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Electromyography-Based Control of Lower Limb
Prostheses: A Systematic Review
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Levi Hargrove , Member, IEEE, and Max Ortiz-Catalan , Senior Member, IEEE

Abstract—Most amputations occur in lower limbs and despite
improvements in prosthetic technology, no commercially avail-
able prosthetic leg uses electromyography (EMG) information
as an input for control. Efforts to integrate EMG signals as
part of the control strategy have increased in the last decade.
In this systematic review, we summarize the research in the
field of lower limb prosthetic control using EMG. Four different
online databases were searched until June 2022: Web of Science,
Scopus, PubMed, and Science Direct. We included articles that
reported systems for controlling a prosthetic leg (with an ankle
and/or knee actuator) by decoding gait intent using EMG sig-
nals alone or in combination with other sensors. A total of 1,331
papers were initially assessed and 121 were finally included in
this systematic review. The literature showed that despite the
burgeoning interest in research, controlling a leg prosthesis using
EMG signals remains challenging. Specifically, regarding EMG
signal quality and stability, electrode placement, prosthetic hard-
ware, and control algorithms, all of which need to be more robust
for everyday use. In the studies that were investigated, large
variations were found between the control methodologies, type
of research participant, recording protocols, assessments, and
prosthetic hardware.

Index Terms—Electromyography (EMG), pattern recognition,
lower limb amputation, control architecture, control algorithms,
movement intention recognition.
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I. INTRODUCTION (BACKGROUND)

IN THE United States, it is estimated that by 2050 there
will be 3.6 million people living with amputation compared

with 2.2 million people today (2021) [1]. In developed coun-
tries, disease accounts for most amputations and the majority
occur in the lower limb (LL) [1], predominantly due to the
prevalence of diabetes mellitus and associated vascular compli-
cations [2]. By the turn of this century, 93% of all lower-limb
amputations were the result of vascular disease (28% transtib-
ial, 26% transfemoral [3]). In many low and middle income
countries, trauma has been documented as the primary cause
of limb amputation [4], [5], [6].

In 2017, it was estimated that limb amputation due to
trauma is 57.7 million. Of people with traumatic amputation,
an estimated 31.7% had unilateral lower limb amputations
(28.9 million, Uncertainty Interval (UI) =26.9–32.1), 19.6%
had unilateral upper limb amputations (11.3 million, UI
=10.6–12.1), 19.1% had bilateral upper limb (11.0 million, UI
= 10.3–11.9), and 11.1% had bilateral lower limb (6.4 million,
UI = 5.9–7.0) [4].

Unlike upper limb prostheses, no commercially available
lower limb prosthesis integrates signals from the user’s neu-
romuscular system for control. The high number of lower
limb amputations, combined with the lack of neuromuscular-
controlled lower limb prostheses, highlights an area of oppor-
tunity to develop more intuitive, reliable, and functional bionic
legs. There are currently three categories of lower limb pros-
theses: passive, semi-active, and active. Passive prostheses are
entirely mechanical, while semi-active prostheses use micro-
processor systems that measure information from mechanical
(non-bioelectric) sensors to modulate artificial joint impedance
usually via hydraulics or pneumatics. Finally, active prosthe-
ses provide propulsion or “power” using actuators (i.e., motors
at the joints) to compensate for lost musculature [7] and are
also controlled using a microprocessor. Harnessing neuromus-
cular information to control semi-active and active prostheses
can provide a more biomimetic, functional, and superior
experience for the users. EMG signals can be recorded non-
invasively using electrodes placed on the surface of the skin
(sEMG) or invasively using surgically implanted electrodes
(iEMG) [8]. Unless the amputation was accompanied by nerve
injury or other motor impairments, motor commands to resid-
ual muscles, previously responsible for actuating the missing
joint(s), can still be generated voluntarily by the patient.
Neuromuscular controlled prostheses can take advantage of
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this by recording EMG signals from the user’s residual
muscles to control powered artificial joints [9]. However,
with proximal amputations there may be too few muscles
remaining to intuitively control the missing joints. Surgical
techniques such as Targeted Muscle Reinnervation (TMR) [10]
or Agonist-antagonist Myoneural Interface (AMI) [11] have
proven successful in overcoming this problem by creating new
EMG sources for prosthetic leg control. Moreover, a variety of
signal processing and machine learning algorithms have been
employed to further improve the neural decoding of motor
commands in individuals with lower limb amputations [12],
[13], [14], [15], [16], [17].

A limitation in the use of sEMG for prosthetic control is
the long-term stability of the signals. Conversely, iEMG pro-
duces signals with long-term stability and has shown to be
a clinically viable solution in individuals with upper limb
amputations [18], [19], [20], [21]. The lack of neuromuscular
integration in lower limb prosthetic development to date can be
attributed to several factors. Firstly, the consequence of unre-
liable control in a lower limb prosthesis is serious; error may
result in a fall and subsequent injury. Secondly, non-invasive
recordings of sEMG using suspension sockets are challeng-
ing due to pistoning (vertical movement inside the socket) and
changes in pressure between the prosthetic socket and residual
limb. Thirdly, active devices, which have the capability to per-
form more activities, such as repositioning the joints to prepare
for transfers, have only recently become commercially avail-
able. These are the categories of devices that arguably have
the most to gain from a neuromuscular control paradigm.

Direct skeletal fixation of an implant harnessing the bio-
logical process of osseointegration, as opposed to suspension
by a socket [22], can provide a gateway for a permanent
wired connection between implanted electrodes and the pros-
thesis [18], [23]. In participants with direct skeletal fixation,
problems caused by pistoning and changes in pressure between
the socket and residual limb are alleviated, thus sEMG can
provide reasonable control.

In this systematic review, we provide an overview of pio-
neering and state-of-the-art research in the field of lower limb
prosthetic control using EMG signals. Two reviews includ-
ing EMG control were published during the preparation of
this article and have been included herein for completeness
[24], [25]. Fleming et al. [24] conducted a topical review, and
Cimolato et al. [25] presented a systematic review including
56 articles. Our systematic review covered a larger volume of
articles (121) and provides further division of control strate-
gies using EMG. We investigated and categorized control
methods into three main groups: 1) Direct control, where the
modulated EMG activation directly and continuously relates
to the ankle or knee joint actuator either in a virtual envi-
ronment or to control a prosthesis; 2) Model-based control,
in which body sections are modeled as rigid segments con-
nected by rotational joints and driven by joint actuators (which
model muscles) [26]; and 3) machine learning control, where
a decoder is trained to distinguish EMG patterns between
different locomotion modes, gait phases, or leg movements.
This method of categorization differs from the review by
Fleming et al. [24] highlighting model-based control in its own

category to reflect its increasing popularity. Challenges in con-
trolling lower limb prostheses with EMG are also summarized
and discussed.

II. METHOD

The systematic review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) [27].

A. Search Strategy and Eligibility Criteria

Four online databases (Web of Science, Scopus, PubMed,
Science Direct) were searched until June 2022 for peer-
reviewed, English-language research articles, and conference
proceedings published at any time. The search was conducted
using the keywords: prosthetic OR prostheses OR prosthe-
sis OR “artificial limb” AND ((“lower limb”) OR leg OR
ankle OR knee) AND control AND (Electromyography OR
EMG OR neural).

To be included, the studies must have recorded EMG sig-
nals, and used the recorded signals to control an ankle,
leg, virtual object, or to classify gait intent or locomotion
modes. We excluded publications that were not in English,
were patents, books, or abstracts. Similarly, articles describing
control methods for an exoskeleton, or EMG for general reha-
bilitation purposes, were excluded. Furthermore, publications
that focused exclusively on surgical methods, developments
or improvements of leg prostheses, control hardware, or
firmware, were excluded. Studies on non-human subjects and
studies using biosensors other than EMG (such as EEG) were
also excluded.

B. Selection Process

The literature search and article screening procedure were
performed according to the sequence of steps shown in Fig. 1.
A total of 121 articles passed the screening procedure and were
thus assessed in detail and included in the review.

III. RESULTS

A. Research Participants

Of the 121 included articles, 59 articles (∼50%) included
able-bodied research participants, 50 articles (∼40%)
included individuals with amputation, and 12 articles (∼10%)
included research participants from both cohorts (Fig. 2).

B. Research Participant Activities: Assessments

Activities were divided into those with research participants
performing non-weight-bearing (Fig. 3) and weight-bearing
activities (Fig. 4). In more than 50% of the included studies,
research participants were asked to perform weight-bearing
activities. Of the weight-bearing activities, gait studies were
the most common in which the goal was to classify the loco-
motion mode (e.g., walking, stair ascent, etc.) or functional
phase of gait [28], [29], [30]. The stance (support) phase of
gait comprises 60% of the gait cycle and are split into: heel
contact, loading response, mid stance, terminal stance, and
push off. The swing phase of gait comprise 40% of the gait
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Fig. 1. Flowchart of the systematic literature review. Searching keywords
in four databases resulted in 1331 papers. After exclusion based on exclusion
criteria, abstract and full text screening, 121 papers remained.

cycle and are made up of initial swing, mid swing and terminal
swing [31].

