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Abstract
The increasing presence of intermittent energy sources in the Swedish electricity grid neces-
sitates a transition of Swedish nuclear reactors from constant base load operation to load-
following mode. However, such changes in power can induce xenon oscillations, a phenomenon
that poses operational challenges and the risk of fuel damage. Xenon oscillations occur due
to the decay characteristics of iodine-135 and xenon-135 produced in the fission process,
exhibiting a periodicity of 15 to 30 hours. Detecting these oscillations proves challenging
as they may result in localized power variations while the overall power of the reactor core
remains relatively stable.

This thesis aims to develop a computationally efficient and transparent model capable of
predicting the susceptibility of nuclear reactors to unstable xenon oscillations. Two models are
created and assessed: a simple physics-transparent model based on a one-group homogeneous
core representation, and a more involved model, which incorporates two energy groups and
a heterogeneous spatial discretization with nodal resolution.

Comparative analysis of the models reveals notable disparities in predicting instabilities re-
lated to xenon oscillations. The number of energy groups emerges as the primary factor
contributing to the discrepancies observed. Moreover, spatial resolution is critical in captur-
ing eigenmode coupling when spatial offsets exist in the equilibrium neutron flux distribution.
It is demonstrated that the latter model indicates a higher level of system instability con-
cerning xenon oscillations.

The findings underscore the significance of considering both spatial and energy resolution to
accurately assess the stability of the system.

Keywords: Reduced Order Modeling, Xenon Oscillations, Multi-Group Diffusion Theory,
Modal Decomposition
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1
Introduction

1.1 Background

Nuclear power currently accounts for 10% of global electricity demand, positioning it as the
second-largest source of low-carbon electricity worldwide, following hydropower [1]. Along-
side other clean energy sources such as hydro, wind, and solar power, nuclear power offers
significant potential to generate low-carbon electricity and combat climate change. Notably,
nuclear and hydropower are considered stable and controllable energy sources, as long as fuel
e.g., fissile material and water reserves, is available. These sources are called baseload sources.
On the other hand, the generation of wind and solar power varies with the local weather.
These sources are called intermittent energy sources. There is a notable expansion in the
deployment of wind and solar power, as outlined in the International Energy Agency’s (IEA)
2022 roadmap for achieving net-zero greenhouse gas emissions. According to the roadmap,
renewable sources are projected to generate 60% of global electricity by 2030 [2]. Within
this framework, nuclear power is expected to undergo a fourfold increase by 2050. In grids
with high penetration of intermittent energy sources, operating nuclear power reactors of-
ten necessitates a transition from baseload mode to load-following mode. This shift enables
compensation for fluctuations in the variable output of other energy sources.

Specifically, the Swedish electricity mix has, historically, been comprised of 50% hydro and
50% nuclear power. Over the past two decades, the proportion of wind power has risen to
17%, while the share of nuclear power has reached 35% due to several reactor closures [3].
The increasing presence of intermittent energy sources implies that Swedish nuclear reactors
might need to shift from baseload mode to load-following mode [4, 5]. Although the Swedish
reactors were originally designed for flexible operation, they have not operated in this mode
for the past 20 years [4, 5]. Consequently, extensive analysis and validation work is necessary
for the reactors to resume operating in this manner [5].

This research aims to develop a tool for a comprehensive analysis of the reactor’s ability
to operate in a flexible load-following mode, focusing on a critical phenomenon known as
xenon oscillations. The study aims to develop an effective and physics-transparent method
for predicting possible xenon oscillations in nuclear reactors.
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1. Introduction

1.2 The Neutron Cycle
To better understand the effect of xenon in a nuclear reactor, the so-called neutron cycle
is briefly introduced. Inside the core of nuclear power reactors, fissile material undergoes
fission reactions to produce energy. For each fission reaction, a neutron is absorbed by a
fissile nucleus, such as uranium-235, which subsequently splits into two smaller nuclei and
releases energy as well as a number of new neutrons. These neutrons can be absorbed into
other fissile nuclei and thereby create a chain reaction. In most commercial thermal nuclear
reactors, water around the fuel is used as a moderator. The moderator thermalises the
neutrons, making it much more likely that they will cause a fission reaction in the fuel, which
consists of low-enriched uranium.

The neutron cycle consists of several sources and sinks visualised in Fig. 1.1. These gains
and losses through the neutron cycle must be balanced for the reactor to be at equilibrium
and thus produce a constant power output. The steps in the neutron cycle are:

• Fast neutrons are created from thermal and fast fissions.

• The neutrons can be lost before slowing down.

• While slowing down, the neutrons can be absorbed in the U-238 resonances.

• After thermalisation the neutron can escape the reactor or be absorbed in other mate-
rials than the fuel.

• After absorption in the fuel, it is not certain that the neutron will cause a new fission
event.

• The remaining neutrons are absorbed into fissile material and produce new fission events

Xenon poisoning increases the absorption of thermal neutrons in materials other than fuel
and thereby causes an imbalance in the neutron cycle. This process will be further explained
in the next section.

1.3 Xenon Poisoning

1.3.1 Physics of xenon poisoning
Xe-135 is created from two paths. A small fraction is produced directly as a fission product
while the main way of its creation is as a decay product of the fission product Te-135, which
quickly decays to I-135 and then to Xe-135 as shown in Fig. 1.2. The two possible ways that
xenon can be removed are either by neutron capture where it becomes xenon-136, which is
stable and has a low neutron cross section, or by natural decay to Caesium-135, which has a
much longer half-life than Xe-135 and also a relatively low neutron capture cross section.

As can be seen in Fig. 1.3, the absorption cross section at thermal energies for Xe-135 is
more than six orders of magnitude higher than that of U-238 at thermal energies, shown in
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1. Introduction

Figure 1.1: Neutron cycle and neutron absorption cross section of U-238 as a function of
incident neutron energy. Figure inspired by [6] and with data from [7].
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1. Introduction

Figure 1.2: Sources and sinks of xenon-135 in a nuclear reactor taken from [6].

Figure 1.3: Xenon absorption cross section as a function of neutron energy

Fig. 1.1.

Some time after the startup of a nuclear power plant, the xenon concentration will reach
equilibrium as it is continuously produced from iodine decays and fission and is being lost at
the same rate through decay and neutron absorption.

In a one-energy group homogenous reactor model, the equilibrium iodine- and xenon concen-
tration is written as:

Ieq(r) = γIΣfϕeq(r)
keffλI

(1.1)

Xeq(r) = (γI + γX)Σfϕeq(r)
keff (λX + σXϕeq(r)) (1.2)

With Σf being the macroscopic fission cross section, keff being the effective multiplication
factor, λX , λI , γX and γI being the decay constants and branching ratios of Xe-135 and
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1. Introduction

I-135 respectively, σX being the microscopic neutron absorption cross section for Xe-135 and
ϕeq(r) being the equilibrium neutron flux distribution within the core. The definitions of
these parameters are standard to the field and can be found in any reactor physics textbook
[6, 8]. They will therefore not be further explained in this work.

After a reactor shutdown, the large reduction of neutron absorption and the faster decay
of I-135 compared to Xe-135 will cause the xenon level in the reactor to rise for a period.
During this period the negative reactivity due to xenon might exceed the available reactivity
from control rod withdrawal or dilution of the boric acid within the reactor. This might leave
the reactor inoperable for an extended period of time called xenon dead time.

1.3.2 Dynamics of xenon oscillations
In large reactors with low neutronic coupling, small asymmetric disturbances in the neutron
flux can lead to non-uniform concentrations of Xe-135 within regions of the core. The initial
loss of symmetry can be caused by, for example, control rod insertions. This leads to differ-
ences in the flux level, which causes local power oscillations within the core over time. From
an initial perturbation, where the flux is lowered at the top of the core and increased at the
bottom of the core, the mechanism can be described in four steps.

• An initial lack of symmetry within the core flux distribution causes an imbalance in
the I-135 buildup and the Xe-135 absorption between regions in the core.

• In the high flux region, iodine is produced, and xenon is burned off at a higher rate.
This further increases power. In the low-flux region, iodine is produced at a lower rate
and xenon is not burned off. This further lowers the flux in the region.

• As the iodine decays, the production of xenon increases in the high-flux region, this
increases neutron absorption and lowers the flux. Simultaneously the xenon in the low-
flux region starts to decay which decreases the absorption, thereby increasing the flux.
Thus, the high flux and low flux regions swap between the top and bottom.

• This cycle may repeat itself with periods of around 15-30 hours [8, 9]. Under certain
core configurations, the difference between the top and bottom regions may increase
over time.

Because of a low shift in the overall power level of the core and because of the long oscillation
period, xenon oscillations can be hard to detect by operators but can result in local power
levels increasing by a factor of three or more [8]. Such an increase in power poses a threat
to reactor operation and fuel integrity. While oscillations in the radial plane can occur due
to misalignment of control rods or sudden shifts in power faster than the xenon iodine decay
time scale [8], most of these tend to be stable meaning that the amplitude of the oscillations
decay over time. The stability of axial oscillations, on the other hand, depends on burnup,
power level and the core configuration among other things [10–13].

For this reason, it is of utmost importance that efficient and transparent models are developed
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1. Introduction

to predict core configurations that lead to the occurrence of unstable xenon oscillations.

1.3.3 Historic significance of xenon poisoning in nuclear power re-
actors

At the dawn of reactor physics in 1944, the United States was developing a nuclear weapon in
an arms race against Germany, which was further accelerated by the Japanese attack on Pearl
Harbour. As a part of this, the third and largest nuclear reactor ever built was constructed
at a site near Richland, Washington. The site was named the Hanford site and the project
was called the B reactor. It was a 250MW graphite-moderated and water-cooled reactor to
produce plutonium which would fuel the atomic bomb that was dropped on Nagasaki in 1945
[14, 15]. Initially, the reactor was supposed to be built with 1,500 process tubes for inserting
uranium fuel and later extracting it for post-processing. However, a physicist named John
Wheeler had expressed concerns that the nuclear reactions might create neutron-absorbing
by-products, which made the engineer George Graves insist that the reactor instead should
include 2,004 process tubes [16].

