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ABSTRACT This paper presents an iterative change detection (CD) method based on Bayes’ theorem for
very high-frequency (VHF) ultra-wideband (UWB) SAR images considering commonly used clutter-plus-
noise statistical models. The proposed detection technique uses the information of the detected changes
to iteratively update the data and distribution information, obtaining more accurate clutter-plus-noise
statistics resulting in false alarm reduction. The Bivariate Rayleigh and Bivariate Gaussian distributions
are investigated as candidates to model the clutter-plus-noise, and the Anderson-Darling goodness-of-fit test
is used to investigate three scenarios of interest. Different aspects related to the distributions are discussed,
the observed mismatches are analyzed, and the impact of the distribution chosen for the proposed iterative
change detectionmethod is analyzed. Finally, the proposed iterative method performance is assessed in terms
of the probability of detection and false alarm rate and compared with other competitive solutions. The
experimental evaluation uses data from real measurements obtained using the CARABAS II SAR system.
Results show that the proposed iterative CD algorithm performs better than the other methods.

INDEX TERMS Bayes’ theorem, CARABAS II, iterative change detection, SAR, wavelength-resolution
SAR images.

I. INTRODUCTION
Synthetic aperture radar (SAR) systems are frequently
employed for monitoring and surveillance applications
[1], [2], [3] due to their specific characteristics, i.e., imaging
capability, the small size of the device’s antennas, and
spatial resolution. Historically, detecting concealed targets in
regionswith high-density vegetation has been of great interest
among SAR systems applications, especially for military
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purposes [4]. Systems used in this scenario are known as
foliage-penetration (FOPEN) radars. FOPEN applications are
not possible when traditional microwave SAR systems are
employed. Instead, ultra-high frequency (UHF) and very-
high frequency (VHF) ultra-wideband (UWB) SAR systems
are preferable to be used in FOPEN applications because
of their larger wavelengths, large fractional bandwidth, and
wide antenna bandwidth, yielding system resolutions in the
order of the radar signal wavelengths. The images obtained
by these systems are often called wavelength-resolution SAR
images. One example of UWB VHF SAR systems is the
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coherent all-radio band sensing (CARABAS) II system [5].
The data set considered in this article can be obtained
in [6].

Based on the system design and the backscattering phe-
nomenology characteristics [7], UWBwavelength-resolution
SAR images are not very sensitive to small scatterers present
in the ground area of interest, i.e., objects with dimensions
significantly smaller than the signal wavelength, which
reduces the false alarms associated with the forest canopy.
Thus, the scattering process is mainly related to scatterers
with dimensions in the order of the signal wavelengths. For
instance, in FOPEN applications, the foliage backscatter is
dominated by the direct and ground-reflected backscattering
from the tree stems [8]. Based on the scattering process and
the system resolution, there might be only a single scatter in
the system resolution cell. Consequently, the images do not
suffer from a significant contribution of speckle noise [9].
Also, large scatterers are related to large objects, which are
frequently less sensitive to weather conditions and, therefore,
more stable in time [9]. Due to time stability, obtaining
images with high similarity from multi-pass measurements
is possible.

One application of interest for FOPEN scenarios is the
detection of targets concealed under the forest canopy [10].
Change detection (CD) is a research topic of interest, and
several methods have been proposed for this kind of applica-
tion [10], [11], [12], [13], [14], [15], [16]. Particularly, VHF
wavelength-resolution SAR systems associated with CD
techniques can be used to detect concealed targets [10], [13],
[14], [15], [16]. The first change detection methods for
this type of SAR image were based on space-time adaptive
processing (STAP) techniques associated with a likelihood-
ratio test (LRT) [10], [16]. These CD methods explored the
space-time stability of targets and clutter signals as input in an
LRT test to detect targets for a fixed false alarm probability.

The proposed methods in [10] and [16] were part of
the motivation for other proposals [17], [18], [19]. For
example, in [16], the authors consider the clutter-plus-noise
statistical model as Bivariate Gaussian distributed due to
its simplicity, even knowing that this choice is not ideal.
The authors mentioned that more accurate models could
provide better performances, which motivated using the
Bivariate Gamma distribution in [18] and both Bivariate
Rayleigh and K-distributions in [19]. It is important to
highlight that the clutter-plus-noise statistical model of
VHF wavelength-resolution SAR images is still under
investigation [9], [20], [21].