The non-weight bearing activities (Fig. 3) in the reviewed
studies were of variable format and the research partici-
pants were asked to perform movements with their phantom
(individuals with amputation) or intact (able bodied research
participants) limb. In some studies the research participants
were asked to mimic pre-programmed motion trajectories [32],
[33], [34], [35], [36] or to perform isolated single joint
movements (one degree of freedom (DOF)) [37], [38], [39].
In other studies the participants controlled a virtual object in
a 2D or 3D space [11], [40], [41], [42], [43].

C. Myoelectric Sources

The muscles used for EMG acquisition differed between
the studies depending on research participant anatomy, type

of study, and the joints to control. Frequently reported mus-
cle groups used for EMG acquisition in research participants
with transfemoral amputation were: semitendinosus, biceps
femoris, tensor fasciae latae, rectus femoris, vastus lateralis,
vastus medialis, sartorius, adductor magnus, and gracilis [10],
[28], [39], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55]. In research participants with transtibial ampu-
tation, we found the gastrocnemius medial and lateralis, tibialis
anterior muscle to be the most frequently reported muscles
used for EMG acquisition [32], [33], [43], [56], [57], [58].
The number of electrodes varied but it was as high as 192.

D. Non-Biological Sensors

To date, sensors providing mechanical information have
been the only source of information for lower limb control
algorithms in commercial devices. Inertial Measurement Unit
(IMU) sensors provide useful control feedback for lower limb
support or swing gait stage detection and are used alone or in
combination with depth sensors and goniometers [59], laser
distance sensors [34], or loadcells [60]. A foot switch sensor
can indicate the temporal gait stage determined by ground con-
tact and was a commonly reported sensor in the literature [49],
[58], [61], [62], [63], [64], [65], [66]. An overview of sen-
sors and common placements can be found in Fig. 5 sensors
can be placed on the amputated side or on both legs [53]
but the majority of studies reviewed used sensors only on
the amputated side. This makes sense from the bionic leg
control perspective when solely harvesting information from
mechanical sensors, however from a person-centered approach,
a control method that additionally receives input from biologi-
cal signals is logical. EMG signals have been used in research
devices in combination with mechanical sensors to inform
the gait phase or locomotion mode. Performance of pattern
recognition algorithms was found to improve when EMG was
added [47], [51], [52], [59], [67], [68].

E. EMG Control Methods

The use of EMG in the control of lower limb prostheses has
become a fast-growing research area. Here we further divided
in direct control, model-based control, and machine learning
control. The next section provides an overview of each of these
methods.

1) Direct Control: This method uses a modulated EMG
signal to activate the ankle or knee joint actuator directly
and continuously either in a virtual or prosthetic device [69].
Direct control studies quantify performance using outcome
metrics such as ankle/knee prosthetic joint angle or dis-
tance moved between target and a virtual object. While direct
control was predominantly reported in the reviewed studies
involving transtibial amputees, it has also been utilized in stud-
ies with participants with transfemoral amputation. In these
cases, EMG signals were recorded from proximal muscles to
determine knee torque during the stance phase [70].

Nineteen out of 121 studies used the method of direct
control of which 13 controlled an ankle joint actuator and
6 controlled a knee joint actuator. A full list of the reviewed
studies using direct control are shown in Table I.
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Fig. 2. Proportion of studies in different categories. Studies are divided into five categories: research participants, research participant activity, control
algorithm, control source, and real-time or Offline processing of data. TF: Research participants with transfemoral amputation, TT: Research participants with
transtibial amputation, Ab: Able-bodied research participants.

Fig. 3. Seated knee extension and flexion as an example of a non-weight
bearing activity.

The activation of the prosthesis can be designed to be
proportional to the magnitude of the EMG signal, this is
proportional control. A frequently reported experiment was
to move a virtual object in a 2-D space directly and pro-
portionally to the EMG signal while performing plantar and
dorsiflexion [11], [33], [40], [41], [71]. Fleming et al. designed
a virtual pendulum proportionally controlled by EMG signals
and showed an anticipatory postural adjustment in participants
with transtibial amputations [43]. The computational cost is
relatively low in direct control, even including proportionality,
and therefore it is a common and valuable method of control
for devices with lower degrees of freedom. However, obtaining
enough independent signals to directly control several degrees
of freedom is challenging, where model-based and machine
learning approaches are commonly used (Table I).

2) Model-Based Control: Model-based control is the sec-
ond category of EMG control frequently reported in the
reviewed literature. Here body segments are modeled as rigid

Fig. 4. A transition from stair ascent to walking and from walking to stair
descent as an example of a weight bearing movement to classify locomotion
modes.

bodies connected by rotational joints and driven by joint actu-
ators (which model muscles) [26]. Hoover and Fite modeled
the lower limb muscles as parallel spring-damper systems,
where co-activating the muscles modulated the net mechan-
ical impedance of the joint [72]. Furthermore, they produced
a knee model in which the knee moment was a function of
the thigh EMG [73]. In a different approach, Hargrove et al.,
designed an active-reactive model where joint torque was
determined by the difference in agonist/antagonistic muscle
pair activations, and joint impedance was determined by the
sum of the agonist/antagonist muscle pair activations [46].
Minor et al., used an autoregressive model with a low
frequency EMG envelope as another way to predict the knee
moment [74]. Most modeling methods relied on a motion
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TABLE I
SUMMARY OF RESEARCH STUDIES USING DIRECT CONTROL

capture system within a specialist gait lab. Whereas special-
ized equipment restricts the exploitation of the model-based
control method, it does provide a well validated basis for

model creation. Additionally, it allows for generalizable mod-
els that can be fitted to new subjects unlike personalized
machine learning methods (see Section III-E3). For example
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Fig. 5. Illustration of different non-biological sensors and their place-
ments. Sensors reported in the studies were distance sensors, IMUs, loadcells,
goniometers, and pressure sensors. They were used either in combination or
alone.

Cimolato et al. developed a body model from sEMG sig-
nal and IMUs to control a prosthetic leg during gait [75];
these results were comparable to those obtained using motion
capture systems.

3) Machine Learning Control Methods:
a) Overview: Machine Learning methods can be used for

detecting different gait phases, locomotion modes, and tran-
sitions between locomotion modes. They also can be used
for decoding non weight bearing movements such as knee
or ankle flexion/extension [76]. Control methods based on
machine learning do not need an a priori model but often
require data to train a classifier or decoder. In brief, the decod-
ing of motor volition using EMG signals can be divided into
1) pre-processing, 2) feature extraction, 3) classification, and
4) post-processing.

In the pre-processing phase, the raw EMG signal under-
goes filtering and segmentation in “time windows” to remove
noise from the raw data and to parse relevant portions of the
continuous EMG signal (Fig. 6c), respectively. The continuous
EMG can be segmented in overlapping and non-overlapping
time windows. In the overlapping method, two consecutive
windows have an overlap time that is less than the length
of the time windows themselves. The time between the
beginning of a time window and the next is known as the
increment step. Finding the optimal length for a time window

and the increment step to the next is important because long
windows and steps reduce the real-time responsiveness of
the system, while short windows may lack information for
an accurate prediction. As a result, a balance between using
more information for decoding and responsiveness must be
maintained. Segmentation is followed by a feature extrac-
tion process where characteristics of each time window are
extracted to form a set of features or feature vector (Fig. 6d).
EMG features can be extracted in either time, frequency, or
time frequency domains. An example of a time-frequency
extraction method is the wavelet packet transform [74], [75].
After feature extraction, dimensionality reduction can decrease
the number of features processed by classifiers to supply only
the most relevant information.

In the classification phase, the feature vector is transferred
to a pre-trained decoder (e.g., Support Vector Machine) to
classify intended movement (Fig. 6e). One method used often
in upper limb control is continuous classification [79], [80].
Using this method, classification takes place regardless of the
state of the arm, hands, and fingers. In lower limb control, the
EMG signal in gait is “quasi-cyclic” since gait phases from
heel strike to toe off are approximately cyclical. Consequently,
it is sensible to perform locomotion classification at specific
events instead of continuously and therefore Phase-Dependent
Classification is commonly employed in lower limb control.

The post-processing phase is where the effect of misclas-
sifications can be attenuated using filtering techniques (e.g.,
majority voting or using a velocity ramp [81]).

b) Results of the reviewed publications: (Pre-Processing
methods):

Filtering: Of the 121 publications using EMG, 81 applied
a 20 – 500 Hz bandpass filter to remove unwanted low
frequency artifacts and high frequency noise [82]. Filtering
should be done in a way to avoid the loss of useful data or
cause any unwanted changes such as obscuring an adverse
event. This is important when trying to avoid stumble and
falls.

Segmentation: Most of the studies used a window length
of 150 - 300 ms with an overlap of 20 - 50 ms [83],
[84], [85]. In almost all the included studies in the machine
learning category, the window length was constant through-
out the experiment. There were a few exceptions to this, in
which varying window lengths were employed, for example,
Miller et al. introduced a segmentation method with three
EMG sub-windows per gait cycle (one gait cycle was defined
as ipsilateral heel strike to ipsilateral push off): 1) heel strike
to heel strike + 200 ms, 2) push off – 300 ms to push off,
and 3) push off to push off + 100 ms [58].

