
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

 

Towards electric bus system: planning, operating and 

evaluating 

 

 

   

 

 

Ziling Zeng 

 

 

 

 

 

 

 

 

 

 

 

Department of Architecture and Civil Engineering 

 

CHALMERS UNIVERSITY OF TECHNOLOGY 

 

Gothenburg, Sweden 2023 



 

 

Towards electric bus system: planning, operating and evaluating 

ZILING ZENG 

ISBN 978-91-7905-917-0 

 

 

© ZILING ZENG, 2023. 

 

 

Doctoral Dissertation Chalmers University of Technology 

Doktorsavhandlingar vid Chalmers tekniska högskola 

Ny serie nr 5383 

ISSN 0346-718X 

 

 

 

Department of Architecture and Civil Engineering 

Chalmers University of Technology 

SE-412 96 Gothenburg 

Sweden 

Telephone + 46 (0)31-772 1000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover: 

Designed and drawed by Ziling Zeng 

 

 

Chalmers digital print 

Gothenburg, Sweden 2023 



 

i 

 

Abstract 

The green transformation of public transportation is an indispensable way to 
achieve carbon neutrality. Governments and authorities are vigorously 
implementing electric bus procurement and charging infrastructure deployment 
programs. At this primary but urgent stage, how to reasonably plan the 
procurement of electric buses, how to arrange the operation of the 
heterogeneous fleet, and how to locate and scale the infrastructure are urgent 
issues to be solved. For a smooth transition to full electrification, this thesis aims 
to propose systematic guidance for the fleet and charging facilities, to ensure life-
cycle efficiency and energy conservation from the planning to the operational 
phase. 
 
One of the most important issues in the operational phase is the charge 
scheduling for electric buses, a new issue that is not present in the conventional 
transit system. How to take into account the charging location and time duration 
in bus scheduling and not cause additional load peaks to the grid is the first issue 
being addressed. A charging schedule optimization model is constructed for 
opportunity charging with battery wear and charging costs as optimization 
objectives. Besides, the uncertainty in energy consumption poses new challenges 
to daily operations. This thesis further specifies the daily charging schedules with 
the consideration of energy consumption uncertainty while safeguarding the 
punctuality of bus services. 
 
In the context of e-mobility systems, battery sizing, charging station deployment, 
and bus scheduling emerge as crucial factors. Traditionally these elements have 
been approached and organized separately with battery sizing and charging 
facility deployment termed planning phase problems and bus scheduling 
belonging to operational phase issues. However, the integrated optimization of 
the three problems has advantages in terms of life-cycle costs and emissions. 
Therefore, a consolidated optimization model is proposed to collaboratively 
optimize the three problems and a life-cycle costs analysis framework is 
developed to examine the performance of the system from both economic and 
environmental aspects.  
 
To improve the attractiveness and utilization of electric public transportation 
resources, two new solutions have been proposed in terms of charging strategy 
(vehicle-to-vehicle charging) and operational efficiency (mixed-flow transport). 
Vehicle-to-vehicle charging allows energy to be continuously transmitted along 
the road, reducing reliance on the accessibility and deployment of charging 
facilities. Mixed flow transport mode balances the directional travel demands and 
facilities the parcel delivery while ensuring the punctuality and safety of 
passenger transport.  
 

Keywords: bus electrification, bus scheduling, charging station deployment, 
battery sizing, charge scheduling  
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CHAPTER 1 Introduction 

1.1 Why electrification? 

Transportation is a fundamental aspect of modern society, providing essential 

mobility to people and goods alike. However, this sector accounts for a significant 

portion of total greenhouse gas emissions, with oil-derived fuels accounting for 

approximately 95% of transportation energy usage (ACEA, 2021; Liang et al., 

2019). This indicates that it is imperative to explore and adopt sustainable 

transportation alternatives. 

 

Transportation electrification has long been seen as an efficient and dependable 

method of reducing global warming and attaining carbon neutrality in the 

transportation industry. According to research by the Union of Concerned 

Scientists (Union of Concerned Scientists., 2019), a 40-foot electric bus (EB) 

produces just 347 g/mile of CO2, while a comparable diesel bus (DB)emits up to 

2,680 g/mile and a natural gas-powered bus releases 2,364 g/mile. Since more and 

more renewable resources can create power instead of burning fossil fuels, the usage 

of electric buses is lowering reliance on fossil fuels.  (Majumder et al., 2021). Besides, 

the exhaust from diesel buses contains a range of harmful pollutants, including 

particulate matter, nitrogen oxides, and sulfur dioxide, which contribute to respiratory 

and cardiovascular diseases (Chan et al., 2013). By contrast, EBs emit no tailpipe 

pollutants and are significantly quieter than diesel buses, making them an ideal 
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solution for reducing noise pollution in urban areas. This significant reduction in 

emissions makes EBs an attractive option for local governments and 

transportation companies looking to reduce their carbon footprint and meet 

environmental targets.  

In addition to reducing emissions, EBs also demonstrate greater energy efficiency 

compared to DBs. On a well-to-wheel basis, electric motors are more efficient at 

converting energy into motion than combustion engines, which lose energy 

through heat  (Chan et al., 2013; Ribau et al., 2014). Regarding the overall energy 

efficiency, researchers estimated the instantaneous energy consumption of EBs 

and DBs. By factoring in vehicle speed, acceleration/deceleration, and ridership 

fluctuation, they arrive at average fuel consumption for DBs of 43.5 ± 9.5 L/100 

km and average energy consumption for BEBs of 1.42 ±  0.32 kWh/100 km (Ma 

et al., 2021). Therefore, EBs are considered to be a viable alternative to 

traditional DBs, as they offer an efficient, cost-effective, and eco-friendly mode of 

transportation. 

The Conference of the Parties to the United Nations Framework Convention on 

Climate Change in December 2015 resulted in Paris Agreement among 195 

countries to limit global temperature increase to well below 2°C above pre-

industrial level (Paris Agreemen., 2015). Building on the agreement objective of 

completely fossil-free transport by 2050, governments have been advocating the 

large-scale procurement and implementation of electric buses.  

International Energy Agency reported that electric bus stock has expanded in 

major markets as shown in Figure 1.1 (IEA, 2021). Various worldwide programs 

and initiatives have been implemented to support the adoption of electric buses. 

• China - China continues to dominate the electric bus market accounting

for approximately 95% in 2021and has launched guidance in 2018 to

replace the entire bus fleet with renewable vehicles in key areas such as

provincial capitals by the end of 2020. The government has already

invested heavily in electric bus infrastructure, with thousands of charging
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stations and battery swapping facilities already in operation. According to 

the Shenzhen Municipal Transportation Commission, the city’s electric 

buses used 72.9% less energy in 2016 than diesel buses, which resulted in 

the replacement of 366,000 tons of coal with 345,000 tons of alternative 

fuels (Institute for Transportation and Development Policy., 2018). 

• Germany - Germany is in a leading position in Europe and has set a goal of 

having entire public transport powered by renewable energy sources by 

2050, and EBs are expected to play a major role in achieving this goal. 

Currently, the country has already made significant progress towards this 

goal, with 1,884 EBs in use. Germany has planned for longer-term 

purchases of around 8500 electrically powered buses before 2030. 

• United Kingdom - The UK government has announced a commitment to 

end the sale of new petrol and diesel petrol and diesel vehicles by 2030, 

and committed to phasing out petrol and diesel cars and vans by 2035. 

Besides, they launched several programs to support the deployment of 

EBs across the country, including a £30 million Clean Bus Technology 

Fund and the Ultra Low Emission Bus Scheme. 

• Norway - Norway has a target of phasing out sales of all new fossil-fuel 

vehicles by 2025, and EBs are expected to make up the majority of new 

bus purchases going forward. The government set a goal of obtaining a 

100 percent EV share of urban bus sales by 2025. The country has already 

made significant progress towards this goal, with its share of EB sales 

skyrocketing from 9% in 2021 to 44% in 2022. 

• France - France has set a goal of having 100% clean buses in dense areas 

by 2025 and 100% by 2029 in the suburbs. The government has launched 

several initiatives to support the adoption of EBs, including the Bus2025 

Programme, which aims to invest €1.8 billion in 4,700 buses.  

• Sweden - Sweden has the largest electric bus fleet in Northern Europe. 

More than 3% of the passenger car fleet and bus fleet is plug-in electric 

vehicles. The government has approved an investment of 11 million USD 

annually during 2018-2020, to support hardware and installation cost of 

electric vehicle charging stations. Västtrafik, a public transport service 
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agency, has formulated a target of electrifying 30 percent of the bus fleet 

by 2025 with a 100% EB fleet in Gothenburg city by 2030. 

• United States - The United States has set a goal of achieving 100% zero-

emission bus and truck sales by the year 2040. The federal government 

has launched several initiatives to support the adoption of EBs, including 

the $1.7 billion Low or No Emission Vehicle Program in 2023 and the 

Clean Cities Program. 

• India - India has set a target of having 30% of all wheels electrified by 

2030 and the National Electric Bus Program aims to deploy 50,000 

electric buses nationwide. The government has launched several 

initiatives to provide financial incentives for the purchase of EBs and 

other electric vehicles, including the e-Sawaari, India Electric Bus 

Coalition, and the National Electric Mobility Mission Plan 2020. 

• Canada - Canada has set a goal of having a fully electrified bus fleet by 

2040, with a target of having 5,000 EBs on the road by 2025 nationally. 

The government has launched several initiatives to support the adoption 

of EBs, including the $2.75 billion Zero-Emission Transit Fund. 

 

As illustrated in Figure 1.1, the global electric bus market is projected to double 

in size, reaching 1,200,000 units by 2025, with approximately 40% of new city 

buses registered in Europe expected to be battery electric (International Energy 

Agency, 2021). The European Investment Bank has launched a lending program 

to support the development of electric bus infrastructure. The program aims to 

provide up to €2 billion in financing for the deployment of EBs, charging 

infrastructure, and related projects. They also launched a Green Bus Fund, which 

provides financing for the purchase of electric and low-emission buses by public 

transport operators. These developments show that EBs are increasingly 

becoming a viable alternative to traditional diesel buses. 
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(a) EB market size development 2018 - 2025

(b) 2020 European countries’ market size breakdown

Figure 1.1: Global electric bus market size (from Zeng et al., 2022b)

1.2 Scope and objectives 

To ensure a stable transition from conventional buses to electric ones, systematic 

arrangements are needed from the planning to the operation phase. Compared 

with traditional fuel vehicles, the planning and operation of EBs is a more 

complex system engineering, and more parameters and indicators need to be 

considered. The vehicle characteristics of EBs (such as bus type, battery type, 

capacity, battery degradation, etc.), local climate, charging facilities, and charging 

plans will all affect the development of operating plans and operational benefits. 

Usually, when cities undertake an electric bus program, they can proceed in the 

order described in Figure 1.2. From start to end, all components have a common 

goal of reducing expenses. This allows for good operational performance with 

reduced budgetary pressure. During the planning stage, decision-makers are 

required to determine the type and size of the EB fleet to be purchased (Rogge et 

al., 2015), as well as the location and scale of charging facilities for energy 

replenishment (Zhang et al., 2018). Since electrification is now in its early stages, 

the timetable remains conventional. But when the era of mass or full-electric fleet 

comes, the timetable will also be redesigned in this phase. In the scheduling stage, 

the EB routing and dispatching are considered in detail (van Kooten Niekerk et 
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al., 2017), to fully utilize the available resources to cover the timetable trips. 

However, from the previous literature, it was found that studies on the 

scheduling of EB charging are lacking, especially for opportunity charging. This 

problem however is an important issue in the operational phase, determining 

whether the fleet size is sufficient to complete the scheduled trips. At the same 

time, the charging schedule of electric vehicles is related to the depth of 

discharge of the battery, which determines the cycle life, and therefore the 

maintenance and replacement of the battery. 

Start
Zero Emission Goals

Types and characteristics of buses 
Green alternatives
Battery capacity requirement
Paper III

(Re)Timetabling
Number of bus stops
Travel speed
Time and distance
Paper V

Infrastructure/emerging tech
Necessary charging facilities; deployment
Grid capacity
Paper III & IV 

Bus schedule and charging 
schedule
Trip allocation
Time and place of charging
Paper I & II & V

Crew schedule
Limited working hours
Demand for timetables

System Maintenance
Equipment Maintenance
Battery Degradation
Paper I & III

End
Evaluation  
Paper III

 

Figure 1.2: The roadmap of electric bus system planning 

Therefore, this thesis builds on existing research to further plan, optimize, and 

evaluate the bus system from the planning to operation stage and focuses on the 

integration of emerging technologies in the system. Bus electrification is explored 

in terms of planning considerations: battery capacity, and charging station 

deployment, as well as in terms of operational applications: charge scheduling, 

and bus scheduling. The aim is to address the challenges of transport 

electrification at the system level in the specific context of public transport. 

Further, the possible purchase and operating solutions are evaluated in a full life-

cycle cost analysis framework. In view of the charging characteristics of electric 

buses and the characteristics of passenger flow, the mixed transport model is 

proposed to further improve service efficiency and resource utilization to 

maximize the attractiveness of the green alternative.  
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The purpose of the thesis is to provide practical decision support to managers 

and to complement current research gaps. Specifically, this study is committed to 

answering the following research questions: 

• Modeling and Validation. As electric buses are gradually replacing 

conventional vehicles, how can we provide quality decision support for 

each of these issues in the transportation system?  

• Charging. As the biggest challenge for electric buses, how to schedule the 

charging events for the entire fleet while ensuring the feasibility of the 

plans and how to quantify the impact of different charging behavior on 

battery state-of-health? 

• Evaluation and improvement. How to verify the environmental and 

economic advantages and disadvantages of the plans developed in different 

stages? How to improve operational efficiency accordingly? 

The first aspect examined by the thesis is the description of the real-world 

problem and then the construction of an optimization model. They are expected 

to be in the form of mixed-integer linear programming, which can be easily 

solved using commercial solvers such as GAMS, CPLEX, and GRUBI. The models 

use total cost as the optimization objective, which usually includes several items 

such as ownership cost, maintenance cost, operation cost, and emission cost, 

where an emission tax is innovatively incorporated to calculate the whole life 

cycle emission expenses. 

The second aspect of this thesis is the implementation of fast charging and to 

provide insights into the benefits of en-route fast charging technologies, as well 

as the optimal charge scheduling for systems that perform without 

compromising service quality in real-world operational settings. The impact of 

time-of-use electricity pricing, battery aging, battery properties, and energy 

consumption uncertainties on the charging schedule is thoroughly examined. 

The third aspect focuses on evaluation and improvement. Based on a full life 

cycle perspective, we bring together both economic and environmental aspects 

to analyze the performance of the bus system in terms of vehicle acquisition, 

charging facility configuration, operation and maintenance, and emissions. 
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Regarding improvement, targeted practical solutions are proposed to facilitate 

charging opportunities and improve operational efficiency. 

1.3 Methods, limitations, and delimitations 

As mentioned earlier, the study design was descriptive and exploratory. The 

study was inspired by traditional systems theory approaches. Systems theory is 

an interdisciplinary form of systems research. A system is defined by boundaries 

(i.e., the delineation of the system) that represent more than the sum of its parts 

(subsystems). The goal of systems theory is to model the dynamics, constraints, 

and conditions of a system and to articulate principles (e.g., purposes, measures, 

methods, tools) that can be discerned and applied to other systems at each level 

of nesting and to achieve optimal equivalence across a wide range of domains 

(Ashby, 1961).  

Research questions are explored through a quantitative method. To better 

provide decision support, quantitative simulation results of an optimization 

model are presented, and the results are analyzed and compared to historical 

operation data. In this way, causal statements are generated about the causality 

between the various influencing factors and the objectives, statements that can 

even go beyond the specific problem under study to inspire the potential and 

future directions of bus electrification. The various components and 

methodological tools used to develop the model are explained and discussed in 

detail in Chapter 3. 

The analysis is limited to the specific sector chosen (bus transportation) and the 

charging technology chosen (opportunity charging). The term ‘electric buses’ in 

this release refers to battery-electric buses, not to hybrid models with both 

electric and internal combustion engines. The choice of charging power and 

location is for en-route fast charging, therefore slow charging in the depot is not 

the main focus. 

When discussing life-cycle emissions, carbon dioxide equivalent (CO2eq) is used 

as the unit of measurement. The full life cycle is simplified into four parts: Glider 
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powertrain, well-to-tank, and tank-to-wheel. In addition, some simplifications 

were made to build the optimization model. For example, the estimation of 

energy consumption is based on the average energy consumption of the type of 

bus and does not take into account temperature altitude, etc. 

The bus network data (spatial and temporal) retrieved from Västtrafik, a bus 

operator in Gothenburg, may include discrepancies in the timetable and route 

reporting. These discrepancies have been corrected, but some uncertainties still 

exist. In addition, in determining the location of in-station chargers, we only 

considered the entire station level without specifying which platform. 

1.4 State-of-the-art 

1.4.1 Infrastructure deployment 

The electric transit systems require comprehensive infrastructure planning since 

the bus networks have to be equipped with sufficient charging points to support 

daily operation (El-Taweel et al., 2020). Based on the way of charging electric 

buses, two technologies are emphasized: en-route charging and depot charging 

(He et al., 2020).  

Depot charging is the most time-consuming charging strategy for electric buses. 

When buses finish their scheduled routes or stay in the depot during the shift. 

This charging is usually overnight or sometimes within the dwell time with slow 

chargers (typically 40–120 kW). The full charge process for depot charging takes 

around 4 hours. From the grid network aspect, this strategy avoids peak hour 

charging, where the subscribed power and the maximum charging power 

delivered by the charger are rather stable. Some optimization algorithms 

(Houbbadi et al., 2019) can attribute an optimal charging power for each bus. 

Compared with depot charging, deploying charging piles along bus lines offers 

convenience and improves charging accessibility. A smaller battery package 

results in lighter bus weight, higher passenger capacity, and lower investment 

costs for battery ownership, but a higher price for infrastructure procurement. 



Towards electric bus system: planning, operating and evaluating 

10 

(Lin et al., 2019). Supported by ABB (Wang et al., 2017a), a power technology 

group, the bus can be recharged at en-route charging stations with a 15-second 

energy boost while passengers are boarding and alighting. Based on the fast 

charging concept, the applications assume that en-route charging has no 

significant impact on existing timetables (Miles and Potter, 2014).  

