∈ Σ̂c or by x
τu→ y if σ ∈ Σ̂u.

Controllability-preserving hiding replaces hidden events in Υ by one of the silent events
τc or τu depending on controllability status. This makes it possible to hide events while
retaining the information whether a silent transition is controllable or uncontrollable.

Example 5.7 Consider again plants G1 and G2 in Fig. 17. Controllability-preserving hiding
of the local events Υ = {!a,b} from G1 means to replace the uncontrollable event !a by τu
and the controllable event b by τc. The result G1\!{!a,b} is shown in in Fig. 18. If this
FSM is composed with the second plant component G2, its blocking states are reached by a
controllable transition labelled τc. Assuming this transition can be disabled by a supervisor,
the synthesis result supC((G1\!{!a,b})‖G2) has the same states as supC(G1‖G2) obtained
from the unabstracted system in Fig. 17.

Retaining the controllability status of silent transitions makes it possible to represent
the capabilities of supervisors more accurately. Additionally, Flordal et al. (2007) treat the
silent transitions resulting from controllability-preserving hiding as observable rather than
unobservable. The idea is that, given an originally fully observable and deterministic model,
a supervisor can always determine the current system state. With some effort, the supervisor
can trace this state through all abstraction steps and determine the current state of each
abstracted FSM even if it is nondeterministic (Mohajerani et al. 2017).

Fig. 18 Controllability-preserving hiding of Υ = {!a,b} from G1 in Fig. 17 retains the maximal permissive-
ness.

Fig. 19 Observability of hidden events. With Σ̂c = {a,b}, the synthesis result after hiding the local event b
from G1 is only nonempty if the silent event τc is observable

123



Discrete Event Dynamic Systems

Example 5.8 Consider plants G1 and G2 in Fig. 19, where a and b are controllable events. A
maximally permissive supervisor supC(G1‖G2) for the composition G1‖G2 = G1 ensures
that a is only allowed after b. Event b is local, and controllability-preserving hiding results
in G1\!{b}, which in this case is equal to (G1\!{b})‖G2. If the τc-transition is treated as
unobservable, a maximally permissive normal supervisor must disable a both before and
after τc, producing an empty synthesis result. If the τc-transition is treated as observable, a
supervisor can disable a in the initial state and enable it after τc, ensuring a synthesis result
equivalent to that obtained without hiding.

While controllability-preserving hiding preserves the set of states reached by a maximally
permissive supervisor, it is not immediately clear how to construct a supervisor for the original
system from such an abstraction. A supervisor synthesised based on the abstraction may
disable a silent controllable transition, which needs to be related to a controllable event of
the original system. To solve this problem, Mohajerani et al. (2014) retain the labels of silent
transitions after hiding. In other words, events are marked as local and their transitions are
treated as silent when simplifying FSMs, but the original events are still known and used to
construct supervisor components.

A different solution is to avoid the construction of supervisors in the formof statemachines
and use abstractions to determine the set of safe states only. A supervisor can be represented
as a map

S : Q → 2Σ (5.29)

that assigns to each state a set of events to be enabled in that state (Ramadge and Wonham
1989). Given a subset Q′ of the state set of the original system, a supervisor can be defined
that disables any transition that leads to a state outside of that subset Q′. This control is
feasible if it only disables controllable transitions, which is guaranteed if the subset Q′ is
known to be that reached by a controllable supervisor.

In the compositional synthesis of Flordal et al. (2007) andMohajerani et al. (2017), abstrac-
tions are constructed in such a way that every state x of the original system is mapped to a
state x ′ of the final compositional abstraction. If the state x ′ is a state of themaximally permis-
sive supervisor for the compositional abstraction, then the original state x is safe; otherwise,
if x ′ is removed in synthesis, then x is an unsafe state and the least restrictive supervisor for
the original system disables transitions to this state x . In this way, a maximally permissive
supervisor can be implemented without constructing its state machine representation.

Flordal et al. (2007) describe an implementation of compositional synthesis that uses
controllability-preserving hiding and halfway synthesis, with halfway synthesis treating the
silent uncontrollable event τu as the only uncontrollable event. They also propose a collection
of abstraction rules to simplify components, which are inspired by compositional nonblock-
ing verification (Flordal and Malik 2009) and closely linked to specific configurations of
silent transitions. More general abstractions such as weak bisimulation and conflict equiva-
lence ensure the nonblocking property of the final synthesis result, but they do not preserve
maximal permissiveness. Mohajerani et al. (2011) strengthen weak bisimulation to synthe-
sis observation equivalence, and Mohajerani et al. (2012a) improve this to weak synthesis
observation equivalence. These two relations can be used in compositional synthesis in a
framework with observable silent transitions and nondeterminism.