Feature Extraction: In the reviewed publications, the most
often reported features were the average absolute value, zero
crossings, number of slope sign changes, and waveform length,
which are all time domain features [49], [54], [86], [87]. Use of
frequency domain features were reported less frequently, this
may be related to their computational cost. Among the studies
that reported dimensionality reduction, principle component
analysis (PCA) was often the method used [35], [88] where
a set of variables was transformed to a lower dimension set
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Fig. 6. Data processing in a machine learning EMG controlled prosthetic leg. a) Surface electrodes on the residual limb of a transfemoral osseointegrated
participant, b) EMG signal obtained from the residual limb, c) Filtering and segmentation of the EMG signal d) Feature extraction from the EMG signal in
time domain and frequency domain, e) Classification of movement intention from the extracted features, f) The prosthesis moving according to the intention
of the participant.

Fig. 7. Illustration showing the difference between phase-dependent and continuous methods of classification. In the phase-dependent classification, a time
window at every pre-defined gait phase (toe off, heel contact) is classified, while in continuous classification, every consecutive window is classified.

of uncorrelated variables (principal components). Farrell and
Herr used a distinct dimension reduction method called the
wrapper method [64]. This is a sequential-forward-search that
finds a subset of features that maximizes the leave-one-out
cross-validation performance on the training.

Classification:
Phase-dependent classification: Phase dependent classifica-

tion (Fig. 7) classifies the signal features at specific moments
during every previously defined phase (e.g., heel strike or toe
off). A signal window around the defined phase is classified.
All reviewed publications employing this method use a sim-
ilar approach, with slight differences in the number of gait
phases, windowing, or type of classifier. For example, Young
and Hargrove. and Spanias et al. used eight different phases
of the gait cycle; 0%, 25%, 50%, and 75% of swing and 0%,
25%, 50%, and 75% of stance [29], [45]. Zhang et al. used

four clinically defined gait phases: heel contact, mid stance,
terminal stance and swing [88]. Huang et al. used toe off and
heel contact [49]. Classification can be performed either before
or after each of the selected gait phases. Furthermore, as shown
in [49], [58], [59], [87], [89] it is possible to have two distinct
classifiers, for both a window before and a window after a
gait phase. Of the publications reviewed, Linear Discriminate
Analysis (LDA), Support Vector Machine (SVM), a combi-
nation of LDA and Bayesian methods, and neural networks
have been used to predict the next locomotion mode (see
Table I). A limitation of phase-dependent classification is the
requirement for a gait phase input (windowing is relative to
the phase changes). Gait phase can be obtained using non
biological sensors (such as a load cell), discussed separately
in this review. A complete list of publications reviewed using
phase dependent classification can be found in Table II.
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TABLE II
SUMMARY OF RESEARCH STUDIES USING PHASE DEPENDENT CLASSIFIER

(Continued)

Continuous classification: Despite being a less frequently
reported method of classification in lower limb control, sev-
eral studies we reviewed did report it in non-weight bearing

movement (presumably since they are non-cyclic) [35], [40].
Unlike phase dependent classification, continuous classifica-
tion is possible without the input of gait phase state (Fig. 7,
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TABLE II
(Continued.) SUMMARY OF RESEARCH STUDIES USING PHASE DEPENDENT CLASSIFIER

bottom row). The gait phase can be recognized [66], [90],
instead of predicting the locomotion mode or user motion
intent [91]. This offers the distinct advantage of not relying

on sensor interpretation of gait phase, but they cannot be used
to detect different locomotion modes. From the EMG signal,
windows are selected and processed with a fixed pattern. Gaps
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TABLE III
SUMMARY OF RESEARCH STUDIES USING CONTINUOUS CLASSIFIER

(Continued)

or overlaps can be considered between windows. A complete
list of publications that used continuous classification can be
found in Table III.

Post Processing: Majority vote was a frequently reported
method for reducing the effect of misclassification in the liter-
ature we reviewed. For instance, if a five-point majority vote
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TABLE III
(Continued.) SUMMARY OF RESEARCH STUDIES USING CONTINUOUS CLASSIFIER

was used, transition did not occur until at least three of the
previous five overlapping windows agreed on the new loco-
motion mode. Other studies employed a voting scheme which

increased the number of voting decisions each time a rare tran-
sition was identified, such as the transition from stair ascent
to stepping over an obstacle [102], [103]. In these studies, the
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regular number of voting points was five; the voting length
increased to 15 when a rare condition occurred. Huang et al.
used a finite state machine and majority vote whereby a state
transition was only executed when a valid transition condi-
tion was met [87]. In terms of accuracy of control, majority
vote does seem to provide accurate enough results, but it can
add unacceptable delays to the system, which makes it hard
to use in real time. Finding and implementing more post pro-
cessing methods will be an inevitable part of advancing this
field.

Performance metrics: Deriving performance metrics for
classification systems is an important step to evaluate the
performance of the control system. There are different ways to
evaluate a classification algorithm in upper limb control such
as the TAC test [93] and Motion Test [80], [94]. These are
not frequently reported in lower limb control due to the afore-
mentioned quasi-cyclic motion of the limb. Instead, reported
metrics for lower limb control were accuracy/error calcu-
lated as a ratio of correctly classified testing samples divided
by the total number of applied testing samples. The extent
to which offline performance measures represent real-time
control performance is questionable for upper-limb control
approaches [80], [95]. This is also an open question when
quantifying performance in lower-limb control systems. An
added complication is that the user needs the device to function
properly to ambulate; the device needs to hold the person up
while they ambulate. If the device does not function properly,
the person may not be able to even attempt the activity, or tran-
sition between activities. An important metric was the number
of missed locomotion transitions or critical error (an error that
causes the user to feel unstable) [96]. While few studies have
investigated the performance between offline and online met-
rics, it appears that they are correlated [46]. More work needs
to be completed in this area and a platform in which to com-
pare control methods using the universal metrics would be an
advantage.

IV. CHALLENGES

The following summary outlines reported challenges that
contemporary lower limb technology has not yet overcome.

EMG signal quality and data acquisition: EMG signal qual-
ity relies on factors such as electrode interface, availability
of muscles, and the acquisition system [97]. Gradual varia-
tion of EMG signals over time is another challenge resulting
from physical (electrode shift and impedance change) and/or
physiological (human adaption and muscle fatigue) changes
resulting in signal quality decay [54]. An implant surgically
connected directly to the skeleton (via osseointegration) onto
which an artificial limb can be attached is an alternative to a
prosthetic socket. This connection method has been success-
fully used as a gateway to collect iEMG signals from research
participants [18]. As a result, the deleterious effects of the
prosthetic socket on sEMG is avoided and a much higher
quality and more robust EMG signal can be obtained [22].

Terrain transition detection: One of the most challeng-
ing parts of controlling a prosthesis is transition detection,
as it should be accurate and in a timely manner to control

the prosthesis safely and smoothly [52], [69], [87]. There is
potential to improve the accuracy of transition detection; per-
haps by employing some of the techniques described in this
review such as the conditional post processing technique used
by Huang et al. [87]. Promising advancements in accuracy
are expected with the use of iEMG. It may be that as the
field moves towards this paradigm for EMG signal produc-
tion (whether through an osseointegrated implant or via the
implantation of wireless iEMG) that an improvement in terrain
transition detection is obtained [18], [98].

Stumbling: It is critical to have a fast stumble detection
method in lower limb control to avoid falling and subsequent
injury [99]. Another challenge is handling perturbations during
normal gait, such as slipping on a wet surface [100], which
presents a challenge maintaining balance with a prosthetic leg.
Transition and stumble detection and prevention can be
improved by acquiring high quality EMG signal in combina-
tion with mechanical sensor signals. In addition to improved
hardware, and more optimized software, it would help the
development of the field if there were a dedicated platform
on which to compare control methods in a scientific manner.
Developing in this way by building on the work of previous
groups would accelerate the field in our understanding of how
to improve accuracy and reliability of these control algorithms.

V. CONCLUSION

We reviewed the literature on the control of powered pros-
thetic legs using EMG. We described work undertaken in direct
control, model-based, and machine learning methods. Of the
reviewed literature direct control and machine learning meth-
ods for control have produced favorable results in transtibial
and transfemoral research participants. However, it remains
challenging to control a prosthetic leg with EMG signal in
an environment outside the lab, such as at the home (the
ultimate goal) and particularly for transfemoral amputations.
Direct control is frequently reported but is only suitable for a
few degrees of freedom; more complex movement intentions
can be decoded using machine learning methods. Looking for-
wards, we think machine learning methods should be the focus
for the control of lower limb prostheses with EMG signals.

In addition to control methods, we described the activity
types, electrode placement, and how EMG based control was
augmented with non-biological sensors. Weight bearing tasks
were predominantly reported in the literature, but there was
large variability in the number of research participants and
electrode positioning. Foot switches and load cells were the
most often reported mechanical sensors that were used in
combination with EMG signals.