En-route charging can be realized through conductive (plug-in) and inductive 

(wireless) energy transfer. Inductive charging provides a lighter onboard battery 

that gets charged from magnetic fields, which requires an underground coil 

system and an onboard one. (Machura and Li, 2019) The charging power can 

reach 200 kW. However, due to the air gap between the coil system, the efficiency 

is relatively low (Lempidis et al., 2014). The maturity of the conductive charging 

technology enables a maximum of 600 kW charging power through either 

overhead or ground/underground infrastructures, which can be easily installed 

with little impact on the existing road networks. In this transitional phase, 

conductive fast-changing technology is widely used in European countries such 

as France, Germany, Italy, the UK, and Sweden, while only a few projects with 

inductive charging are presently being implemented (Nils Hooftman, 2020; 

Pamuła and Krawiec).  

Due to the relatively high cost of en-route chargers, arranging the location and 

quantity of charging piles has become a challenge in the procurement and 

planning process. The optimal planning policies must seek to take into 

consideration as much as possible availability, effectiveness, and efficiency. 

Availability in charging station deployment could be achieved by setting the 

constraint that energy consumption should not exceed battery capacity (Xie et al., 

2018). The optimal deployment of en-route charging stations fundamentally 

results from the efficient replenishment of real-time energy consumption. Thus, 

to ensure effectiveness, especially to extend the battery lifespan, the battery state 

of charge (SOC) must be kept within an optimal range (Zhang et al., 2020a) and 

be balanced with the charging station deployment plan (Xu and Meng, 2019). 

When the SOC is approaching the minimum level, a charging activity is required 

(Xie et al., 2020). Objectives are set to minimize the number of charging stations, 
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maximize the charging demand coverage and reduce delays stemming from bus 

charging (Sebastiani et al., 2016). Although several studies have investigated 

charging station deployment for electric buses, the majority adopted fixed bus 

routes and schedules as input (Kunith et al., 2017b). Thus, homogeneous fleets 

are usually considered (Xu et al., 2015), and the fleet size is either empirical 

(Xylia et al., 2017) or assumed (Bi et al., 2018). It creates a large gap between the 

optimization results at the planning level and the optimal practical operation 

goals. 

1.4.2 Battery sizing 

The battery sizing problem assigns a bus (battery) type to an electrified bus line, 

fundamentally based on energy consumption (Rogge et al., 2015). In a battery-

electric bus transit system, the charging stations and the onboard battery have 

the highest bearing on the ownership cost. For instance, the cost of the onboard 

battery accounts for at least 20% of the total expenses depending on the size of 

the battery (Nils Hooftman, 2019). If a homogenous bus fleet with the same 

battery capacity is considered to serve the transit network, it would inevitably 

lead to an oversizing and avoidable investment cost. Thus, the battery capacity of 

the bus is recommended to be determined individually for each bus line, thereby 

reducing required investments.   

To determine the battery capacity, an adequate description of energy 

consumption is crucial. The state-of-the-art has been focusing on estimating and 

modeling the energy consumption of buses under real-world traffic conditions or 

based on different scenario settings (Basso et al., 2019; De Cauwer et al., 2015; 

Vepsäläinen et al., 2019). They reported that factors such as bus weight, the 

topography of the transit network, and energy efficiency could influence line-

specific energy consumption and result in different charging demands. These 

charging demands that can be satisfied at charging stations depend on the 

dwelling time, the availability of charging infrastructures, and the battery state of 

charge (SOC) (Millner, 2010). Due to the interdependence of the energy supply 

through fast charging and battery capacity, a joint examination is necessary. Thus, 

some joint consideration has been taken of charging station deployment and 
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battery sizing to minimize the cost of electrification, which includes a trade-off 

between battery capacity and charging infrastructure. Their model determines 

the minimum number of charging stations and the respective locations, as well as 

the optimal battery capacity for each bus route in the bus network while 

ensuring adequate energy supply for daily operations. (De Filippo et al., 2014; 

Kunith et al., 2017b; Rogge et al., 2015). 

Another branch in terms of battery sizing is mainly focused on the co-

optimization of battery size and energy distribution for EBs. To simultaneously 

optimize battery size and energy management for EB, combined optimization 

loops where one loop is used to size the battery and the other implements energy 

distribution (Du et al., 2017; Murgovski et al., 2011). 

1.4.3 Bus scheduling 

The bus scheduling problem extends the traditional vehicle routing problem to 

the handling of deadheading trips connecting, where a trip refers to bus service 

in a timetable and is characterized by the arrival and departure time at origin, 

destination, and some intermediate stops (Wang et al., 2020b). Unlike in the VRP, 

the station sequence of each trip is fixed, while range limitation and recharging 

possibilities should be taken into account to guarantee the service.  

The methodologies of problem-solving differ according to different charging 

strategies as the required charging time varies. In the field of en-route charging, 

partial charging is allowed, and the capacity of the charging station is strictly 

limited. Li (2014) defined the bus scheduling problem with limited energy as the 

vehicle-scheduling problem with route constrain, where he considered charging 

stations with limited capacity and limited fleet size. A column-generation-based 

algorithm to solve the proposed optimization problem. van Kooten Niekerk et al. 

(2017) proposed a mathematical optimization model to address the homogenous 

fleet scheduling problems, with consideration of both linear and non-linear 

charging time. A column generation algorithm is proposed to solve the problem. 

Tang et al. (2019) developed the dynamic scheduling strategies of electric buses 

considering battery range limitation and the recharging plans of vehicles to deal 
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with the problem brought by the stochasticity of urban traffic conditions. A 

branch-and-price framework is extended to effectively solve the proposed model. 

Wen et al. (2016) proposed a mixed-integer programming formulation of 

homogeneous electric vehicle fleet scheduling and developed an adaptive large 

neighborhood search method heuristic to solve the problem. A post-optimization 

phase is implemented to further improve the solution. Besides, the simulation 

method is widely used for bus scheduling based on operational data to acquire an 

adequate number of electric buses and to ensure the bus right on time (Teoh et 

al., 2018).  

For depot charging, the deadhead trip between terminals and depots and the 

relatively high charging time should be carefully considered. Rogge et al. (2018) 

proposed a mixed-integer-linear programming method with heuristic and 

metaheuristic solving algorithms. They reported that a lightweight bus offers a 

more energy-efficient mode of transportation, although the deadheading mileage 

increases due to the frequency of charging. A heterogeneous fleet can offer 5% 

extra energy savings. Ke et al. (2016) developed a framework to simulate the 

operation and battery charging schedule of electric buses in Penghu to minimize 

the costs of an electric bus system including the expenses of EBs, batteries, 

chargers, and electricity. The genetic algorithm was used as an optimization tool. 

some recent works integrate depot charging and bus scheduling (An, 2020; Li et 

al., 2021; Rogge et al., 2018). Rogge et al. (2018) are the first to consider mixed-

fleet scheduling in depot charging optimization, while some practical factors are 

not mentioned, such as battery type allocation, battery SOC management, and life 

cycle emissions. Li et al. (2021) followed up by considering charging scheduling 

and passenger demand uncertainty. An (2020) focused on the charging station 

coverage to support the daily operation with the minimized bus fleet.  

1.4.4 Charge scheduling 

The electric bus charge scheduling (EBCS) problem focuses on scheduling the EB 

charging events in time and space based on their access to different charging 

alternatives Since the EBCS problem is still in a novel stage and the number of 

studies in the literature is small, this section illustrates the approaches to solve 
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the charging planning problem from different perspectives and summarizes their 

drawbacks. 

Considering the EBCS in the centralized depot, Gao et al. (2018) planned to 

generate the lowest cost charging scheme for an EB fleet considering time-of-use 

(TOU) electricity price. An integer programming model was presented and was 

solved by a Genetic Algorithm Integer Programming Toolbox. Ke et al. (2016) 

simulate the battery charging schedule with both daytime and night-time 

charging alternatives. A genetic algorithm is introduced to jointly optimize the 

charging time and size of the bus fleet. These two studies overlooked the impact 

of EB charging demand on the grid, which may result in overloading the 

distribution transformer. Thus, Arif et al. (2020) proposed a mixed-integer linear 

programming model for depot charge schedule under a feed-in-tariff scheme to 

reduce the overloading on the low voltage feeder while maximizing the profit of 

the depot operator. The premise that the depot charging strategy can solve the 

mileage anxiety is that the bus is equipped with a sufficiently large battery pack. 

However, the battery still remains a significant cost component of EB, and this 

strategy would result in over-budgeted bus procurement.  

The emerging technology of en-route fast charging provides promising potential 

to replenish the energy consumed during bus dwell time. Buses charging on the 

road usually benefit from this frequent replenishment and are equipped with 

smaller batteries to achieve lighter weight and higher efficiency (Aamodt et al., 

2021). However, the en-route charging demand may overlap with the electricity 

demand peak, which results in expensive energy costs and pressures on the grid. 

Without an effective strategy to address the TOU rate and the impact on the grid, 

the advantages and reliability of EBs may be compromised. Therefore, the issue 

of charge scheduling for EBs has raised interesting challenges. Recent studies 

approached the problem through mathematical models of simulation methods.  

Three related studies are in the context of mathematical optimization of en-route 

charge scheduling. Abdelwahed et al. (2020) modeled terminal station charging 

schedules for EBs. Two mixed-integer programming formulations are 

constructed based on discrete-time and discrete-event with minimized charging 
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costs. The case study assumed that any arriving EB finds a free charging slot to 

avoid conflict. The proposed models were solved by a Cplex solver. The impact 

on the grid network is not considered in their models. Yang et al. (2018) explored 

an optimal charging scheme for wirelessly charged bus fleet on one route. The 

model innovatively considers two en-route charging alternatives: charging at bus 

stops and terminals. They introduced a peak-to-average ratio to reflect the 

impact on the grid. The ‘Day-ahead RWED’ and ‘Optimal Actual CS’ algorithms are 

presented for problem-solving without considering route interlining. Regarding 

the simulation method, Wang et al. (2020a) designed a price-aware terminal 

charging scheduling problem based on the Markov Decision Process. The model 

aims to maximize collected passenger fares while minimizing the charging costs. 

A full charging policy is adopted in the model. A large-scale simulation in 

Shenzhen City was conducted based on a policy iteration algorithm. Chen and 

Liang (2020) described the EB charging event as a Simi-Markov decision process 

without transition probability consideration. As in Yang et al. (2018), charging at 

bus stops and terminals are both available when considering a single route. The 

average reward reinforcement learning method is introduced for problem-

solving. Qin et al. (2016) formulated an en-route charging strategy according to 

the battery SOC threshold based on the full charging policy. The numerical 

analyses explored the impact of different SOC charging thresholds on the cost of 

electricity and demand charges. They believe that charging the battery with a 

SOC of 60–64% is the most economical strategy and has the least impact on the 

grid. 

In addition, charge scheduling is also applicable to dedicated charging stations 

around terminals. Zhou et al. (2020) constructed a Bi-level programming model 

for collaborative bus fleet and charge scheduling. The charging event is 

connected to the terminals through a dead-head trip. The TOU price policy is 

used to determine the charging slot. The charge scheduling problem was solved 

by a greedy dynamic selection strategy based on the multi-stage decision. 

However, this model does not take into account the conflicts of charging events 

caused by route interlining. Wang et al. (2017b) presented an optimization 

model for EB charge schedules. They focused on allocating buses to chargers at 
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transit centers shared by several routes. The method aims at minimizing the total 

operational cost consisting of dead-head travel cost, charging price, and charging 

waiting cost. In their mixed-integer linear model, the charging duration is 

assumed to be fixed.  

Recent studies also have approached the charge scheduling problem in an 

infrastructure deployment context. Sebastiani et al. (2016) proposed a 

simulation optimization method to minimize the number of on-route chargers 

and the average extra stop time caused by charging.  They assumed that if the 

remaining energy plus the energy consumption within passenger boarding is 

insufficient to reach the next station, extra stop time is required. NSGA-II 

algorithm is introduced to solve the bi-objective problem. For joint consideration 

of charging station locating and battery sizing, Kunith et al. (2017a) described the 

problem as a capacitated set covering problem. They assumed that the bus 

charging time equals the dwell time. The influence of charging power, climate, 

and changing operating conditions are assessed. Besides, Liu et al. (2018b) 

developed a mixed-integer linear program to solve the charging station 

deployment problem. They assumed that a fast charger could be installed at bus 

stops and terminals, and the charging time equals bus dwell time. All these 

studies greatly simplify the charging behavior and do not take into account the 

interactions in practice, while ignoring the impact of the charging strategy on the 

battery. 

1.5 Thesis structure 

This thesis is based on five papers. Following the introductory chapter, the next 

chapter presents existing and emerging charging technologies. The advantages 

and disadvantages of each method are also presented. In Chapter 3, the 

description, formulation, and implementation of the EB charge scheduling 

problem are presented. The optimization model for charging plan generation is 

discussed in detail and related to the literature in the field. The first sub-topic 

focuses on static charge scheduling with battery degradation as one of the main 

optimization objectives. The second part pays attention to the uncertainties in 
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real-world option and generate a robust optimization model accordingly. In 

Chapter 4, a joint optimization model is constructed to deal with battery sizing, 

charging station deployment, and bus scheduling. A life-cycle cost analysis 

framework is presented to evaluate the system performance in both economic 

and environmental aspects. Chapter 5 introduces three emerging charging 

solutions to provide more flexible charging alternatives to electric bus systems. 

Chapter 6 deals with operational efficiency improvement. An innovative mixed-

flow transport mode is introduced to increase the utilization of transport 

resources. The thesis closes with Chapter 7, with main conclusions, result 

impacts and suggestions for future research on the topic.  

The order of the appended papers moves from a presentation of the emerging 

charging technologies to the systematic optimization of charge scheduling for bus 

electrification, with a focus on en-route fast charging (PAPER I & II). With this 

knowledge, the evaluation of the transportation system is conducted on a life 

cycle cost analysis framework (PAPER III). To further increase the attractivity of 

the green alternatives, vehicle-to-vehicle charging technologies are discussed to 

better support the operation in the near future (PAPER IV) and a mixed-flow 

transport mode is presented to improve the utilization of transport resources 

(PAPER V). These papers address the issues faced by electrification from the 

planning phase to the assessment stage covering environmental aspects (energy 

efficiency, lifecycle emissions) and financial aspects (ownership costs, 

operational costs, maintenance costs).   
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CHAPTER 2 Charging technologies 

Although there are reasons to be positive about the potential formation of an EB 

market, significant difficulties remain in the way of large-scale EB adoption. One 

possible key impediment to the widespread deployment of EBs is their short 

driving range. Although the advances in battery technology have theoretically 

increased the driving range similar to a full-tanked DB, yet, several factors such 

as temperature, humidity, and battery degradation impact real EB battery 

capacity(Pelletier et al., 2017), and capacity will be considerably decreased under 

particular harsh weather situations. As a result, EBs must be recharged on a 

regular basis to ensure the quality of operating service, and more EBs are 

required to accomplish a given number of trips than DBs. 

Moreover, because an EB’s driving range is constrained, a particular charging 

strategy is needed to maintain the BEB operational during the day. In order to 

offer dependable and effective charging behaviour, this section provides an 

overview of the current charging principles and chargers. 

EBs exclusively employ off-board chargers. Because they are not constrained by 

restrictions on size and weight, these chargers may provide higher charging 

power levels. Regular charging is required for EBs’ on-board battery. A BEB has a 

charging interface that can be linked to the necessary charging infrastructure in 

order to use grid power to charge the battery. 
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• Pantograph charging: a frequent method of charging EBs is to use a 

pantograph, which automatically connects the bus to the charging 

infrastructure. There are now two methods for making this contact. When 

charging is required, the pantograph can be put on top of the EB’s roof and 

elevated, or it can be mounted on the charging infrastructure and moved 

downwards. The latter is preferable since it requires fewer pantographs and 

adds less weight to the BEB. Additionally, the pantograph is not subjected to 

bus vibrations. 

• Plug-in charging: EBs can also be charged by plugging in a connection from 

the charging infrastructure. Currently, the connector must be manually 

plugged in, making this form of charging interface less appealing for big BEB 

fleets. But, in the near future, this procedure will be automated by 

robotization. 

• Ground-based charging: Certain EBs are charged via a ground-based 

charging mechanism. This can be accomplished in two ways. A current 

collector, similar to pantograph charging, can be dropped from the bus to 

make contact with a conductive device embedded in the road surface. 

Another method is to use an electromagnetic field to transfer charging power 

wirelessly between a transmitter coil on the road surface and a receiving coil 

on the BEB. The primary benefit of wireless charging is that it allows EBs to 

charge while in motion. 

Depot charging, opportunity charging, and dynamic wireless charging are the 

three most promising charging approaches as shown in Figure 2.1. Depending on 

the features and specifications of the bus network in cities, each of them fills a 

distinct demand and has pros and cons.  
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Figure 2.1: Illustration of different charging technologies 

2.1 Depot charging 

The name of depot charging is self-explanatory. Operators of electric buses 

charge their fleets overnight at the hub or depot where they park. This strategy 

implies that the vehicle does only one shift per day and stays idle all night (or for 

a longer period at the depot), and that the battery is large enough to sustain the 

daily needed range when completely charged. 

Depot charging is typically plug-in charging with wall cabinets or mobile 

chargers with an output of 30-50 kW. The full charge process for depot charging 

takes around 4 hours.  It is rare (or there is no real need) to go for a higher 

capacity (>100 kW) or via induction charging at a depot. That is why overnight 

charging is often referred as ‘slow charging’. However, if necessary, fast chargers 

can also be adapted for overnight charging, sharing the same infrastructures as 

station charging technology.  

Centralized and decentralized depot charging scheduling research raised 

recently for small, medium, or large-scale EBs considering different constraints, 

such as battery aging cost, grid distribution, and battery electro-thermal(Schoch 

et al., 2018). A centralized charging process is managed by a central controller, 
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while decentralized charging process is operated by individual providers 

considering personal charging profiles. Figure 2.2 illustrates a centralized 

charging system, where the AC/DC module converts input alternating current 

power into adjustable output direct current power, DC/DC module converts a 

source of direct current from a high voltage level to a low level which is suitable 

for an electric bus. These two modules are monitored by the center controller 

maintaining the conversion infrastructure and communicating with the electric 

buses to perform the charging plan according to a standardized communication 

protocol.   