As it turned out, when the reactor was first made critical, everything seemed fine at first.
The operators drew out the control rods in increments to increase the power to full but once
the reactor reached 9 MW the power stopped rising and the reactor soon became subcritical
again. John Wheeler and Enrico Fermi worked together and showed that xenon-135 was the
culprit of the stalled reactor. It was determined that additional uranium fuel was needed and
by utilising every one of the 2,004 process tubes the reactor could be brought to full power.
Had the design not accounted for the possibility of a reactor poison, it would have faced a
major setback [16].

Another significant example illustrating the consequences of xenon poisoning occurred much
later in history. On April 25, 1986, during the final years of the Soviet Union, a catastrophic
accident took place at the Chernobyl reactor during a shutdown procedure. As part of the
procedure, a safety test was conducted to assess the feasibility of utilising the mechanical
energy in the turbine to ensure the power requirements during a cutoff of steam supply.
During the ramp-down process, the test was momentarily paused when the reactor was
operating at half of its nominal power due to an electricity shortage on the grid. However,
during this time, the power unexpectedly dropped dramatically due to xenon poisoning of
the core. [17]

Instead of terminating the experiment and shutting down the reactor, the chief engineer de-
cided to withdraw absorbers from the core to increase the power output. The withdrawal
of absorbers together with the consumption and decay of xenon caused the power level to
rise rapidly. Compounding the issue, the low coolant flow rate brought the reactor into an
unstable thermo-hydraulic state where it could easily be brought to boiling. This combina-
tion of removed absorbers and the unstable state of the coolant water rendered the reactor
extremely dangerous [17].

As the power increased at an unexpectedly high pace, the operators tried to fully insert the
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1. Introduction

safety rods (SCRAM). The insertion of the graphite-tipped rods led to increased moderation
in the bottom of the reactor. This, together with the displacement of water which decreased
neutron absorption and the shift in neutron flux due to xenon poisoning at the top of the
core led to a local increase in reactivity. The subsequent power surge resulted in the boiling
of coolant water. Since the core had a positive void coefficient the steam production led to
a positive feedback loop causing a massive steam explosion. [18]

It is important to note that the above description provides a surface-level overview of the
accident, omitting numerous technical and political factors that contributed to the decision-
making process. However, if the chief engineer, Alexander Akimov, had been more aware of
the dangers posed by xenon poisoning, it is conceivable that the worst nuclear power disaster
in history might have been prevented.

1.3.4 Modelling, Predicting and Avoiding Xenon Oscillations
Free-running xenon oscillations are not allowed in an operating nuclear reactor, except under
specific controlled testing conditions [12]. Thus, it is important to predict when a certain
reactor configuration will exhibit xenon oscillations and when these could grow in time if
not disrupted. This section will go through some of the prediction and control algorithms
available as well as the design specifications for nuclear reactors that minimise the risk of
xenon oscillations.

1.3.4.1 Design specifications

The largest determining factor in whether a nuclear reactor core exhibits xenon oscillations
is its size [13, 19]. Large cores are more susceptible to xenon oscillations since the distances
within the core are large compared to the migration length of the thermal neutrons within
the core [20]. Such a core has a low degree of neutronic coupling effectively meaning that
actions taken at one end of the reactor will have little effect on the other end. A low neutronic
coupling allows, for example, the flux to remain high at the bottom of the core even as control
rods are inserted at the top. This has the potential to create unstable asymmetries in the
xenon-iodine distribution within the core.

Contrary to this, the economy of scale dictates that large reactors have an economic advantage
over smaller ones, which often means that the possibility of some xenon oscillations must be
accepted for a given design. Indeed, it has been shown that many larger reactor designs
such as the AP-1000, VVER-1000 and the CANDU reactors under certain conditions can be
unstable with respect to xenon oscillations [12, 21–23].

It has been shown that the relationship between the radius and the height of the reactor has
an impact on the stability of nuclear reactors. Obaidurrahman and Singh [13] find that the
condition H/D > 0.92, with H being the height of the reactor and D being the diameter,
should be respected for PWRs to avoid unstable transients. This relationship is related to
the separation of eigenvalues which will be covered later in the thesis.

7



1. Introduction

Figure 1.4: Axial flux profile vs. core age [24]

1.3.4.2 Prediction and modelling of xenon oscillations

The problem of modelling xenon oscillations is difficult because it contains a strong non-
linear coupling between the neutron flux and the xenon concentration in the core as well as
a non-linear thermal-hydraulic coupling. All attempts at modelling the problem depend on
simplifications and assumptions. In all deterministic models of the problem, the diffusion
approximation has been applied.

An important measure of axial xenon oscillations is the Axial Offset (AO) or Axial Shape
Index (ASI) of the power and xenon distribution. The power axial offset is defined as:

AOp = Pt − Pb

Pt + Pb

(1.3)

i.e., the relative difference in flux between the top and bottom of the core. With Pb and Pt

meaning the average power in the bottom and top half of the core, respectively. Likewise, the
radial offset (RO) can be defined as the relative difference between one side of the core and
the other. Most reactors have some non-zero axial and radial offset even at 100% power and
all control rods are withdrawn due to the initial fuel configuration. These measures are called
Equilibrium Axial Offset (EAO) and Equilibrium Radial Offset (ERO). Burnup can change
these measures over long time periods as visualised in Fig. 1.4 and is shown to also impact
the stability of the core with respect to xenon oscillations, with divergent xenon oscillations
usually occurring later in core life [12, 24].

The minimum requirement for the solution of the problem is a 2-point reactor kinetics model,
where the reactor is split into a top and bottom part with the definition of parameters for the
neutronic coupling between the two regions. This method has proven sufficient for calculating
the correct axial offset for test-case transients with small errors compared with high-fidelity
simulations [10, 25–27].

1.3.4.3 Control

Control during transients is mostly carried out manually by the operator assisted by auto-
matic estimation and prediction of important non-measured states for decision support [27].
Typically bounds are placed on the axial offset to remain within ±5% at most times during
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1. Introduction

power transients [26]. Load control of a PWR core is usually carried out with a combination
of control rod insertion and boron acid injection into the coolant.

Since xenon oscillations are difficult to detect on the overall power output of the core, detec-
tors must be placed at the bottom and at the top of the core to record any deviation between
the two values and calculate the axial offset.

An early control strategy is aimed at inserting control rod banks when the flux of the top
part of the core is at its maximum to suppress the oscillation corresponding to the first
harmonic cosine shape of the flux [28, 29]. This strategy might prove problematic as the
local power peak at the maximum amplitude might be outside of regulatory limits for the
reactor. Yoichiro [25] proposed a method for continuous guidance for the operator allowing
control rod operations to be carried out in much smaller steps.

The field of nuclear reactor control is large and will not be covered in this thesis but many
newer schemes, both linear and non-linear, for automated control are being considered rang-
ing from simple proportional-integral-differential (PID) controllers to deep artificial neural
networks [27].

1.4 Reduced Order Modelling

1.4.1 Purpose of Reduced Order Modelling
Reduced order modelling (ROM) aims to transform a complex and often non-linear system
with many degrees of freedom into a simpler system containing only a few degrees of freedom.
This simpler system can be solved at a much lower computational cost while still retaining the
essential dynamics and behaviour of the original problem. The method has been applied to
various fields within science and engineering and has in recent years seen great advancements
driven by greater computational resources and integration of machine learning [30, 31].

Reduced order models can be divided into two groups. Intrusive and non-intrusive ROMs.
An intrusive strategy will be the focus of this thesis and obtains the model reduction by trans-
forming the underlying physics equations of the problem into simpler equations with fewer
degrees of freedom through mathematical operations and approximations. This approach
has the advantage that it does not rely on any additional information about the system such
as experimental or high-fidelity model data. Since it is based on the governing equations,
the model can also be more transparent to the underlying physics. On the other hand, the
governing equations might not be available or might be too complex to manipulate [32, 33].

A non-intrusive strategy focuses on building a reduced order model by capturing the low-order
dynamics from full-order model snapshot evaluations of either experiments or high-fidelity
models. This approach is usually entirely data-driven and the underlying physics equations
are not introduced. It has the advantage of not relying on the governing equations which
might not always be available for a complex system. Furthermore, the recent advances in
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1. Introduction

high fidelity modelling and increase in computer power give a good opportunity for creating
the necessary snapshots in many cases [30].

1.4.2 History of Reduced Order Modelling
While the term reduced order modelling has only gained popularity in the later parts of the
20th century, it has roots as far back as the beginning of the 19th century. In 1811, Joseph
Fourier presented an article, in which he showed that the problem of calculating the heat
transfer in solid bodies could be greatly simplified by postulating the following theorem: "Any
function, continuous or discontinuous, of a variable can be expressed as a series of sines of
multiples of the variable" [31, 34]. This theorem meant that a solution to the heat equation
could be expressed in the form of an infinite sum of sine functions. E.g., given the equation:

∂u(x, t)
∂t

= α
∂2u(x, t)
∂x2 (1.4)

and the appropriate boundary conditions and initial conditions:

u(0, t) = 0 = u(L, t) (1.5)
u(x, 0) = f(x); ∀x ∈ [0, L] (1.6)

and given that the separation of variables holds, the solution can be written as:

u(x, t) =
∞∑

n=1
Dn sin

(
nπx

L

)
e− n2π2αt

L2 (1.7)

with

Dn = 2/L
∫ L

0
f(x) sin

(
nπx

L

)
dx (1.8)

Each function within the sum is called a basis function or mode. The exponential part of
each mode containing −n2 means that higher order modes with larger n decay faster in time
than lower order modes. This fact allows truncating the sum to N modes while retaining the
essential dynamics of the system. This truncation is convergent such that the error becomes
smaller with increasing N [34].