We paid special consideration to studies using real-time
decoding of locomotion modes since this better reflects home-
use of a prosthesis. The goal of this review was to present
available technologies and to highlight the opportunities in the
field of lower limb prosthetic control using myoelectric sig-
nals. However, there was a challenge comparing studies due
to the large variability in methods and outcome metrics; in
future work a standardization of these would be useful.
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[26] D. B. Popović, “3–Principles of command and control for neuro-
prostheses,” in Implantable Neuroprostheses for Restoring Function,
K. Kilgore, Ed. New York, NY, USA: Woodhead, 2015, pp. 45–58.

[27] D. Moher et al., “Preferred reporting items for systematic review
and meta-analysis protocols (PRISMA-P) 2015 statement,” Syst. Rev.,
vol. 4, no. 1, p. 1, 2015, doi: 10.1186/2046-4053-4-1.

[28] M. Liu, F. Zhang, and H. Huang, “An adaptive classification strategy for
reliable locomotion mode recognition,” Sensors, vol. 17, no. 9, p. 2020,
Sep. 2017, doi: 10.3390/s17092020.

[29] A. J. Young and L. J. Hargrove, “A classification method
for user-independent intent recognition for transfemoral amputees
using powered lower limb prostheses,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 24, no. 2, pp. 217–225, Feb. 2016,
doi: 10.1109/TNSRE.2015.2412461.

[30] J. A. Spanias, A. M. Simon, S. B. Finucane, E. J. Perreault, and
L. J. Hargrove, “Online adaptive neural control of a robotic lower
limb prosthesis,” J. Neural Eng., vol. 15, no. 1, pp. 1–31, 2018,
doi: 10.1088/1741-2552/aa92a8.

[31] J. Perry and J. R. Davids, “Gait analysis: normal and pathological
function,” J. Children Orthopaedics, vol. 12, no. 6, p. 815, 1992.

[32] S. K. Au, P. Bonato, and H. Herr, “An EMG-position controlled system
for an active ankle–foot prosthesis: An initial experimental study,” in
Proc. 9th Int. Conf. Rehabil. Robot. (ICORR), 2005, pp. 375–379,
doi: 10.1109/ICORR.2005.1501123.

[33] B. Chen, Q. Wang, and L. Wang, “Promise of using surface EMG sig-
nals to volitionally control ankle joint position for powered transtibial
prostheses,” in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), 2014, pp. 2545–2548, doi: 10.1109/EMBC.2014.6944141.

[34] M. Liu, D. Wang, and H. H. Huang, “Development of an environment-
aware locomotion mode recognition system for powered lower limb
prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 4,
pp. 434–443, Apr. 2016, doi: 10.1109/TNSRE.2015.2420539.

[35] K. H. Ha, H. A. Varol, and M. Goldfarb, “Volitional con-
trol of a prosthetic knee using surface electromyography,” IEEE
Trans. Biomed. Eng., vol. 58, no. 1, pp. 144–151, Jan. 2011,
doi: 10.1109/TBME.2010.2070840.

[36] J. M. Canino and K. B. Fite, “The effects of cutaneous haptic feed-
back on EMG-based motion control of a transfemoral prosthesis,” in
Proc. ASME Dyn. Syst. Control Conf. (DSCC), vol. 1, 2016, pp. 1–8,
doi: 10.1115/DSCC2016-9778.

[37] T. Afzal, K. Iqbal, G. White, and A. B. Wright, “Task discrimination for
non-weight-bearing movements using muscle synergies,” in Proc. IEEE
Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBS), Nov. 2015, pp. 478–481,
doi: 10.1109/EMBC.2015.7318403.

[38] L. J. Hargrove, A. M. Simon, R. Lipschutz, S. B. Finucane, and
T. A. Kuiken, “Non-weight-bearing neural control of a powered trans-
femoral prosthesis,” J. Neuroeng. Rehabil., vol. 10, no. 1, p. 1, 2013,
doi: 10.1186/1743-0003-10-62.

[39] L. J. Hargrove, A. M. Simon, R. D. Lipschutz, S. B. Finucane,
and T. A. Kuiken, “Real-time myoelectric control of knee and ankle
motions for transfemoral amputees,” J. Amer. Med. Assoc., vol. 305,
no. 15, pp. 1542–1544, 2011, doi: 10.1001/jama.2011.465.

[40] R. E. Alcaide-Aguirre, D. C. Morgenroth, and D. P. Ferris,
“Motor control and learning with lower-limb myoelectric control in
amputees,” J. Rehabil. Res. Dev., vol. 50, no. 5, pp. 687–698, 2013,
doi: 10.1682/JRRD.2012.06.0115.

[41] S. Huang and H. Huang, “Voluntary control of residual antagonistic
muscles in transtibial amputees: Reciprocal activation, coactivation, and

http://dx.doi.org/10.1016/j.apmr.2007.11.005
http://dx.doi.org/10.1111/j.1464-5491.2011.03279.x
http://dx.doi.org/10.1007/s10016-006-9044-9
http://dx.doi.org/10.1177/0309364620972258
http://dx.doi.org/10.3760/cma.j.issn.1008-1275.2009.02.003
http://dx.doi.org/10.1016/s2214-109x(18)30147-5
http://dx.doi.org/10.1080/01691864.2017.1402704
http://dx.doi.org/10.1186/1475-925X-11-33
http://dx.doi.org/10.1126/scirobotics.abk3123
http://dx.doi.org/10.1056/nejmoa1300126
http://dx.doi.org/10.1126/scitranslmed.aap8373
http://dx.doi.org/10.1109/TBME.2019.2912466
http://dx.doi.org/10.3389/fnins.2016.00312
http://dx.doi.org/10.1007/978-3-319-27149-1_17
http://dx.doi.org/10.1186/1743-0003-12-1
http://dx.doi.org/10.1109/JSEN.2019.2944653
http://dx.doi.org/10.1056/nejmoa1917537
http://dx.doi.org/10.1186/s12984-019-0511-2
http://dx.doi.org/10.3389/fnbot.2020.00039
http://dx.doi.org/10.1126/scitranslmed.3008933
http://dx.doi.org/10.1007/s10439-017-1976-4
http://dx.doi.org/10.1088/1741-2552/ac1176
http://dx.doi.org/10.1186/s12984-022-01019-1
http://dx.doi.org/10.1186/2046-4053-4-1
http://dx.doi.org/10.3390/s17092020
http://dx.doi.org/10.1109/TNSRE.2015.2412461
http://dx.doi.org/10.1088/1741-2552/aa92a8
http://dx.doi.org/10.1109/ICORR.2005.1501123
http://dx.doi.org/10.1109/EMBC.2014.6944141
http://dx.doi.org/10.1109/TNSRE.2015.2420539
http://dx.doi.org/10.1109/TBME.2010.2070840
http://dx.doi.org/10.1115/DSCC2016-9778
http://dx.doi.org/10.1109/EMBC.2015.7318403
http://dx.doi.org/10.1186/1743-0003-10-62
http://dx.doi.org/10.1001/jama.2011.465
http://dx.doi.org/10.1682/JRRD.2012.06.0115


560 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 5, NO. 3, AUGUST 2023

implications for direct neural control of powered lower limb prosthe-
ses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 1, pp. 85–95,
Jan. 2019, doi: 10.1109/TNSRE.2018.2885641.

[42] A. Fleming, S. Huang, and H. H. Huang, “Coordination of voluntary
residual muscle contractions in transtibial amputees: A pilot study,” in
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), Jul. 2018,
pp. 2128–2131, doi: 10.1109/EMBC.2018.8512674.

[43] A. Fleming, S. Huang, and H. Huang, “Proportional myoelec-
tric control of a virtual inverted pendulum using residual antag-
onistic muscles: Toward voluntary postural control,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 7, pp. 1473–1482, Jul. 2019,
doi: 10.1109/TNSRE.2019.2922102.

[44] A. J. Young, T. A. Kuiken, and L. J. Hargrove, “Analysis of using EMG
and mechanical sensors to enhance intent recognition in powered lower
limb prostheses,” J. Neural Eng., vol. 11, no. 5, 2014, Art. no. 56021,
doi: 10.1088/1741-2560/11/5/056021.

[45] J. A. Spanias, E. J. Perreault, and L. J. Hargrove, “Detection of and
compensation for EMG disturbances for powered lower limb prosthe-
sis control,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 2,
pp. 226–234, Feb. 2016, doi: 10.1109/TNSRE.2015.2413393.

[46] L. J. Hargrove et al., “Intuitive control of a powered prosthetic leg
during ambulation: A randomized clinical trial,” J. Amer. Med. Assoc.,
vol. 313, no. 22, pp. 2244–2252, 2015, doi: 10.1001/jama.2015.4527.

[47] A. M. Simon, N. P. Fey, K. A. Ingraham, A. J. Young, and
L. J. Hargrove, “Powered prosthesis control during walking, sitting,
standing, and non-weight bearing activities using neural and mechani-
cal inputs,” in Proc. Int. IEEE/EMBS Conf. Neural Eng. (NER), 2013,
pp. 1174–1177, doi: 10.1109/NER.2013.6696148.

[48] F. Zhang and H. Huang, “Source selection for real-time user intent
recognition toward volitional control of artificial legs,” IEEE J.
Biomed. Health Informat., vol. 17, no. 5, pp. 907–914, Sep. 2013,
doi: 10.1109/JBHI.2012.2236563.