Central Control System
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Bidirectional 
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Figure 2.2 Centralized Depot Charging System (from Zeng et al., 2020) 

Overnight charging is also perceived as the most cost-effective option for 

medium and heavy-duty vehicles which requires the least amount of 

infrastructure, as no other equipment is needed except the depot charger. With 

the long idle duration, buses can use less expensive, slower chargers, allowing 

fleet managers to cut their initial capital commitment. Furthermore, with 

overnight charging, electric fleets can benefit from cheaper electricity at night.  

But a large battery capacity is highly concerned, since electric buses need to 

serve a scheduled route during the daytime without being recharged. However, 

in some daily operational cases, it is difficult to complete the entire trip without 

charging. In order to increase the battery capacity, turning bigger and heavier is 

inevitable, which accordingly increases the overall consumption and reduces the 
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maximum payload of the bus. Although the cost of infrastructure is the least, a 

large expenditure is required for large capacity batteries. 

In terms of operational optimization, the depot charging strategy has little impact 

on the current electric bus schedule, and the dominant role will continue to be 

battery size. Because buses should arrive at the depot after completing their 

entire trip, there will be no delays in the scheduling process due to charging. 

Regarding the charging events, there are directions for operators to improve, for 

example, by proposing ways to manage night-time charging of the electric bus 

fleet and determining the best charging strategy to minimize battery aging, 

charging costs, or maintenance costs (Houbbadi et al., 2019).  

From the grid aspect, this strategy avoids peak hour charging, where the 

subscribed power and the maximum charging power delivered by the charger 

are rather stable. Some optimization algorithms (Houbbadi et al., 2019) can 

therefore attribute an optimal charging power for each bus and each time slot.  

2.2 Opportunity charging 

Opportunity charging refers to bus charging at a certain station within its 

operational time. Opportunity charging can give EBs with charging chances while 

on the road, partially substitute centralized charging, and help reduce deadhead 

miles and fleet size buffer caused by empty driving. It covers two main charging 

strategies: terminal charging and en-route charging. 

Terminal charging 

Terminal charging is a charging method with chargers placed in bus terminals. 

Buses use mainly the regular turn-over time to replenish the energy. It usually 

implements conductive charging, which typically fully charges EBs in minutes. 

Conductive charging for terminals entails installing pantographs off-board and 

connecting the vehicle to a particular energy source. Off-board chargers, such as 

pantographs located on poles, promise cheaper infrastructure costs because a 

single charger may charge numerous buses, lowering vehicle weight. Conductive 
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chargers capable of transmitting up to 600 kW are now on the market (ABB EV 

Charging Infrastructure 2015). 

Terminal charging, as opposed to depot charging, is typically done during the 

daytime and is used to charge one bus several times throughout a day. There are 

no common charging units for different lines because it is located at the end of 

the line. As a result, the utilization rate is directly proportional to the battery 

capacity, battery management strategy, departure interval, and route length. 

Furthermore, the charging plan based on terminal charging is a strong linkage 

between the electric bus scheduling and the charging infrastructure planning. 

The battery capacity of the bus should be sufficient to allow several missed 

charges, to avoid the bus running out of energy due to external factors such as 

congestion, emergency or dense charging request. Although vehicle purchase 

costs can be lowered since the required battery capacity is significantly lower 

than depot charging, the high cost of fast chargers will increase station 

infrastructure expenditures. 

When utilizing terminal charging, transit authorities must optimize both the 

battery capacity and the recharging procedure for EBs to ensure the economy 

and effectiveness of deployed EBs and charging facilities. The combination of 

battery capacity and charging approach should first ensure that EBs function 

normally. As a result, total capital and operational expenditures should be kept to 

a minimum. A big on-board battery, as previously discussed, can greatly raise the 

cost of EBs. EBs can carry a modest battery thanks to fast charging technology, 

which can regularly recharge EBs during their customary terminal layovers. But 

terminal fast charging stations incur significant capital expenses. For instance, a 

500-kW on-route overhead rapid charging station costs round $500,000 to install. 

Also, en-route fast charging may result in high electricity power demand charges 

as well as increased energy expenditures due to charging.  

As for the charge scheduling, one of the main aspects that need to be considered 

in this strategy is the impact that charging events may have on the bus schedule.  

Such as, the charging time should not exceed the next trip’s departure time to 

avoid trip delay. For terminal charge scheduling, some solving algorithms such as 
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genetic algorithm(Lee et al., 2013), dynamic programming (Lan et al., 2013), 

exponential smoothing model (Aabrandt et al., 2012) have been widely 

implemented. 

En-route charging 

En-route charging strategy provides EBs with prompt energy replenishment at 

several intermediate stations during passengers’ boarding and alighting times. 

En-route charging incorporates fast charging activities within service trips. This 

is in contrast to the traditional charging time, which is at night (depot charging), 

end of the service trip (terminal charging). By increasing reliance on external 

charging infrastructure, en-route charging lessens the requirement for a big on-

board battery. In general, increasing battery capacity increases EB weights 

greatly, resulting in higher energy consumption. Weiss et al. (2020) discovered 

that a 10 kWh battery upgrade will acquire a 15 kg mass of EB, resulting in an 

additional energy consumption of 0.7-1.0 kWh/100 km. Besides, this charging 

method efficiently reduces the required driving range from the daily driving 

distance to the distances between two planned charging operations. The next 

recharging opportunity is determined by the extent and availability of charging 

infrastructure, the type of equipment required on the vehicle, and the pattern of 

vehicle usage (in time and within the transport network). 

Two main problems in this system are the deployment of chargers and the 

charge scheduling for electric buses. Both operations are complicated due to 

numerous influential aspects, for example, route characteristics, vehicles used, 

available places, and grid accessibility.  

For charging infrastructure deployment, the major question is how to plan the 

location and type of charging facilities along the routes to meet the ever-growing 

electric bus demand in a systematic way, and how to couple the traffic and power 

gird networks.  A pantograph fast charger installed at a bus stop also has 

substantially higher applicable purchasing, installation, and maintenance costs 

than a standard plug-in charger installed at a depot or charging station. As a 

result, it’s critical to accomplish the best possible deployment of fast chargers at 
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a chosen few bus stops, rather than all of them, in order to meet the demand for 

charging while minimizing capital expenditure or preserving financial viability.  

When design charging plan, the charging cost, charging facility availability, 

energy density, power density, and battery lifetime should be considered [21]. 

En-route fast chargers usually have a higher charging power which will bring 

tremendous pressure on the grid, and it may be overloaded, especially for the 

peak-hour period when the EB charging demand is high. For example, ABB EV 

Charging Infrastructure (2015), which is a pioneering technology manufacturer 

in the industry, provided 20 single-deck EBs and four 450 kW faster chargers. A 

450 kW rapid charger will provide a load that is similar to the load produced by 

410 1.5 horsepower air conditioners working simultaneously. The bus transit 

operators shall make sure the total charging power cannot exceed the maximum 

charger power in order to lessen the burden of EB charging on the grid and 

maintain a stable environment of the power transmission system. 

Additionally, the inevitably occurring battery aging also has an impact on how 

efficiently electric buses operate. For instance, reduced capacity results in 

decreased bus mileage and necessitates battery replacement when the capacity 

reaches the battery’s end of life. Electric bus batteries typically deteriorate over 

time in two ways. One is the cyclic capacity loss, which is based on the quantity of 

charge-discharge cycles for batteries and is primarily brought on by the 

expansion of the internal solid electrolyte interphase layer. The other is the 

calendar capacity loss, which is related to self-discharge and side reactions of the 

battery during the energy storage process. Uncontrolled charging and 

discharging can have a substantial influence on battery aging, necessitate more 

frequent battery replacements, and raise expenditures without proper planning. 

State of charge (SOC) is a measurement of the level of charge of the battery. A 

fully loaded battery has a SOC of 100 percent, while a fully discharged battery has 

0 percent. To generate an efficient charging plan, the difference between the 

allowed maximal and the minimal SOC should be kept at a certain optimal level 

as shown in Figure 2.3. 
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Figure 2.3: Battery State of Charge (SOC) (from Zeng et al., 2020) 

In the en-route charging strategy, EB will be charged according to the current 

SOC. A frequent charging plan allows smaller batteries while higher power is 

needed along the route  

To sum up, the main benefit of en-route charging is the possibility of partially 

charging the bus without any interruption during the daily operation. An optimal 

charging plan will maintain the battery in a certain SOC without letting the 

batteries deplete completely. Therefore, with this charging strategy, electric bus 

operation resembles the current DB operation, and some existing operational 

strategies can be easily adapted to manage the electric bus fleet. In general, the 

disadvantages of en-route charging include reliance on charging infrastructure 

availability and changes to electrical infrastructure to accommodate rapid 

charging, quicker battery deterioration, and worse overall energy efficiency. 

2.3 Wireless charging 

Wireless charging is a charging method using wireless power transfer technology. 

The first development of wireless charging can be traced back to the year 1905 

when Nicola Tesla presented near-field coupling of two loop resonators based on 

magnetic resonance (Tesla, 1905). Wireless electric energy transmission is 

possible between two coil plates that are implanted in the pavement and loaded 

on the bottom of the vehicle, respectively and can provide powers of up to 300 

kW with a charging efficiency of more than 80%. In general, wireless charging 
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can be categorized as either static or dynamic. Operators may use stationary 

wireless charging equipment at a bus stop, parking lot, or garage. With dynamic 

charging, a variety of sets of embedded coils and accessories allow the vehicle to 

be charged while it is moving.  

Regarding the environmental aspects, comparatively to plug-in charging, the 

usage-phase power consumption may be lowered, and there may be a reduction 

in energy use and emissions during battery manufacture. However, extensive 

wireless charging infrastructure may result in increased environmental issues.  

As for the investment, the cost of wireless charging infrastructure is much higher 

than conductive chargers. A reasonable cost for an inductive charger with a 

capacity to transfer up to 200 kW can be estimated at 3 million SEK, including an 

onboard pick-up system and power electronics. The corresponding cost for a 

300-kW conductive charger, according to the same reference, is estimated to be 

1.5 million SEK. Besides, inductive wireless charging systems require ferrite 

cores for magnetic flux guidance and shielding, which are bulky and costly. Also, 

to control the minimum loss in the ferrites, the charging system is kept under 

100 kHz. In this situation, larger coils are needed, and lower power transfer 

densities occur. The high cost and low power transfer density are particularly 

problematic for implementing dynamic wireless charging, especially for dynamic 

charging, as the charger should be equipped with a high-power capability to 

deliver enough energy to the electric bus during its very brief time passing over a 

charging coil. Therefore, this charging strategy has not yet been commercially 

implemented. For future development, it is sense to examine the tradeoffs and 

provide guidance for the future design of wireless charging bus systems. 

2.4 Summary 

There are mainly two concepts for the charging of batteries, standard and fast 

charging. Standard charging (typically 40 to 120 kW) is adapted mainly in the 

bus depot overnight and during longer brakes with moderate charging power. 

This causes a high battery capacity and a high weight of the bus system. Fast 

charging at bus stops (up to 600 kW), at terminals (usually between 150 to 500 
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kW) or beneath the road (up to 300 kW) can reduce the battery capacity and 

more importantly reduce the weight significantly.  

To compare these charging methods from an economic standpoint, Chen et al. 

(2018) examined the cost-competitiveness of stationary charging (at depots) and 

dynamic charging in the EB operation (wireless charging). They stated that 

dynamic charging was anticipated to result in greater operational and 

maintenance expenses.  Based on a life-cycle cost analysis framework, Bi et al. 

(2017) concluded that a wireless charger deployment can reduce the size of the 

battery and the cost of the battery and use-phase energy for an all-electric bus 

system. In contrast, the infrastructure for wireless charging adds additional 

expenses for the purchase and installation of chargers. The price of the battery 

unit, the effectiveness of wireless charging, and the purchase, installation, and 

maintenance costs of wireless chargers all have a significant role in the life-cycle 

cost differences between plug-in charging and wireless charging. Additionally, 

Lajunen and Lipman (2016) showed that opportunity charging was more 

economical than overnight charging for EB operation.   

To sum up, wireless charging requires the costliest infrastructure and has the 

lowest power transfer density while it enjoys the least requirement of battery 

capacity and the highest guarantee of battery health. However, recently wireless 

charging is yet to become commercially viable, although a few experimental 

systems have been demonstrated.  

Similar to wireless charging, en-route charging also lowers the EB purchase cost, 

preserves operational capability (i.e., driving range and payload capacity), and 

does not disrupt the existing operation schedules and is widely commercialized. 

Therefore, the focus of our thesis is on the deployment of en-route charging in 

public transportation systems, the development of charging plans, and the 

synergy with other transit resources. 
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CHAPTER 3 En-route Charge 

scheduling 

3.1 On the role of battery degradation in charge 
scheduling 

3.1.1 Motivation 

Although in previous work, the charge scheduling models have meaningful 

results and important contributions, they all have a key weakness, the neglect of 

battery aging. This ignorance leaves completely unaccounted for the huge 

operational cost of battery replacement, which can be of the same order of 

magnitude as, or even many times, the cost of charging (Pelletier et al., 2018). But 

among other EB operation optimization issues, the consideration of battery aging 

is showing an increasingly important trend (Du et al., 2018; Zhang et al., 2021; 

Zhang et al., 2020b). 

Paper I aims to model and analyze charging schedules of EBs that have access to 

chargers at bus stops and terminals in a route interlining context. For operational 

decision support, the schedule is supposed to determine when to charge, where 

to charge, and how long to charge. With this goal in mind, a mixed-integer linear 

programming method is proposed to optimize EB charging schedules with 
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minimized energy cost and battery wear costs. The model explicitly accounts for 

the TOU rate, peak-to-average ratio, and battery degradation. 

3.1.2 Problem description 

The aim of this section is to introduce what we refer to as the electric bus charge 

scheduling problem (EB-CSP). The description of the parameters and variables 

discussed in this section can refer to Appendix A. 

The EB-CSP is designed to solve the charge scheduling problem for a bus fleet 

which is defined in the set  𝑁 = {1, … , 𝑛, … , |𝑁|} consisting of |𝑁| EBs, in which 

bus 𝑛 is equipped with a 𝑄𝑛 kWh battery. According to the bus schedule, bus 𝑛 is 

required to visit a total of 𝐿𝑛 charging stations, where  𝑚𝑛𝑙   denotes the station ID 

of the 𝑙-th stop of bus 𝑛’s schedule, 𝑙 = 1, … , 𝐿𝑛 . The arrival time at the 𝑙-th stop 

of bus 𝑛, denoted by 𝑎𝑛𝑙 , and the departure time, denoted by 𝑏𝑛𝑙 , are predefined 

parameters. The time resolution in the proposed model is 1 minute. Set 𝑇𝑛𝑙 =

{𝑎𝑛𝑙 , 𝑎𝑛𝑙 + 1, … , 𝑏𝑛𝑙 − 1} is introduced to enumerate the available charging time 

during the bus dwell time. We assume that the bus will not charge at the first 

station, thus  𝑎𝑛1 = 𝑏𝑛1.  

Usually, bus stop 𝑚 is equipped with one charging pile with a charging power of 

𝑃𝑚 kW, 𝑘𝑚 = 1. For terminal stations, 𝑘𝑚 > 1. When all the charging piles are 

occupied, the newly arrived bus cannot be connected to the grid. The specific 

charging start time will be determined by the charging end time of the buses 

occupying the charging piles. 

As the scheduling strategy is designed for en-route fast charging, we assume that 

the battery is charged at constant current under a linear charging process where 

SOC rises linearly with time. The maximum energy that a bus can obtain in this 

phase is denoted as  𝐸𝑛
𝑚𝑎𝑥 . For the convenience of modeling, it is assumed that 

the initial energy and the maximum allowed energy for batteries are both 𝐸𝑛
𝑚𝑎𝑥 , 

for example, 90% of 𝑄𝑛 .  

We define a charge event as connecting a charger to a bus and disconnecting it 

later. The next section seeks to generate the optimal en-route charging schedules 
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in an EB network with minimized charging and battery wear costs while 

guaranteeing the PAPR of the grid within an acceptable range.  

3.1.3 Method 

The following mixed-integer linear programming formulation then represents 

the EB-CSP.   

      minimize  ∑ ∑ 𝑓𝑖𝑡 ⋅ Φ𝑖𝑡𝑖∈𝐼𝑡∈𝑇 + ∑ ∑ ∆𝑞𝑛 ⋅ 𝑣𝑙
𝑛

𝑙∈𝑅𝑛𝑛∈𝑁                        (1.1) 

The objective function minimizes the daily charging costs of the bus fleet and the 

wear cost. The first term corresponds to the charging costs, where we aggregate 

the energy recharged in the battery at time 𝑖 from group 𝑖 by introducing variable 

Φ𝑖𝑡 . Parameter 𝑓𝑖𝑡   denotes the energy price of group  𝑖 at time 𝑡. The second term 

in the objective function corresponds to the battery wear costs of the bus running 

on a predetermined schedule. The variable 𝑣𝑙
𝑛  decides the accumulated unit wear 

cost from the departure of (𝑙 − 1)-th station to the departure of 𝑙-th stations. The 

unit wear cost is closely related to the SOC value and will be explained later. 

Parameter ∆𝑞𝑛 indicates the quantity of energy transferred in the unit interval of 

SOC (e.g.,  ∆𝑆𝑂𝐶). 

       𝑠𝑜𝑐1
𝑛 =

𝐸𝑛
𝑚𝑎𝑥

𝑄𝑛
    𝑛 ∈ 𝑁  (1.2) 

Constraint (1.2) defines the initial battery SOC as 𝐸𝑛
𝑚𝑎𝑥 𝑄𝑛⁄  when the bus starts to 

serve the first station. It is assumed that only the linear charging behavior of the 

CC stage is considered, so the maximum energy 𝐸𝑛
𝑚𝑎𝑥  of this stage is introduced.  

