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Electromyography-Based Control of Lower Limb
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Levi Hargrove , Member, IEEE, and Max Ortiz-Catalan , Senior Member, IEEE

Abstract—Most amputations occur in lower limbs and despite
improvements in prosthetic technology, no commercially avail-
able prosthetic leg uses electromyography (EMG) information
as an input for control. Efforts to integrate EMG signals as
part of the control strategy have increased in the last decade.
In this systematic review, we summarize the research in the
field of lower limb prosthetic control using EMG. Four different
online databases were searched until June 2022: Web of Science,
Scopus, PubMed, and Science Direct. We included articles that
reported systems for controlling a prosthetic leg (with an ankle
and/or knee actuator) by decoding gait intent using EMG sig-
nals alone or in combination with other sensors. A total of 1,331
papers were initially assessed and 121 were finally included in
this systematic review. The literature showed that despite the
burgeoning interest in research, controlling a leg prosthesis using
EMG signals remains challenging. Specifically, regarding EMG
signal quality and stability, electrode placement, prosthetic hard-
ware, and control algorithms, all of which need to be more robust
for everyday use. In the studies that were investigated, large
variations were found between the control methodologies, type
of research participant, recording protocols, assessments, and
prosthetic hardware.

Index Terms—Electromyography (EMG), pattern recognition,
lower limb amputation, control architecture, control algorithms,
movement intention recognition.

Manuscript received 29 July 2022; revised 12 March 2023 and 15 May
2023; accepted 16 May 2023. Date of publication 7 June 2023; date of
current version 9 August 2023. This article was recommended for pub-
lication by Associate Editor Q. Wang and Editor P. Dario upon evalu-
ation of the reviewers’ comments. This work was supported in part by
the Promobilia Foundation; in part by the IngaBritt and Arne Lundbergs
Foundation; in part by the Swedish Research Council (Vetenskapsrådet); and
in part by the National Institutes of Health under Grant R01HD079428.
(Corresponding author: Max Ortiz-Catalan.)

Bahareh Ahkami and Kirstin Ahmed are with the Center for Bionics
and Pain Research, 43130 Mölndal, Sweden, and also with the Department
of Electrical Engineering, Chalmers University of Technology, 41296
Gothenburg, Sweden (e-mail: ahkami@chalmers.se; kirstin@chalmers.se).

Alexander Thesleff is with the Center for Bionics and Pain Research,
43130 Mölndal, Sweden, also with the Department of Electrical
Engineering, Chalmers University of Technology, 41296 Gothenburg,
Sweden, and also with Integrum AB, 43153 Mölndal, Sweden (e-mail:
alexander.thesleff@integrum.se).

Levi Hargrove is with the Department of Physical Medicine and
Rehabilitation, Northwestern University, Chicago, IL 60611 USA, and also
with the Regenstein Foundation Center for Bionic Medicine, Shirley Ryan
AbilityLab, Chicago, IL 60611 USA (e-mail: l-hargrove@northwestern.edu).

Max Ortiz-Catalan is with the Center for Bionics and Pain Research,
43130 Mölndal, Sweden, also with the Department of Electrical Engineering,
Chalmers University of Technology, 41296 Gothenburg, Sweden, also with
the Operational Area 3, Sahlgrenska University Hospital, 41345 Gothenburg,
Sweden, and also with Bionics Institute, Melbourne, VIC 3002, Australia
(e-mail: maxortizc@outlook.com).

Digital Object Identifier 10.1109/TMRB.2023.3282325

I. INTRODUCTION (BACKGROUND)

IN THE United States, it is estimated that by 2050 there
will be 3.6 million people living with amputation compared

with 2.2 million people today (2021) [1]. In developed coun-
tries, disease accounts for most amputations and the majority
occur in the lower limb (LL) [1], predominantly due to the
prevalence of diabetes mellitus and associated vascular compli-
cations [2]. By the turn of this century, 93% of all lower-limb
amputations were the result of vascular disease (28% transtib-
ial, 26% transfemoral [3]). In many low and middle income
countries, trauma has been documented as the primary cause
of limb amputation [4], [5], [6].