More recently, new methods were proposed for change
detection applied in VHF wavelength-resolution SAR
images, such as using Bayes’ theorem in change detection
implementations [17], [22], [23] and small image stacks
as input [20], [24], [25]. These methods achieved very
competitive performance compared with traditional STAP-
based change detection methods in terms of both detection
probability and false alarms [17], [24]. Also, iterative
detection techniqueswere proposed aiming to reduce the false

alarm occurrence in the SAR change detection scenarios [26],
[27], [28].

Motivated by the performance gains associated with the
use of an accurate clutter-plus-noise statistical model [16],
the false alarm reduction related to iterative detection
techniques [26], [27], [28], and the use of Bayes’ theorem
in change detection methods [17], [22], [23], this paper
proposes an iterative change detection method based on
Bayes’ theorem for VHFwavelength-resolution SAR images.
The proposed technique consists of using Bayes’ theorem
implementation based on a candidate clutter-plus-noise
statistical model, which is iteratively updated after each
detection using the information associated with the detected
candidate object. Additionally, an investigation of the choice
between two models for clutter-plus-noise distribution is
presented.

The proposed method is assessed using a data set obtained
from real measurements with the CARABAS II SAR system.
The experimental results show that the proposed methods
have competitive performance when compared with other
recently proposed methods. The main contributions of this
paper are:

• An investigation of two candidate distributions for
the clutter-plus-noise statistical modeling using the
goodness-of-fit (GoF) test. The tests are performed in
VHF wavelength-resolution SAR images.

• The proposition and evaluation of an iterative change
detection method for VHF wavelength-resolution SAR
images based on Bayes’ theorem.

The rest of this document is organized as follows.
Section II presents the use of Bayes’ theorem for change
detection in SAR images. Section III provides an inves-
tigation related to the clutter-plus-noise statistical model
for VHF UWB wavelength-resolution SAR images. The
proposed iterative change detection method is presented
in Section IV. Section V presents the data set used in
the experiments, some implementation aspects, and the
assessment of the proposed method. The contributions of the
paper and the proposed method performance are discussed in
Section VI. Finally, some concluding remarks are provided
in Section VII.

II. BAYES’ THEOREM FOR SAR CHANGE DETECTION
The proposed iterative CD method is based on applying
Bayes’ theorem into SAR CD, as described in [17], which
is a modification of the implementation described in [22]
and [23]. This section briefly describes the use of Bayes’
theorem in the detection of changes in SAR images. The
use of two images characterizes the SAR change detection
scenario considered in this paper; one is the surveillance
image, i.e., the image where it is expected that the changes
occurred, and the other is the reference image, i.e., the
image used to aid the detection of the changes in the
surveillance image. Based on the implementation presented
in [22] and [23], the probability of detecting a change for a
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given pixel under evaluation can be expressed by

P (s ≡ sT |zs, zr ) =
P (zs|s ≡ sT , zr )P (s ≡ sT |zr )

P (zs|zr )
, (1)

where zs and zr are the complex value associated to the
evaluated pixel position s, in the surveillance and reference
image, respectively, and s ≡ sT is the statement that the
evaluated image sample contains a change. According to [17],
the probability of detecting a change for a given pixel under
evaluation can be expressed by

P (s ≡ sT |zs, zr ) = 1 −
P (zs, zr |s ̸≡ sT )

P (zs, zr )

[
1 −

VK
N

]
, (2)

where V is the number of samples that are expected for a
change to occupy, K is the number of detected changes, N is
the number of image samples, and s ̸≡ sT is the statement
that the evaluated sample does not contain a change. The
probability P (zs, zr |s ̸≡ sT ) can be obtained by using an
adequate clutter-plus-noise statistical model, while the joint
probabilityP (zs, zr ) can be obtained from the data histogram.
The selection of the parameters is related to the application
and is discussed on the next sections.