  𝑒𝑙𝑡
𝑛 =

𝜂𝑚𝑛𝑙
𝑃𝑚𝑛𝑙

60
𝑥𝑙𝑡

𝑛                                    𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 , 𝑡 ∈ 𝑇𝑛𝑙 
(1.3) 

      𝑄𝑛 ⋅ 𝑠𝑜𝑐̅̅ ̅̅̅𝑙
𝑛 = 𝑄𝑛 ⋅ 𝑠𝑜𝑐𝑙

𝑛 + ∑ 𝑒𝑙𝑡
𝑛

𝑡∈𝑇𝑛𝑙

         𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 (1.4) 

  𝑄𝑛 ⋅ 𝑠𝑜𝑐𝑙+1
𝑛 = 𝑄𝑛 ⋅ 𝑠𝑜𝑐̅̅ ̅̅̅𝑙

𝑛 − 𝐹𝑛𝑙               𝑛 ∈ 𝑁, 𝑙 ∈ {1, … , 𝐿𝑛 − 1} (1.5) 

Constraint (1.3) depicts the energy retrieved from the station 𝑚𝑛𝑙  in unit time 

(e.g., from 𝑡 to 𝑡 + 1 ). Note that the energy recharged in the battery is linear with 
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respect to charging time during the constant current charging process. When the 

bus is connected to the charging pile, the decision variable 𝑥𝑙𝑡
𝑛  is set to 1; 

otherwise, it is 0.  Assume that the chargers installed in the same station are 

homogenous. Parameter 𝑃𝑚𝑛𝑙
 indicated the charging power of chargers at the 

station 𝑚𝑛𝑙 , 휂𝑚𝑛𝑙
 represents the charging efficiency of chargers at the station 𝑚𝑛𝑙 .   

Constraint (1.4) recurs the battery energy change from bus arrival to the next 

departure at  𝑙-th station. ∑ 𝑒𝑙𝑡
𝑛

𝑡∈𝑇𝑛𝑙
 specifies the battery energy increase when it 

is charged at 𝑙th station of bus 𝑛’s schedule.  

Constraint (1.5) describes the energy change from bus departure to the next 

arrival of bus 𝑛. We assume that the SOC only changes when the bus arrives at 

the next station instead of changing while driving. Therefore, the real-time 

energy consumption between stations is accumulated until reaching the next 

stop. The accumulative energy consumption 𝐹𝑛𝑙 between the 𝑙-th and (𝑙+1)-th 

stations is calculated as 𝐹𝑛𝑙  = 𝜌 ⋅ 휃𝑛𝑙 ⋅ 𝐷𝑛𝑙 . Parameter 휃𝑛𝑙  indicates the efficiency 

coefficient, which is inversely proportional to the road condition. Parameter 𝜌 

represents the primary energy consumption rate. 

  𝑠𝑜𝑐̅̅ ̅̅̅𝐿𝑛

𝑛 =  
𝐸𝑛

𝑚𝑎𝑥

𝑄𝑛
     𝑛 ∈ 𝑁 (1.6) 

The boundary condition of battery SOC before beginning the next day’s schedule 

is defined in Constraint (1.6). It shows that when bus 𝑛 arrives at the last station 

𝐿𝑛, a charge event is required to ensure that the energy level reaches 𝐸𝑛
𝑚𝑎𝑥 .  

  𝑄𝑛 ⋅ 𝑠𝑜𝑐𝑙
𝑛   ≥ 𝐸𝑛

𝑚𝑖𝑛       𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 (1.7) 

   𝑄𝑛 ⋅ 𝑠𝑜𝑐̅̅ ̅̅̅𝑙
𝑛   ≤ 𝐸𝑛

𝑚𝑎𝑥      𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 (1.8) 

Constraints (1.7) and (1.8) appropriately defined the upper and lower bound of 

battery SOC. They ensure that the energy would not exceed the maximum level 

after charging and is above the minimum value before charging. The parameter 

𝐸𝑛
𝑚𝑖𝑛  represents the minimum remaining energy allowed when not charging bus 

𝑛. This parameter determines the battery depth of discharge, which in turn 

determines the cycle life of the battery. 
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    ∑ ∑ 𝑥𝑙𝑡
𝑛𝐿𝑛

𝑙=1,𝑚𝑛𝑙=𝑚,𝑡∈𝑇𝑛𝑙𝑛∈𝑁 ≤ 𝑘𝑚     𝑚 ∈ 𝑀,  𝑡 ∈ 𝑇 (1.9) 

    𝑧𝑙𝑡
𝑛 ≥ 𝑥𝑙𝑡

𝑛 − 𝑥𝑙,𝑡−1
𝑛                              𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 , 𝑡 ∈ {𝑎𝑛𝑙 + 1, … , 𝑏𝑛𝑙 − 1} (1.10) 

    𝑧𝑙𝑎𝑛𝑙

𝑛 = 𝑥𝑙𝑎𝑛𝑙

𝑛                                         𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 (1.11) 

    ∑ 𝑧𝑙𝑡
𝑛

𝑡∈𝑇𝑛𝑙
≤ 1                                  𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 (1.12) 

    𝑥𝑙𝑡
𝑛 = {0,1}                                       𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 , 𝑡 ∈ 𝑇𝑛𝑙 (1.13) 

    𝑧𝑙𝑡
𝑛 = {0,1}                                       𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 , 𝑡 ∈ 𝑇𝑛𝑙  (1.14) 

Constraint (1.9) restricts that the sum of charging events carried out at the same 

time in the charging station 𝑚 should be less than the number of chargers 

installed in the charging station. Constraint (1.10) and Constraint (1.11) denote 

the start time of the charging event. If the bus is being charged at the current 

time point and has not been charged at the previous time point, the present time 

is considered the charging start time. Constraint (1.12) defines that at most, one 

charging event takes place between each arrival and departure to avoid the 

infeasible solution caused by constantly moving buses from one charger to 

another. Constraint (1.13) determines whether bus 𝑛 is being charged at station 

𝑚 on trip 𝑙 at time point 𝑡.  Constraint (1.14) indicates whether bus 𝑛 starts 

charging at station 𝑚 on trip 𝑙 at time point 𝑡. 

      Φ𝑖,𝑡 ≤
1

|𝐼||𝑇|
⋅ Ψ ⋅ Γ𝑚𝑎𝑥     𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (1.15) 

   Φ𝑖𝑡 = ∑ ∑ 𝑒𝑙𝑡
𝑛𝐿𝑛

𝑙=1,𝑚𝑛𝑙∈𝐺𝑖,𝑡∈𝑇𝑛𝑙𝑛∈𝑁        𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (1.16) 

Since Φ𝑖,𝑡 ≤ 𝑚𝑎𝑥{𝑖∈𝐼,𝑡∈𝑇}Φ𝑖,𝑡 , Constraint (1.15) introduces the maximum allowed 

peak-to-average ratio to restrict the load balance. Parameter Ψ indicates the total 

energy charged by the entire bus fleet. Variable Φ𝑖,𝑡  specifies the total charged 

energy of group 𝑖 at the time 𝑡, which is calculated in Constraint (1.16).  

To incorporate the unit wear cost in our model the decision variable 𝑣𝑙
𝑛  is then 

introduced to depict the cumulative unit wear cost between the departure of (𝑙 −



Towards electric bus system: planning, operating and evaluating 

36   

1)-th station and the departure of 𝑙-th station. Referring to (Han et al., 2014), 

𝑤𝑛(𝑆𝑂𝐶) can be defined. The accumulated unit wear cost can be formulated as 

follows: 

        𝑣𝑙
𝑛 = ∑ 𝑤𝑛(𝑆𝑂𝐶)

𝑠𝑜𝑐̅̅ ̅̅ ̅𝑙−1
𝑛 −∆𝑆𝑂𝐶

𝑆𝑂𝐶=𝑠𝑜𝑐𝑙
𝑛

+ ∑ 𝑤𝑛(𝑆𝑂𝐶)

𝑠𝑜𝑐̅̅ ̅̅ ̅𝑙
𝑛

𝑆𝑂𝐶=𝑠𝑜𝑐𝑙
𝑛+∆soc

     𝑙 ∈ 𝑅𝑛/{𝑙},

𝑛 ∈ 𝑁 

(1.17) 

        𝑣1
𝑛 = 𝑤𝑛 (

𝐸𝑛
𝑚𝑎𝑥

𝑄𝑛
)         𝑛 ∈ 𝑁 

(1.18) 

The first term in Constraint (1.17) corresponds to the discharge-related wear 

cost between two stations. Since we assume that the discharge process is a linear 

function of time, the corresponding SOC-related unit wear costs are sequentially 

accumulated until the next stop is reached. It adds up each SOC-related unit wear 

cost  𝑤𝑛(𝑆𝑂𝐶) in the interval [𝑠𝑜𝑐𝑙
𝑛, 𝑠𝑜𝑐̅̅ ̅̅̅𝑙−1

𝑛 − ∆𝑆𝑂𝐶] with unit interval as ∆𝑆𝑂𝐶. 

The upper limit is set to 𝑠𝑜𝑐̅̅ ̅̅̅𝑙−1
𝑛 − ∆𝑆𝑂𝐶 instead of 𝑠𝑜𝑐̅̅ ̅̅̅𝑙−1

𝑛  is because 𝑤𝑛(𝑠𝑜𝑐̅̅ ̅̅̅𝑙−1
𝑛 ) is 

considered in the second term. In this work, the unit wear cost before departing 

from the first station is defined as   𝑣1
𝑛 = 𝑤𝑛 (

𝐸𝑛
𝑚𝑎𝑥

𝑄𝑛
). 

3.1.4 Case study 

In this section, a numerical study is presented based on the e-bus network 

planned by Västtrafik as shown in Figure 3.1.  The detailed input can refer to 

Appendix A. 
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Figure 3.1: The electrified bus network in Västra Götaland (from Zeng et al., 

2022a) 

The minimum total amortized daily operational cost for the bus network is 

8575.44 USD, which consists of 1092.05 USD energy cost and 7483.39 USD 

battery wear cost. The battery aging cost accounts for 87.26% of the total cost 

and is 6.85 times the cost of charging, and that’s when we consider the small 

battery with a low battery price. Obviously, when larger capacity batteries are 

considered, the unit cost of battery wear increases and its share of the total cost 

increases further. The PAPR is 1.736, approximately 92.3% of the maximum limit 

value. Figure 3.2 shows the battery SOC profile of the 154 buses under the 

optimal charge schedule. In general, only 12 out of 154 vehicles reached the 

minimum energy threshold of 30% of battery capacity, while 67 buses 

maintained their DOD above 0.4.  
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Figure 3.2 Battery SOC profile in the optimal charging schedule (from Zeng 

et al., 2022a) 

 

The charging start time for each bus is shown in Figure 3.3, where the horizontal 

axis is the time index in hours, and the vertical axis is the sequence of stations 

visited by the buses. The upper square bar graph depicts the temporal 

distribution of charging demand requests over the whole network. Between 7:00 

and 8:00 a.m., the demand is higher since there is generally a high frequency of 

bus service during the morning rush, resulting in a higher need for charging. 

Besides, it is also an excellent opportunity to avoid paying peak electricity rates. 

In general, the number of demands in each time slot does not change much, 

indicating that the charging demand is evenly dispersed throughout the day. The 

bar chart on the right depicts the station sequence distribution of the charging 

stations where the vehicles are charged.  
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Figure 3.3: Bus charging start time (from Zeng et al., 2022a) 

 

Without introducing PAPR in the model, the total cost is then reduced to 802.87 

USD, with a charging cost of 1366.75 USD and a battery wear cost of 6661.94 USD. 

The actual PARP increased from 1.736 to 2.035, which may result in lower 

stability of the power system. The frequency of charging in the plan increases, 

thus reducing the wear cost of the battery. Without considering battery wear in 

the objective function, the wear cost increases by 4.2%. However, when the 

upper and lower boundaries of SOC are further relaxed, the battery wear cost 

increases by 25.6%, which is ten times the charging expenses even with a 10.89% 

drop in charging costs.  

The numerical studies indicate that battery wear costs are a significant 

component of EB operation and maintenance expenses, which are at least six 

times the cost of charging under the optimal schedule. In the example study, 

small-capacity batteries with low overall cost were employed, and the unit wear 

cost would be significantly greater if a larger-capacity fleet was examined. 

Furthermore, we discovered that an acceptable upper and lower boundary 

setting for the battery SOC greatly reduced the expense of battery wear. This 
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might be useful in EB-CSP modeling, where the design of boundaries is required 

for charge scheduling. 

From a grid perspective, not only does it greatly reduce charging peaks, 

spreading charging demand, but it also attempts to balance charging demand 

from various groups at different times as much as feasible. Because we do not 

enable overnight charging at terminals, the degree of peak shaving is also limited. 

Furthermore, the introduction of TOU prices more directly limits fleets from 

having reduced charging demands during peak hours, therefore balancing 

charging demand in the time dimension. More findings and discussion are 

available in Appendix A. 

3.2 Robust optimization of en-route charge scheduling 

3.2.1 Motivation 

In the previous section, we discussed the charge scheduling problem on the 

premise that the energy consumption is known and proportional to the distance 

traveled, resulting in a deterministic bus charging scheduling problem. In this 

section, we still focused on wired charging technologies, intending to consider 

energy consumption uncertainty and prevent charging conflicts at the network 

scale. The robust plan helps policymakers make informed decisions when 

developing policies and incentives aimed at promoting sustainable 

transportation solutions and improving operational efficiency.  

3.2.2 Deterministic model  

Based on the model proposed in Section 3.1.3, we explicitly describe the 

relationship between lines and stations in the bus route, allowing the possibility 

of articulating timetabled trips with more complex situations, while providing a 

detailed description of the energy consumption.  In this model, the EB network 

can be abstracted with only en-route charging stations, represented by the set 𝑀. 

Each station is covered by one or more bus lines. The all-day service of one bus 

line is divided into multiple timetabled trips 𝑅𝑛 = {𝑙0, … , 𝑙, 𝑙 + 1, … 𝑙𝑒𝑛𝑑}. The 



CHAPTER 3: En-route Charge scheduling 

 41 

stations passed by each trip 𝑙  are enumerated in Set 𝑀𝑙 = {𝑚0, … , 𝑚, 𝑚 +

1, … 𝑚𝑒𝑛𝑑} in the order of arrival. The assumptions are the same as in Section 

3.1.2. The introduction of sets, parameters, and variables used in the 

deterministic model can be found in Appendix B. 

The deterministic model designs a charging schedule based on TOU electricity 

price to find the best time and place to charge the EB fleet. The following MILP 

formulation then represents the EB charge scheduling problem.  

minimize ∑ ∑ ∑ ∑ 𝑐𝑚,𝑡
𝑛,𝑙 ∙ 𝑥𝑚,𝑡

𝑛,𝑙
𝑡∈𝑇𝑛,𝑙,𝑚𝑚∈𝑀𝑛,𝑙𝑙∈𝑅𝑛𝑛∈𝑁  (2.1) 

The objective function (2.1) minimizes the charging cost of the bus fleet. We 

aggregate the energy recharged in the battery at time 𝑡 ∈ 𝑇 from station 𝑚 ∈ 𝑀 

by using the decision variable∙ 𝑥𝑚,𝑡
𝑛,𝑙 . Parameter 𝑐𝑚,𝑡

𝑛,𝑙  denotes the TOU energy price 

for each station.  

𝐸𝑚0,𝑏𝑛,𝑙0,𝑚0

𝑛,𝑙0 = 𝐸𝑛
𝑚𝑎𝑥     ∀𝑛 ∈ 𝑁 (2.2) 

Constraint (2.2) defines the initial battery energy as 𝐸𝑛
𝑚𝑎𝑥  when the bus 𝑛 ∈ 𝑁 

started to serve the first station 𝑚0 of the first timetable trip 𝑙0. Parameter 𝑏𝑙0,𝑚0
 

denotes the departure time at the station 𝑚0 on trip 𝑙0.  

𝑒𝑚,𝑡
𝑛,𝑙 =

휂𝑚
𝑛,𝑙𝑃𝑚

𝑛,𝑙

60
𝑥𝑚,𝑡

𝑛,𝑙  , ∀𝑡 ∈ 𝑇𝑛,𝑙,𝑚 , ∀𝑚 ∈ 𝑀𝑛,𝑙 , ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁 
(2.3) 

Constraint (2.3) depicts the energy charged from station 𝑚 in unit time (e.g., 

from 𝑡 to 𝑡 + 1 ). When the bus is connected to the charging pile, the decision 

variable 𝑥𝑚,𝑡
𝑛,𝑙  is set to 1; otherwise, it is 0. Parameter 𝑃𝑚

𝑛,𝑙  indicates the charging 

power of each charger at station 𝑚, 휂𝑚
𝑛,𝑙 represents the charging efficiency of 

chargers at station 𝑚.   

𝐸𝑚,𝑏𝑛,𝑙,𝑚

𝑛,𝑙 = 𝐸𝑛
𝑚𝑎𝑥 + ∑ (∑ 𝑒Υ,𝑡

𝑛 −  𝐹Υ
𝑛

𝑡∈𝑇𝑛,Υ
)Υ∈𝐴𝑛,𝑙,𝑚 + ∑ 𝑒𝑚,𝑡

𝑛,𝑙
𝑡∈𝑇𝑛,𝑙,𝑚

, 

 ∀𝑚 ∈ 𝑀𝑛,𝑙/{𝑚0}, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁 

(2.4) 
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𝐸𝑚,𝑎𝑛,𝑙,𝑚

𝑛,𝑙 = 𝐸𝑛
𝑚𝑎𝑥 + ∑ (∑ 𝑒Υ,𝑡

𝑛 −  𝐹Υ
𝑛

𝑡∈𝑇𝑛,Υ
)Υ∈𝐴𝑛,𝑙,𝑚 ,  

𝑚 ∈ 𝑀𝑛,𝑙/{𝑚0}, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁  

(2.5) 

 𝐹𝑚
𝑛,𝑙 = [

1

𝛿
(

𝜌

2
∙ 𝜚 ∙ 휄 ∙ ( 𝑣𝑚

𝑛,𝑙)
2

+ 𝜇 ∙ (𝑊𝑛 +  𝑤 ∙  𝜙𝑚
𝑛,𝑙) ∙ 𝑔 ∙ 𝑐𝑜𝑠휃𝑚

𝑛,𝑙

+ (𝑊𝑛 +  𝑤 ∙ 𝜙𝑚
𝑛,𝑙) ∙ 𝑔 ∙ 𝑠𝑖𝑛휃𝑚

𝑛,𝑙 + (𝑊𝑛 +  𝑤 ∙ 𝜙𝑚
𝑛,𝑙) ∙

𝑣𝑚
𝑛,𝑙

∆𝑡𝑚
𝑛,𝑙)]

∙ 𝑣𝑚
𝑛,𝑙 +

휁 ∙ 𝐷𝑚
𝑛,𝑙

 𝑣𝑚
𝑛,𝑙 , ∀𝑚 ∈ 𝑀𝑛,𝑙/{𝑚end}, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁 

(2.6) 

The residual energy when the bus departs from 𝑚-th station is calculated in 

Constraint (2.4). The energy change is formulated cumulatively in Constraint 

(2.4). ∑ 𝑒𝑚,𝑡
𝑛,𝑙

𝑡∈𝑇𝑛,𝑙,𝑚
 specifies the battery energy increase when it is charged at 

station 𝑚 and  𝐹Υ
𝑛 indicates the energy consumption between two sequential 

stations. Constraint (2.5) recurs the energy level change from its first departure 

to the arrival at 𝑚-th station along the 𝑙-th trip. The energy consumption  𝐹𝑚
𝑛,𝑙  

between two stations is calculated in Constraint (2.6). 