Later, in 1867, William Thompson, also known as Lord Kelvin, was working on the problem
of predicting the tides in an efficient manner. Previously this had been done manually by
solving Laplace’s tidal equations from 1770 [35]. These calculations were based on local
observations which were then analysed to derive coefficients related to the tidal components
derived from the sun and moon motion. This was an immensely tedious task when done with
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1. Introduction

pen and paper. Kelvin devised that the tidal signature could be represented by a Fourier
series of sine functions each representing different harmonic periods in nature such as the
day, month, and year cycle along with many others. These simple sine functions could be
recreated mechanically by a machine consisting of a series of gears and pulleys that moved a
pen vertically on a moving sheet of paper. Each gear corresponds to a harmonic component
of the sine series. His design is shown in Fig. 1.5 including 10 harmonic components of the
sine series [35, 36]. This analogue computer is an excellent example of the effectiveness of
reduced order modelling, whereby a complicated tidal signal is broken down into N simple
functions, each of which can be calculated with relative ease. The method is still applied
today, though digitally, and usually includes 37 harmonic components [35].

1.4.3 Spectral Methods

Reduced order modelling is a very wide class of mathematical methods to reduce the degrees
of freedom in a problem[30–32].

In Eq. (1.7), it was seen that the solution to the heat equation can be expressed as an infinite
sum of a time-dependent exponential function multiplied by a space-dependent sine function
multiplied by some mode-specific constant or amplitude. More generally, this can be written
as

u(x, t) =
∞∑

n=1
an(t)ϕn(x) (1.9)

This is known as the Galerkin expansion whereby a solution is expanded into an infinite sum
of orthogonal space-dependent basis functions which satisfy Eq. (1.5) and (1.6) multiplied
with some time-dependent amplitude. The spatial basis functions can be local, such as hats,
or global such as the sine basis functions shown earlier. This thesis will only focus on the
class of methods involving global basis functions, known as spectral or modal methods [37].

Specifically, this thesis will make use of the eigenvalue expansion, wherein a set of eigen-
functions of the stationary problem is computed using, e.g., the power iteration method. For
further details on this method, see, e.g., [38]. These eigenfunctions serve as basis functions for
the problem. By this procedure, the initial partial differential equations are transformed into
a set of coupled ordinary differential equations. The time-dependent amplitudes can then
be found either by approximating an analytical form or by solving the system of equations
numerically.
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Figure 1.5: Thompson’s tide predicting machine at the Science Museum, South Kensington,
London [36]
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1.5 Reduced Order Modelling Applied to Xenon Oscil-
lation

A similar method to the one mentioned above was used by Christie and Poncelet [28] and
John C. Lee [11] to find a solution to the xenon-iodine dynamics for a one-dimensional one-
group reactor system with control rod movement but only includeded the first axial overtone
in the analysis. Lee treated the axial oscillations separately from the diametral/azimuthal
oscillations. Later in this thesis, it will be shown that the eigenfunctions of the axial di-
mensional problem are the sine series while the eigenfunctions of the diametral/azimuthal
problem are the Bessel functions of the first kind multiplied with a sine series.

Song and Cho [10] expressed the problem in terms of axial differences and used the Laplace
transform to create an analytical expression for a two-group one-dimensional two-point reac-
tor system in a paper from 1997. Later, in 1999, Song and Cho [39] used the Fourier expansion
on the distributions of flux, iodine and xenon concentrations to eliminate the non-linearities
arising from the inclusion of control rod movements. The same axial difference parameters
and Laplace transform were employed in their 1999 paper as in their 1997 paper. Both papers
by Song and Cho showed good agreement with high-fidelity numerical simulations.

1.6 Goal of the research
To assist in evaluating the extent to which the Swedish nuclear reactors can operate in
load-follow conditions, this research aims at developing computationally efficient and physics-
transparent models for predicting when a particular reactor configuration is stable or unstable
with respect to xenon oscillations. In this thesis, two similar models have been developed
using intrusive reduced order modelling. These models differ in the spatial and energy refine-
ment. The effect of this refinement is investigated in the thesis. A stability prediction model
needs to be sufficiently complex to accurately predict the phenomenon. Complexity often
comes with some cost to transparency. A sufficiently transparent model might enable sta-
bility indicators to be derived for the Swedish reactors. By utilising an exceedingly complex
model at the cost of transparency, this opportunity would be lost. The research currently
focuses on the stability of Pressurised Water Reactors (PWRs) but could be extended to
Boiling Water Reactors (BWRs). This research aims to provide valuable insights into the
stability of Swedish nuclear reactors operating in load-following conditions. By comparing
different modelling approaches and assessing their computational efficiency, accuracy, and
transparency, this study seeks to contribute to the understanding of reactor stability.

1.7 Structure of the Thesis
Chapters 2 and 3 of this thesis present the two reduced order models that were developed
during the PhD work to predict free-running xenon oscillations and that were published in
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conference proceedings (see papers I and II). Chapter 4 discusses the results of the comparison
between the two models. Chapter 5 provides conclusions and the outlook for the future work
planned in the continuation of the PhD research.
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2
Two-Group Heterogeneous Model

This chapter will present the mathematical derivation of the two-group heterogeneous ROM
(2G-HET). The chapter will first provide some reasoning for the choice of method. Next,
the mathematics and details of the method are explained and lastly, the parameters in the
model are given.

2.1 Motivation for the Model Choice

The mathematical model presented in this chapter builds upon the spectral methods discussed
in the previous chapter, as well as neutron diffusion theory. It incorporates the interactions
between the two-group neutron flux and the concentrations of iodine-135, and xenon-135.
By using an eigenmode expansion, four partial differential equations (PDEs) are transformed
into a set of coupled ordinary differential equations (ODEs). The spatial eigenmodes are
completely stationary and only their relative amplitudes change in time as opposed to nodal
solvers where the flux for each spatial node is recalculated at each time step. Numerically
solving the coupled ODEs describing the amplitudes gives a complete approximate description
of the temporal and three-dimensional spatial variations of neutron flux, I-135 and Xe-135
concentrations within the reactor core.

Several industry-standard full-core neutronic solvers for PWR systems employ a two-group
diffusion treatment with nodal resolution. In this nodal discretisation approach, the reactor
core is divided into cuboids, whose properties are homogenized. The advantage of choosing
a two-group heterogeneous treatment is that it can conveniently take input and produce
output in a format that is compatible with the nodal discretisation scheme commonly used
in industry solvers. Using a heterogeneous model allows for investigating core configurations
at different burnup levels which can alter the axial power profiles as can be seen in Fig. 1.4.

When examining Fig. 1.3, it becomes apparent that the absorption cross section of xenon-
135 is primarily significant at low neutron energies. To effectively analyse xenon oscillations
within the core, a two-group treatment can be employed, which separates the neutron flux
into two components: one thermal that is sensitive to xenon oscillations and another fast
that is not.
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2. Two-Group Heterogeneous Model

2.2 Underlying Theory Behind the Model

2.2.1 The Stationary Problem
This section will introduce the equilibrium form of the governing equations. From this,
valuable relations can be derived such as the equilibrium iodine and xenon concentrations as
well as the orthogonality properties of the system.

The balance equation without time dependency for the two-group neutron flux, iodine-135
and xenon-135 concentrations can be written in compact form as:

−[∇ · D(r)∇ + Σ(r)] × Φ̂eq(r) + 1
keff

F(r) × Φ̂eq(r) = 0 (2.1)

1
keff

ΓI(r) × Φ̂eq(r) − X̂λI(r)Ieq(r) = 0 (2.2)

X̂λI(r)Ieq(r) + 1
keff

ΓX(r) × Φ̂eq(r) − X̂λX(r)Xeq(r) − Xσax(r)Xeq(r) × Φ̂eq(r) = 0 (2.3)

Where Ieq(r) and Xeq(r) are the equilibrium iodine and xenon concentrations respectively,
σa,x(r) is the microscopic neutron absorption cross section for xenon-135 for thermal neutrons.
The definitions of the different parameters can be found in A.

The vector X̂ has the property:

X̂T · X̂ = 1 (2.4)

Equations (2.1) to (2.3) are written in a general heterogeneous way.

The adjoint diffusion problem for the neutron equilibrium neutron population can be written
as:

[∇ · D(r)∇ + ΣT (r)] × Φ̂†
eq(r) = 1

k†
eff

F(r) × Φ̂†
eq(r) (2.5)

The adjoint neutron flux satisfies the relation:〈
Φ̂†(r)

∣∣∣A(r) × Φ̂(r)
〉

=
〈
A†(r) × Φ̂†(r)

∣∣∣Φ̂(r)
〉

(2.6)

With A† being the adjoint operator to the operator A. with the inner product defined as
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2. Two-Group Heterogeneous Model

〈
Ψ̂(r)

∣∣∣Φ̂(r)
〉

=
∫

V
Ψ̂(r) · Φ̂(r)dV ′ =

∫
V

(ψ1(r)ϕ1(r) + ψ2(r)ϕ2(r))dV ′ (2.7)

From Eq. (2.2) and Eq. (2.3) the equilibrium iodine and xenon concentrations can be derived
as

Ieq(r) = X̂T · 1
keffλI(r)ΓI(r) × Φ̂eq(r) (2.8)

Xeq(r) =
λI(r)Ieq(r) + X̂T · 1

keff
ΓX(r) × Φ̂eq(r)

λX(r) + X̂T × X · σa,X(r)Φ̂eq(r)
(2.9)

where Eq. (2.3) is multiplied by X̂T from the left and the property of Eq. (2.4) is used.