[49] H. Huang, T. A. Kuiken, and R. D. Lipschutz, “A strategy
for identifying locomotion modes using surface electromyography,”
IEEE Trans. Biomed. Eng., vol. 56, no. 1, pp. 65–73, Jan. 2009,
doi: 10.1109/TBME.2008.2003293.

[50] A. J. Young, A. Simon, and L. J. Hargrove, “An intent recognition strat-
egy for transfemoral amputee ambulation across different locomotion
modes,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS),
2013, pp. 1587–1590, doi: 10.1109/EMBC.2013.6609818.

[51] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and
K. B. Englehart, “Continuous locomotion-mode identification for
prosthetic legs based on neuromuscular—Mechanical fusion,” IEEE
Trans. Biomed. Eng., vol. 58, no. 10, pp. 2867–2875, Oct. 2011,
doi: 10.1109/TBME.2011.2161671.

[52] J. A. Spanias, A. M. Simon, K. A. Ingraham, and L. J. Hargrove,
“Effect of additional mechanical sensor data on an EMG-based pat-
tern recognition system for a powered leg prosthesis,” in Proc.
Int. IEEE/EMBS Conf. Neural Eng. (NER), Jul. 2015, pp. 639–642,
doi: 10.1109/NER.2015.7146704.

[53] B. Hu, E. Rouse, and L. Hargrove, “Fusion of bilateral lower-
limb neuromechanical signals improves prediction of locomo-
tor activities,” Front. Robot. AI, vol. 5, pp. 1–16, Jun. 2018,
doi: 10.3389/frobt.2018.00078.

[54] L. Du, F. Zhang, H. He, and H. Huang, “Improving the performance
of a neural-machine interface for prosthetic legs using adaptive pat-
tern classifiers,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBS), 2013, pp. 1571–1574, doi: 10.1109/EMBC.2013.6609814.

[55] L. Chen, Z. Yang, C. Zhang, J. Wang, and Y. Li, “Periodic locomotion-
model recognition based on electromyography of thigh stump,” in Proc.
24th IEEE Int. Conf. Autom. Comput. Improving Prod. Autom. Comput.
(ICAC), 2018, pp. 748–753, doi: 10.23919/IConAC.2018.8748990.

[56] D. C. Tkach, R. D. Lipschutz, S. B. Finucane, and L. J. Hargrove,
“Myoelectric neural interface enables accurate control of a virtual
multiple degree-of-freedom foot-ankle prosthesis,” in Proc. ICORR,
2013, pp. 1–8, doi: 10.1109/ICORR.2013.6650499.

[57] T. Garikayi, D. Van den Heever, and S. Matope, “Analysis
of surface electromyography signal features on osteomyoplastic
transtibial amputees for pattern recognition control architectures,”
Biomed. Signal Process. Control, vol. 40, pp. 10–22, Feb. 2018,
doi: 10.1016/j.bspc.2017.09.007.

[58] J. D. Miller, M. S. Beazer, and M. E. Hahn, “Myoelectric walk-
ing mode classification for transtibial amputees,” IEEE Trans.
Biomed. Eng., vol. 60, no. 10, pp. 2745–2750, Oct. 2013,
doi: 10.1109/TBME.2013.2264466.

[59] N. E. Krausz, B. H. Hu, and L. J. Hargrove, “Subject-and environment-
based sensor variability for wearable lower-limb assistive devices,”
Sensors, vol. 19, no. 22, pp. 1–18, 2019, doi: 10.3390/s19224887.

[60] B. Chen and Q. Wang, “Combining human volitional control with
intrinsic controller on robotic prosthesis: A case study on adaptive slope
walking,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS),
Nov. 2015, pp. 4777–4780, doi: 10.1109/EMBC.2015.7319462.

[61] J. A. Dawley, K. B. Fite, and G. D. Fulk, “EMG control of a bionic knee
prosthesis: Exploiting muscle co-contractions for improved locomotor
function,” in Proc. IEEE Int. Conf. Rehabil. Robot., 2013, pp. 24–29,
doi: 10.1109/ICORR.2013.6650389.

[62] T. Afzal, K. Iqbal, G. White, and A. B. Wright, “A method for
locomotion mode identification using muscle synergies,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 608–617, Jun. 2017,
doi: 10.1109/TNSRE.2016.2585962.

[63] F. Barberi et al., “Fast online decoding of motor tasks with single
sEMG electrode in lower limb amputees,” Biosyst. Biorobot., vol. 22,
pp. 110–114, Oct. 2019, doi: 10.1007/978-3-030-01887-0_22.

[64] M. T. Farrell and H. Herr, “A method to determine the optimal fea-
tures for control of a powered lower-limb prostheses,” in Proc. Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), 2011, pp. 6041–6046,
doi: 10.1109/IEMBS.2011.6091493.

[65] E. Zheng, L. Wang, K. Wei, and Q. Wang, “A noncontact capaci-
tive sensing system for recognizing locomotion modes of transtibial
amputees,” IEEE Trans. Biomed. Eng., vol. 61, no. 12, pp. 2911–2920,
Dec. 2014, doi: 10.1109/TBME.2014.2334316.

[66] J. Ryu, B. H. Lee, and D. H. Kim, “EMG signal-based gait phase
recognition using a GPES library and ISMF,” in Proc. Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBS), Oct. 2016, pp. 2003–2006,
doi: 10.1109/EMBC.2016.7591118.

[67] J. A. Spanias, E. J. Perreault, and L. J. Hargrove, “A strategy for label-
ing data for the neural adaptation of a powered lower limb prosthesis,”
in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
2014, pp. 3090–3093, doi: 10.1109/EMBC.2014.6944276.

[68] N. E. Krausz and L. J. Hargrove, “Sensor fusion of vision, kinetics,
and kinematics for forward prediction during walking with a trans-
femoral prosthesis,” IEEE Trans. Med. Robot. Bionics, vol. 3, no. 3,
pp. 813–824, Aug. 2021, doi: 10.1109/tmrb.2021.3082206.

[69] O. A. Kannape and H. M. Herr, “Volitional control of ankle plantar
flexion in a powered transtibial prosthesis during stair-ambulation,” in
Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 2014,
pp. 1662–1665, doi: 10.1109/EMBC.2014.6943925.

[70] C. D. Hoover and K. B. Fite, “Preliminary evaluation of myoelectric
control of an active transfemoral prosthesis during stair ascent,” in Proc.
ASME Dyn. Syst. Control Conf. (DSCC), vol. 1, 2010, pp. 801–808,
doi: 10.1115/DSCC2010-4158.

[71] Y. Asai, S. Tateyama, and T. Nomura, “Learning an intermit-
tent control strategy for postural balancing using an EMG-based
human–computer interface,” PLoS ONE, vol. 8, no. 5, p. 10, 2013,
doi: 10.1371/journal.pone.0062956.

[72] C. D. Hoover and K. B. Fite, “A configuration dependent mus-
cle model for the myoelectric control of a transfemoral prosthe-
sis,” in Proc. IEEE Int. Conf. Rehabil. Robot., 2011, pp. 1–8,
doi: 10.1109/ICORR.2011.5975480.

[73] C. D. Hoover, G. D. Fulk, and K. B. Fite, “Stair ascent with a powered
transfemoral prosthesis under direct myoelectric control,” IEEE/ASME
Trans. Mechatronics, vol. 18, no. 3, pp. 1191–1200, Jun. 2013.

[74] A. Minor, C. A. Gonzalez, and L. Leija, “Low frequency envelopes
analysis approach to regulate EMG A/K prosthesis,” in Proc. Annu.
Int. Conf. IEEE Eng. Med. Biol., vol. 3, 1997, pp. 1278–1281,
doi: 10.1109/iembs.1997.756608.

[75] A. Cimolato, G. Milandri, L. S. Mattos, E. De Momi, M. Laffranchi,
and L. De Michieli, “Hybrid machine learning-neuromusculoskeletal
modeling for control of lower limb prosthetics,” in Proc. IEEE
RAS EMBS Int. Conf. Biomed. Robot. Biomechatron., Nov. 2020,
p. 557–563, doi: 10.1109/BioRob49111.2020.9224448.