𝐸𝑚,𝑏𝑛,𝑙,𝑚

𝑛,𝑙   ≤ 𝐸𝑛
𝑚𝑎𝑥   ∀𝑚 ∈ 𝑀𝑛,𝑙, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁 (2.7) 

𝐸𝑚,𝑎𝑛,𝑙,𝑚

𝑛,𝑙   ≥ 𝐸𝑛
𝑚𝑖𝑛    ∀𝑚 ∈ 𝑀𝑛,𝑙 ,  ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁                                                     (2.8) 

Constraints (2.7) and (2.8) defined the upper and lower bound of battery energy.  

∑ ∑ 𝑥𝑚,𝑡
𝑛,𝑙

𝑙∈𝑅𝑛𝑛∈𝑁 ≤ 𝑘𝑚   𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 (2.9)     

∑ 𝑥𝑚,𝑡
𝑛,𝑙

𝑚∈𝑀 ≤ 1        𝑛 ∈ 𝑁, 𝑙 ∈ 𝑅𝑛 , 𝑡 ∈ 𝑇𝑛,𝑙,𝑚 (2.10) 

𝑧𝑚,𝑡
𝑛,𝑙 ≥ 𝑥𝑚,𝑡

𝑛,𝑙 − 𝑥𝑚,𝑡−1
𝑛,𝑙         𝑚 ∈ 𝑀𝑛,𝑙 , 𝑙 ∈ 𝑅𝑛 , 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇𝑛,𝑙,𝑚/{𝑎𝑛,𝑙,𝑚} (2.11) 

𝑧𝑚,𝑎𝑛,𝑙,𝑚

𝑛,𝑙 = 𝑥𝑚,𝑎𝑛,𝑙,𝑚

𝑛,𝑙            𝑚 ∈ 𝑀𝑛,𝑙 , 𝑙 ∈ 𝑅𝑛 , 𝑛 ∈ 𝑁 (2.12) 
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∑ 𝑧𝑚,𝑡
𝑛,𝑙

𝑡∈𝑇𝑛,𝑙,𝑚
≤ 1        𝑚 ∈ 𝑀𝑛,𝑙 , 𝑙 ∈ 𝑅𝑛 , 𝑛 ∈ 𝑁 (2.13) 

𝑥𝑚,𝑡
𝑛,𝑙 = {0,1}                      𝑚 ∈ 𝑀𝑛,𝑙, 𝑙 ∈ 𝑅𝑛 , 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇𝑛,𝑙,𝑚 (2.14) 

𝑧𝑚,𝑡
𝑛,𝑙 = {0,1}           𝑚 ∈ 𝑀𝑛,𝑙 , 𝑙 ∈ 𝑅𝑛 , 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇𝑛,𝑙,𝑚 (2.15) 

Constraint (2.9) restricts that the sum of charging events carried out at the same 

time at 𝑚-th station should be less than the number of chargers 𝑘𝑚 installed in 

the charging station. Constraint (2.10) forces each bus to use only one charger 

per time unit. Constraints (2.11-2.12) denote the start time of the charging event. 

If the bus is being charged at the current time point and it has not been charged 

at the previous one, the present time is defined as the charging start time. 

Constraint (2.13) defines that, at most, one charging event takes place between 

each arrival and departure. Constraint (2.14) determines whether bus 𝑛 is being 

charged at 𝑚-th station on 𝑙-th trip at time point 𝑡. Constraint (2.15) indicates 

whether bus 𝑛 starts charging 𝑚-th station on 𝑙-th trip at time point 𝑡. 

3.2.3 Robust optimization model 

The energy consumption parameter  𝐹𝑚
𝑛,𝑙  in the robust model is expected to be 

uncertain. This uncertainty parameter is constrained by lower and upper bounds 

in interval sets. To restrict the total number of uncertain parameters, a budgeted 

uncertainty set is implemented. The introduction of symbols that are utilized in 

the robust reformulation can be found in Appendix B. 

In this section,  𝐹𝑚
𝑛,𝑙̂ = 𝛼 𝐹𝑚

𝑛,𝑙̅̅ ̅̅ ̅̅  is introduced to represent the energy consumption 

deviation, where  𝐹𝑚
𝑛,𝑙̅̅ ̅̅ ̅̅  denotes the nominal values and 0 ≤ 𝛼 ≤ 1. We further 

introduce the positive deviation 𝜉𝑛,Υ
+  and the negative deviation 𝜉𝑛,Υ

−   to rearrange 

Constraints (2.4-2.5). 

∑ (∑ 𝑒Υ,𝑡
𝑛 −𝑡∈𝑇𝑛,𝛶

 𝐹Υ
𝑛̅̅ ̅̅ − (𝜉𝑛,Υ

+ − 𝜉𝑛,Υ
−  ) ∙  𝐹Υ

�̂�)Υ∈𝐴𝑛,𝑙,𝑚 + ∑ 𝑒𝑚,𝑡
𝑛,𝑙

𝑡∈𝑇𝑛,𝑙,𝑚
≤ 0  

    ∀𝑚 ∈ 𝑀𝑛,𝑙/{𝑚0}, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁 

(2.16) 
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∑ (∑ 𝑒Υ,𝑡
𝑛 −𝑡∈𝑇𝑛,𝛶

 𝐹Υ
𝑛̅̅ ̅̅ − (𝜉𝑛,Υ

+ − 𝜉𝑛,Υ
−  ) ∙  𝐹Υ

�̂�)Υ∈𝐴𝑛,𝑙,𝑚 ≥ 𝐸𝑛
min − 𝐸𝑛

max  

∀𝑚 ∈ 𝑀𝑛,𝑙/{𝑚0}, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁 

                                                                                                                                                                                                                                                  

(2.17) 

However, Constraints (2.16-2.17) contain an unlimited number of constraints 

and the finite number of variables due to uncertainty parameters 𝜉𝑛,Υ
+  and 𝜉𝑛,Υ

−  , 

making them unsolvable.  

For Constraint (2.16), we have the robust counterpart deviation: 

(∑ (∑ 𝑒Υ,𝑡
𝑛 −𝑡∈𝑇Υ

 𝐹Υ
𝑛̅̅ ̅̅ )Υ∈𝐴𝑛,𝑙,𝑚 + ∑ 𝑒𝑚,𝑡

𝑛,𝑙
𝑡∈𝑇𝑛,𝑙,𝑚

) + (𝛤𝑛,𝑙,𝑚 ∙ 𝑈𝑛,𝑙,𝑚 +

∑ (𝑉𝑛,𝑙,𝑚,Υ
+ + 𝑉𝑛,𝑙,𝑚,Υ

− )Υ∈𝐴𝑛,𝑙,𝑚 ) ≤ 0  ∀𝑚 ∈ 𝑀𝑛,𝑙/{𝑚0}   ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁 

(2.18)                                                                                                                                                                                                                                                   

 𝑈𝑛,𝑙,𝑚 + 𝑉𝑛,𝑙,𝑚,Υ
+ ≥ − 𝐹Υ

�̂�            ∀𝑚 ∈ 𝑀𝑙, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁, Υ ∈ 𝐴𝑛,𝑙,𝑚 (2.19)                                                                                                                                                                                                                                                 

𝑈𝑛,𝑙,𝑚 + 𝑉𝑛,𝑙,𝑚,Υ
− ≥  𝐹Υ

�̂�                ∀𝑚 ∈ 𝑀𝑙, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁, Υ ∈ 𝐴𝑛,𝑙,𝑚 (2.20)                                                                                                                                                                                                                                                 

𝑈𝑛,𝑙,𝑚 , 𝑉𝑛,𝑙,𝑚,Υ
+ , 𝑉𝑛,𝑙,𝑚,Υ

− ≥ 0         ∀𝑚 ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁, Υ ∈ 𝐴𝑛,𝑙,𝑚 (2.21)                                                                                                                                                                                                                                                 

Similarly, we can convert the Constraint (2.17) to its robust counterpart 

deviation: 

(𝛤𝑛,𝑙,𝑚 ∙ 𝒰𝑛,𝑙,𝑚 + ∑ (𝒱𝑛,𝑙,𝑚,Υ
+ + 𝒱𝑛,𝑙,𝑚,Υ

− )Υ∈𝐴𝑛,𝑙,𝑚 ) + 𝐸𝑛
min − 𝐸𝑛

max −

∑ (∑ 𝑒Υ,𝑡
𝑛 −𝑡∈𝑇Υ

 𝐹Υ
𝑛̅̅ ̅̅ )Υ∈𝐴𝑛,𝑙,𝑚 ≤ 0 ∀𝑚 ∈ 𝑀𝑛,𝑙/{𝑚0}, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁   

                                                                                                                                                                                                                                                  

(2.22) 

𝑈𝑛,𝑙,𝑚 + 𝒱𝑛,𝑙,𝑚,Υ
+ ≥  𝐹𝑚

𝑛,𝑙̂      ∀𝑚 ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁, Υ ∈ 𝐴𝑛,𝑙,𝑚 (2.23)                                                                                                                                                                                                                                                 

𝑈𝑛,𝑙,𝑚 + 𝒱𝑛,𝑙,𝑚,Υ
− ≥ − 𝐹𝑚

𝑛,𝑙̂   ∀𝑚 ∈ 𝑀𝑙, ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁, Υ ∈ 𝐴𝑛,𝑙,𝑚 (2.24)                                                                                                                                                                                                                                                 

𝒰𝑛 , 𝒱𝑛,𝑙,𝑚,Υ
+ , 𝒱𝑛,𝑙,𝑚,Υ

− ≥ 0       𝑚 ∈ 𝑀𝑙 , ∀𝑙 ∈ 𝑅𝑛 , ∀𝑛 ∈ 𝑁, Υ ∈ 𝐴𝑛,𝑙,𝑚 (2.25)                                                                                                                                                                                                                                                 

3.2.4 Results 

Deterministic model results 

The deterministic model consists of 175,924 binary variables and 336,150 single 

variables. The execution time is 24.5 seconds with no optimality gap. The optimal 
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result shows that to maintain the daily operation of 154 EBs, the minimal 

charging cost is 3194.48 USD per day. The fleet receives a total of 26014.5 kWh of 

energy from the grid per day, with an average of 168.93 kWh per vehicle with a 

daily GHG emission of 30987.86 kg-CO2e. Figure 3.4 depicts the occupancy of 

each charging station. It indicates that terminal charging becomes the most 

dominant charging option. Although some intermediate stations are low in 

utilization, these charging opportunities ensure that the battery’s SOC does not 

go below 30% to shorten the depth of discharge and further extend the battery’s 

state of health.  

 

Figure 3.4: Charging station occupancy in time 

Fig. 3.5 illustrates the distribution of bus charging demand and its Kernel density 

estimation. It can be observed that, of the 154 buses, 52 needed to be recharged 

above their battery capacity. Furthermore, 34 EBs do not require charging and 

are assured of returning to the depot with a battery level of more than 30%. This 

also explains why a few charging stations in Figure 3.4 have no occupants.  
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Figure 3.5: Daily charging demand distribution of the deterministic model 

RO model results 

The RO model consists of 175,924 binary variables and 792,886 single variables. 

The execution time is 42.54 seconds with no optimality gap. The optimal result 

shows that to maintain the daily operation of 154 EBs, the minimal charging cost 

is 3372.05 USD per day, with a 5.57% increase compared with the deterministic 

model. The fleet receives a total of 27141.75 kWh of energy from the grid per day, 

with an average of 176.25 kWh per vehicle. The estimated daily GHG emission is 

32330.61 kg-CO2e. In terms of the average price per unit of energy spent on 

electricity, there is a 0.9% increase. Figure 3.6 illustrates the distribution of bus 

charging demand and its Kernel density estimation. Comparing with Figure 3.5, 

we find that the general trend is broadly consistent, with the number of vehicles 

with greater charging demand than battery capacity increasing by 1 unit and 

those with no charging demand decreasing by 2 units.   
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Figure 3.6: Daily charging demand distribution of RO model 

To understand the behaviour of the EB system in response to different battery 

capacities, fleet compositions, and DODs, a sensitivity analysis is conducted. 

Based on the results, we conclude that, first, systems with larger batteries tend to 

request less en-route energy replenishment than systems with smaller ones. 

However, even if the battery capacity is large enough, it relies on opportunity 

charging to keep the energy level above the minimum allowable value. Second, a 

mixed fleet, i.e., assigning different battery capacities to different roads, is more 

cost-effective and can further improve the utilization of charging infrastructure. 

The advantages of a heterogeneous fleet will be more apparent if the battery size 

and charging schedule can be optimized in an integrated way. Third, reasonable 

charge/discharge limits will assist extend the cycle life of the battery. A battery 

under a [0%,100%] complete charge/discharge plan will last half as long as 

under a [30%,90%] plan. Setting strong DOD limitations in charge scheduling is 

therefore useful for controlling system maintenance costs, particularly when 

pack prices are still high. 

In general, a robust electric bus charging schedule can improve the accessibility 

of public transportation by ensuring that electric buses can operate at full 

capacity, without any significant interruptions due to battery depletion. By 

providing reliable and frequent service, a robust electric bus charging schedule 

can also enhance the efficiency of public transportation systems by minimizing 

downtime and ensuring optimal performance of electric buses. A strong electric 
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bus charging schedule may be supported by transportation policy via investing in 

electric public transportation infrastructure, such as charging stations and 

battery technology, and ensuring that they are situated in convenient and 

accessible areas for electric bus operators. Furthermore, policymakers should 

emphasize electric public transportation adoption in transportation planning and 

financing, as well as promote research and development in new technologies that 

can increase the performance and efficiency of electric buses. More findings and 

discussion are available in Appendix B. 
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CHAPTER 4 Life cycle cost analysis 

4.1 Motivation 

When evaluating the operational performance of EBs, the majority of previous 

studies were limited to one aspect, such as ownership costs or charging charges, 

and failed to provide a more comprehensive framework. Further consideration of 

lifecycle emissions would be of great benefit both in terms of evaluating the 

potential of e-mobility systems for carbon neutrality and in finding insights to 

specify the path for further improvement. Besides, previous studies for en-route 

charging mainly focused on the strategic level when locating the bus chargers 

instead of incorporating the operational level by considering bus scheduling. This 

poses difficulties for operating EBs under large-scale networks. In this context, a 

consolidated optimization model is proposed in this work to evaluate the en-

route charging station deployment, battery sizing, and bus scheduling problem 

under a life cycle cost (LCC) analysis framework.  

4.2 Problem description 

The suggested LCC analysis framework aims to assess the performance of the 

electric bus transit system from the economic and environmental aspects. Figure. 

4.1 provides the evaluation framework that outputs the bus fleet composition, 

the deployment of charging stations, and the bus schedule. The objective function 
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is set as the annual equivalent LCC (with interest rate). It includes the 

infrastructure ownership fee, external cost of emissions, operational cost of 

charging, maintenance cost of battery changes, and other repairing work. The 

inputs consist of the bus lines (red lines) and related service trips based on the 

pre-defined timetable (grey and blue blocks in step 3), the dwell time at each 

stop, and a set of available battery capacities (e.g., 50 kWh, 100 kWh, 150 kWh). 

Under this evaluation criteria, the first step is to size the battery for each line to 

ensure that the battery of a bus is sufficient to serve the line. The second step is 

to set up charging stations by setting constraints. Constraints are for managing 

the battery SOC range, ensuring that, when the battery is approaching the 

minimum allowed SOC, a charger is installed at the next stop. For the bus 

scheduling part, the available route choices after finishing each service trip are 

provided, referring to time constraints and bus type compatibility constraints 

determining the availability of connections between two trips. Thus, when the 

bus arrives at the destination, the current trip of line 16 (8:00-8:40) is completed, 

and the block is marked in gray. Then, the bus scheduling process starts where 

alternatives are chosen based on a certain criterion, such as deadhead distance.  
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Figure 4.1: Overview of the life cycle optimization model (from Zeng et al., 

2022b) 

 

4.3 Consolidated optimization model 

The model features will be detailed in the following sections: (1) life cycle cost 

and (2) constraints. Different from sequential optimization problems, the 

integrated model makes the variables that restrict each other between the sub-

problems. The description of the sets, parameters, and variables discussed in this 

section are illustrated in Appendix C. 

Life cycle cost 

In this section, we describe the formulation of the objective function, which 

calculates the annual equivalent life cycle cost of an electric transit system from 

production to elimination. 

Bus route 1:

Origin

150 kWh

50 kWh

Step 1： Allocate bus type to Line 16

Maintain optimal range

SOCmin < SOC < SOCmax 

Destination
Step 3：  Bus Scheduling

Determines：
  Bus type allocation

  Charger deployment

  Bus scheduling

Annual equivalent Life cycle cost

Ownership Life-cycle emission Operation & Maintenance 

Bus Battery Charger
Charging

cost

Battery

change

Daily

operation 

Line 16

8:00-

8:40

100 kWh

Well-to-

tank
Glider

Step 2： En-route  charging station  deployment

Bus route 2:

Line 16

9:00-

9:40

Line 16

10:00-

10:40

Line 16

8:00-

8:40

Line 55

8:50-

9:20

Line 16

9:30-

10:10

Powertrain
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 min 𝐶𝐸𝐴𝐶 = 𝐶𝑂𝑊𝑁 + 𝐶𝐸𝑀 + 𝐶𝑂𝑀  (4.1) 

The objective function defined in Constraint (4.1) aims at minimizing the sum of 

the infrastructure ownership cost 𝐶𝑂𝑊𝑁 , the external cost of emissions 𝐶𝐸𝑀 , and 

annual operational and maintenance cost 𝐶𝑂𝑀 . 