In 2017, it was estimated that limb amputation due to
trauma is 57.7 million. Of people with traumatic amputation,
an estimated 31.7% had unilateral lower limb amputations
(28.9 million, Uncertainty Interval (UI) =26.9–32.1), 19.6%
had unilateral upper limb amputations (11.3 million, UI
=10.6–12.1), 19.1% had bilateral upper limb (11.0 million, UI
= 10.3–11.9), and 11.1% had bilateral lower limb (6.4 million,
UI = 5.9–7.0) [4].

Unlike upper limb prostheses, no commercially available
lower limb prosthesis integrates signals from the user’s neu-
romuscular system for control. The high number of lower
limb amputations, combined with the lack of neuromuscular-
controlled lower limb prostheses, highlights an area of oppor-
tunity to develop more intuitive, reliable, and functional bionic
legs. There are currently three categories of lower limb pros-
theses: passive, semi-active, and active. Passive prostheses are
entirely mechanical, while semi-active prostheses use micro-
processor systems that measure information from mechanical
(non-bioelectric) sensors to modulate artificial joint impedance
usually via hydraulics or pneumatics. Finally, active prosthe-
ses provide propulsion or “power” using actuators (i.e., motors
at the joints) to compensate for lost musculature [7] and are
also controlled using a microprocessor. Harnessing neuromus-
cular information to control semi-active and active prostheses
can provide a more biomimetic, functional, and superior
experience for the users. EMG signals can be recorded non-
invasively using electrodes placed on the surface of the skin
(sEMG) or invasively using surgically implanted electrodes
(iEMG) [8]. Unless the amputation was accompanied by nerve
injury or other motor impairments, motor commands to resid-
ual muscles, previously responsible for actuating the missing
joint(s), can still be generated voluntarily by the patient.
Neuromuscular controlled prostheses can take advantage of
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this by recording EMG signals from the user’s residual
muscles to control powered artificial joints [9]. However,
with proximal amputations there may be too few muscles
remaining to intuitively control the missing joints. Surgical
techniques such as Targeted Muscle Reinnervation (TMR) [10]
or Agonist-antagonist Myoneural Interface (AMI) [11] have
proven successful in overcoming this problem by creating new
EMG sources for prosthetic leg control. Moreover, a variety of
signal processing and machine learning algorithms have been
employed to further improve the neural decoding of motor
commands in individuals with lower limb amputations [12],
[13], [14], [15], [16], [17].

A limitation in the use of sEMG for prosthetic control is
the long-term stability of the signals. Conversely, iEMG pro-
duces signals with long-term stability and has shown to be
a clinically viable solution in individuals with upper limb
amputations [18], [19], [20], [21]. The lack of neuromuscular
integration in lower limb prosthetic development to date can be
attributed to several factors. Firstly, the consequence of unre-
liable control in a lower limb prosthesis is serious; error may
result in a fall and subsequent injury. Secondly, non-invasive
recordings of sEMG using suspension sockets are challeng-
ing due to pistoning (vertical movement inside the socket) and
changes in pressure between the prosthetic socket and residual
limb. Thirdly, active devices, which have the capability to per-
form more activities, such as repositioning the joints to prepare
for transfers, have only recently become commercially avail-
able. These are the categories of devices that arguably have
the most to gain from a neuromuscular control paradigm.

Direct skeletal fixation of an implant harnessing the bio-
logical process of osseointegration, as opposed to suspension
by a socket [22], can provide a gateway for a permanent
wired connection between implanted electrodes and the pros-
thesis [18], [23]. In participants with direct skeletal fixation,
problems caused by pistoning and changes in pressure between
the socket and residual limb are alleviated, thus sEMG can
provide reasonable control.

In this systematic review, we provide an overview of pio-
neering and state-of-the-art research in the field of lower limb
prosthetic control using EMG signals. Two reviews includ-
ing EMG control were published during the preparation of
this article and have been included herein for completeness
[24], [25]. Fleming et al. [24] conducted a topical review, and
Cimolato et al. [25] presented a systematic review including
56 articles. Our systematic review covered a larger volume of
articles (121) and provides further division of control strate-
gies using EMG. We investigated and categorized control
methods into three main groups: 1) Direct control, where the
modulated EMG activation directly and continuously relates
to the ankle or knee joint actuator either in a virtual envi-
ronment or to control a prosthesis; 2) Model-based control,
in which body sections are modeled as rigid segments con-
nected by rotational joints and driven by joint actuators (which
model muscles) [26]; and 3) machine learning control, where
a decoder is trained to distinguish EMG patterns between
different locomotion modes, gait phases, or leg movements.
This method of categorization differs from the review by
Fleming et al. [24] highlighting model-based control in its own

category to reflect its increasing popularity. Challenges in con-
trolling lower limb prostheses with EMG are also summarized
and discussed.