[76] E. Lendaro, E. Mastinu, B. Håkansson, and M. Ortiz-Catalan, “Real-
time classification of non-weight bearing lower-limb movements using
EMG to facilitate phantom motor execution: Engineering and case
study application on phantom limb pain,” Front. Neurol., vol. 8, p. 470,
Sep. 2017, doi: 10.3389/fneur.2017.00470.

http://dx.doi.org/10.1109/TNSRE.2018.2885641
http://dx.doi.org/10.1109/EMBC.2018.8512674
http://dx.doi.org/10.1109/TNSRE.2019.2922102
http://dx.doi.org/10.1088/1741-2560/11/5/056021
http://dx.doi.org/10.1109/TNSRE.2015.2413393
http://dx.doi.org/10.1001/jama.2015.4527
http://dx.doi.org/10.1109/NER.2013.6696148
http://dx.doi.org/10.1109/JBHI.2012.2236563
http://dx.doi.org/10.1109/TBME.2008.2003293
http://dx.doi.org/10.1109/EMBC.2013.6609818
http://dx.doi.org/10.1109/TBME.2011.2161671
http://dx.doi.org/10.1109/NER.2015.7146704
http://dx.doi.org/10.3389/frobt.2018.00078
http://dx.doi.org/10.1109/EMBC.2013.6609814
http://dx.doi.org/10.23919/IConAC.2018.8748990
http://dx.doi.org/10.1109/ICORR.2013.6650499
http://dx.doi.org/10.1016/j.bspc.2017.09.007
http://dx.doi.org/10.1109/TBME.2013.2264466
http://dx.doi.org/10.3390/s19224887
http://dx.doi.org/10.1109/EMBC.2015.7319462
http://dx.doi.org/10.1109/ICORR.2013.6650389
http://dx.doi.org/10.1109/TNSRE.2016.2585962
http://dx.doi.org/10.1007/978-3-030-01887-0_22
http://dx.doi.org/10.1109/IEMBS.2011.6091493
http://dx.doi.org/10.1109/TBME.2014.2334316
http://dx.doi.org/10.1109/EMBC.2016.7591118
http://dx.doi.org/10.1109/EMBC.2014.6944276
http://dx.doi.org/10.1109/tmrb.2021.3082206
http://dx.doi.org/10.1109/EMBC.2014.6943925
http://dx.doi.org/10.1115/DSCC2010-4158
http://dx.doi.org/10.1371/journal.pone.0062956
http://dx.doi.org/10.1109/ICORR.2011.5975480
http://dx.doi.org/10.1109/iembs.1997.756608
http://dx.doi.org/10.1109/BioRob49111.2020.9224448
http://dx.doi.org/10.3389/fneur.2017.00470


AHKAMI et al.: EMG-BASED CONTROL OF LOWER LIMB PROSTHESES: A SYSTEMATIC REVIEW 561

[77] X. Guo, P. Yang, L. Chen, X. Wang, and L. Li, “Study of the con-
trol mechanism of robot-prosthesis based-on the EMG processed,” in
Proc. World Congr. Intell. Control Autom., vol. 2, 2006, pp. 9490–9493,
doi: 10.1109/WCICA.2006.1713840.

[78] C. Lingling, Y. Peng, Z. Linan, and X. Xiaoyun, “Electromyogram
signal analysis and movement recognition based on wavelet packet
transform,” in Proc. IEEE Int. Conf. Inf. Autom. (ICIA), 2009,
pp. 1482–1487, doi: 10.1109/ICINFA.2009.5205151.

[79] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control,” IEEE Trans. Biomed. Eng., vol. 50,
no. 7, pp. 848–854, Jul. 2003, doi: 10.1109/TBME.2003.813539.

[80] M. Ortiz-Catalan, R. Brånemark, and B. Håkansson, “BioPatRec: A
modular research platform for the control of artificial limbs based on
pattern recognition algorithms,” Source Code Biol. Med., vol. 8, no. 1,
p. 11, 2013, doi: 10.1186/1751-0473-8-11.

[81] A. M. Simon, L. J. Hargrove, B. A. Lock, and T. A. Kuiken,
“A decision-based velocity ramp for minimizing the effect of mis-
classifications during real-time pattern recognition control,” IEEE
Trans. Biomed. Eng., vol. 58, no. 8, pp. 2360–2368, Aug. 2011,
doi: 10.1109/TBME.2011.2155063.

[82] C. J. De Luca, “The use of surface electromyography in biome-
chanics,” J. Appl. Biomech., vol. 13, no. 2, pp. 135–163, 1997,
doi: 10.1123/jab.13.2.135.

[83] F. Zhang, Z. Dou, M. Nunnery, and H. Huang, “Real-time implemen-
tation of an intent recognition system for artificial legs,” in Proc. IEEE
Annu. Int. Conf. Eng. Med. Biol. Soc. (EMBC), 2011, pp. 2997–3000.

[84] R. Gupta and R. Agarwal, “Electromyographic signal-driven contin-
uous locomotion mode identification module design for lower limb
prosthesis control,” Arab. J. Sci. Eng., vol. 43, no. 12, pp. 7817–7835,
2018, doi: 10.1007/s13369-018-3193-3.

[85] D. Joshi and M. E. Hahn, “Terrain and direction classifica-
tion of locomotion transitions using neuromuscular and mechanical
input,” Ann. Biomed. Eng., vol. 44, no. 4, pp. 1275–1284, 2016,
doi: 10.1007/s10439-015-1407-3.

[86] H. Huang, Z. Dou, F. Zhang, and M. J. Nunnery, “Improving the
performance of a neural-machine interface for artificial legs using
prior knowledge of walking environment,” in Proc. IEEE Annu.
Int. Conf. Eng. Med. Biol. Soc. (EMBS), 2011, pp. 4255–4258,
doi: 10.1109/IEMBS.2011.6091056.

[87] H. Huang et al., “Integrating neuromuscular and cyber systems
for neural control of artificial legs,” in Proc. 1st ACM/IEEE
Int. Conf. Cyber Phys. Syst. (ICCPS), 2010, pp. 129–138,
doi: 10.1145/1795194.1795213.

[88] F. Zhang, W. Disanto, J. Ren, Z. Dou, Q. Yang, and H. Huang, “A novel
CPS system for evaluating a neural-machine interface for artificial
legs,” in Proc. IEEE/ACM 2nd Int. Conf. Cyber Phys. Syst. (ICCPS),
2011, pp. 67–76, doi: 10.1109/ICCPS.2011.13.

[89] T. Afzal, G. White, A. B. Wright, and K. Iqbal, “Locomotion
mode identification for lower limbs using neuromuscular and
joint kinematic signals,” in Proc. 36th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Aug. 2014, pp. 4071–4074,
doi: 10.1109/EMBC.2014.6944518.

[90] J. H. Ryu and D. H. Kim, “Multiple gait phase recognition using
boosted classifiers based on sEMG signal and classification matrix,”
in Proc. ICUIMC, 2014, pp. 1–4, doi: 10.1145/2557977.2557993.

[91] U. Gregory and L. Ren, “Intent prediction of multi-axial ankle
motion using limited EMG signals,” Front. Bioeng. Biotechnol., vol. 7,
pp. 1–18, Nov. 2019, doi: 10.3389/fbioe.2019.00335.

[92] R. Hernandez, J. Kane, F. Zhang, X. Zhang, and H. Huang, “Towards
ubiquitous mobile-computing-based artificial leg control,” in Proc.
9th Annu. IEEE Int. Syst. Conf. (SysCon), 2015, pp. 821–827,
doi: 10.1109/SYSCON.2015.7116852.

[93] A. M. Simon, L. J. Hargrove, B. A. Lock, and T. A. Kuiken,
“Target achievement control test: Evaluating real-time myoelectric
pattern-recognition control of multifunctional upper-limb prosthe-
ses,” J. Rehabil. Res. Dev., vol. 48, no. 6, pp. 619–627, 2011,
doi: 10.1682/jrrd.2010.08.0149.

[94] T. A. Kuiken et al., “Targeted muscle reinnervation for real-time myo-
electric control of multifunction artificial arms,” J. Amer. Med. Assoc.,
vol. 301, no. 6, pp. 619–628, Feb. 2009, doi: 10.1001/jama.2009.116.

[95] M. Ortiz-Catalan, F. Rouhani, R. Branemark, and B. Hakansson,
“Offline accuracy: A potentially misleading metric in myoelectric pat-
tern recognition for prosthetic control,” in Proc. Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBS), Nov. 2015, pp. 1140–1143,
doi: 10.1109/EMBC.2015.7318567.

[96] F. Zhang, M. Liu, and H. Huang, “Effects of locomotion mode recog-
nition errors on volitional control of powered above–knee prostheses,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 1, pp. 64–72,
Jan. 2015, doi: 10.1109/TNSRE.2014.2327230.

[97] S. Hoffmann and M. Falkenstein, “Predictive information processing
in the brain: Errors and response monitoring,” Int. J. Psychophysiol.,
vol. 83, no. 2, pp. 208–212, 2012, doi: 10.1016/j.ijpsycho.2011.11.015.

[98] M. Ortiz-Catalan, “Neuroengineering: Deciphering neu-
ral drive,” Nat. Biomed. Eng., vol. 1, no. 2, p. 34, 2017,
doi: 10.1038/s41551-017-0034.

[99] F. Zhang, S. E. D’Andrea, M. J. Nunnery, S. M. Kay, and H. Huang,
“Towards design of a stumble detection system for artificial legs,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 5, pp. 567–577,
Oct. 2011, doi: 10.1109/TNSRE.2011.2161888.

[100] J. Yang et al., “The reaction strategy of lower extremity mus-
cles when slips occur to individuals with trans-femoral amputation,”
J. Electromyography Kinesiol., vol. 17, no. 2, pp. 228–240, 2007,
doi: 10.1016/j.jelekin.2006.01.013.

[101] C. D. Hoover, G. D. Fulk, and K. B. Fite, “The design and initial exper-
imental validation of an active myoelectric transfemoral prosthesis,” J.
Med. Devices, vol. 6, no. 1, pp. 1–12, 2012, doi: 10.1115/1.4005784.