𝐶𝑂𝑊𝑁 = (∑ ∑ (𝐶𝐵𝑈𝐶
𝑝

+𝐶𝐵𝐴𝐶
𝑝

− 𝐶𝐵𝐴𝑆
𝑝

) ∙ 𝜗𝑣𝑣∈𝑉𝑝𝑝∈𝑃 + ∑ 𝐶𝐶𝐻𝑆 ∙ 𝑥𝑖𝑖𝜖𝑆 ) ∙
𝛾

1−(1+𝛾)−𝑛  (4.2) 

𝐶𝐸𝑀  =  ∑ (𝑎𝑊𝑇𝑇
𝑣 + 𝑎𝑃𝑇

𝑣 + 𝑎𝐺𝐿
𝑣 ) ∙ 𝜉 ∙ 𝑛 ∙ 𝐷𝐼𝑆𝑣𝑣𝜖𝑉 ∙

𝛾

1−(1+𝛾)−𝑛 (4.3) 

𝐶𝑂𝑀 = (∑ (∑ 𝐶𝐵𝑈𝑀
𝑝

∙ 𝜗𝑣𝑣∈𝑉𝑝
+ 𝑢 ∙ 𝑛 ∙ 𝑏𝑣 ∙ 𝐷𝐼𝑆𝑣 + 𝐶𝐵𝐴𝑅

𝑣 ∙ 𝜔𝑣)𝑝∈𝑃 +

 ∑ 𝐶𝐶𝑆𝑀 ∙ 𝑥𝑖𝑖∈𝑆 ) ∙
𝛾

1−(1+𝛾)−𝑛       

(4.4) 

𝜔𝑣 = ⌈
𝑛∙𝐷𝐼𝑆𝑣∙𝑏𝑣

(
1−𝑆𝑂𝐶𝑚𝑖𝑛

145.71
)

−1/0.6844
∙𝑞𝑣∙(𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶𝑚𝑖𝑛)

⌉     ∀𝑣 ∈ 𝑉 
(4.5) 

Constraint (4.2) calculates the annual equivalent infrastructure ownership cost. 

It consists of two parts: the capital cost for buses and that for the charging 

stations.  The first part of Constraint (4.2) equals the cost of battery and bus 

purchases minus the residual value of the batteries. The decision variable 𝜗𝑣 

indicates whether bus 𝑣 is in use, which is the key object for optimizing bus 

schedules, as shown in Constraint (4.15). The second part sums up the cost of 

installing chargers at bus stops. Constraint (4.3) is for calculating the annual 

equivalent life cycle emissions from well-to-tank (WTT), glider, and powertrain 

based on yearly travel distance 𝐷𝐼𝑆𝑣 which is calculated in Constraint (4.20). 

After that, a monetary scalar 𝜉 is designed to convert the emissions into external 

cost. The annual operation and maintenance costs in Constraint (4.4) include 

four components: bus maintenance expenses, fleet charging costs, battery 

replacement costs, and station maintenance costs. The frequency of battery 

change for bus 𝑣 within the entire life cycle is calculated in Constraint (4.5), 

based on a calibrated fatigue model.  
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Constraints 

We then illustrate the formulation for battery sizing (e.g., Constraints (4.6−4.8, 

4.14)), charger deployment (e.g., Constraints (4.9−4.13)), and bus scheduling 

(e.g., Constraints (4.15−4.20)). We then reformulate the problem as a set 

covering model as shown in Appendix C. Following the convention of daily 

operations, we assume that the bus will be fully charged before it departs from 

the depot and set 𝑆𝑂𝐶 to 𝑆𝑂𝐶𝑚𝑎𝑥  at the beginning of the day.  

Constraint(4.6) calculates the estimated energy storage requirement for a bus to 

serve station 𝑖 + 1 with the maximum energy consumption rate 휃. The parameter 

휃 refers to the maximum energy consumption per unit among all available bus 

types.  When a charger is provided, this requirement decreases by 휀 ∙ 𝑇𝑖
𝑟  where  휀 

is the charging power and 𝑇𝑖
𝑟  is the bus dwell time minus the charger connecting 

time. Constraint (4.7) determines the battery sizing from an inventory 𝑃. The 

 𝜑𝑖+1
𝑟 = 𝜑𝑖

𝑟 + 휃 ∙ 𝑑𝑖,𝑖+1
𝑟 − 휀 ∙

𝑇𝑖
𝑟

60
∙ 𝑥𝑖         ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅 (4.6) 

∑ 𝛽 ∙ 𝑄𝑝 ∙ 𝑦𝑝
𝑟

𝑝∈𝑃
≥

𝑚𝑎𝑥 𝜑𝑖
𝑟

𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛
          ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅 

(4.7) 

 ∑ 𝑦𝑝
𝑟

𝑝∈𝑃 = 1             ∀𝑟 ∈ 𝑅 (4.8) 

 𝑒𝑖+1
𝑟 = 𝑒𝑖

𝑟 − ∑ 𝐵𝑝 ∙ 𝑑𝑖,𝑖+1
𝑟 ∙ 𝑦𝑝

𝑟
𝑝∈𝑃 + 휀 ∙

𝑇𝑖
𝑟

60
∙ 𝑥𝑖         ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅 (4.9) 

 𝑒𝑖
𝑟 +

𝜀∙𝑇𝑖
𝑟

60
∙ 𝑥𝑖 − ∑ 𝐵𝑝 ∙ 𝑑𝑖,𝑖+1

𝑟 ∙ 𝑦𝑝
𝑟

𝑝∈𝑃 ≥ 𝑆𝑂𝐶𝑚𝑖𝑛 ∙ ∑ 𝑄𝑝 ∙ 𝑦𝑝
𝑟

𝑝∈𝑃   ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅    (4.10) 

 𝑒𝑖
𝑟 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 ∙ ∑ 𝑄𝑝 ∙ 𝑦𝑝

𝑟
𝑝∈𝑃             ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅    (4.11) 

 𝑆𝑂𝐶𝑖
𝑟 =

𝑒𝑖
𝑟

∑ 𝑄𝑝 ∙ 𝑦𝑝
𝑟

𝑝∈𝑃
            ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅 

(4.12) 

 𝑥𝑖 ∈ {0, 1}                  ∀𝑖 ∈ 𝑆 (4.13) 

 𝑦𝑝
𝑟 ∈ {0, 1}                 ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅 (4.14) 



Towards electric bus system: planning, operating and evaluating 

54   

battery applicability level 𝛽 indicates the percentage of battery capacity after 

degradation, the degraded battery capacity 𝛽 ∙ 𝑄𝑝 should be applicable to the bus 

route. Constraint (4.8) further ensures that one bus type should be assigned to 

each line. Constraint (4.9) calculates the energy left when a bus arrives at stop 

𝑖 + 1, with an updated energy consumption rate 𝐵𝑝 and charging station layout 𝑥𝑖. 

To keep the battery’s SOC in the optimal range, we set Constraint (4.10) to 

constrain the remaining energy such that, when a bus leaves stop 𝑖, it is larger 

than the summation of the traveling consumption between two adjacent stops 

and the lowest allowed energy level. Constraint (4.11) defines the upper bound 

of the battery energy, which should not exceed the maximum allowed SOC times 

the battery capacity. Constraint (4.12) calculates the battery SOC when the bus 

arrives at stop 𝑖 of line 𝑟. Two decision variables for charging station layout and 

battery sizing to the route are defined in Constraints (4.13−4.14) respectively. 

Constraint (4.13) introduces the binary decision variable 𝑥𝑖 , representing 

whether stop 𝑖 is a charging station. Constraint (4.14) defines the binary decision 

variable 𝑦𝑝
𝑟 indicating the battery sizing for line 𝑟. 

To further manage the heterogeneous bus fleet, we formulate an integer network 

flow sub-model [P1] based on a node-arc framework, which decides the bus fleet 

size ∑ 𝜗𝑣𝑣∈𝑉  and further decides the value of 𝐶𝑂𝑊𝑁  and 𝐶𝑂𝑀  𝑖𝑛 Constraints (4.2) 

and (4.4) respectively.  To facilitate the use of algorithms to solve this problem, 

we describe the following sub-model as [P1].  

Bus scheduling sub-model [P1] 

𝑚𝑖𝑛 ∑ 𝜗𝑣𝑣∈𝑉 = 𝑚𝑖𝑛 ∑ ∑ 𝑧0ℎ
𝑣

ℎ∈𝐺𝑣∈𝑉     (4.15) 

Subject to:    

∑ ∑ 𝑧0ℎ
𝑣

ℎ∈𝐺𝑟𝑣∈𝑉𝑝
= 𝑦𝑝

𝑟                          ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅           (4.16) 

∑ 𝑧ℎ𝑔
𝑣 =ℎ∈In (𝑔,𝑝) ∑ 𝑧𝑔ℎ

𝑣
ℎ∈Out (𝑔,𝑝)         ∀𝑣 ∈ 𝑉𝑝, ∀𝑝 ∈ 𝑃, ∀𝑔 ∈ 𝐺                  (4.17) 

∑ ∑ ∑ 𝑧𝑔ℎ
𝑣

ℎ∈Out(𝑔,𝑝)𝑣∈𝑉𝑝𝑝∈𝑃 = 1          ∀𝑔 ∈ 𝐺                                        (4.18) 
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𝑧𝑔ℎ
𝑣 ∈ {0, 1}                                          ∀𝑣 ∈ 𝑉, ∀𝑔 ∈ 𝐺, ∀ℎ ∈ 𝐺                     (4.19) 

The objective function described in Constraint (4.15) does not exist 

independently but is the specific description of ∑ 𝜗𝑣𝑣∈𝑉  in Constraint (4.2) 

representing that minimizing the bus fleet equals minimizing the number of 

buses departing from the depot.   

Constraint (4.16) depicts the relation between variables 𝑦𝑝
𝑟 and 𝑧𝑔ℎ

𝑣 . It ensures 

that when the bus type 𝑝 is assigned to line 𝑟, there should be one bus 𝑣 of this 

bus type to serve the trips running on line  𝑟. Constraint (4.17) ensures the 

conservation of bus flow. Constraint (18) represents that there must be exactly 

one bus serving every trip node. Constraint (19) defines a binary decision 

variable 𝑧𝑔ℎ
𝑣 . When it equals 1, the bus 𝑣 serves trips 𝑔 and ℎ sequentially, and 

otherwise, it is set to 0. Note that 𝑧𝑔ℎ
𝑣  records the daily service route of bus 𝑣.  

4.4 Case study 

All instances in this section are implemented in the General Algebraic Modeling 

System (GAMS) 25.1.3 and were solved with CPLEX 12.0 on a Dell laptop with a 

1.9 GHz Intel Core i7 CPU and 8 GB running on Windows 10. 

Existing Electrified Bus Line Optimization 

This scenario is designed for optimizing the existing electrified bus line in 

Gothenburg (Line 55), which is the first venture of Volvo Buses for the purpose of 

developing, demonstrating, and evaluating next-generation sustainable public 

transport.  

The current operational strategy is shown in Figure 4.2(a). It depicts an existing 

electrified line 55 with a distance of about 7.6 km. This line is equipped with two 

terminal charging stations. The bus schedules have been served by 10 pure EBs 

with 200 kWh battery capacity. The operational data is provided by Vasttrafik. 

The proposed optimal solution is illustrated in Figure 4.2(b). In contrast to the 

current plan, the charger deployment is considered separately for each direction 
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in this scenario, with two chargers provided for outgoing trips (blue circle) and 

two for returning trips (purple circle). The increase in the number of chargers is 

caused by the compensation of downsizing in battery capacity. The bus fleet size 

in the proposed plan reduces from 10 to 7, and the battery capacity reduces from 

200 kWh to 30 kWh. In keeping with current operating conditions (Volvo 7900). 

         

(a) The current plan                                           (b) The optimized plan 

Figure 4.2: Operational strategies of existing setting and optimized plan 

Figure 4.3(a) describes the breakdown of the annual equivalent LCC, which 

reveals the improvement delivered by the proposed plan. In the battery sizing 

module, a suitable battery capacity (30 kWh) is allocated for the short line (7.6 

km). We find that the 30 kWh of battery capacity is sufficient to support a single 

trip operation under the optimal charging station configuration. More specifically, 

the annual equivalent LCC decreases by 1.96 million SEK, achieving a 30.4% 

reduction in comparison to the current plan. The individual measures, namely, 

the ownership cost, emission, and operational maintenance, are reduced by 1.8, 

0.13, and 0.03 million SEK, respectively, with the external cost of emissions 

falling to around half that in the current plan. Figure 4.3(b) compares the 

optimized breakdown of annual equivalent life cycle emissions with the real-

world operating plan. The results indicate that the annual emissions reduction in 

the glider, powertrain, and WTT stages is 16.28, 28.51, and 9.04 tCO2e, 

respectively, with the highest mitigation level in the powertrain, achieving an 86% 

reduction through a lower-capacity battery.  

Outgoing trip charger

Bus fleet：7

Battery  capacity：30 kWh

Returning trip charger
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(a) Breakdown of annually equivalent life cycle cost 

(b) Breakdown of annual emission 

Figure 4.3: Performance of the current and proposed plans (from Zeng et al., 

2022b) 

 

Future Multi-line Planning  

This scenario focuses on a near-future electrified bus line planning, with one 

existing electrified line and one planned line. For more information regarding the 

characteristics of the two lines, including the length, travel time, serving time, 

number of trips, and number of stops please refer to appendix C. 

Figure 4.4 shows the optimal charger deployment for this network, with the 

existing line in solid black and the planned line in dashed brown. The battery 

sizing module assigns buses with 30 kWh battery capacity to both lines. The 

charger deployment module selects eight stops as charging stations from the 

available station set. 
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Figure 4.4: Optimal charger deployment for multi-line bus service (from 

Zeng et al., 2022b) 

 

By analyzing the bus schedule, we can see that the strategy of sharing lines is 

advantageous because of the increased trip coverage of a bus when a tolerable 

bus deadhead mileage is allowed. The bus with the smallest number of trips has 

the longest deadheading distance. The average operational time is around 15 h 

per bus, while the longest is 24 h for the planned line. The average deadhead 

length is around 12 km, while the longest is 50 km when a bus travels between 

two lines or serves a single direction for one line.  

To further evaluate the performance, the breakdown of the annual equivalent 

LCC. Same as the conclusion in the previous section, the investment in the 

ownership of infrastructures accounts for the largest share, at 62.5%. This is 

followed by the cost of operation and maintenance, namely the battery changes 

and energy consumption, accounting for 36.9%. Green electricity production in 

Sweden makes the external cost of emissions much lower than the other costs by 

only 0.56% of the total LCC. The emissions delivered by the glider, powertrain, 

and WTT elements are less than 200 tCO2e per year. Note that the emissions of 

WTT, powertrain, and glider in the network-scale electric bus system have a 

consistent pattern with the single line scenario, the glider accounts for the largest 

share, followed by WTT and finally powertrain.  

Existing line (30 kwh)

Planned line (30 kwh)

Outgoing trip

shared charger

Outgoing trip

charger

Returning trip

shared charger

Returning trip

charger
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To sum up, in this work, a novel optimization approach is proposed to 

consolidate the charging station deployment, battery sizing, and bus scheduling 

problem. An LCC analysis framework is introduced to evaluate the performance 

of the electrification infrastructure investment decisions. To make the problem 

tractable with a low computational burden, the tailored branch-and-price 

algorithm is suggested. The assessment results show that the integration of the 

planning and operational layers dramatically reduces the LCC. By comparing 

actual operations, and optimization results for one line and multi-line, it is large-

scale road networks will tend to rely more on efficient daily operation strategies.  

The proposed method offers a wide range of applications due to the joint 

consideration of the strategic and operational layers. It is suitable for existing 

plan evaluation and adjustment and feasibility analysis of future planning as well.  
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CHAPTER 5 New charging solutions: 

V2V charging 

The range anxiety of EBs is now being tackled by 1) high energy density and 2) the 

opportunity for fast charging. We are optimistic about battery technology, but the 

current experiments are still a long way from becoming commercially viable. Besides, 

the author argues that the utilization of the pricey charging station/lane will be 

unexpectedly low. With two terminal chargers available for energy replenishment, the 

author approximated the daily charging requirement for sixteen EBs on the fully 

electrified bus line 16 in Gothenburg, Sweden. The result in Figure 5.1(a) indicates that 

the average daily occupancy was 10.3%, with Terminals 1 and 2 seeing 10% and 10.76%, 

respectively.  

The motivation for this work is the unsolved problems of existing strategies, such as 

insufficiency and underutilization of chargers. As shown in Figure 5.1, we propose three 

charging technologies that outlook the global trend to grapple with the problems. 
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B 

 

Figure 5.1: EB system shortcomings and solutions (from Zeng et al., 2023) 

(A) Low usage of terminal chargers for bus line 16 in Gothenburg, Sweden. Note that the 

energy demands between time points t and t+1 are aggregated in time point t+1. (B) 

Three charging strategies for future EB system 

5.1 Vehicle-to-vehicle wireless charging 

Vehicle-to-vehicle (V2V) charging allows buses to recharge each other. This technology 

expands the transport network into two interdependent dimensions, the flow of vehicles 

and the flow of energy. When a safe distance for energy transmission between EBs is 

established, energy transfer is feasible in a dynamic wireless V2V charging system. Since 

the energy source is always entering the network and sustaining the energy transfer, in 

an ideal system, no EB on the road network would experience mileage anxiety. When 

one EB is ready to finish the last timetabled trip, it distributes the leftover energy as far 

as possible around the road network while reserving a little amount of power for getting 

to the depot. This strategy, in theory, maximizes energy efficiency, provided that 

transmission losses are insignificant. However, due to the added dimension of energy 

flow, the complexity of the system operations becomes substantially increased.  