II. METHOD

The systematic review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) [27].

A. Search Strategy and Eligibility Criteria

Four online databases (Web of Science, Scopus, PubMed,
Science Direct) were searched until June 2022 for peer-
reviewed, English-language research articles, and conference
proceedings published at any time. The search was conducted
using the keywords: prosthetic OR prostheses OR prosthe-
sis OR “artificial limb” AND ((“lower limb”) OR leg OR
ankle OR knee) AND control AND (Electromyography OR
EMG OR neural).

To be included, the studies must have recorded EMG sig-
nals, and used the recorded signals to control an ankle,
leg, virtual object, or to classify gait intent or locomotion
modes. We excluded publications that were not in English,
were patents, books, or abstracts. Similarly, articles describing
control methods for an exoskeleton, or EMG for general reha-
bilitation purposes, were excluded. Furthermore, publications
that focused exclusively on surgical methods, developments
or improvements of leg prostheses, control hardware, or
firmware, were excluded. Studies on non-human subjects and
studies using biosensors other than EMG (such as EEG) were
also excluded.

B. Selection Process

The literature search and article screening procedure were
performed according to the sequence of steps shown in Fig. 1.
A total of 121 articles passed the screening procedure and were
thus assessed in detail and included in the review.

III. RESULTS

A. Research Participants

Of the 121 included articles, 59 articles (∼50%) included
able-bodied research participants, 50 articles (∼40%)
included individuals with amputation, and 12 articles (∼10%)
included research participants from both cohorts (Fig. 2).

B. Research Participant Activities: Assessments

Activities were divided into those with research participants
performing non-weight-bearing (Fig. 3) and weight-bearing
activities (Fig. 4). In more than 50% of the included studies,
research participants were asked to perform weight-bearing
activities. Of the weight-bearing activities, gait studies were
the most common in which the goal was to classify the loco-
motion mode (e.g., walking, stair ascent, etc.) or functional
phase of gait [28], [29], [30]. The stance (support) phase of
gait comprises 60% of the gait cycle and are split into: heel
contact, loading response, mid stance, terminal stance, and
push off. The swing phase of gait comprise 40% of the gait
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Fig. 1. Flowchart of the systematic literature review. Searching keywords
in four databases resulted in 1331 papers. After exclusion based on exclusion
criteria, abstract and full text screening, 121 papers remained.

cycle and are made up of initial swing, mid swing and terminal
swing [31].

The non-weight bearing activities (Fig. 3) in the reviewed
studies were of variable format and the research partici-
pants were asked to perform movements with their phantom
(individuals with amputation) or intact (able bodied research
participants) limb. In some studies the research participants
were asked to mimic pre-programmed motion trajectories [32],
[33], [34], [35], [36] or to perform isolated single joint
movements (one degree of freedom (DOF)) [37], [38], [39].
In other studies the participants controlled a virtual object in
a 2D or 3D space [11], [40], [41], [42], [43].

C. Myoelectric Sources

The muscles used for EMG acquisition differed between
the studies depending on research participant anatomy, type

of study, and the joints to control. Frequently reported mus-
cle groups used for EMG acquisition in research participants
with transfemoral amputation were: semitendinosus, biceps
femoris, tensor fasciae latae, rectus femoris, vastus lateralis,
vastus medialis, sartorius, adductor magnus, and gracilis [10],
[28], [39], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55]. In research participants with transtibial ampu-
tation, we found the gastrocnemius medial and lateralis, tibialis
anterior muscle to be the most frequently reported muscles
used for EMG acquisition [32], [33], [43], [56], [57], [58].
The number of electrodes varied but it was as high as 192.