[102] W. R. Dyck, S. Onyshko, and D. A. Hobson, “A voluntarily controlled
electrohydraulic above knee prosthesis,” Bull. Prosthet. Res., vol. 10,
no. 23, pp. 169–186, 1975.

[103] S. K. Wu, G. Waycaster, and X. Shen, “Active knee prosthesis con-
trol with electromyography,” in Proc. ASME Dyn. Syst. Control Conf.
(DSCC), vol. 1, 2010, pp. 785–791, doi: 10.1115/DSCC2010-4068.

[104] S. Huang, J. P. Wensman, and D. P. Ferris, “An experimental pow-
ered lower limb prosthesis using proportional myoelectric control,”
J. Med. Devices Trans. ASME, vol. 8, no. 2, 2014, Art. no. 24501,
doi: 10.1115/1.4026633.

[105] B. Chen, Q. Wang, and L. Wang, “Adaptive slope walking with
a robotic transtibial prosthesis based on volitional EMG control,”
IEEE/ASME Trans. Mechatronics, vol. 20, no. 5, pp. 2146–2157,
Oct. 2015, doi: 10.1109/TMECH.2014.2365877.

[106] S. K. Wu, G. Waycaster, and X. Shen, “Electromyography-based con-
trol of active above–knee prostheses,” Control Eng. Pract., vol. 19,
no. 8, pp. 875–882, 2011, doi: 10.1016/j.conengprac.2011.04.017.

[107] O. Mazumder, A. S. Kundu, and S. Bhaumik, “Generating
gait pattern of myoelectric active ankle prosthesis,” in Proc.
Recent Adv. Eng. Comput. Sci. (RAECS), 2014, pp. 6–8,
doi: 10.1109/RAECS.2014.6799554.

[108] S. Huang, J. P. Wensman, and D. P. Ferris, “Locomotor adapta-
tion by transtibial amputees walking with an experimental pow-
ered prosthesis under continuous myoelectric control,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 24, no. 5, pp. 573–581, May 2016,
doi: 10.1109/TNSRE.2015.2441061.

[109] J. Wang, O. A. Kannape, and H. M. Herr, “Proportional EMG control
of ankle plantar flexion in a powered transtibial prosthesis,” in Proc.
ICORR, 2013, pp. 1–5, doi: 10.1109/ICORR.2013.6650391.

[110] B. Silver-thorn, T. Current, and B. Kuhse, “Preliminary investigation
of residual limb plantarflexion and dorsiflexion muscle activity dur-
ing treadmill walking for trans-tibial amputees,” Prosthet. Orthot. Int.,
vol. 36, no. 4, pp. 435–442, 2012, doi: 10.1177/0309364612443379.

[111] G. W. Horn, “Electro-control: An EMG—Controlled A/K prosthesis,”
Med. Biol. Eng., vol. 10, pp. 61–73, Jan. 1972.

[112] S. Au, M. Berniker, and H. Herr, “Powered ankle–foot prosthesis to
assist level-ground and stair-descent gaits,” Neural Netw., vol. 21, no. 4,
pp. 654–666, 2008, doi: 10.1016/j.neunet.2008.03.006.

[113] H. Dimitrov, A. M. J. Bull, and D. Farina, “Real-time interface
algorithm for ankle kinematics and stiffness from electromyographic
signals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 6,
pp. 1416–1427, Jun. 2020, doi: 10.1109/TNSRE.2020.2986787.

[114] A. Fleming, S. Huang, E. Buxton, F. Hodges, and H. H. Huang, Direct
Continuous Electromyographic Control of a Powered Prosthetic Ankle
for Improved Postural Control After Guided Physical Training: A Case
Study, vol. 2. Cambridge, MA, USA: Cambridge Univ. Press, 2021,
doi: 10.1017/wtc.2021.2.

[115] T. Zhang, P. Yang, Q. Liu, L. Chen, and J. Liu, “A research
on EMG signal and plantar pressure information for AK pros-
thetic control,” in Proc. IFMBE, vol. 19, 2008, pp. 488–491,
doi: 10.1007/978-3-540-79039-6_122.

[116] M. Meng, Z. Luo, Q. She, and Y. Ma, “Automatic recognition of
gait mode from EMG signals of lower limb,” in Proc. 2nd Int.
Conf. Ind. Mechatron. Autom. (ICIMA), vol. 1, 2010, pp. 282–285,
doi: 10.1109/ICINDMA.2010.5538164.

http://dx.doi.org/10.1109/WCICA.2006.1713840
http://dx.doi.org/10.1109/ICINFA.2009.5205151
http://dx.doi.org/10.1109/TBME.2003.813539
http://dx.doi.org/10.1186/1751-0473-8-11
http://dx.doi.org/10.1109/TBME.2011.2155063
http://dx.doi.org/10.1123/jab.13.2.135
http://dx.doi.org/10.1007/s13369-018-3193-3
http://dx.doi.org/10.1007/s10439-015-1407-3
http://dx.doi.org/10.1109/IEMBS.2011.6091056
http://dx.doi.org/10.1145/1795194.1795213
http://dx.doi.org/10.1109/ICCPS.2011.13
http://dx.doi.org/10.1109/EMBC.2014.6944518
http://dx.doi.org/10.1145/2557977.2557993
http://dx.doi.org/10.3389/fbioe.2019.00335
http://dx.doi.org/10.1109/SYSCON.2015.7116852
http://dx.doi.org/10.1682/jrrd.2010.08.0149
http://dx.doi.org/10.1001/jama.2009.116
http://dx.doi.org/10.1109/EMBC.2015.7318567
http://dx.doi.org/10.1109/TNSRE.2014.2327230
http://dx.doi.org/10.1016/j.ijpsycho.2011.11.015
http://dx.doi.org/10.1038/s41551-017-0034
http://dx.doi.org/10.1109/TNSRE.2011.2161888
http://dx.doi.org/10.1016/j.jelekin.2006.01.013
http://dx.doi.org/10.1115/1.4005784
http://dx.doi.org/10.1115/DSCC2010-4068
http://dx.doi.org/10.1115/1.4026633
http://dx.doi.org/10.1109/TMECH.2014.2365877
http://dx.doi.org/10.1016/j.conengprac.2011.04.017
http://dx.doi.org/10.1109/RAECS.2014.6799554
http://dx.doi.org/10.1109/TNSRE.2015.2441061
http://dx.doi.org/10.1109/ICORR.2013.6650391
http://dx.doi.org/10.1177/0309364612443379
http://dx.doi.org/10.1016/j.neunet.2008.03.006
http://dx.doi.org/10.1109/TNSRE.2020.2986787
http://dx.doi.org/10.1017/wtc.2021.2
http://dx.doi.org/10.1007/978-3-540-79039-6_122
http://dx.doi.org/10.1109/ICINDMA.2010.5538164


562 IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, VOL. 5, NO. 3, AUGUST 2023

[117] A. J. Young, A. M. Simon, N. P. Fey, and L. J. Hargrove, “Classifying
the intent of novel users during human locomotion using powered lower
limb prostheses,” in Proc. Int. IEEE/EMBS Conf. Neural Eng. (NER),
2013, pp. 311–314, doi: 10.1109/NER.2013.6695934.

[118] Q. She, Z. Luo, M. Meng, and P. Xu, “Multiple kernel learning SVM-
based EMG pattern classification for lower limb control,” in Proc.
11th Int. Conf. Control Autom. Robot. Vis. (ICARCV), Dec. 2010,
pp. 2109–2113, doi: 10.1109/ICARCV.2010.5707406.

[119] J. A. Brantley, T. P. Luu, S. Nakagome, and J. L. Contreras-Vidal,
“Prediction of lower-limb joint kinematics from surface EMG during
overground locomotion,” in Proc. IEEE Int. Conf. Syst. Man Cybern.
(SMC), Jan. 2017, pp. 1705–1709, doi: 10.1109/SMC.2017.8122861.

[120] L. Chen, X. Xu, P. Yang, X. Guo, and L. Zu, “Stride recog-
nition in the control concept of trans-femoral prosthesis,” in
Proc. World Congr. Intell. Control Autom., 2008, pp. 7621–7625,
doi: 10.1109/WCICA.2008.4594113.

[121] J. A. Brantley, T. P. Luu, S. Nakagome, and J. L. Contreras-Vidal,
“Towards the development of a hybrid neural-machine interface for
volitional control of a powered lower limb prosthesis,” in Proc. WeRob,
2018, pp. 1–8, doi: 10.1109/werob.2017.8383871.

[122] S. Farmer, B. Silver-Thorn, P. Voglewede, and S. A. Beardsley,
“Within-socket myoelectric prediction of continuous ankle kinematics
for control of a powered transtibial prosthesis,” J. Neural Eng., vol. 11,
no. 5, Oct. 2014, Art. no. 56027, doi: 10.1088/1741-2560/11/5/056027.

[123] S. Rahmatian, M. J. Mahjoob, and M. R. Hanachi, “Continuous
estimation of ankle joint angular position based on the myoelectric sig-
nals,” in Proc. Artif. Intell. Robot. (IRANOPEN), 2016, pp. 158–163,
doi: 10.1109/RIOS.2016.7529507.