For an adequate choice of the statistical model in (2), the
presence of a change in a sample tend to result in P (zs, zr ) ≫

P (zs, zr |s ̸≡ sT ), leading to P (s ≡ sT |zs, zr ) ≈ 1. Similarly,
in case of the absence of changes results in P (zs, zr ) ≈

P (zs, zr |s ̸≡ sT ), making P (s ≡ sT |zs, zr) ≈ 0. However,
if the choice of the model in (2) is inadequate, the mismatch
between the selected distribution and the data could result
in values below 0. Since the method is proposed to detect
changes, the inconsistencymentioned above can be overcome
by rewriting (2) as

P (s ≡ sT |zs, zr ) = max (0, 1 −
P (zs, zr |s ̸≡ sT )

P (zs, zr )

×

[
1 −

VK
N

])
. (3)

Unlike [22], [23], where the study focuses on a target
geometry analysis, this paper focuses on using the clutter-
plus-noise statistical model to enhance the capability of the
CD method to reduce false alarms. The current analysis
differs from [17] by avoiding P (s ≡ sT ) = 0 and exploring
themethod iteratively. Additionally, due to the characteristics
of the evaluated data set presented in Section V-A, we limit
ourmethod evaluation to an incoherent SAR change detection
scenario where zs and zr represent the pixel magnitude under
evaluation.

III. BACKGROUND STATISTICS ANALYSIS
As observed in Section II, the adequate selection of the
statistical model for the clutter-plus-noise is necessary
to estimate the probability P (zs, zr |s ̸≡ sT ) accordingly.
Among the distribution candidates for modeling the clutter-
plus-noise in VHF wavelength-resolution SAR images, the
Bivariate Rayleigh distribution is seen as the simplest one
since it belongs to a one-parameter family of probability

distributions. Due to its simplicity, this distribution was
selected to evaluate the non-iterative change detection
method proposed in [17]. Also, the distribution was already
used in other change detection methods [19], [29], presenting
a good performance for this type of image. The Bivariate
Rayleigh probability density function (pdf) can be written
as [30]

p (zs, zr ) =
4zrzs

�r�s (1 − ρ)
× exp

{
−

1
1 − ρ

(
z2r
�r

+
z2s
�s

)}
× I0

(
2
√

ρ

1 − ρ

zrzs
√

�r�s

)
, (4)

where �r = z2r , �s = z2s , I0 (c) is the modified Bessel
function of the first kind with order zero, and ρ is the
correlation coefficient, which can be estimated by [30]

ρ =
cov(z2s , z

2
r )√

var(z2s )var(z2r )
. (5)

As previously mentioned, the probabilities
P (zs, zr |s ̸≡ sT ) and P (zs, zr ) are obtained, respectively,
from the selected clutter-plus-noise distribution model and
from the data histogram. Figure 1 compares the theoretical
Bivariate Rayleigh surface plot obtained from (4) and (5)
and the three-dimensional histogram obtained from the
experimental data from two evaluated data set image
samples. As can be observed, there is a mismatch between
the selected Bivariate Rayleigh distribution and the three-
dimensional data histogram. For low amplitudes values of
zs and zr , a possible candidate target pattern is observed,
since P (zs, zr ) > P (zs, zr |s ̸≡ sT ). However, generally in
change detection applications, this observed pattern is not
expected, which may contribute to increase the number of
false alarms. Another pattern is observed in the theoretical
distribution curve decay, where P (zs, zr ) < P (zs, zr |s ̸≡ sT ).
This observed pattern results in the same situation as observed
in (2) and treated in (3), i.e., the impossibility of detecting any
target for this range of amplitude values. Given the nature of
the surface plot, it is not simple to observe other mismatch
patterns in Figure 1.

To further discuss the choice for the clutter-plus-noise
distribution model, we evaluate the mismatch between the
data histogram and theoretical distribution for a single
SAR image. Under the same assumption and considerations
of [19], we extrapolate the analysis for the joint probabilities
to a single image analysis based on its probability density
function. Thus, the surveillance image ismodeled as Rayleigh
distributed for this analysis. The shape parameter of the
theoretical Rayleigh distribution was obtained using a
maximum likelihood estimator (MLE). Figure 2 shows the
theoretical Rayleigh distribution and the histogram of the
experimental data.

As expected, the patterns observed in Figure 1 are also
visible in Figure 2. Additionally, we can observe that the
majority of the mismatches are present in regions with
low amplitude values, i.e., zs < 0.4. Based on this
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FIGURE 1. Comparison between the color-map surface plot of the
theoretical Bivariate Gaussian distribution and the three-dimensional
histogram obtained using empirical data from two VHF
wavelength-resolution SAR difference image samples, represented by the
three-dimensional blue structures.