The forward problem is an eigenvalue problem with infinitely many solutions to the eigenvalue
and the eigenvectors which satisfy the equation:

[∇ · D(r)∇ + Σ(r)] × Φ̂n(r) = 1
kn

F(r) × Φ̂n(r) (2.10)

Here, k0 = keff and the spatial eigenmodes Φ̂n(r) are ordered with decreasing corresponding
eigenvalues, such that k0 > k1 > k2....

Importantly, it has been shown that the following orthogonality relation holds [11]:

〈
Φ̂†

n(r)
∣∣∣F(r) × Φ̂m(r)

〉
=
〈
FT (r) × Φ̂†

n(r)
∣∣∣Φ̂m(r)

〉
= δnm

〈
Φ̂†

n(r)
∣∣∣F(r) × Φ̂m(r)

〉
(2.11)

2.2.2 The Dynamic Problem
The definitions derived in the previous section are applied to a time-dependent problem in
order to simplify it and develop a reduced order model.

The time-dependent problem is written as:

v−1∂Φ̂(r, t)
∂t

=
[
−∇ · D(r)∇ − Σwox(r) − X̃σaxX(r, t) + 1

keff

F(r)
]

× Φ̂(r, t) (2.12)

− ∂Σa

∂Φ̂
(r)Φeq(r) × δΦ̂(r, t)

X̂
∂I(r, t)
∂t

= 1
keff

ΓI(r) × Φ̂(r, t) − X̂λI(r)I(r, t) (2.13)

X̂
∂X(r, t)

∂t
=X̂λI(r)I(r, t) + 1

keff

ΓX(r) × Φ̂(r, t) (2.14)

− X̂λX(r)X(r, t) − XσaxX(r, t) × Φ̂(r, t)
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2. Two-Group Heterogeneous Model

It can be assumed that the changes in the cross sections from power oscillations can be
modelled through changes in the xenon concentration and the linear feedback term
−∂Σa

∂Φ̂ (r)Φeq(r) × δΦ̂(r, t) with Φeq(r) being a matrix with the equilibrium fast and thermal
fluxes on the diagonal.

The two-group neutron flux, iodine concentration and xenon concentration can be written
as a sum between the steady-state value and a time-dependent perturbation in the following
manner.

Φ̂(r, t) = Φ̂eq(r) + δΦ̂(r, t) (2.15)
I(r, t) = Ieq(r) + δI(r, t) (2.16)
X(r, t) = Xeq(r) + δX(r, t) (2.17)

The following steps are taken: equations (2.15) to (2.17) are inserted into Eqs. (2.12) to
(2.14) and the stationary problem in Eqs. (2.1) to (2.3) are subtracted. Lastly, the equations
are linearised by neglecting terms of the order δ2. The result is balance equations for the
changes around the mean of the variables of interest:

v−1∂δΦ̂(r, t)
∂t

=
[
−∇ · D(r)∇ − Σ(r) − ∂Σa

∂Φ̂
(r)Φeq(r) + 1

keff

F(r)
]

× δΦ̂(r, t) (2.18)

−
(
X̃ × σaxΦ̂eq(r) ⊗ X̂T

)
× X̂δX(r, t)

X̂
∂δI(r, t)

∂t
= 1
keff

ΓI(r) × δΦ̂(r, t) − X̂λI(r)δI(r, t) (2.19)

X̂
∂δX(r, t)

∂t
= X̂λI(r)δI(r, t) +

[
1

keff
ΓX(r) − XσaxXeq(r)

]
× δΦ̂(r, t) (2.20)

−[λX(r) + X × σa,X(r)Φ̂eq(r) ⊗ X̂T ] × X̂δX(r, t)

The last terms of Eq. (2.18) and Eq. (2.20) are rewritten using the property in Eq. (2.4)
and the ⊗ denote the outer product between two vectors such that:

v̂ ⊗ ŵT =


v1
v2
...
vn

⊗


w1
w2
...
wm


T

=


v1w1 v1w2 · · · v1wm

v2w1 v2w2 · · · v2wm
... ... . . . ...

vnw1 vnw2 · · · vnwm

 (2.21)

The truncated eigenmode expansion is applied to approximate δΦ̂, δI and δX with a sep-
aration of the perturbation into time-dependent amplitudes and use the space-dependent
eigenfunctions of the forward problem as basis functions.
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δΦ̂(r, t) ≈
N∑

n=0
Pn(t)Φ̂n(r) (2.22)

X̂δI(r, t) ≈
N∑

n=0
AnF(r)In(t) × Φ̂n(r) (2.23)

X̂δX(r, t) ≈
N∑

n=0
AnF(r)Xn(t) × Φ̂n(r) (2.24)

where An = ⟨Φ̂†
n(r)|Φ̂n(r)⟩

⟨Φ̂†
n(r)|F(r)×Φ̂n(r)⟩ transforms the units into [cm−3]. By multiplying by the adjoint

flux and integrating over the volume of the reactor, the partial differential equations are now
transformed into a set of 3N ordinary differential equations.

dPm(t)
dt = 1

Λm

( 1
k0

− 1
km

)
Pm(t) − ∂Σa

∂Φ̂

N∑
n=0

〈
Φ̂†

m(r)
∣∣∣Φeq(r) × Φ̂n(r)

〉
〈
Φ̂†

m(r)
∣∣∣v−1 × Φ̂m(r)

〉 Pn(t) (2.25)

− 1
Λm

N∑
n=0

〈
Φ̂†

m(r)
∣∣∣σa,X(r)

(
X̃ × Φeq(r)

)
× F(r) × Φ̂n(r)

〉
〈
Φ̂†

m(r)
∣∣∣F(r) × Φ̂m(r)

〉 AnXn(t)

dIm(t)
dt = 1

Amk0

〈
Φ̂†

m(r)
∣∣∣ΓI(r) × Φ̂m(r)

〉
〈
Φ̂†

m(r)
∣∣∣F(r) × Φ̂m(r)

〉 Pm(t) − λIIm(t) (2.26)

dXm(t)
dt = λIIm(t) + 1

Amk0

〈
Φ̂†

m(r)
∣∣∣ΓX(r) × Φm(r)

〉
〈
Φ̂†

m(r)
∣∣∣F(r) × Φ̂m(r)

〉 Pm(t) (2.27)

− 1
Am

N∑
n=0

〈
Φ̂†

m(r)
∣∣∣σa,x(r)XXeq(r) × Φ̂n(r)

〉
〈
Φ̂†

m(r)
∣∣∣F(r) × Φ̂m(r)

〉 Pn(t)

− λXXm(t) −
N∑

n=0

〈
Φ̂†

m(r)
∣∣∣(σa,X(r)X × Φeq(r)

)
× F(r) × Φ̂n(r)

〉
〈
Φ̂†

m(r)
∣∣∣F(r) × Φ̂m(r)

〉 An

Am

Xn(t)

Where, Λn,m = ⟨Φ̂†
m(r)|v−1×Φ̂n(r)⟩

⟨Φ̂†
m(r)|F(r)×Φ̂m(r)⟩ and it was assumed that Λn,m << Λm,m for n ̸= m.

In the ODEs presented above, mode m is coupled with all other modes n through the sums
of inner products.

The model’s results will be shown and compared with those from the one-group homogeneous
model (1G-HOM) in Chapter 4. The normalised neutron flux profiles, resulting from the given
cross sections, of the core can be seen in Fig. 2.1
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2. Two-Group Heterogeneous Model

Figure 2.1: Axial (left) and radial (right) normalised neutron flux profile in nodal dimen-
sions
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One-Group Homogenous Model

In the previous chapter, the two-group heterogeneous formulation of the reduced order model
was introduced, highlighting the compatibility with industry-standard full-core solvers and
its ability to capture the xenon-neutron interactions more accurately due to the increased
energy resolution. However, there are distinct advantages to employing a simpler one-group
homogeneous treatment. This approach facilitates a deeper understanding of the underlying
physics governing the system dynamics. Additionally, it enables the derivation of a fully
analytical expression for the system evolution.

This chapter will first present the derivation of the one-group homogeneous model. Next,
it will go through the derivation of the three-dimensional eigenfunctions of the one-group
homogeneous diffusion equations in cylindrical coordinates. Lastly, the analytical derivation
of the complex stability index, which solely describes the dynamics of the model, is presented.

3.1 Underlying Theory of the Model
The derivation of the 1G-HOM model follows the same approach as the 2G-HET model.
First, the equilibrium equations are presented along with the equilibrium concentrations of
xenon-135 and iodine-135 and the orthogonality properties.

3.1.1 The Stationary Problem
The one-group diffusion equation with homogenised cross sections looks as follows:

D∇2ϕeq(r) +
[

1
keff

νΣf − Σa

]
ϕeq(r) =0 (3.1)

γI

keff

Σfϕeq(r) − λIIeq(r) =0 (3.2)

λIIeq(r) + γX

keff

Σfϕeq(r) − λXXeq(r) − σXϕeq(r)Xeq(r) =0 (3.3)

These functions are greatly simplified compared to the heterogeneous equations since none
of the cross sections carry spatial dependence.
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The equilibrium concentrations of iodine and xenon are given in Eqs. (1.1) and (1.2).