Technically, the magnetic resonant coupling wireless power transmission technique is a 

potential option for V2V charging due to its high-power transfer efficiency and long 

transmission distance. The transmitter and receiver coils are embedded in the front and 

back of the EB, respectively. With this approach, power is wirelessly delivered with high 

efficiency across large air gaps. Efficiencies are estimated to be above 90% when the 

distance is smaller than one meter at a standstill (Kurs et al., 2007). However, a long-

distance energy transfer with dynamic lateral shifts is a game-changer. Assuming a 

A 
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distance of 5–8 meters between two EBs (one-second headway), the predicted power 

efficiency is next to none(Imura and Hori, 2011). To stimulate the development, the 

challenge would be: 1) meeting safety regulations (e.g., IEEE safety criteria for broad 

public exposure, and 2) maintaining effective power transfer under dynamic high-power 

requirements.  

Given this, we believe that V2V wireless transmission will be appealing when power 

efficiency reaches roughly 45% (Kurs et al., 2007), i.e., slightly below the average value 

for dynamic charging lanes.  

5.2 Mobile charging vehicle 

Mobile charging vehicles (MCVs) are designed to deliver energy across a local grid via 

bidirectional chargers and then distribute it to EBs via a specialized aggregator. The 

aggregator oversees the interaction of MCV and EB, as well as the communication with 

the grid for energy replenishment. We speculate that an MCV may be wired for energy 

transfer and connected to the target EB, drawing inspiration from the architecture of the 

modular bus. 

According to this technology, the bus charging station changes from being fixed to active, 

with MCVs following the EB on a timetabled trip and replenishing it with sufficient 

energy during the journey. As a result, buses will be freed from reliance on fixed 

charging locations; instead, all charging tasks could be completed en route. Besides, 

MCVs can also provide charging services at night if the schedule is more intensive than 

the fleet size of the MCV. Thus, the original EB charge scheduling problem is transformed 

into an MCV routing problem and an MCV charging problem.  

In general, the cost of MCV energy supply is determined by the total battery degradation 

costs, electricity prices, energy delivery expenses, and the value of time savings. Taking 

the example of line 16 in Gothenburg city, we consider a typical EB with a 200kWh 

battery capacity serving 10 timetabled trips running back and forth with an average 

energy usage of 22.12 kWh per trip. With the MCV providing an output of 400kW and 

carrying a 700kWh high-power battery to charge the EB, we conclude that this approach 

would hardly be profitable unless the energy delivery cost for one EB is less than $0.63 

when we exclude the $221.2 from the battery wear. Reduced output power makes this 

technique more cost-effective and lowers MCV development expenses but results in a 

considerable rise in the demand ratio between MCVs and EBs. In addition, the results 



Towards electric bus system: planning, operating and evaluating 

64   

show that the charging efficiency is set to 95%, which is currently only suitable for the 

lower output such as 2-level chargers (e.g., 6.6 kW). The calculation details are 

illustrated in Appendix. 

5.3 Portable charging devices 

The portable charging device (PCD) further reduces the dependence on energy 

replenishment from other vehicles. It can be seen as a backup battery with sufficient 

energy to power an EB for at least one timetabled trip. Large interchange stations, 

therefore, are set up as ‘battery banks’ in this system, where EBs with charging needs 

arrive and are connected to one or more PCD(s), which are then unloaded to the next en-

route ‘battery banks’ when the PCD battery is depleted. 

Weight, energy transfer efficiency, ownership cost, and lifespan of PCD are all key factors 

to consider. To avoid putting an extra burden on the EB, the PCD may be designed in the 

shape of a trailer, moving with the EB rather than being attached to the body. PCD differs 

from MCV in that it cannot be actively suspended on or disengaged from the EB, and it 

usually has a smaller battery aimed at serving one EB. On the other hand, this technique 

requires little initial outlay and is adaptable to several uses. PCD is therefore seen as the 

measure that can be commercialized the fastest for the EB system. There are already 

commercially viable applications aimed at light-duty electric vehicles that provide an 

emergency rescue service, and the battery capacity ranges from 3 kWh to 8 kWh with an 

efficiency of up to 85%(Memari et al., 2020).  

It is worth noting, however, that the energy density of PCDs will still not push the 

technical limits of Li-ion batteries. Although neither the price nor the capacity of the PCD 

can be broken in a short amount of time, it is possible to add and remove tiny batteries 

for continuous energy delivery in the early stages. This concept can therefore be 

employed as a temporary rather than a long-term fix until high-capacity batteries are 

developed. 
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CHAPTER 6 New solutions for 

operational efficiency: mixed flow 

6.1 Motivation 

The important urban function of the EB is commuter service which has an 

asymmetric passenger flow (Kraus et al., 1976). When focusing on urban-rural 

regions, traffic is considerable heavier toward than away from the urban district 

during the morning peak, and this phenomenon is reversed during the afternoon 

peak. This results in a high directional disequilibrium factor, which poses a 

challenge for traffic planning (White, 2016). But even if operational efficiency can 

be improved, the nature of commuting is doomed to imbalances. The high urban-

rural operating costs, along with low and moderate bus fares, place a significant 

strain on bus revenue. 

The mobility and logistics across urban-rural regions confront comparable 

challenges: limited transportation resources and sparse demand. Bus networks 

connect numerous stations in rural regions to metropolitan hubs while 

presenting extreme asymmetry in passenger flow. If the spare capacity of public 

transit is implemented to carry freight for short-haul operations, the loss of 

empty trips can be offset by the profitability of transporting goods. For logistics, 

this approach promotes the accessibility and robustness of shipments. Not only 
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does it reach remote rural areas, but it also rationalizes the parcel delivery time 

through the bus schedule, which dramatically improves the service level. 

In this work, a practical business mode is provided for mixed passenger and 

freight flow based on the current public transit network. First, a standard is set 

when mixed traffic is permitted. For public transportation, a hybrid of planned 

and on-demand techniques is recommended, with scheduled timetables in high-

traffic directions and on-demand services in low-traffic ones. Only low-traffic 

direction is assumed to be utilized for parcel delivery. To flexibly schedule the 

bus, EB is allowed to deadhead to the cargo distribution center for loading before 

returning to the origin to service the pre-booked passengers. Based on such a 

novel transportation mode, a reliable scheduling method is designed to optimize 

the electric bus schedules and charging plans with minimized operational costs 

while avoiding transportation interruptions due to energy shortages. 

6.2 Problem description 

In this section, we define the mixed-flow rural-urban transit (MFURT) problem. 

Notations mentioned in this section are summarized in Appendix E. 

The MFURT problem is defined at the operational level and proposes to optimize 

EB scheduling and charging schedules. In this problem, bus timetables, bus fleet 

size, charger deployment, and passenger and cargo demand are the input 

conditions (Barabino, 2009). Figure 6.1 presents an exemplary MFURT service. 

We consider an MFURT network of two distribution centers with several 

charging piles, one bus route, and a collection of passengers and goods. EBs in 

this system offer passengers a scheduled service with predefined departure and 

arrival times (e.g., 7:00 and 7:50) during peak hours in one direction and on-

demand service in the other due to passenger flow asymmetry. We are targeting 

low-frequency bus routes with departure intervals of up to one hour.  Freight 

transport is only allowed to use vehicle resources in that direction where 

passengers are scarce. Before being transferred (e.g., from urban to rural area), 

we assume that all progressing products are gathered and stored at the 

distribution center. When the EB has completed a scheduled timetable trip, it 
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might deadhead to the nearest distribution center to load multiple palettes or 

sets of parcels, and the time window for cargo picking up is relatively generous 

(e.g., 8:00-12:00). During the loading/unloading process, EBs have access to the 

chargers to refill their energy consumption. When the unloading is complete, the 

bus returns to the terminal to serve the next scheduled trip. 

Distribution 

center 
Distribution 

center [8:20,8:30]

7:00 7:50

Rural
UrbanPick-up

[8:00,12:00]
Pick-up

Drop-off

Drop-off

 

Figure 6.1: Graphical representation of the MFURT system (from Zeng et al., 

2022c) 

A three-dimensional network is then presented to represent the problem. The 

six-node physical network is first constructed in Figure 6.2(a). For the on-

scheduled timetable trip, only the terminals (node 1 and node 2) remain, and the 

demand is concentrated on terminals, as the travel times and stop patterns are 

fixed in this mode of operation. The network is further extended, where each 

requesting node for pick-up or delivery is expanded to include three nodes. The 

main node 𝑖 stands for the physical node. Similar to (Liu et al., 2018a), two 

dummy nodes 𝑖’ and 𝑖’’ are introduced to denote the starting and ending of each 

service, respectively. The time duration for each service is denoted by the link 

between dummy nodes 𝑖’ and 𝑖’’. For distribution centers (nodes 3 and 4), the bus 

charging time is predefined and is included in this service duration time. When a 

bus is planned to cover the request, the arc between 𝑖’ and 𝑖’’ must be visited for 

both pick-up and drop-off.  

A standard time-discretized space-time network can be constructed through the 

procedure proposed in the papers with a minimum feasible space-time prism 

(Liu et al., 2018a; Tong et al., 2015; Yang et al., 2022). Figure 6.2(b) shows the 

corresponding spatial and temporal variations in battery state-of-charge to 

demonstrate both the state transition and bus route in the space-time-state 
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network for a round trip. The bus, according to the timetable, travels from the 

starting point at 7:00 and picks up 40 people via the arc (2’, 2’’) with a fully 

charged battery. It arrives at the last stop after 50 minutes and passes through 

(3’, 3’’) for passenger alighting. The bus then deadheads to the urban distribution 

center with a SOC of 70% and is loaded and recharged for 15 minutes by an arc 

(4’, 4’’). The bus left station 4 with SOC at 80%. Based on the on-demand 

passenger request and their preferred time window, the bus arrives at the 

passenger pick-up point 5 at 8:30 and takes these two passengers to drop-off 

point 6 at 8:55 after waiting for 2 mins. To finish the unloading operation, the bus 

arrives at the rural distribution center at 9:20 and completes 15-minute 

unloading and charging activities through arcs (1’, 1’’), with the SOC climbing 

from 50% to 70% before returning to station 2. 

2 3

4

5

6'

1

Distribution center

Bus terminal

Bus stop for on-demand passenger

+40 -40

+2-2

+30

Drop-off arc

7:00 7:50

[8:00,12:00]

[8:20,8:30][8:55,9:05]

[8:00,12:00]

Pick-up arc

Transportation arc

4'' 4'1'' 1'

2' 3'

6

5'

-30

Passenger pic-kup request

Passenger drop-off request

Package pick-up request

Package drop-off request

2'' 3''
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(a) The physical and modified transportation network 
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(b) Illustrative bus schedule for a round trip 

Figure 6.2: A toy example of the time-space-state network (from Zeng et al., 

2022c) 

6.3 Method 

The optimization model for the MFURT network is presented in this section, 

which aims to optimize bus schedules, ensure passenger and cargo services and 

arrange the charging events for the electric bus fleet so as to minimize the total 

operational cost. 

Primal problem: 

Objective function, 

minimize ∑ ∑ 𝑐𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘 𝑥𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′

𝑘

(𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′)∈𝐴𝑘∈(𝐾∪𝐾∗)

 (6.1) 

Subject to,  

(1) Flow balance constraint for each bus 𝑘: 
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∑ 𝑥𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′
𝑘

(𝑜𝑘,𝑗,𝑡𝑜
𝑘 ,𝑡′ ,𝑠𝑜

𝑘,𝑠′)∈𝐴

= 1, ∀𝑘 ∈ (𝐾 ∪ 𝐾∗)  (6.2) 

∑ 𝑥𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘

(𝑖,𝑑𝑘 ,𝑡,𝑡𝑑
𝑘 ,𝑠,𝑠𝑜

𝑘)∈𝐴

= 1,       ∀𝑘 ∈ (𝐾 ∪ 𝐾∗) (6.3) 

∑ 𝑥𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′
𝑘

𝑖,𝑡,𝑠:(𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′)∈𝐴

= ∑ 𝑥𝑗,𝑖,𝑡′ ,𝑡,𝑠′,𝑠
𝑘

𝑖,𝑡,𝑠:(𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′)∈𝐴

   

∀𝑘 ∈ (𝐾 ∪ 𝐾∗), ∀(𝑗, 𝑡, 𝑠′) ∉ {(𝑜𝑘, 𝑡𝑜
𝑘, 𝑠𝑜

𝑘), (𝑑𝑘, 𝑡𝑑
𝑘, 𝑠𝑜

𝑘)}  

(6.4) 

(2) Pick-up and delivery coupling constraint for each bus  𝑘 and each request 𝑟:  

∑ 𝑥𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘 =

(𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′)∈𝑃𝑟

∑ 𝑥𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘

(𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′)∈𝐷𝑟

 

∀𝑘 ∈ (𝐾 ∪ 𝐾∗), ∀𝑟 ∈ 𝑅 

(6.5) 

(3) Mandatory visiting constraint for pick-up of request 𝑟:  

∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘

(𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′)∈𝑃𝑟𝑘∈(𝐾∪𝐾∗)

= 1, ∀𝑟 ∈ 𝑅  (6.6) 

(4) Capacity limitation for each bus:   

∑ ∑ 𝑑𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′
𝑟 ∙ 𝑥𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′

𝑘 ≤ 𝑉𝑘

(𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′)∈{𝑃𝑟∪𝐷𝑟}𝑟∈𝑅

 

∀𝑘 ∈ (𝐾 ∪ 𝐾∗) 

(6.7) 

(5)  Binary decision variable:   
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𝑥𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘 ∈ {0,1} (6.8) 

The objective function in Constraint (1) is designed to minimize the total costs of 

all types of selected arcs, including travel costs, waiting expenses, and service 

revenue. Constraints (2-4) are the standard vehicle-based traffic balance 

constraints with a given initial departure state (𝑜𝑘 , 𝑡𝑜
𝑘, 𝑠𝑜

𝑘) and end-of-service 

state (𝑑𝑘 , 𝑡𝑑
𝑘, 𝑠𝑜

𝑘) for each vehicle. The possible traveling arcs are enumerated in 

the space-time-state arc sets 𝐴 with proper SOC limitation and specification of 

the flow direction. Constraint (5) ensures that each demand 𝑟 containing both 

pick-up and delivery needs to be served by the same vehicle within a given time 

window. Constraint (6) indicates that the pick-up and delivery arcs for each 

demand should be visited by exactly one bus. Constraint (7) ensures that the 

capacity limitation is respected. The decision variable 𝑥𝑖,𝑗,𝑡,𝑡′ ,𝑠,𝑠′
𝑘  defined in 

Constraint (8) is a binary variable indicating whether the arc (𝑖, 𝑗, 𝑡, 𝑡′, 𝑠, 𝑠′) is 

selected in the 3D route of bus 𝑘. Finally, our proposed model is a 0-1 integer 

linear programming model, which can be solved directly in a commercial solver.  

The 3D structure of the decision variable would raise the computational 

complexity, which should be properly addressed by dedicated procedures and 

innovative solution frameworks. Next, the prime model is related by relaxing the 

Constraints (5-7) with two lagrangian multipliers 𝜆𝑘,𝑟  and �̅�𝑟  in the objective 

function to reduce the number of constraints in the primal problem. Let 

parameter 𝑎 represents the link (𝑖, 𝑗, 𝑡, 𝑡′, 𝑠, 𝑠′).  

Lagrangian dual problem: 

Objective function, 

𝑍 = ∑ ∑ �̃�𝑎
𝑘𝑥𝑎

𝑘 

𝑎∈𝐴𝑘∈(𝐾∪𝐾∗)

− ∑ �̅�𝑟

𝑟∈𝑅

 (6.9) 

where, 
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𝑐�̃�
𝑘 = {

𝑐𝑎
𝑘 + 𝜆𝑘,𝑟 + �̅�𝑟 , (𝑖, 𝑗, 𝑡, 𝑡′, 𝑠, 𝑠′) ∈ 𝑃𝑟

𝑐𝑎
𝑘 − 𝜆𝑘,𝑟 , (𝑖, 𝑗, 𝑡, 𝑡′, 𝑠, 𝑠′) ∈ 𝐷𝑟

𝑐𝑎
𝑘,                               otherwise

 

Subject to,  

Constraints (6.2)− (6.4) and Constraint (6.7) 

Solving Algorithm 

The LR-based Algorithm 1 is presented as the main algorithm. The optimum 

value generated by the Lagrangian dual problem can be seen as the lower bound 

to the primal problem. This strategy calls algorithm 2 and updates the arc cost 𝑐�̃�
𝑘. 

By calculating the path cost for each vehicle, the solution is generated. If the 

optimal solution of the Lagrangian dual problem is feasible for the primal 

problem, we have certainly got the optimal solution for the primal problem. If 

this is not the case, we use a heuristic to determine an upper bound for the 

primal solution based on the solution of the lower bound. In the heuristic, the 

demand satisfaction would be checked, and virtual EBs would be dispatched to 

provide services for requests not accessed by physical EBs. 