D. Non-Biological Sensors

To date, sensors providing mechanical information have
been the only source of information for lower limb control
algorithms in commercial devices. Inertial Measurement Unit
(IMU) sensors provide useful control feedback for lower limb
support or swing gait stage detection and are used alone or in
combination with depth sensors and goniometers [59], laser
distance sensors [34], or loadcells [60]. A foot switch sensor
can indicate the temporal gait stage determined by ground con-
tact and was a commonly reported sensor in the literature [49],
[58], [61], [62], [63], [64], [65], [66]. An overview of sen-
sors and common placements can be found in Fig. 5 sensors
can be placed on the amputated side or on both legs [53]
but the majority of studies reviewed used sensors only on
the amputated side. This makes sense from the bionic leg
control perspective when solely harvesting information from
mechanical sensors, however from a person-centered approach,
a control method that additionally receives input from biologi-
cal signals is logical. EMG signals have been used in research
devices in combination with mechanical sensors to inform
the gait phase or locomotion mode. Performance of pattern
recognition algorithms was found to improve when EMG was
added [47], [51], [52], [59], [67], [68].

E. EMG Control Methods

The use of EMG in the control of lower limb prostheses has
become a fast-growing research area. Here we further divided
in direct control, model-based control, and machine learning
control. The next section provides an overview of each of these
methods.

1) Direct Control: This method uses a modulated EMG
signal to activate the ankle or knee joint actuator directly
and continuously either in a virtual or prosthetic device [69].
Direct control studies quantify performance using outcome
metrics such as ankle/knee prosthetic joint angle or dis-
tance moved between target and a virtual object. While direct
control was predominantly reported in the reviewed studies
involving transtibial amputees, it has also been utilized in stud-
ies with participants with transfemoral amputation. In these
cases, EMG signals were recorded from proximal muscles to
determine knee torque during the stance phase [70].

Nineteen out of 121 studies used the method of direct
control of which 13 controlled an ankle joint actuator and
6 controlled a knee joint actuator. A full list of the reviewed
studies using direct control are shown in Table I.
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Fig. 2. Proportion of studies in different categories. Studies are divided into five categories: research participants, research participant activity, control
algorithm, control source, and real-time or Offline processing of data. TF: Research participants with transfemoral amputation, TT: Research participants with
transtibial amputation, Ab: Able-bodied research participants.

Fig. 3. Seated knee extension and flexion as an example of a non-weight
bearing activity.

The activation of the prosthesis can be designed to be
proportional to the magnitude of the EMG signal, this is
proportional control. A frequently reported experiment was
to move a virtual object in a 2-D space directly and pro-
portionally to the EMG signal while performing plantar and
dorsiflexion [11], [33], [40], [41], [71]. Fleming et al. designed
a virtual pendulum proportionally controlled by EMG signals
and showed an anticipatory postural adjustment in participants
with transtibial amputations [43]. The computational cost is
relatively low in direct control, even including proportionality,
and therefore it is a common and valuable method of control
for devices with lower degrees of freedom. However, obtaining
enough independent signals to directly control several degrees
of freedom is challenging, where model-based and machine
learning approaches are commonly used (Table I).

2) Model-Based Control: Model-based control is the sec-
ond category of EMG control frequently reported in the
reviewed literature. Here body segments are modeled as rigid

Fig. 4. A transition from stair ascent to walking and from walking to stair
descent as an example of a weight bearing movement to classify locomotion
modes.

bodies connected by rotational joints and driven by joint actu-
ators (which model muscles) [26]. Hoover and Fite modeled
the lower limb muscles as parallel spring-damper systems,
where co-activating the muscles modulated the net mechan-
ical impedance of the joint [72]. Furthermore, they produced
a knee model in which the knee moment was a function of
the thigh EMG [73]. In a different approach, Hargrove et al.,
designed an active-reactive model where joint torque was
determined by the difference in agonist/antagonistic muscle
pair activations, and joint impedance was determined by the
sum of the agonist/antagonist muscle pair activations [46].
Minor et al., used an autoregressive model with a low
frequency EMG envelope as another way to predict the knee
moment [74]. Most modeling methods relied on a motion
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TABLE I
SUMMARY OF RESEARCH STUDIES USING DIRECT CONTROL

capture system within a specialist gait lab. Whereas special-
ized equipment restricts the exploitation of the model-based
control method, it does provide a well validated basis for

model creation. Additionally, it allows for generalizable mod-
els that can be fitted to new subjects unlike personalized
machine learning methods (see Section III-E3). For example
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Fig. 5. Illustration of different non-biological sensors and their place-
ments. Sensors reported in the studies were distance sensors, IMUs, loadcells,
goniometers, and pressure sensors. They were used either in combination or
alone.