Again, this diffusion equation is an eigenvalue equation with infinite solutions satisfying:

D∇2ϕn(r) +
[

1
kn
νΣf − Σa,w/oX(r) −Xeq(r)σX

]
ϕn(r) = 0 (3.4)

With the following orthogonality property∫
V
ϕm(r)ϕn(r)dV = δnm

∫
V
ϕm(r)ϕn(r)dV (3.5)

3.1.2 The Dynamic Problem
In the one-group homogeneous formalism, the time-dependent equations are written as:

1
v

∂ϕ(r, t)
∂t

= D∇2ϕ(r, t) +
[

1
keff

νΣf − Σa,w/oX(r) −X(r, t)σX

]
ϕ(r, t) (3.6)

∂I(r, t)
∂t

= γI

keff

Σfϕ(r, t) − λII(r, t) (3.7)

∂X(r, t)
∂t

= λII(r, t) + γX

keff

Σfϕ(r, t) − λXX(r, t) − σaXϕ(r, t)X(r, t) (3.8)

Again, the non-linear coupling between the neutron flux and xenon concentrations can be
seen in Eqs. (3.6) and (3.8).

As in the 2G-HET model, the time-dependent variations are separated from the static spatial
distributions. The static parts are then subtracted from the dynamic equations and the terms
of order δ2 are neglected to yield the balance equations for the changes around the mean value
of the variables of interest.

1
v

∂δϕ(r, t)
∂t

= D∇2δϕ(r, t) + ΣEδϕ(r, t) − σXϕeq(r)δX(r, t) − ∂Σa

∂ϕ
ϕeq(r)δϕ(r, t) (3.9)

∂δI(r, t)
∂t

= γI

keff

Σfδϕ(r, t) − λIδI(r, t) (3.10)

∂δX(r, t)
∂t

= λIδI(r, t) + γX

keff

Σfδϕ(r, t) − λXδX(r, t)

− σXϕeq(r)δX(r, t) − σXXeq(r)δϕ(r, t) (3.11)

Using the definition ΣE = νΣf

keff
− Σa.
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The three variables are expanded in the spatial eigenmodes of the system multiplied with a
time-dependent amplitude:

δϕ(r, t) ≈
N∑

n=0
Pn(t)Φn(r) (3.12)

δI(r, t) ≈
N∑

n=0
In(t)Φn(r) (3.13)

δX(r, t) ≈
N∑

n=0
Xn(t)Φn(r) (3.14)

In the above approximation, the solution becomes exact in the limit N → ∞.

The Helmholtz equation ∇2Φn(r) = −B2
nΦn(r) is applied and the mode Φm(r) is multiplied

from the left. Then, all terms are integrated over the volume of the reactor, making use of
the orthogonal relationship between the modes:∫

V
Φm(r)Φn(r)dV = δnm

∫
V

Φm(r)Φn(r)dV (3.15)

The expressions for the time-dependence of the amplitudes then become:

1
v

dPm(t)
dt = (−DB2

m + ΣE)Pm(t) − σX

N∑
n

Φm,n
0 Xn(t) − ∂Σa

∂ϕ

N∑
n

Φm,n
0 Pn(t) (3.16)

dIm(t)
dt = γI

Σf

keff

Pm(t) − λIIm(t) (3.17)

dXm(t)
dt = λIIm(t) + γX

keff

ΣfPm(t) − σX

N∑
n

Xm,n
0 Pn(t) (3.18)

− λXXm(t) − σX

N∑
n

Φm,n
0 Xn(t)

Where Φmn
0 =

∫
V ϕeq(r)Φm(r)Φn(r)dV∫

V Φm(r)2dV
and Xmn

0 =
∫

V Xeq(r)Φm(r)Φn(r)dV∫
V Φm(r)2dV

are the terms
that couple one mode m to all other modes n.

The set of partial differential equations has now been transformed into a set of 3N coupled
differential equations. The next section will go through the analytical derivation of the spatial
eigenmodes of the three-dimensional one-group system.

A comparison of the 1G-HOM model and the 2G-HET model outputs of the time-dependent
functions P (t), I(t) and X(t) can be found in Section 4.4.
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3. One-Group Homogenous Model

3.2 Calculating the Spatial Eigenmodes of the Homogenised
System

The diffusion approximation is used for the case of a one-group 3-dimensional homogeneous
reactor system assumed to be a perfect cylinder. The radius was calculated such that it
preserved the area of the nodal reactor model.

Assuming a finite cylinder, with the origin in the middle, and having height H and radius P .
The stationary homogeneous diffusion equation can be written in the form of a Helmholtz
equation:

∇2Φ(ρ, θ, z) +B2Φ(ρ, θ, z) = 0 (3.19)

Where ρ,θ and z denotes the radial, angular and the axial coordinate respectively.

Inserting the definition of the Laplacian in cylindrical coordinates one obtains:

1
ρ

∂

∂ρ

(
ρ
∂Φ(ρ, θ, z)

∂ρ

)
+ 1
ρ2
∂2Φ(ρ, θ, z)

∂θ2 + ∂2Φ(ρ, θ, z)
∂z2 +B2Φ(ρ, θ, z) = 0 (3.20)

By applying the separation of variables it is possible to write the solution as:

Φ(ρ, θ, z) = R(ρ)Θ(θ)Z(z) (3.21)

The following boundary conditions are imposed on the above functions:

R(P ) = 0 (3.22)
Z(±H/2) = 0 (3.23)

Θ(0) = Θ(2π) (3.24)

Where the extrapolation distance has been neglected. Inserting Eq. (3.21) into Eq. (3.20)
and dividing by R(ρ)Θ(θ)Z(z) the following expression is obtained:

1
ρ

(
(ρR′)′

R

)
+ 1
ρ2

Θ′′

Θ + Z ′′

Z
+B2 = 0 (3.25)

⇒1
ρ

(
(ρR′)′

R

)
+ 1
ρ2

Θ′′

Θ = −Z ′′

Z
−B2 (3.26)
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Since the two sides of the equation are equal and depend on different variables both sides
must be equal to a constant −a2. The axial function

Z ′′ = (a2 −B2)Z (3.27)
(3.28)

can be solved separately and it can be shown that the solution has the form:

Z = Aei
√

B2−a2z + Ce−i
√

B2−a2z (3.29)
= E cos

(√
B2 − a2z

)
+ F sin

(√
B2 − a2z

)
(3.30)

By imposing the axial boundary conditions given in Eq. (3.23) the final axial solutions
become:

Z = A cos
(

(2n+ 1) π
H
z
)

+ F sin
(

2(n+ 1) π
H
z
)

(3.31)

with n = 0, 1, 2... For the azimuthal solutions, the left-hand side of Eq. (3.26) is rewritten
as:

ρ
(ρR′)′

R
+ a2

nρ
2 = Θ′′

Θ (3.32)

Again, the two sides of the equation must each be equal to a constant b2, and it can be shown
that the azimuthal solutions must have the following form:

Θ′′ = b2Θ (3.33)
⇒ Θ = A′eibθ + C ′e−ibθ (3.34)

= E ′ cos(bθ) + F ′ sin(bθ) (3.35)

By imposing the boundary condition from Eq. (3.24) the final azimuthal solutions become:

Θ = E ′ cos(mθ) + F ′ sin(mθ) (3.36)

with m = 0, 1, 2...

For the radial solutions, the remaining left-hand side of Eq. (3.32) is rewritten as:
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ρ
(ρR′)′

R
+ a2

m,iρ
2 −m2 = 0 (3.37)

or (3.38)

R′′ + 1
ρ
R′ +

(
a2

m,i − m2

ρ2

)
R = 0 (3.39)

Making a change of variables: ω = am,iρ, and R(ω) = R
(

ω
am,i

)
one gets:

d2R
dω2 + 1

ω

dR
dω +

(
1 − m2

ω2

)
R = 0 (3.40)

This is now the form of a Bessel equation which, when reinserting the original variables, has
solutions on the form:

R = BJm(am,iρ) + CYm(am,iρ) (3.41)

Here, Jm and Ym are Bessel functions of the first and second kind respectively with the order
of the functions denoted by m.

Since Ym(x) → −∞ as x → 0, C must equal zero.

By imposing the boundary condition of Eq. (3.22) it follows that am,i = jm,i/P where jm,i is
the i-th root of Jm.

The total geometrical buckling is defined as:

B2
n,m,i =

(
jm,i

P

)2
+
(

(2n+ 1) π
H

)2
(3.42)

We define the axial buckling κ2
n and radial buckling a2

m,i respectively as:

κ2
n =

(
(2n+ 1) π

H

)2
(3.43)

a2
m.i =

(
jm,i

P

)2
(3.44)

Since both the axial and azimuthal dimensions have two solutions four combined solutions
are obtained:
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Φ(ρ, θ, z) = CJm(am,iρ) cos(mθ) cos(κnz)
Φ(ρ, θ, z) = CJm(am,iρ) sin(mθ) sin

((
κn − π

H

)
z
)

Φ(ρ, θ, z) = CJm(am,iρ) cos(mθ) sin
((
κn − π

H

)
z
)

Φ(ρ, θ, z) = CJm(am,iρ) sin(mθ) cos(κnz)
(3.45)

The corresponding eigenvalues can be found as

kn,m,i =
νΣf

Σa

1 + L2B2
n,m,i

(3.46)

Where L =
√

D
Σa

is the diffusion length of the system. These eigenfunctions constitute a
complete set, are global and satisfy the orthogonality property of Eq. (3.15) and thus make
for suitable basis functions.

A comparison and discussion of the calculated eigenvalues and coupling coefficients of the
two models is presented in Section 4.6.

3.3 Analytical Calculation of Stability Index
To derive an analytical expression for the stability coefficient, an exponential form of the
time-dependent functions for each mode in Eqs. (3.16) to (3.18) is assumed and the coupling
between modes where n ̸= m is neglected.