Synthesis observation equivalence and weak synthesis observation equivalence are varia-
tions of weak bisimulation (Definition 3.15). For two states x1 and x2 to be weakly bisimilar,
it is enough that for every transition x1

σ→ y1 there exists a path x2
σ⇒ y2 such that y1 and y2

are again weakly bisimilar. For weak synthesis observation equivalence, the relation ⇒ is
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replaced by two more specific relations⇒u and⇒c depending on whether or not the event σ
is controllable.

Definition 5.11 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let Σu = (Σ ∩ Σ̂u) ∪ {τu}. The
extended uncontrollable transition relation ⇒u ⊆ Q × Σu × Q is defined by x

μ⇒u y if
there exists v ∈ Σ∗

u such that P(v) = P(μ) and x
v→ y.

Definition 5.12 (Mohajerani et al. 2012a) Let G = 〈Σ, Q,→, Q◦〉 be an FSM, let Σc =
(Σ ∩Σ̂c)∪{τc, ω}, and let∼ ⊆ Q×Q be an equivalence relation. The extended controllable
transition relation ⇒c ⊆ Q × Σc × Q is defined such that x

σ⇒c y if there exists a path

x = x0
τ1→ · · · τn→ xn

σ→ y0
τn+1−−→ · · · τn+m−−−→ ym = y (5.30)

where τ1, . . . , τn+m ∈ {τc, τu} and the following conditions hold:

(i) if σ = τc, then n = 0;
(ii) if τi = τc for some 1 ≤ i ≤ n, then x ∼ xi ;
(iii) if yi

τu→ z for some 1 ≤ i ≤ m, then z ∼ y j for some 1 ≤ j ≤ m;

(iv) if yi
μ→ z for some 1 ≤ i ≤ m and μ ∈ Σ ∩ Σ̂u, then y

μ⇒u z′ for some z′ ∼ z.

The extended uncontrollable transition relation ⇒u is the same as the extended transition
relation ⇒, but restricted to uncontrollable events. The extended controllable transition rela-
tion ⇒c depends on an equivalence relation, and is more complicated so as to preserve the
existence of supervisors that rely on a particular controllable transition. For x

σ⇒c y to hold,

there must exist a path x
P(σ )⇒ y of the form (5.30). Silent transitions before the event σ are

only allowed if σ is a shared event (i), and they can only be controllable if the target state is
equivalent to the start state x of the path (ii). This means that any supervisor that can reach the
equivalence class of x will leave such silent controllable transitions enabled. The sequence
of silent transitions after σ imposes conditions on outgoing uncontrollable transitions: silent
uncontrollable transitions must lead to a state equivalent to some state on the path (iii), and
shared uncontrollable transitions must be enabled at the path’s end state y and lead to an
equivalent state (iv). Based on these definitions, weak synthesis observation equivalence is
an equivalence relation on the state set of an FSM that respects ⇒u and ⇒c for all events.

Definition 5.13 (Mohajerani et al. 2012a) Let G = 〈Σ, Q,→, Q◦〉 be an FSM. An equiva-
lence relation∼ ⊆ Q×Q is aweak synthesis observation equivalence onG, if the following
conditions hold for all x1, x2 ∈ Q such that x1 ∼ x2:

(i) if x1
μ⇒u y1 for some μ ∈ (Σ ∩ Σ̂u) ∪ {τu}, then x2

μ⇒u y2 for some y1 ∼ y2;
(ii) if x1

σ⇒c y1 for some σ ∈ (Σ ∩ Σ̂c) ∪ {τc, ω}, then x2
σ⇒c y2 for some y1 ∼ y2.

Synthesis observation equivalence (Mohajerani et al. 2011) is defined similarly, with the
only difference that there can be no silent transitions after the controllable event σ in the
path (5.30) defining ⇒c, so it is a special case of weak synthesis observation equivalence.
Given a weak synthesis observation equivalence relation on an FSM, a synthesis equivalent
abstraction is obtained using a τ -loop free quotient6.

Proposition 5.5 (Mohajerani et al. 2012a) Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let
∼ ⊆ Q × Q be a weak synthesis observation equivalence on G. Then G �synth (G/◦∼).