FIGURE 2. Theoretical Rayleigh distribution (curve in red) and data
histogram of a VHF UWB SAR image.

observation, an application constraint was applied in [17]
to mitigate the mismatch-related false alarm occurrences.
The application constraint consists in setting the probability
P (s ≡ sT |zs, zr ) = 0 if zs < zr + ν, where ν is an amplitude
constant. Also, this constraint enables the change detection
method to detect only positive changes in the surveillance
image, i.e., transforming the change detection method into
a target detection method, which is frequently required for
applications using VHF wavelength-resolution images [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19]. Finally, the
necessity of an amplitude constraint shows that the model
chosen for the clutter-plus-noise distribution is not ideal and
justifies more investigation.

As previously mentioned in Section I, other distribution
candidates were already considered for VHF wavelength-
resolution SAR images, e.g., the Bivariate Gamma distri-
bution [18] and the K-distribution [19]. However, given the
heterogeneity of possible regions and structures present in
SAR images, the selection of these candidate distributions
may be inaccurate for different applications. This observation
is also valid for the Bivariate Rayleigh distribution previously
studied.

A study regarding the stability of VHF wavelength-
resolution SAR images was presented in [9]. According to
it, due to the characteristics of this kind of SAR image,
such as their time stability, the difference images obtained
from two images considering the same flight geometry can
be modeled as Gaussian distributed. Thus, under similar
considerations to the ones made in [18] and [19], a pair of
VHF wavelength-resolution SAR difference images can be
modeled as Bivariate Gaussian distributed. For the analyzes
presented in this article, the difference image pairs are given
by

zs = zi − zr2, (6)

zr = zr1 − zr2, (7)

where zi is the image of interest, which is expected to contain
the targets, and zr1 and zr2 are two reference images. The
Bivariate Gaussian pdf can be written as [31]

p(zs, zr ) =
1

2πσsσr
√
1 − ρ2

exp
(

−
1

2(1 − ρ2)

[
(zs − µs)2

σ 2
s

+
(zr − µr )2

σ 2
r

−
2ρ(zs − µs)(zr − µr )

σsσr

])
, (8)

where µs, µr , σs and σr are the mean values, and standard
deviations of the difference images zs and zr , respectively,
and ρ are the correlation coefficient that can be obtained by
using (5).

Similarly to the study for the Bivariate Rayleigh distribu-
tion, Figure 3 compares the theoretical Bivariate Gaussian
surface plot obtained from (8) to the three-dimensional
histogram of the experimental data using a difference SAR
image as an example.

As can be observed, the match between the selected
Bivariate distribution and the data histogram is not ideal.
Similar mismatched patterns as the ones observed for the
Bivariate Rayleigh distribution are observed. Thus, similar
conclusions can be drawn. However, it is possible to affirm
that the Bivariate Gaussian distribution provides a better
match than the Bivariate Rayleigh distribution. This better-fit
results in minor mismatch regions and minor discrepancies
between the probabilities values when compared with the
Bivariate Rayleigh distribution. Under the same analysis
made for the Rayleigh distribution, the mismatch between the
data and the selected distribution is studied for a difference
image under the assumption of a Gaussian distributionmodel.
Figure 4 shows the theoretical Gaussian distribution plot and
the histogram of the experimental data from the difference
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FIGURE 3. Comparison between the surface plot of the theoretical
Bivariate Gaussian distribution and three-dimensional histogram
obtained from a VHF wavelength-resolution SAR difference image.

FIGURE 4. Theoretical Gaussian distribution and data histogram for a
difference VHF UWB SAR image. The regions A), B), and C), where
mismatches were observed, are highlighted on the right.

image. Additionally, the regions where mismatches were
observed are highlighted.

Figure 4 shows three mismatch patterns. The first rep-
resented by Figure 4 A) consists of a target-like pattern
occurring for small amplitudes values, i.e., |zs| < 0.05. Since
it is not expected that targets contain low-amplitude values,
this situation tends to result in false alarm detection. However,
due to the small discrepancies between the histogram and
distribution model, these false alarms will only be an issue
for low probability threshold values, which are very unusually
selected since these thresholds tend to result in a high number
of false alarms. The pattern of Figure 4 B) consists of a region
where no target can be detected due to the mismatch. Due
to the region’s low-amplitude values, this is not an issue for
the majority of the change detection applications. Finally,
Figure 4 C) consists of the expected target-like pattern for
adequate amplitude values. Thus, based on this analysis,

there is no necessity of an amplitude constraint like the one
considered for the Bivariate Rayleigh distribution.