Pm(t) = ame
ωmt (3.47)

Im(t) = bme
ωmt (3.48)

Xm(t) = cme
ωmt (3.49)

When these assumptions are inserted back into Eqs. (3.16) to (3.18) one obtains:

0 =
(
−ωm

v
−DB2

m + ΣE − ∂Σa

∂ϕ
ϕm

0

)
am − σXϕ

m
0 cm (3.50)

0 = γI

keff

Σfam − (ωm + λI)bm (3.51)

0 =
(
γX

keff

Σf − σXX
m
0

)
am + λIbm − (ωm + λX + σXϕ

m
0 ) cm (3.52)
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These equations can be written in the following matrix form:



(
− ωm

v
−DB2

m+ΣE

− ∂Σa
∂ϕ

ϕm
0

)
0 −σXϕ

m
0

γI

keff
Σf −(λI + ωm) 0

γX

keff
Σf − σXX

m
0 λI −

(
ωm+λX
+σXϕm

0

)


am

bm

cm

 =

0
0
0

 (3.53)

The only non-trivial solution is found by solving for the ωm that satisfies the determinant
equation:

∣∣∣∣∣∣∣∣∣∣∣

(
− ωm

v
−DB2

m+ΣE

− ∂Σa
∂ϕ

ϕm
0

)
0 −σXϕ

m
0

γI

keff
Σf −(λI + ωm) 0

γX

keff
Σf − σXX

m
0 λI −

(
ωm+λX
+σXϕm

0

)

∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.54)

This can be rewritten into the following third-order equation:

(
−ωm

v
−DB2

m + ΣE − ∂Σa

∂ϕ
ϕm

0

)
(λI + ωm)(ωm + λX + σXϕ

m
0 )

= σXϕ
m
0

(
γI

keff

ΣfλI + (λI + ωm)
(
γX

keff

Σf − σXX
m
0

))
(3.55)

From this, three complex roots of ωm are found for each mode. From Eqs. (3.47) to (3.49)
the following two conclusions can be drawn:

• If a root has a positive real value the corresponding mode will diverge over time with
a doubling time dependent on the real value.

• If a root has a negative real value the corresponding mode will converge over time with
a decay constant dependent on the real value.

• If a root has a non-zero imaginary value the corresponding mode will oscillate in time,
with a frequency dependent on the imaginary value.

Such an understanding of the behaviour of isolated modes, without the effects of cross-
mode coupling, gives insight into the underlying dynamics of the system modelled. Knowing
which modes are unstable provides the possibility of assessing the individual sensitivity of
that mode to reactor-specific parameters. The 1G-HOM model, through its simplicity, thus
gives additional important information relevant to xenon oscillation control and avoidance
strategies.

A comparison of the analytical results for the 1G-HOM and a similar analysis done with the
2G-HET model coefficients for the coupled ODEs is presented in Section 4.5. A sensitivity
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analysis investigating the 1G-HOM model response to changes in the different reactor-specific
parameters is presented in Section 4.3. This analysis is not included in the appended papers
providing additional insights beyond the scope of the published research.
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4
Results and Comparisons of the

Models

The previous two chapters introduced and explained the 2G-HET and 1G-HOM models in
detail. First, this chapter introduces the data used for the modelling along with the con-
densation and homogenisation schemes used to transform the data for the 1G-HOM model.
Then, the chapter presents a novel sensitivity analysis, based on the 1G-HOM model, that
is not included in the appended papers. The objective of this analysis is to gain insight into
the primary parameters affecting the stability of xenon oscillations. Then, the predictions
of the modes’ time-dependent behaviour are compared numerically and analytically between
the two models. Next, the effects of eigenvalue separation, energy and spatial refinement are
investigated to illuminate any underlying causes of differences between the two models.

4.1 Explanation of the Data Used
In the case study, the 2G-HET and 1G-HOM models are applied to analyse the case of an
asymmetric axial perturbation in a typical western PWR core [40] that has a nominal power
level of 3565 MWth and contains 193 fuel assemblies arranged in a 17x17 lattice.

The physical constants used in the model are tabulated in Table 4.1.

The cross section data has nodal dimensions of X × Y × Z = 32 × 32 × 34 and is prepared
with a high degree of negative equilibrium axial offset ESI = −20.5%, i.e., the power at
equilibrium is 20.5% higher at the bottom of the core than at the top.

4.2 Condensation and Homogenisation of the Cross Sec-
tions

The 1G-HOM model is built upon the same data as the 2G-HET model. This nodal data
in two energy groups is transformed into one energy group and homogenised over the entire
reactor. By making a weighted average using the neutron flux as a weighting factor, the
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Parameter Value
λI 2.87 · 10−5 s−1

λX 2.09 · 10−5 s−1

γI 0.062
γX 0.002

σX 2.70 · 10−18 cm2

ν 2.44
κ 0.2976 · 10−10 J

Radius 180.87 cm
Height 388.62 cm

Nominal power 3.565 · 109 W
∂Σa

∂Φ̂ 1.3 · 10−18 cm s

Table 4.1: Physical constants and reactor specific parameters.

reaction rate is conserved. First, the energy condensation is written as:

Σi,G,α =
∑

g Σi,g,αϕi,g∑
g ϕi,g

(4.1)

Where g = 1, 2 denotes the energy group and Σα is the cross section of the nuclear reaction
in question and i denotes the node index.

Then, the data is subsequently homogenized by using the neutron flux as a weighting function.
In the most general case, the equation is expressed as:

ΣI,G,α =
∑

i Σi,G,αϕi,GVi∑
i ϕi,GVi

(4.2)

However, in this particular scenario, all nodes are of the same size, rendering the node
sizes Vi negligible. The condensed and homogenised flux are respectively defined as follows:
ϕi,G = ∑

g ϕi,g and ϕI,G = ∑
i ϕi,G.

Table 4.2 shows the homogenised and condensed cross sections used for the 1G-HOM model.
It should be mentioned that in the condensation of the microscopic cross section of xenon-
135, the fast cross section was neglected due to its much lower value as is evident from Fig.
1.3.

A comparative evaluation of the effects of condensation and homogenisation of the nodal
input data on model prediction is presented in Sections 4.8 and 4.9 respectively.
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Parameter Value
νΣf 0.02976 cm−1

Σa 0.0227 cm−1

D 0.9846 cm2 s−1

σX 3.92 · 10−19 cm−2

v 1.51 · 106 cm s−1

Table 4.2: Homogenised and condensed cross sections.

4.3 Sensitivity Analysis
Utilizing the 1G-HOM model allows for additional insights into the impact that each model
parameter has on the time-dependent behaviour of any given mode. The analysis is carried
out by systematically changing each of the following parameters: Height, radius, diffusion
coefficient D, power level, macroscopic absorption cross-section Σa and the feedback coeffi-
cient ∂Σa

∂ϕ
then recalculating the roots of the stability coefficient ωm using Eq. (3.55). Only

the roots related to the iodine-xenon behaviour are shown as the one related to the prompt
behaviour of the system is of limited relevance for this analysis. For all plots, the two roots
are shown in red and blue respectively with the real value represented as a solid line and the
imaginary value of each root as a dashed line. In the regime where the imaginary values are
zero, the behaviour can be described as a sum of two exponential functions with the two real
values being the respective exponential coefficients. When the imaginary values are non-zero,
the real parts of the two roots overlap and only the blue line is visible. In this region, the
amplitudes oscillate with a frequency corresponding to the imaginary values and increase
or decrease exponentially with the real values being the exponential coefficient. For each
parameter, 100 different values are considered, ranging from minimum to maximum values
which were deemed relevant for each given parameter.

In the comparison between the models, the following naming convention is used:

• Mode 1 is the fundamental mode having the same shape as the equilibrium neutron
flux distribution.

• Mode 2 has the first harmonic in the axial direction and the same shape as mode 1 in
the radial plane.

• Mode 3 has the second harmonic in the axial direction and the same shape as modes
1 and 2 in the radial plane.

The analysis can be carried out for all modes but for the sake of brevity, only the sensitivity
of the first axial harmonic combined with the fundamental radial and azimuthal harmonics
(mode 2) is shown in this thesis. The stability of the system can be tuned using the arbitrary
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Figure 4.1: Schematics of the first and second harmonics of the system (inspired by [13])

value of ∂Σa

∂ϕ
. Because of the large differences in stability between the two models, the value

of ∂Σa

∂ϕ
is reduced by a factor of 10 compared to the value used in the remaining sections for

both the 1G-HOM and 2G-HET models.

Fig. 4.1 illustrates the first axial and radial harmonics of the system.

4.3.1 Impact of Reactor Height and Radius
The dimensions of the system have an impact on several parameters. They affect the buckling
Bn,m,i, resulting also in an effect on the effective multiplication factor. For this analysis, the
neutron flux was kept constant such that the power of the system changed with the size.
The changes in neutron flux affect both the terms ϕm

0 and Xm
0 as these are dependent on the

equilibrium neutron flux. Additionally, any integral over the volume is affected by changes
in the reactor dimensions.

Both the maximum and minimum height and radius variations were set to be 120% and 50%
of the nominal values given in table Table 4.1, respectively. For the height these values are
466.3 cm and 193.3 cm, respectively, and for the radius 217.0 cm and 90.4 cm, respectively.
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Figure 4.2: Real (solid) and imaginary(dashed) parts of the roots (blue and red resp.) of
the stability coefficient ω2 as a function of height (left) and radius (right).

As can be seen in Fig. 4.2, the larger height decreases the neutronic coupling and thus leads
to the first axial harmonic mode becoming less stable (seen by an increase in the real value of
the roots). At some point just above 400cm the mode stops oscillating (seen by the imaginary
value becoming zero) and sees only an exponential increase. Changes in the radius do not
affect the stability of this mode, as long as the power is scaled with the dimension. These
results support the conclusions by Obaidurrahman and Singh [13] which show that increasing
height leads to less stability of the first axial harmonic.