6 Adapted from Definition 3.16, with selfloops of both silent events τc and τu suppressed.
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Fig. 20 Two weakly synthesis
observation equivalent FSMs
(Mohajerani et al. 2012a)

Example 5.9 Consider FSM G in Fig. 20, where all events are controllable. An equivalence
relation ∼ with 1 ∼ 2 ∼ 3 and 4 ∼ 7 is a weak synthesis observation equivalence on G. For

example, the transition 2
a→ 6 implies 2

a⇒c 6, which is matched by 1
a⇒c 6 as 1

a→ 7
τc→ 6

and state 7 has no uncontrollable transitions outgoing. H = (G/◦∼) is synthesis equivalent
to G by Proposition 5.5.

While the computation of most general weak synthesis observation equivalence relations
has exponential time complexity, Mohajerani et al. (2012b) describe polynomial algorithms
that compute appropriate approximations. Care needs to be taken as the quotient FSM may
be nondeterministic in such a way that a state has more than one successor state by transitions
with the same event. Similarly to the above case of silent transitions, this nondeterminism
needs to be treated as benign to ensure a maximally permissive synthesis result. That is, a
supervisor is thought to be aware of the exact state a nondeterministic FSM is in, and if a state
has more than one outgoing transition labelled by the same controllable event, the supervisor
can disable each of these transitions individually.

While nondeterministic abstractions with the benign interpretation are sufficient to com-
pute the state space of themaximally permissive supervisor, they cause problemswhen trying
to compute supervisor FSMs from the abstraction: if an abstract supervisor disables one of
the controllable transitions at a particular state while leaving another transition with the same
event enabled, it is not immediately clear how to interpret this as a control decision for the
original system. Mohajerani et al. (2014) solve this problem with event renaming and distin-
guishers. Any nondeterministic abstraction is converted to a deterministic FSM using new
distinct events whenever more than one transition with the same event is enabled in a state. At
the same time, a distinguisher is constructed from the deterministic FSM before abstraction
as an additional supervisor component to determine which of the newly introduced events
are enabled based on the unabstracted state. In this way, it is ensured that all abstractions
are deterministic and supervisors can be computed. A disadvantage of this approach is that,
while the number of states decreases with abstraction, the number of events may increase
exponentially.

Mohajerani et al. (2011) show that synthesis observation equivalence is weaker than the
projection-based abstractions described in Section 5.4, in the sense that every abstraction that
can be described by a projection with the observer and local control consistency properties
can also be described as a synthesis observation equivalent abstraction. On the other hand,
it is clear that (weak) synthesis observation equivalence is stronger than weak bisimulation:
particularly the condition for controllable events is restrictive and reduces the abstraction
potential compared to what is possible in compositional nonblocking verification.

Mohajerani et al. (2012c) consider possibilities for removing transitions while preserv-
ing relations like weak synthesis observation equivalence. While the conditions to preserve
synthesis results are more complicated than for weak bisimulation, it is still possible to
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remove several transitions. This reduces the memory requirements for large state machines
and enables abstractions that are not immediately applicable otherwise. On the other hand,
transition removal makes it even more difficult to link the remaining transitions of an abstract
FSM to transitions and events of the original system, causing more problems when construct-
ing supervisorFSMs.Therefore, transition removal is currently only used in the compositional
synthesis of Mohajerani et al. (2017), where only the state space of the maximally permissive
supervisor is computed.

To summarise, the compositional synthesismethods ofMohajerani et al. (2014) andMoha-
jerani et al. (2017) produce maximally permissive nonblocking supervisors. Both methods
use controllability-preserving hiding, halfway synthesis, and weak synthesis observation
equivalence abstraction. Mohajerani et al. (2014) retain event names after hiding and use
renaming to ensure that all abstractions are deterministic, making it possible to produce a
modular supervisor in the form of several composed FSMs. Mohajerani et al. (2017) fully
hide local events, allow nondeterministic abstractions, and perform transition removal as an
additional abstraction. This method works with simpler and possibly smaller abstract FSMs,
while its supervisor is returned in the form of a control map without attempting to provide
an FSM representation.

6 Conclusions

This survey gives an overview of compositional algorithms in supervisory control. Compo-
sitional algorithms operate by simplifying individual components before considering them
in the context of a large system, in an attempt to reduce the global state space and mitigate
state-space explosion. How exactly components can be simplified depends on the specific
type of verification or synthesis task at hand. The survey describes and compares a variety
of algorithms for compositional verification and synthesis from the recent literature.

Compositional algorithms have been used successfully for many real-life applications,
where it would otherwise not have been possible to verify or synthesise. As the size and
complexity of industrial applications continues to increase, research continues to develop new
algorithms that can handle even larger state spaces, for example by combining compositional
methods with other approaches.
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