Thus, from the presented analysis, it is possible to state
that using the Bivariate Gaussian distribution for VHF
wavelength-resolution SAR difference images is a better
selection for the proposed iterative change detection method
than using the Bivariate Rayleigh distribution. To further
investigate this selection, an analysis with the Anderson-
Darling (AD) GoF test considering both distributions is
presented next.

A. ANDERSON-DARLING GoF EVALUATION
The Anderson Darling GoF test [32] is a nonparametric
statistical test that aims to determine if a given null hypothesis
would be rejected. One possible application of the AD GoF
test is to investigate if a given probability distribution null
hypothesis yields a good fit for an evaluated data set. The
evaluation consists of performing theADGoF test in different
selected scenarios, which were chosen according to their
scattering processes. For the test implementation we consider
the AD GoF numerical approximation presented in [33]
adopting α = 0.05. More information regarding the AD GoF
test can be found [32], [33], [34].

The evaluation presented in this paper consists of perform-
ing the AD GoF test into three different selected scenarios,
which were chosen according to their scattering processes.
For this evaluation, the tested data samples consist of test
windows of 100× 100 pixels, as considered in [10]. Figure 5
presents the three evaluation regions and the considered
image samples. Finally, the evaluated regions were selected
according to the following criteria.

• Region 1. - This region is characterized for not having a
structure that could be defined as a dominant scatterer.
Examples of this kind of scenario are open areas, lakes,
and regions with small trees and bushes;

• Region 2. - This region is characterized for containing
targets, i.e., vehicles;

• Region 3. - This region is characterized by having a
structure that could be defined as a dominant scatterer,
e.g., human-made structures such as fences, power lines,
and buildings.

The AD GoF test reject the Rayleigh distribution null
hypothesis for all three evaluated regions. This result
was expected given the high heterogeneity of the VHF
wavelength-resolution SAR images, which results in the
mismatches observed in Figures 1 and 2. In contrast, the AD
GoF test only rejects theGaussian distribution null hypothesis
for Region 2, i.e., it is correct to state that the Gaussian
distribution is not a good option for modeling the target
statistics. However, since the AD GoF test fails to reject the
Gaussian distribution for Regions 1 and 3, and given that
the use of difference images reduces the heterogeneity of
the low-frequency wavelength-resolution SAR images, it is
acceptable to assume that the Gaussian distribution provides
a satisfactory statistical model for this kind of difference
image.
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FIGURE 5. Selected scenarios for the AD GoF evaluation considering,
respectively, (a) a sample image and (b) a sample difference image,
where: 1) Represents an area with the absence of a strong scatterer; 2)
Represents an area with a target; 3) Represents an area with the presence
of a strong scatterer.

FIGURE 6. Simplified flowchart of the iterative change detection method.

IV. ITERATIVE CHANGE DETECTION METHOD
The proposed iterative change detection method is based
on (3), which analyzes the mismatch between the chosen
distribution and the data histogram to verify the presence of
a change. A simplified flowchart for the proposed iterative
method is presented in Figure 6.

The reference and surveillance images are the iterative
algorithm inputs, starting withK = 0, where K is the number
of detected targets, as previously described. The iterative
approach consists of calculating the average probabilities

P (s ≡ sT |zs, zr ) for every pixel position, selecting the pixel
candidate with the highest probability to be a target if
its probability is higher than a threshold probability τp,
which lies in the range (0,1). Using average probabilities is
justified to avoid selecting candidates associatedwith isolated
pixels with unusually high probabilities. An averaging filter
performs this operation with a kernel of the same size as
the system resolution cell. Next, a guard area around the
candidate pixel is removed. The values of the probabilities,
the histogram, the parameters of the selected distribution
model, and K are updated iteratively. If the pixel removal
is genuinely related to a target, the parameters update tends
better to match the data histogram and distribution model.
Finally, the CD algorithm stops when there are no more
candidates with higher average probabilities than τp.