[124] D. Joshi, B. H. Nakamura, and M. E. Hahn, “High energy spec-
trogram with integrated prior knowledge for EMG-based locomotion
classification,” Med. Eng. Phys., vol. 37, no. 5, pp. 518–524, 2015,
doi: 10.1016/j.medengphy.2015.03.001.

[125] R. Gupta and R. Agarwal, “Single channel EMG-based continuous
terrain identification with simple classifier for lower limb prosthe-
sis,” Biocybern. Biomed. Eng., vol. 39, no. 3, pp. 775–788, 2019,
doi: 10.1016/j.bbe.2019.07.002.

[126] R. Gupta, I. S. Dhindsa, and R. Agarwal, “Continuous angular posi-
tion estimation of human ankle during unconstrained locomotion,”
Biomed. Signal Process. Control, vol. 60, Jul. 2020, Art. no. 101968,
doi: 10.1016/j.bspc.2020.101968.

[127] A. López-Delis, C. J. Miosso, J. L. A. Carvalho, A. F. da Rocha, and
G. A. Borges, “Continuous estimation prediction of knee joint angles
using fusion of electromyographic and inertial sensors for active trans-
femoral leg prostheses,” Adv. Data Sci. Adapt. Anal., vol. 10, no. 2,
Apr. 2018, Art. no. 1840008, doi: 10.1142/s2424922x18400089.

[128] R. Gupta and R. Agarwal, “Continuous human locomotion identifica-
tion for lower limb prosthesis control,” CSI Trans. ICT, vol. 6, no. 1,
pp. 17–31, 2018, doi: 10.1007/s40012-017-0178-4.

[129] A. L. Delis, J. L. A. De Carvalho, G. A. Borges, S. S. De Rodrigues,
I. Dos Santos, and A. F. Da Rocha, “Fusion of electromyographic sig-
nals with proprioceptive sensor data in myoelectric pattern recognition
for control of active transfemoral leg prostheses,” in Proc. 31st Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. Eng. Futur. Biomed. (EMBC),
2009, pp. 4755–4758, doi: 10.1109/IEMBS.2009.5334184.

[130] L. Chen, P. Yang, X. Xu, X. Guo, and X. Zhang, “Fuzzy sup-
port vector machine for EMG pattern recognition and myoelectrical
prosthesis control,” in Proc. ISNN, vol. 4492, 2007, pp. 1291–1298,
doi: 10.1007/978-3-540-72393-6_152.

[131] J. W. Lee and G. K. Lee, “Gait angle prediction for lower limb orthotics
and prostheses using an EMG signal and neural networks,” Int. J.
Control Autom. Syst., vol. 3, no. 2, pp. 152–158, 2005.

[132] A. L. Delis, J. L. de Carvalho, A. F. da Rocha, F. A. de Oliveira
Nascimento, and G. A. Borges, “Knee angle estimation algorithm for
myoelectric control of active transfemoral prostheses,” in Proc. Biomed.
Eng. Syst. Technol., vol. 52, 2010, pp. 124–135.

[133] S. Pati, D. Joshi, and A. Mishra, “Locomotion classification using EMG
signal—A comparative study,” in Proc. Int. Conf. Inf. Emerg. Technol.,
2010, pp. 1–9, doi: 10.1109/ICIET.2010.5625677.

[134] L. Chen, P. Yang, L. Zu, and X. Guo, “Movement recognition by
electromyography signal for transfemoral prosthesis control,” in Proc.
4th IEEE Conf. Ind. Electron. Appl. (ICIEA), 2009, pp. 1127–1132,
doi: 10.1109/ICIEA.2009.5138333.

[135] X. Zhang et al., “On design and implementation of neural-machine
interface for artificial legs,” IEEE Trans. Ind. Informat., vol. 8, no. 2,
pp. 418–429, May 2012, doi: 10.1109/TII.2011.2166770.

[136] S. Li, H. Lan, S. Liu, and H. Yu, “Optimized recognition method
of surface EMG signals multi-parameters based on different lower
limb motion velocity,” in Proc. 3rd Asia–Pac. Conf. Intell. Robot Syst.
(ACIRS), 2018, pp. 1–6, doi: 10.1109/ACIRS.2018.8467256.

[137] L. Liu, Y. Song, P. Yang, and Z. J. Liu, “Pattern recognition of arti-
ficial legs based on WPT and LVQ,” in Proc. CIAC, vol. 458, 2018,
pp. 247–254, doi: 10.1007/978-981-10-6445-6_28.

[138] I. S. Dhindsa, “Performance evaluation of various classifiers for
predicting knee angle from electromyography signals,” Exp. Syst.,
vol. 36, no. 3, 2019, Art. no. e12381, doi: 10.1111/exsy.12381.

[139] S. Li, L. He, S. Liu, Y. Zhang, and H. Yu, “Recognition of locomotion
patterns based on BP neural network during different walking speeds,”
in Proc. Chin. Autom. Congr. (CAC), Jan. 2017, pp. 5215–5218,
doi: 10.1109/CAC.2017.8243706.

[140] R. Gupta and R. Agarwal, “sEMG interface design for locomotion
identification,” Int. J. Elect. Electron. Commun. Sci., vol. 11, no. 2,
pp. 117–126, 2017, doi: 10.5281/zenodo.1339664.

[141] C. Cui, G. B. Bian, Z. G. Hou, X. L. Xie, L. Peng, and
D. Zhang, “SEMG-based prediction of human lower extremity
movements by using a dynamic recurrent neural network,” in Proc.
28th Chin. Control Decis. Conf. (CCDC), 2016, pp. 5021–5026,
doi: 10.1109/CCDC.2016.7531892.

[142] R. Gupta and R. Agarwal, “Single muscle surface EMGs locomotion
identification module for prosthesis control,” Neurophysiology, vol. 51,
no. 3, pp. 191–208, 2019, doi: 10.1007/s11062-019-09812-w.

[143] P. A. Hardaker, B. N. Passow, and D. Elizondo, “State detection from
electromyographic signals towards the control of prosthetic limbs,”
Proc. 13th U.K. Workshop Comput. Intell. (UKCI), 2013, pp. 120–127,
doi: 10.1109/UKCI.2013.6651296.

[144] T. Hussain, N. Iqbal, H. F. Maqbool, M. Khan, M. I. Awad,
and A. A. Dehghani-Sanij, “Intent based recognition of walking and
ramp activities for amputee using sEMG based lower limb prosthe-
ses,” Biocybern. Biomed. Eng., vol. 40, no. 3, pp. 1110–1123, 2020,
doi: 10.1016/j.bbe.2020.05.010.

[145] R. V. Schulte, M. Zondag, J. H. Buurke, and E. C. Prinsen, “Multi-day
EMG-based knee joint torque estimation using hybrid neuromuscu-
loskeletal modelling and convolutional neural networks,” Front. Robot.
AI, vol. 9, pp. 1–10, Apr. 2022, doi: 10.3389/frobt.2022.869476.

[146] J. Wang, Y. Dai, T. Kang, and X. Si, “Research on gait recog-
nition based on lower limb EMG signal,” in Proc. IEEE
Int. Conf. Mechatron. Autom. (ICMA), 2021, pp. 212–217,
doi: 10.1109/ICMA52036.2021.9512759.

http://dx.doi.org/10.1109/NER.2013.6695934
http://dx.doi.org/10.1109/ICARCV.2010.5707406
http://dx.doi.org/10.1109/SMC.2017.8122861
http://dx.doi.org/10.1109/WCICA.2008.4594113
http://dx.doi.org/10.1109/werob.2017.8383871
http://dx.doi.org/10.1088/1741-2560/11/5/056027
http://dx.doi.org/10.1109/RIOS.2016.7529507
http://dx.doi.org/10.1016/j.medengphy.2015.03.001
http://dx.doi.org/10.1016/j.bbe.2019.07.002
http://dx.doi.org/10.1016/j.bspc.2020.101968
http://dx.doi.org/10.1142/s2424922x18400089
http://dx.doi.org/10.1007/s40012-017-0178-4
http://dx.doi.org/10.1109/IEMBS.2009.5334184
http://dx.doi.org/10.1007/978-3-540-72393-6_152
http://dx.doi.org/10.1109/ICIET.2010.5625677
http://dx.doi.org/10.1109/ICIEA.2009.5138333
http://dx.doi.org/10.1109/TII.2011.2166770
http://dx.doi.org/10.1109/ACIRS.2018.8467256
http://dx.doi.org/10.1007/978-981-10-6445-6_28
http://dx.doi.org/10.1111/exsy.12381
http://dx.doi.org/10.1109/CAC.2017.8243706
http://dx.doi.org/10.5281/zenodo.1339664
http://dx.doi.org/10.1109/CCDC.2016.7531892
http://dx.doi.org/10.1007/s11062-019-09812-w
http://dx.doi.org/10.1109/UKCI.2013.6651296
http://dx.doi.org/10.1016/j.bbe.2020.05.010
http://dx.doi.org/10.3389/frobt.2022.869476
http://dx.doi.org/10.1109/ICMA52036.2021.9512759


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