Cimolato et al. developed a body model from sEMG sig-
nal and IMUs to control a prosthetic leg during gait [75];
these results were comparable to those obtained using motion
capture systems.

3) Machine Learning Control Methods:
a) Overview: Machine Learning methods can be used for

detecting different gait phases, locomotion modes, and tran-
sitions between locomotion modes. They also can be used
for decoding non weight bearing movements such as knee
or ankle flexion/extension [76]. Control methods based on
machine learning do not need an a priori model but often
require data to train a classifier or decoder. In brief, the decod-
ing of motor volition using EMG signals can be divided into
1) pre-processing, 2) feature extraction, 3) classification, and
4) post-processing.

In the pre-processing phase, the raw EMG signal under-
goes filtering and segmentation in “time windows” to remove
noise from the raw data and to parse relevant portions of the
continuous EMG signal (Fig. 6c), respectively. The continuous
EMG can be segmented in overlapping and non-overlapping
time windows. In the overlapping method, two consecutive
windows have an overlap time that is less than the length
of the time windows themselves. The time between the
beginning of a time window and the next is known as the
increment step. Finding the optimal length for a time window

and the increment step to the next is important because long
windows and steps reduce the real-time responsiveness of
the system, while short windows may lack information for
an accurate prediction. As a result, a balance between using
more information for decoding and responsiveness must be
maintained. Segmentation is followed by a feature extrac-
tion process where characteristics of each time window are
extracted to form a set of features or feature vector (Fig. 6d).
EMG features can be extracted in either time, frequency, or
time frequency domains. An example of a time-frequency
extraction method is the wavelet packet transform [74], [75].
After feature extraction, dimensionality reduction can decrease
the number of features processed by classifiers to supply only
the most relevant information.

In the classification phase, the feature vector is transferred
to a pre-trained decoder (e.g., Support Vector Machine) to
classify intended movement (Fig. 6e). One method used often
in upper limb control is continuous classification [79], [80].
Using this method, classification takes place regardless of the
state of the arm, hands, and fingers. In lower limb control, the
EMG signal in gait is “quasi-cyclic” since gait phases from
heel strike to toe off are approximately cyclical. Consequently,
it is sensible to perform locomotion classification at specific
events instead of continuously and therefore Phase-Dependent
Classification is commonly employed in lower limb control.

The post-processing phase is where the effect of misclas-
sifications can be attenuated using filtering techniques (e.g.,
majority voting or using a velocity ramp [81]).

b) Results of the reviewed publications: (Pre-Processing
methods):

Filtering: Of the 121 publications using EMG, 81 applied
a 20 – 500 Hz bandpass filter to remove unwanted low
frequency artifacts and high frequency noise [82]. Filtering
should be done in a way to avoid the loss of useful data or
cause any unwanted changes such as obscuring an adverse
event. This is important when trying to avoid stumble and
falls.

Segmentation: Most of the studies used a window length
of 150 - 300 ms with an overlap of 20 - 50 ms [83],
[84], [85]. In almost all the included studies in the machine
learning category, the window length was constant through-
out the experiment. There were a few exceptions to this, in
which varying window lengths were employed, for example,
Miller et al. introduced a segmentation method with three
EMG sub-windows per gait cycle (one gait cycle was defined
as ipsilateral heel strike to ipsilateral push off): 1) heel strike
to heel strike + 200 ms, 2) push off – 300 ms to push off,
and 3) push off to push off + 100 ms [58].

Feature Extraction: In the reviewed publications, the most
often reported features were the average absolute value, zero
crossings, number of slope sign changes, and waveform length,
which are all time domain features [49], [54], [86], [87]. Use of
frequency domain features were reported less frequently, this
may be related to their computational cost. Among the studies
that reported dimensionality reduction, principle component
analysis (PCA) was often the method used [35], [88] where
a set of variables was transformed to a lower dimension set
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Fig. 6. Data processing in a machine learning EMG controlled prosthetic leg. a) Surface electrodes on the residual limb of a transfemoral osseointegrated
participant, b) EMG signal obtained from the residual limb, c) Filtering and segmentation of the EMG signal d) Feature extraction from the EMG signal in
time domain and frequency domain, e) Classification of movement intention from the extracted features, f) The prosthesis moving according to the intention
of the participant.