4.3.2 Impact of Diffusion Coefficient D
The diffusion coefficient appears directly in Eq. (3.55) and in the expression for keff . In a real
core, the diffusion coefficient is determined by the diffusion area L2 as well as the absorption
cross section Σa. As such, it is susceptible to both changes in core composition as well as
temperature. Usually, a higher fuel burnup decreases the diffusion coefficient making the
core more loosely coupled [20]. Higher moderator temperatures will usually slightly increase
the diffusion coefficient. In this analysis, the value of Σa is assumed to remain constant. The
maximum and minimum values for D were 130% and 70% of the nominal value corresponding
to 1.28 cm2s−1 and 0.69 cm2s−1, respectively.

The results seen in Fig. 4.3 support the hypothesis [11, 20] that an increase in the diffusion
coefficient increases the neutronic coupling within the reactor and thus has a stabilising effect
(seen by a decrease in the real value of the roots) for this given mode. Increasing the diffusion
coefficient has a stabilising effect for all modes.

4.3.3 Impact of Reactor Power Level
Changing the equilibrium power level while keeping the volume of the reactor constant means
changing the equilibrium neutron flux which in turn affects the equilibrium xenon concen-
tration. The power is changed between 30% and 120% of the nominal value corresponding
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Figure 4.3: Real (solid) and imaginary(dashed) parts of the roots (blue and red resp.) of
the stability coefficient ω2 as a function of the diffusion coefficient D.

to 1.07 MW and 4.28 MW, respectively.

As seen in Fig. 4.4, increasing the reactor power decreases the stability of the mode (seen by
an increase in the real value of the roots). This trend is common for all modes and supports
the existing literature [21].

4.3.4 Impact of absorption cross section Σa

The absorption cross section Σa is assumed to change independently of the xenon absorption
cross section and is only assumed to be caused by changes in the capture cross section. Thus,
the fission cross section is assumed to be unaffected by the variation of the absorption cross
section. The feedback coefficient is also assumed to be unaffected by the Σa changes. This
parameter directly appears in Eq. (3.55) and has a contribution to keff . Σa is varied between
70% and 130% of its nominal value. This corresponds to numerical values of 1.6 × 10−2 cm−1

and 3.0 × 10−2 cm−1, respectively.

From Fig. 4.5 it can be seen that an increase in the absorption cross section causes an
increase in the real part of the roots of the stability coefficient thereby causing the system to
be less stable. Again, a point is seen where the imaginary part becomes zero and the mode
no longer oscillates. The relationship between stability and Σa can be explained as follows.
Since Σf and the power are kept constant, a decrease in the value of keff means that the
equilibrium neutron flux must necessarily increase.
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Figure 4.4: Real (solid) and imaginary(dashed) parts of the roots (blue and red resp.) of
the stability coefficient ω2 as a function of the power.

Figure 4.5: Real (solid) and imaginary (dashed) parts of the roots (blue and red resp.) of
the stability coefficient ωm as a function of the absorption cross section Σa.
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Figure 4.6: Real (solid) and imaginary (dashed) parts of the roots (blue and red resp.) of
the stability coefficient ωm as a function of the feedback coefficient ∂Σa

∂ϕ
.

4.3.5 Impact of the feedback coefficient ∂Σa

∂ϕ

The feedback coefficient only appears in the term containing ∂Σa

∂ϕ
ϕm

0 . Since a validated value
is not available for the data on which the model is built, it is here a variable (i.e., tunable)
parameter. Nonetheless, a realistic parameter range can be established. Several sources use
the power feedback coefficient αp = −2.69 × 10−4 cm−1 [20, 39] which corresponds to a value
of ∂Σa

∂ϕ
= 4.73 × 10−19 cms. For this sensitivity analysis, the feedback coefficient is changed

by one order of magnitude between the nominal value used in the sensitivity analysis and
the value used in the comparison with the 2G-HET model.

The effect of varying the feedback coefficient can be seen in Fig. 4.6. An increase in the
feedback coefficient causes the analysed mode to become more stable as it contributes to
mitigating deviations from the equilibrium value.

4.4 Numerical Comparison between the 1G-HOM and
2G-HET models

We now turn to comparing the 1G-HOM and 2G-HET models. For the purpose of the
comparison, an initial perturbation of 1% was introduced to the neutron flux in mode 2 to
simulate an asymmetric reactivity insertion in the core. This corresponds to 1.5·1013 cm−2s−1

for the 2G-HET model and 5.9 · 1012 cm−2s−1 for the 1G-HOM model.

In Fig. 4.7 the results of the time integration of Eqs. (2.25) to (2.27) is compared to that of
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Figure 4.7: Time series of mode 1, 2 and 3 calculated with 2G-HET and 1G-HOM

Eqs. (3.16) to (3.18). Only the modes which took non-zero values are shown in the figure.
The couplings in the 1G-HOM model can be seen in Fig. 2 in appendix B. In both models,
no coupling between axial and radial spatial modes was seen. These results fit the existing
literature which usually treats axial and radial oscillations separately [11].

The comparison between the 2G-HET and 1G-HOM models reveals substantial discrepancies
in their predictions for reactor stability concerning xenon oscillations. The 2G-HET model
predicts that mode 2 itself first decreases in amplitude but through their coupling perturbs
mode 1 which then exhibits growing oscillations. After 40 hours, the coupling from mode 1
to modes 2 and 3 causes the amplitudes of modes 2 and 3 to increase after which all three
modes exhibit divergent oscillations with mode 1 having the largest amplitude of the three
modes. On the other hand, the 1G-HOM model shows the amplitude of mode 2 decaying
quickly without oscillations and seemingly, without perturbing any of the other modes. Thus,
the 1G-HOM model predicts a more stable system concerning xenon oscillations than the
2G-HET model. The reason behind these discrepancies is further explored in the coming
sections.

4.5 Analytical Comparison

By neglecting the coupling between the modes, the parameters appearing in Eqs. (2.25) to
(2.27) can be inserted into a determinant equation similar to Eq. (3.55) and the roots can be
found analytically for each mode in the 2G-HET model. These are compared to the values
in the 1G-HOM model in Fig. 4.8. From these results, further insight is granted into the
dynamics of the individual modes without the effect of coupling. It can be seen from these
figures that mode 1 from the 2G-HET model has positive real values and non-zero imaginary
values indicating oscillations that grow in time. Mode 2 has slightly negative and mode 3 has
larger negative real values and non-zero imaginary values indicating oscillations that decay in
time. In contrast, the roots calculated in the 1G-HOM model all have negative real values and
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(a) 2G-HET (b) 1G-HOM

Figure 4.8: Real (⋄ and ◦) and imaginary (△ and ▽) parts of the roots ω1 (blue) and ω2
(red) of mode 2 related to the iodine-xenon oscillations.

zero-valued imaginary parts indicating all three modes will decay in time without oscillations.
This indicates that for the 2G-HET model, mode 1 is driving the growing oscillations seen
in Fig. 4.7 and that the other modes are growing because of a non-zero coupling to mode 1.

4.6 Eigenvalue Separation and Neutronic Coupling

The difference of the eigenvalues of the different modes with the fundamental mode, i.e.,
EVS = 1/k0 − 1/km, is an indicator of the stability of a nuclear reactor according to [13].
This measure is investigated to find the possible reason behind the differences seen in stability
predictions between the two models. Table 4.3 shows the effective multiplication constant
(which is the same as the eigenvalue of the fundamental mode), as well as the difference
between this value and the eigenvalues of the higher order modes, for both models. The
values are similar between the two models for all three modes and thus a difference in the
eigenvalue separation cannot be the cause for the discrepancies seen in Fig. 4.8.

Model keff EVS 1-2 (pcm) EVS 1-3 (pcm)

1G-HOM 1.0397 746 2150
2G-HET 1.0375 806 2410

Difference (pcm) −22 60 260

Table 4.3: Effective multiplication factor and EVS for the first and second axial harmonics.
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4.7 Mode Coupling Comparison
In this section, the terms that couple one mode to all other modes are compared between
the two models. The coupling between the m-th mode with the n-th modes (with m, n =
0, 1, ..., N) appears in the second and third RHS terms of Eq. (2.25), and in the third and
last RHS terms of Eq. (2.27). These four terms have sums of inner products between modes.
Three of them contain the equilibrium neutron flux Φeq(r) and one contains the equilibrium
xenon concentration Xeq. Since the terms with Φeq(r) have similar couplings, the comparison
is only taken for the following terms:

〈
Φ̂†

m(r)
∣∣∣Φeq(r) × Φ̂n(r)

〉
〈
Φ̂†

m(r)
∣∣∣v−1 × Φ̂m(r)

〉 =
∫

V

(
ϕ†

1,m(r)Φ1,eq(r)ϕ1,n(r) + ϕ†
2,m(r)Φ2,eq(r)ϕ2,n(r)

)
dV∫

V

(
ϕ†

1,m(r)v−1
1 ϕ1,m(r) + ϕ†

2,m(r)v−1
2 ϕ2,m(r)

)
dV

(4.3)〈
Φ̂†

m(r)
∣∣∣X̄ ×Xeq(r) × Φ̂n(r)

〉
〈
Φ̂†

m(r)
∣∣∣Φ̂m(r)

〉 =
∫

V ϕ
†
1,m(r)Xeq(r)ϕ2,n(r)dV∫

V

(
ϕ†

1,m(r)ϕ1,m(r) + ϕ†
2,m(r)ϕ2,m(r)

)
dV

(4.4)

The value of the terms is normalised to the self-coupling of mode 1 for easier comparison.

Mode m = 1 m = 2 m = 3
n = 1 1 0.11 0.12
n = 2 0.09 0.83 0.10
n = 3 0.10 0.10 0.83

(a) 2G-HET Eq. (4.3) term

Mode m = 1 m = 2 m = 3
n = 1 1 0.03 0.02
n = 2 0.02 0.95 0.03
n = 3 0.02 0.03 0.95

(b) 2G-HET Eq. (4.4) term

Mode m = 1 m = 2 m = 3
n = 1 1 0.00 0.20
n = 2 0.00 0.80 0.00
n = 3 0.20 0.00 0.77

(c) 1G-HOM equivalent Eq. (4.3) term

Mode m = 1 m = 2 m = 3
n = 1 1 0.00 0.02
n = 2 0.00 0.98 0.00
n = 3 0.02 0.00 0.96

(d) 1G-HOM equivalent Eq. (4.4) term

Table 4.4: Amplitude of the normalized coupling coefficients for modes 1, 2 and 3.