Algorithm 1: LR procedure 

// Initialization 

    Ser iteration number 𝑣 = 0; 

Ser LR multipliers 𝜆𝑘,𝑟, �̅�𝑟 to base value; 

Initialize upper and lower bound solutions {𝑥𝑈𝐵
0 }, {𝑥𝐿𝐵

0 }; 

Initialize upper bound 𝑈𝐵∗ = +∞, lower bound 𝐿𝐵∗ = −∞; 

Define a termination condition, a gap between 𝑈𝐵∗ and 𝐿𝐵∗  

While termination condition is false, for each iteration 𝑣 

Do 

    Reset the visit count for each arc 𝑎 ∈ {𝑃𝑟 ∪ 𝐷𝑟} to 0; 

    // Step 1. Calculate 𝐿𝐵𝑣 

    Initialize 𝐿𝐵𝑣 = 0 

    For each bus 𝑘 ∈ (𝐾 ∪ 𝐾∗) 

    Do 

        //input: �̃�𝑎
𝑘 

        Call Algorithm 1 based on arc cost �̃�𝑎
𝑘; 

        Update the visit count for each arc 𝑎 ∈ {𝑃𝑟 ∪ 𝐷𝑟}; 

        //Output 𝐿𝐵𝑣 

     End For 

     // Update 𝐿𝐵∗ 

    Substituting solution vector 𝐿𝐵𝑣 in Eq. (10); 

    Update 𝐿𝐵∗ = max (𝐿𝐵∗, 𝐿𝐵𝑣) and 𝑥∗; 

    // Step 2. Update LR multipliers 

    Calculate the visit of each request arc in 𝑃𝑟 : 
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    ∑ ∑ 𝑥𝑎
𝑘

𝑎∈𝑃𝑟𝑘∈(𝐾∪𝐾∗)   

    //Update arc multipliers �̅�𝑟
𝑣+1

  and sub-gradient ∇𝐿�̅�𝑟

 𝑣  for each request with the following 

equations: 

    ∇𝐿�̅�𝑟

 𝑣 = ∑ ∑ 𝑥𝑎
𝑘

𝑎∈𝑃𝑟𝑘∈(𝐾∪𝐾∗) − 1, 

    LR multiplier:  �̅�𝑟
𝑣+1

= �̅�𝑟
𝑣

+ 휃̅𝑟
𝑣 ∙ ∇𝐿�̅�𝑟

 𝑣 , 

    Step size: 휃̅𝑟
𝑣 =

�̅�𝑟
0

𝑣+1
 

    Checking the pairing between bus 𝑘 and request 𝑟: 

    ∑ 𝑥𝑎
𝑘

𝑎∈𝑃𝑟
 

    ∑ 𝑥𝑎
𝑘

𝑎∈𝐷𝑟
    

    Update arc multipliers 𝜆𝑘,𝑟
𝑣+1

  and sub-gradient ∇𝐿𝜆𝑘,𝑟

 𝑣  for each bus and each request with the 

following equations: 

   ∇𝐿𝜆𝑘,𝑟

 𝑣 =∑ 𝑥𝑎
𝑘

𝑎∈𝑃𝑟
− ∑ 𝑥𝑎

𝑘
𝑎∈𝐷𝑟

 

   LR multiplier:  𝜆𝑘,𝑟
𝑣+1 = 𝜆𝑘,𝑟

𝑣 + 휃𝑟
𝑣 ∙ ∇𝐿𝜆𝑘,𝑟

 𝑣  

   Step size: 휃𝑘,𝑟
𝑣 =

𝜃𝑘,𝑟
0

𝑣+1
 

   Update the arc cost for 𝑎 ∈ {𝑃𝑟 ∪ 𝐷𝑟}  

       �̃�𝑎
𝑘 = {

𝑐𝑎
𝑘 + 𝜆𝑘,𝑟

𝑣+1 + �̅�𝑟
𝑣+1

, 𝑎 ∈ 𝑃𝑟

𝑐𝑎
𝑘 − 𝜆𝑘,𝑟

𝑣+1, 𝑎 ∈ 𝐷𝑟

 

// Step 3. Generate 𝑈𝐵𝑣 

Find a feasible solution for the primal problem with the result in Step 1. 

For each request 𝑟: 

If the pick-up requests are being served by more than one EB, then designate one of the EBs for the 

request. 

If both the pick-up and drop-off requests are not being served by any EB, then assign a backup EB 

for both requests. 

If the pick-up and drop-off requests are partially served, then designate the original EB and assign a 
backup EB for both requests. 

End For 

Calculate the upper bound 𝑈𝐵𝑣 based on the feasible solution {𝑥𝑈𝐵
𝑣 }   

Update the upper bound 𝑈𝐵∗ = min{𝑈𝐵∗, 𝑈𝐵(𝑘)} 

// Step 4: Evaluate the solution quality 

Calculate the relative gap percentage by 
𝑈𝐵∗−𝐿𝐵∗

𝑈𝐵∗ × 100% 

𝑣 = 𝑣 + 1   
End while 

 

we design Algorithm 1 uses dynamic programming to generate the time-space-

state path for each EB, in which a label correction algorithm is coded to 

manipulate unprocessed and useful paths. 

 

Algorithm 1: Time- and state- dependent forward dynamic programming algorithm  

For each bus 𝑘 ∈ (𝐾 ∪ 𝐾∗) Do 

// Initialization 

    Label cost 𝐿(. , . , . ) ≔ +∞; 

Node predecessor of vertex (. , . , . ) ≔ −1; 

Space predecessor of vertex (. , . , . ) ≔ −1; 

State predecessor of vertex (. , . , . ) ≔ −1; 

Set load 𝑑𝑘  for bus 𝑘 ∈ (𝐾 ∪ 𝐾∗) to 0; 

// Bus 𝑘 starts from depot with 𝐿(𝑜𝑣 , 𝑡𝑜
𝑣 , 𝑠𝑜

𝑣)=0 

For the entire operating period  𝑡 ∈ (𝑡𝑜
𝑣 , 𝑡𝑑

𝑣) Do 
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    For each link (𝑖, 𝑗) Do 

        For each state 𝑠 Do 

            derive downstream state 𝑠′ = 𝑠 ± 𝑒(𝑖, 𝑗, 𝑡); 

            derive arrival time 𝑡′ = 𝑡 + 𝑇𝑇(𝑖, 𝑗, 𝑡); 

            If 𝑑𝑘 + 𝑑𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′ ≤ 𝑉𝑘  𝐚𝐧𝐝  𝐿(𝑖, 𝑡, 𝑠) + �̃�𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘 < 𝐿(𝑗, 𝑡′, 𝑠′) 𝐚𝐧𝐝 𝑠′ ∈

[𝑆𝑂𝐶𝑚𝑖𝑛 , 𝑆𝑂𝐶𝑚𝑎𝑥] Then 

                 𝑑𝑘 = 𝑑𝑘 + 𝑑𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′ //load update 

                 𝐿(𝑗, 𝑡′, 𝑠′) = 𝐿(𝑖, 𝑡, 𝑠) + �̃�𝑖,𝑗,𝑡,𝑡′,𝑠,𝑠′
𝑘  //label update 

                 Node predecessor of vertex (𝑗, 𝑡′, 𝑠′) ≔ 𝑖; 
                 Node predecessor of vertex (𝑗, 𝑡′, 𝑠′) ≔ 𝑡; 

                 State predecessor of vertex (𝑗, 𝑡′, 𝑠′) ≔ 𝑠; 

            End If; 

        End For; 

        End For; 

    End For; 

End For;          

Output: Space-time-state path for each vehicle  

6.4 Case Study 

Two urban-rural bus routes in Shanxi Province, China, are used as an example to 

show how to integrate passenger and freight transport. Both the rural and urban 

terminals are close to a distribution center, at distances of 3 km and 2 km, 

respectively. Energy replenishment is planned at the distribution center with a 

charging power of 450 kW and a charging efficiency of 0.95. We are targeting two 

bus lines with lengths of 40.2 km and 37.3 km, as shown in Figure 6.3. They share 

the same city terminal and cover 8 and 7 rural stations, respectively. The one-

way operating time is 70 minutes for line 1 and 65 minutes for line 2. The 

distance between stations, timetabled trips and on-demand requests can refer to 

Appendix E. 
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Figure 6.3: Urban-rural bus routes (from Zeng et al., 2022c) 

 

Referring to Mahmoudi and Zhou (2016), the operational cost of a transportation 

arc traversed by a physical bus is assumed to be $22/h, while the expenses for a 

virtual one are $50/h. Besides, the waiting cost of a physical bus is $15/h, while 

waiting at depots is assumed to cost $0/h. The revenue of passenger service is 

assumed to be $10. Because the transit system focuses primarily on passenger 

service, the service allowance for goods is set at half the passenger rate. The 

initial value for LR multipliers is 2.  

For mixed passenger and cargo journeys, we specify the number of passengers or 

cargo per requirement and ensure that the load on board is less than the capacity 

(for example, 20 passengers and 20 containers). Four EBs are available for daily 

operation, each with a 300-kWh battery capacity. A unit consumption of 1.8 

kWh/km is assumed for the EB fleet. We assume that it takes 10 minutes to load 

and unload 20 containers and less than 1 minute to board and alight passengers. 

During the container loading/unloading time, the energy replenishment would 

achieve 7.125 kWh per minute under the linear charging procedure. We offer a 

variety of charging time (dwell time) options on the virtual arcs (e.g., (10’, 10’’) 

and (11’, 11’’)) to ensure that the goods can be loaded while having enough 

power to support subsequent journeys.  
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The optimized result is shown in Table 6.1. It indicates that all passenger and 

cargo demands can be met within the time window and that there are three sets 

of passenger demands combined with cargo movements. Furthermore, we 

discovered that no EBs were operating on empty. Suppose the EB is unable to 

pick up a passenger within the time window after performing the scheduled trip. 

In that case, it will choose to carry the cargo exclusively to improve transport 

efficiency. 

Due to the long rural-urban bus routes, each EB is charged at least twice, while 

bus 3 has four charges. We assume that the EB does not have the opportunity to 

be charged during the midday break. The specific charging schedule, charging 

duration, charging start times, and SOC fluctuations are shown in Table 6.2. 

Thanks to the high-power charger, the EB can be replenished with 50% of its 

energy in 21 minutes, making a full charge the ideal alternative while loading and 

unloading freight. 

Table 6.1: Optimized schedule for each EB 

Bus  Bus route SOC (%) profile 

1 1-(21&13)-9-4-18-12 76-100-76-53-29-6 

2 2-(14&15)-23-10-17-6 76-53-100-77-54-30 

3 7-22-3-5-(25&19) 77-100-75-52-100 

4 8-20-(24&16)-11 77-52-100-77 

Table 6.2: Charging strategy for each EB 

Bus Charging 

location 

Charging start 

time 

Charging duration 

(min) 

From SOC 

(%) 

To SOC (%) 

1 
 

11 7:16 11 75 100 
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10 9:06 12 73 100 

2 10 10:21 20 52 100 

11 11:52 9 77 100 

3 11 7:28 9 77 100 

10 8:41 9 77 100 

10 17:46 21 50 100 

11 19:41 11 75 100 

4 10 10:56 20 52 100 

11 16:06 11 75 100 
 

 

The results show that the LR algorithm can converge in fourth iterations and 

achieve the upper bound solution without a gap. This is due to the fact that our 

upper bound is derived from the lower bound solution, which is consistent with  

Shang et al. (2021). For an extended case study, please refer to Appendix E. 

In general, MFURT services offer an innovative and cost-effective solution for 

public transportation providers, logistics providers, and authorities to improve 

the coverage of logistics services and balance the directional transportation 

demands. In places with scattered freight demand, the use of buses for freight 

transport has the potential to enhance on-time performance by displacing the 

usage of logistics transport vehicles. Focusing on minimizing operational costs, 

this paper describes the MFURT design problem within a space-time framework. 

The methods presented provide systematic technical direction and have 

important methodological implications.  
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CHAPTER 7 Conclusion 

In this final chapter, the research questions are answered by bringing together 

the knowledge compiled in this thesis. The main implications and contribution of 

this work are discussed, together with directions for future research. 

As shown in Figure 7.1, what contributions have been made at different stages of 

the development of the EB system against the road map are summarized. 

Start Types and characteristics of buses 
Enabled heterogeneous bus fleet with 
minimized procurement expenses

(Re)Timetabling
Combined planned 
and on-demand 
techniques for 
passenger and cargo

Infrastructure/emerging tech
Balanced investment and demands 
Introduced en-route dynamic chargers

Bus schedule and charging 
schedule
Network-scale en-route charge 
scheduling 

Crew schedule
To be considered

System Maintenance
Managed charge and 
discharge to mitigate 
battery aging

End
Life-cycle-cost
analysis

Figure 7.1: The contribution in electric bus system 

The research behind this thesis confirms the characteristics of EBs have played a 

huge restriction in the process of planning and operation, affecting operational 

efficiency and life-cycle costs. Additionally, it is shown that the trade-offs 
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associated with electrification should be captured and evaluated when 

generating plans and schedules. 

The main conclusions are presented below in relation to the research questions 

initially posed in Chapter 1. In order to ensure a successful transition to electric 

buses and electric vehicles overall, a systems approach is needed. Thus, the 

research questions focused on the different stages of electrification. 

As electric buses are gradually replacing conventional vehicles, how can we 

provide quality decision support for each of these issues in the transportation 

system?  

As introduced in paper III, integrated optimization methods are conducive to 

generating practical and feasible plans. We coordinated and optimized the 

battery size, charging station deployment, and vehicle scheduling to achieve a 

30.4% reduction in lifecycle costs compared to the current operational plan. In 

addition, it is suggested to provide an exact optimization model for offline plans, 

which can generate optimal solutions in a short time. The proposed models in the 

thesis can be easily solved by commercial solvers. 

As the biggest challenge for electric buses, how to schedule the charging 

events for the entire fleet while ensuring the feasibility of the plans and how 

to quantify the impact of different charging behavior on battery state-of-

health? 

The charging problem is described and tackled in different ways depending on 

the charging method. This thesis constructs two optimization models to find the 

charging solution with the lowest operating cost for the opportunity charging 

strategy. One model has battery aging as the main optimization objective by 

quantifying the impact of battery wear (Paper I), while one focuses on the 

robustness of the scheme i.e., considering the uncertainty of energy consumption 

(Paper II). To avoid the problems in the description, battery management 

constraints, charging conflict avoidance constraints, and arrival time constraints 

are designed in the models. 
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Evaluation and improvement. How to verify the environmental and economic 

advantages and disadvantages of the plans developed in different stages? 

How to improve operational efficiency accordingly? 

In order to systematically describe the advantages and disadvantages of the 

generated plans, a life-cycle cost analysis framework was constructed to consider 

the costs and emissions during the production to retirement process from both 

economic and environmental perspectives as shown in Paper III. 

To further improve the efficiency of EB operations, new V2V charging technology 

and the corresponding charging methods are introduced in Paper IV. The main 

idea is to transform the traditional charging devices with fixed locations into 

charging banks operating on the road, completely replacing traditional charging 

activities that take up operational time. 

In addition, improvement can also be made in terms of resource utilization. In 

response to the directional passenger flow, Paper V proposed a mixed-flow 

transport mode for passengers and cargo. The bus utilization rate is greatly 

enhanced by running on a schedule in the direction of high passenger flow and 

adopting an on-demand system in the opposite direction to flexibly adjust the 

vehicle route. 

Overall, the main contribution of the thesis is to the research field of electric bus 

system planning, operating, and evaluating and can be summarised as follows:  

1. Development of a systematic evaluation model of battery sizing, charging

station deployment, and bus scheduling to assess the life-cycle performance

of the bus system. Development of compelling scenarios and

recommendations from an economic and environmental perspective.

2. Development of two optimization models for en-route charge scheduling

model in large-scale networks. A case study in Sweden contextualizes and

reinforces the relevance of the proposed model and results.

3. A thorough analysis of the further improvement of the public transport sector

regarding operational efficiency, the service mode and optimization models

are tailored for the public transport sector and can be adapted to other cities.
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Impact of the results 

A good reason to pursue large-scale bus electrification would be the lifecycle 

benefit of emissions and the low costs of operation. The investment in large-scale 

bus fleets is primarily influenced by four variables: fleet size, battery size, battery 

aging, and charging strategy. As reported in Paper III, fleet size is the most 

significant factor affecting emissions and costs. 

With this in mind, stockholders and operators should fully consider the trade-offs 

between charging station configuration and battery size, between fleet size and 

charger size, and between charging methods and battery aging costs, when 

initially deploying a fleet. Paper III points out that even if the number of charging 

posts doubles, the benefits due to lighter batteries can reduce investments in 

general. In addition, there is a counter-intuitive conclusion that while the 

prevailing research suggests that depot charging is the most economical way to 

go (in terms of installation and charging costs), the maintenance costs associated 

with battery aging due to deep cycling will be several times greater than the 

charging expenses, as reported in Paper I. Therefore, opportunity charging may 

be more economical from a life cycle perspective. 

While opportunity charging has been practically achieved as a costly 

infrastructure, Paper IV demonstrates that charger use is substantially below 

expectations, with an average utilization rate of 10.3% unavoidably leading to 

resource waste. However, this phenomenon cannot be fundamentally altered 

because the location of the charger is fixed, and the bus dwell time is relatively 

determined. But if the charging post is transformed into a mobile power supply 

device, dynamically transferring power to the EB in transit, the usage rate will 

vary qualitatively. As a result, in the future, when designing the bus network, the 

concept of laying out the charging infrastructure will be expanded. Operators will 

then be free to manage and distribute the dynamic charging facilities that are 

moving throughout the network rather than being limited to selecting a location 

and a capacity. 
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Finally, the use of public transit in logistics opens the door for efficiency 

improvements. Flexible transit systems, low-occupied transportation resources, 

and rising logistical demands are the most fertile ground for the growth of mixed 

transportation. Additionally, increased stakeholder networks and improved 

governmental support for demonstration programs can help mature the 

regulations and enhance cooperation among key players in efforts to make public 

transit more attractive and efficient. 

Future works 

Reviewing the roadmap planned for the EB system (Figure 1.2), there are still 

areas for further improvement.  

For example, model selection in the planning stage can be included in the life-

cycle cost analysis framework, and the resulting operating costs and charging 

demand will vary from different base energy consumption. In addition, different 

energy sources not considered in this thesis, such as hydrogen, hybrid energy, etc. 

will bring new advantages and challenges to the transit system. At this early 

stage of electrification, it is worth exploring whether a hybrid fleet system is 

technically feasible. 

Besides, in addition to considering the peak-to-average power ratio, the ability to 

install high power chargers at each site depends on the capacity of the grid. The 

configuration of the power supply equipment and the safety of the installation 

are important influencing factors. The deployment problem thus has additional 

grid-related constraints. Furthermore, the cost of installing a charger may further 

include the investment of upgrading the grid and the expenses of maintaining the 

distribution network. 

From an operational point of view, the speed at which the EB operates and the 

number of passengers boarding and alighting the bus both represent significant 

operational variables. The complexity of the charging problem is increased by 

additional stochasticity in addition to the energy consumption uncertainty taken 

into account in Paper II. The magnitude of the impact of these uncertainties and 

the modeling approach might be used as new research concepts. Additionally, 
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crew scheduling is also a plan that has not yet been considered, mainly in terms 

of drivers’ working hours, rest arrangements, and route allocation. The feasibility 

and economics at the operational level will be further optimized by combining 

crew scheduling with vehicle scheduling. 

Finally, in order to promote investment and long-term commitment to mass 

electrification of public transportation, it is also important to continuously 

research new business models and specific policy measures to embrace emerging 

battery technology and charging methodologies. 
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