Fig. 7. Illustration showing the difference between phase-dependent and continuous methods of classification. In the phase-dependent classification, a time
window at every pre-defined gait phase (toe off, heel contact) is classified, while in continuous classification, every consecutive window is classified.

of uncorrelated variables (principal components). Farrell and
Herr used a distinct dimension reduction method called the
wrapper method [64]. This is a sequential-forward-search that
finds a subset of features that maximizes the leave-one-out
cross-validation performance on the training.

Classification:
Phase-dependent classification: Phase dependent classifica-

tion (Fig. 7) classifies the signal features at specific moments
during every previously defined phase (e.g., heel strike or toe
off). A signal window around the defined phase is classified.
All reviewed publications employing this method use a sim-
ilar approach, with slight differences in the number of gait
phases, windowing, or type of classifier. For example, Young
and Hargrove. and Spanias et al. used eight different phases
of the gait cycle; 0%, 25%, 50%, and 75% of swing and 0%,
25%, 50%, and 75% of stance [29], [45]. Zhang et al. used

four clinically defined gait phases: heel contact, mid stance,
terminal stance and swing [88]. Huang et al. used toe off and
heel contact [49]. Classification can be performed either before
or after each of the selected gait phases. Furthermore, as shown
in [49], [58], [59], [87], [89] it is possible to have two distinct
classifiers, for both a window before and a window after a
gait phase. Of the publications reviewed, Linear Discriminate
Analysis (LDA), Support Vector Machine (SVM), a combi-
nation of LDA and Bayesian methods, and neural networks
have been used to predict the next locomotion mode (see
Table I). A limitation of phase-dependent classification is the
requirement for a gait phase input (windowing is relative to
the phase changes). Gait phase can be obtained using non
biological sensors (such as a load cell), discussed separately
in this review. A complete list of publications reviewed using
phase dependent classification can be found in Table II.
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TABLE II
SUMMARY OF RESEARCH STUDIES USING PHASE DEPENDENT CLASSIFIER

(Continued)

Continuous classification: Despite being a less frequently
reported method of classification in lower limb control, sev-
eral studies we reviewed did report it in non-weight bearing

movement (presumably since they are non-cyclic) [35], [40].
Unlike phase dependent classification, continuous classifica-
tion is possible without the input of gait phase state (Fig. 7,
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TABLE II
(Continued.) SUMMARY OF RESEARCH STUDIES USING PHASE DEPENDENT CLASSIFIER

bottom row). The gait phase can be recognized [66], [90],
instead of predicting the locomotion mode or user motion
intent [91]. This offers the distinct advantage of not relying

on sensor interpretation of gait phase, but they cannot be used
to detect different locomotion modes. From the EMG signal,
windows are selected and processed with a fixed pattern. Gaps
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TABLE III
SUMMARY OF RESEARCH STUDIES USING CONTINUOUS CLASSIFIER

(Continued)

or overlaps can be considered between windows. A complete
list of publications that used continuous classification can be
found in Table III.

Post Processing: Majority vote was a frequently reported
method for reducing the effect of misclassification in the liter-
ature we reviewed. For instance, if a five-point majority vote
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TABLE III
(Continued.) SUMMARY OF RESEARCH STUDIES USING CONTINUOUS CLASSIFIER

was used, transition did not occur until at least three of the
previous five overlapping windows agreed on the new loco-
motion mode. Other studies employed a voting scheme which

increased the number of voting decisions each time a rare tran-
sition was identified, such as the transition from stair ascent
to stepping over an obstacle [102], [103]. In these studies, the
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regular number of voting points was five; the voting length
increased to 15 when a rare condition occurred. Huang et al.
used a finite state machine and majority vote whereby a state
transition was only executed when a valid transition condi-
tion was met [87]. In terms of accuracy of control, majority
vote does seem to provide accurate enough results, but it can
add unacceptable delays to the system, which makes it hard
to use in real time. Finding and implementing more post pro-
cessing methods will be an inevitable part of advancing this
field.