In Table 4.4, several notable observations are made regarding the couplings between different
modes in both the neutron (Eq. (4.3)) and xenon (Eq. (4.4)) terms of the 2G-HET and
1G-HOM models.

Firstly, in the 2G-HET model, there exists a coupling between mode 2 and modes 1 and 3
for both the neutron and xenon terms. However, this coupling is negligible in the 1G-HOM
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model. This difference in couplings between the two models suggests that the 2G-HET model
incorporates interactions between these modes that are not accounted for in the 1G-HOM
model.

Secondly, the coupling between modes 1 and 3 is larger in the 1G-HOM model compared to
the 2G-HET model. Both of these discrepancies are attributed to the difference in spatial
refinement between the models and the equilibrium axial offset. Further investigation of
these factors is done in Section 4.9, providing deeper insights into the differences between
the two models and their treatment of mode couplings.

4.8 Effect of Energy Refinement
The differences between the 2G-HET and 1G-HOM models are found to be larger for the
terms containing inner products between modes. The terms containing the equilibrium neu-
tron flux in 1G-HOM are up to 3 times larger than the corresponding terms in 2G-HET.
This section explores the effect of going from one energy group to two energy groups by
creating a two-group homogeneous model and comparing the relationship between Eq. (4.3)
and Eq. (4.4) to the 2G-HET and 1G-HOM model. Only the inner products with m = n are
considered for modes 1, 2 and 3 hereafter.

A one-dimensional homogeneous two-group formulation is employed with the following ex-
pressions for the adjoint and forward neutron flux vectors.

〈
ϕ†

m

∣∣∣T = A†

 1
νΣf,2/k†

eff

D2B2
g,m+Σa,2

cos(Bg,mz) n = 0, 2, 4...
cos(Bg,mz + π/2) n = 1, 3, 5...

(4.5)

|ϕn⟩ = A

[
1
Σr

D2B2
g,n+Σa,2

]cos(Bg,nz) n = 0, 2, 4...
cos(Bg,nz + π/2) n = 1, 3, 5...

(4.6)

where 2a is the length of the system and Bg,n = (n+1)π
2a

. The origin of the system is
taken at the centre of the core. The equilibrium flux and xenon concentration used in the
homogenization are derived from the forward flux scaled with the reactor power.

Table 4.5 provides a summary of the ratios between the terms corresponding to Eqs. (4.3)
and (4.4) with n = m for the three different models. Comparing the two-group heterogeneous
(2G-HET) and two-group homogeneous (2G-HOM) values, it is evident that spatial homoge-
nization does not significantly affect the inner products for any of the three modes. However,
the energy condensation has a notable impact on the difference between the 2G-HOM and
1G-HOM values.

This highlights the significance of energy condensation in capturing the behaviour of xenon
oscillations. As Xe-135 only absorbs neutrons in the thermal range, refining the model energy
discretisation has a large impact on the stability predictions.
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Model Mode 1 Mode 2 Mode 3
2G-HET (·106) 1.13 0.99 0.99

2G-HOM(·106) 1.20 0.99 0.99

1G-HOM(·106) 3.26 2.66 2.57

Table 4.5: Ratio between terms corresponding to Eqs. (4.3) and (4.4) with n = m showing
the effect of spatial homogenization vs. condensation of energy groups

4.9 Effect of Spatial Refinement
This section investigates the effect of spatial refinement and axial offset (AO) on the stability
of the system when transitioning from a homogeneous model to a heterogeneous model.

The heterogeneous data was prepared with a large equilibrium axial offset (EAO = −20.5%)
(with the axial offset defined in Eq. (1.3)) and a very small equilibrium radial offset (ERO =
7 · 10−4%). This means that the power is 20.5% higher at the bottom of the core compared
to the top but that the power is close to equal between one half of the radial plane of the
core compared to the other.

To investigate the effect of the axial offset on the coupling terms, the normalized axial profiles
from Eqs. (4.3) and (4.4) and the corresponding terms for the 1G-HOM model for m = 1
and n = 1, 2, and 3, respectively, are visualized. These profiles are averaged over plane B
(see Figure 4.1) and compared with the profiles obtained from the equivalent terms in the
1G-HOM model. The values of the corresponding coupling coefficients from Table 4.4 are
also reported in Figures 4.9 to 4.11, with legends referring to Tables 4.4a to 4.4d, respectively.

The results show that the axial profiles estimated with the 2G-HET model closely reflect
the axial power offset, with more pronounced peaking in the bottom part of the core. In
contrast, the 1G-HOM profiles are symmetrical or anti-symmetrical to the mid-elevation
line. Resolving the spatial heterogeneity and incorporating the power offsets lead to the
breaking of symmetry or anti-symmetry in the integrands of the inner products for the
coupling coefficients. As a consequence, the calculated values of the coupling coefficients
between modes with m ̸= n differ from those calculated in the 1G-HOM model.
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Figure 4.9: Axial profile extracted from the inner product of the coupling coefficients for
m = 1 and n = 1.

Figure 4.10: Axial profile extracted from the inner product of the coupling coefficients for
m = 1 and n = 2.
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Figure 4.11: Axial profile extracted from the inner product of the coupling coefficients for
m = 1 and n = 3.

45



4. Results and Comparisons of the Models

46



5
Conclusion and Outlook

5.1 Conclusion

In this thesis, two different three-dimensional intrusive reduced order models (ROM) were
presented for predicting the stability of a reactor core concerning xenon oscillations under
various conditions: the two-group heterogeneous (2G-HET) and the one-group homogeneous
(1G-HOM). Both ROMs were created starting from the underlying equations of the neutron
flux, written in a diffusion approximation, and the equations expressing the balance in the
iodine and xenon concentrations, respectively. The quantities of interest were rewritten into
changes from their equilibrium values and were then expanded into a sum of N spatial
eigenmodes of the forward diffusion problem multiplied with a time-dependent amplitude.
This method changed the set of partial differential equations, which were challenging to solve,
into a larger set of coupled ordinary differential equations, which were easier to solve. This
new set of balance equations provided details of the physical behaviour by dissecting the time
signal into its constituent modes. The method allowed for sensitivity analysis of the effect of
changing parameters on each mode individually, providing a tool for enhancing the physical
understanding of the system.

Actual nuclear reactor core configurations are significantly heterogeneous. This heterogeneity
varies both over short time periods with control rod insertions and boron injections and over
long periods with core burnup. In this thesis, capturing the heterogeneity of the core was
investigated in the terms that differed the most between the two models. It was shown that
the heterogeneity of the core had a significant effect on the coupling between the dynamic
modes of the system especially when spatial offsets were present. This effect had a crucial ef-
fect on the development of xenon oscillations within the core. particularly for anti-symmetric
axial distribution, the effect of refining the axial offset caused the integrals over the volume
to become non-zero in contrast to the 1G-HOM model.

The thesis also investigated the effect of energy condensation by developing an additional two-
group homogeneous model (2G-HOM) and calculating the ratios between the self-coupling
terms of the three models (1G-HOM, 2G-HOM, and 2G-HET). In this way, any constant
which may differ between the models should cancel out. The analysis showed that energy
condensation had a much more significant effect on the self-coupling terms than the spatial
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refinement. As a result, energy refinement was the most significant source of difference in
the prediction of stability of isolated modes between the models.

The sensitivity analysis conducted in the thesis, shed light on the relevance of each model
parameter and its influence on the stability concerning xenon oscillations.

In conclusion, this research contributed to a better understanding of nuclear reactor stability
and provided valuable tools for the evaluation of reactor operation and safety measures during
flexible load following conditions.

5.2 Outlook

The research work planned for the continuation of the project, will address the items below.

5.2.1 Splitting the Model
In the literature and this work, it is noted that the axial and radial modes developed mostly
independently. For this reason, it might be advantageous to separate the three-dimensional
ROM into one model predicting axial oscillations and one predicting radial oscillations. This
would limit the number of modes needed to be included for each model and reduce the
complexity of the models while retaining the physical behaviour, thus increasing efficiency.

5.2.2 Developing a Data-Driven POD ROM
Data-driven, non-intrusive ROM methods based on the proper orthogonal decomposition
(POD) will be studied. These models are solely based on data from either experiments or
high-fidelity simulations with the advantage of not needing access to the underlying equations.
For this reason, more information about thermal-hydraulics will be included in the model
as opposed to the simple thermal feedback term that was included in the present models.
In principle, some thermal-hydraulic equations could be implemented in the intrusive model
but access to the thermal-hydraulic relations for a specific core is seldom available as this
information is proprietary.

5.2.3 Sampling a Larger Parameter Space
The intrusive models should be sampled from a broader parameter space, spanning all rele-
vant configurations with denser sampling points in areas where xenon oscillations are likely
to occur. Using interpolation methods, efficient predictions are possible for all core config-
urations within the sampled space. This also unlocks the opportunity to make sensitivity
analysis and uncertainty quantification possible. This is where the true strength of reduced
order modelling lies.
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5.2.4 Validation
The models presented in this thesis have not yet been assessed against high-fidelity legacy
codes. Such comparison is strictly necessary before any final conclusions can be drawn
from the models about reactor stability concerning xenon oscillations. At present, data from
Simulate 5 (which is a reactor core simulator widely used for commercial light water reactors)
is being prepared and collected with the help of Ringhals nuclear power plant to validate the
predictions made by the models.
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