Performance metrics: Deriving performance metrics for
classification systems is an important step to evaluate the
performance of the control system. There are different ways to
evaluate a classification algorithm in upper limb control such
as the TAC test [93] and Motion Test [80], [94]. These are
not frequently reported in lower limb control due to the afore-
mentioned quasi-cyclic motion of the limb. Instead, reported
metrics for lower limb control were accuracy/error calcu-
lated as a ratio of correctly classified testing samples divided
by the total number of applied testing samples. The extent
to which offline performance measures represent real-time
control performance is questionable for upper-limb control
approaches [80], [95]. This is also an open question when
quantifying performance in lower-limb control systems. An
added complication is that the user needs the device to function
properly to ambulate; the device needs to hold the person up
while they ambulate. If the device does not function properly,
the person may not be able to even attempt the activity, or tran-
sition between activities. An important metric was the number
of missed locomotion transitions or critical error (an error that
causes the user to feel unstable) [96]. While few studies have
investigated the performance between offline and online met-
rics, it appears that they are correlated [46]. More work needs
to be completed in this area and a platform in which to com-
pare control methods using the universal metrics would be an
advantage.

IV. CHALLENGES

The following summary outlines reported challenges that
contemporary lower limb technology has not yet overcome.

EMG signal quality and data acquisition: EMG signal qual-
ity relies on factors such as electrode interface, availability
of muscles, and the acquisition system [97]. Gradual varia-
tion of EMG signals over time is another challenge resulting
from physical (electrode shift and impedance change) and/or
physiological (human adaption and muscle fatigue) changes
resulting in signal quality decay [54]. An implant surgically
connected directly to the skeleton (via osseointegration) onto
which an artificial limb can be attached is an alternative to a
prosthetic socket. This connection method has been success-
fully used as a gateway to collect iEMG signals from research
participants [18]. As a result, the deleterious effects of the
prosthetic socket on sEMG is avoided and a much higher
quality and more robust EMG signal can be obtained [22].

Terrain transition detection: One of the most challeng-
ing parts of controlling a prosthesis is transition detection,
as it should be accurate and in a timely manner to control

the prosthesis safely and smoothly [52], [69], [87]. There is
potential to improve the accuracy of transition detection; per-
haps by employing some of the techniques described in this
review such as the conditional post processing technique used
by Huang et al. [87]. Promising advancements in accuracy
are expected with the use of iEMG. It may be that as the
field moves towards this paradigm for EMG signal produc-
tion (whether through an osseointegrated implant or via the
implantation of wireless iEMG) that an improvement in terrain
transition detection is obtained [18], [98].

Stumbling: It is critical to have a fast stumble detection
method in lower limb control to avoid falling and subsequent
injury [99]. Another challenge is handling perturbations during
normal gait, such as slipping on a wet surface [100], which
presents a challenge maintaining balance with a prosthetic leg.
Transition and stumble detection and prevention can be
improved by acquiring high quality EMG signal in combina-
tion with mechanical sensor signals. In addition to improved
hardware, and more optimized software, it would help the
development of the field if there were a dedicated platform
on which to compare control methods in a scientific manner.
Developing in this way by building on the work of previous
groups would accelerate the field in our understanding of how
to improve accuracy and reliability of these control algorithms.

V. CONCLUSION

We reviewed the literature on the control of powered pros-
thetic legs using EMG. We described work undertaken in direct
control, model-based, and machine learning methods. Of the
reviewed literature direct control and machine learning meth-
ods for control have produced favorable results in transtibial
and transfemoral research participants. However, it remains
challenging to control a prosthetic leg with EMG signal in
an environment outside the lab, such as at the home (the
ultimate goal) and particularly for transfemoral amputations.
Direct control is frequently reported but is only suitable for a
few degrees of freedom; more complex movement intentions
can be decoded using machine learning methods. Looking for-
wards, we think machine learning methods should be the focus
for the control of lower limb prostheses with EMG signals.

In addition to control methods, we described the activity
types, electrode placement, and how EMG based control was
augmented with non-biological sensors. Weight bearing tasks
were predominantly reported in the literature, but there was
large variability in the number of research participants and
electrode positioning. Foot switches and load cells were the
most often reported mechanical sensors that were used in
combination with EMG signals.

We paid special consideration to studies using real-time
decoding of locomotion modes since this better reflects home-
use of a prosthesis. The goal of this review was to present
available technologies and to highlight the opportunities in the
field of lower limb prosthetic control using myoelectric sig-
nals. However, there was a challenge comparing studies due
to the large variability in methods and outcome metrics; in
future work a standardization of these would be useful.
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