Three parameters can be modified in the proposed iterative
change detection, which should be selected according to the
specificity of each application. The first one is the expected
target size V . The second is the guard window size L, which
aims to avoid same-target multiple detections. The threshold
τp is chosen according to the desired trade-off between the
probability of detection and false alarm occurrence. One
example considering the selection of these parameters is
presented in Section V-B.

Under the assumption that the parameters were appro-
priately selected for the desired application, the proposed
iterative method tends to overcome the problems related
to detecting isolated and multiple detections of the same
target. Thus, there is no necessity to perform morphological
operations, which are frequently used for such scenarios [16],
[18], [24]. The output of the proposed iterative method is a
set of regions centered in the selected candidate pixels. The
probabilities are also available for the system operator, who
can exploit the information according to the application.

An example of the correct execution of the proposed
method is presented in Figure 7, considering one image
from the data set employed in this study. In Figure 7, the
detected targets are centered in the detected candidate pixels,
highlighted by blue circles.

V. RESULTS
The data set used for the experimental evaluation is available
in [6] and is presented in Section V-A. The parameters
setup and other fundamental implementation aspects for
the proposed method are discussed in Section V-B. Finally,
performance evaluation, based on receiver operating charac-
teristic (ROC) curves, is presented in Section V-C. A ROC
curve relates the probability of detection, i.e., the ratio of the
number of detected targets to the known number of targets,
and false alarm rate (FAR), i.e., false alarms per square
kilometer.

A. DATA DESCRIPTION
The data set comprises 24 incoherent SAR images acquired
with the CARABAS II SAR system during a flight campaign
in 2002, held in the military base station RFN Vidsel in
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FIGURE 7. Example of detection using the proposed iterative method
where (a) is the input surveillance image and (b) is the output image,
where the detected targets observed in the surveillance image are in the
blue circles highlighted in the image.

northern Sweden. The region of interest is dominated by
small/medium-sized trees, in which the dominant species is
the Scots pine [10], but also contains lakes, roads, and fields.

Each image from the data set covers the same ground area
of 6 km2 (2 km × 3 km) and is given in the form of a
3000 × 2000 matrix. Also, each image contains 25 testing
targets: ten TGB11, eight TGB30, and seven TGB40 model
vehicles. The available images are already calibrated, pre-
processed, and geocoded [10].

The data set images are divided into four target
deployments (Missions), measured using six configurations
(Passes), i.e., flight geometries. The measurements were
made using the strip map SAR mode and HH polarization.
Additionally, all flights were conducted with the radar
looking left. More information regarding the CARABAS II
data set can be found in [10] and [16].

B. IMPLEMENTATION ASPECTS
We focus on detecting targets in a surveillance image, i.e.,
changes associated with positive-amplitude pixels. For this
scenario, the size of the expected targets is selected as
V = 30 pixels, and a guard window L is chosen as 31 × 31
pixels. These selections are made based on an extrapolation
of the maximum test target size and the Kernel outer size
for the constant false alarm rate (CFAR) filter used in [10]
and [16]. However, regarding the parameter V , it is important
to highlight its influence on the probability of detecting a
change since N ≫ V for the majority of the cases. Thus, its
estimative does not require to be precise. Also, the evaluated
thresholds are selected from a set of values (0, 1) to obtain the
ROC curves presented in Section V-C.
For the Rayleigh distribution, the adopted constraint was

the same considered in [17], where P (s ≡ sT |zs, zr ) = 0 if
zs < zr + ν. Also, similar to [17] and [18], it is adopted
ν ∈ [0.2, 0.3, 0.4].

FIGURE 8. ROC performance for the proposed iterative method and the
non-iterative implementation for both Rayleigh and Gaussian
distributions.

As stated in Section III, using Bivariate Gaussian distri-
bution does not require amplitude constraints. However, the
proposed method detects all changes present in the input
images. Even knowing this scenario is helpful for some
applications, detecting changes associated with negative
amplitude pixels in the surveillance image is outside the
desired application and would grant an unfair comparison
with other methods using the same data set. To guarantee
the detection of only targets related to positive changes in
the surveillance image, the following constraint is applied
P (s ≡ sT |zs, zr ) = 0 if zs < 0 or zs < zr .

C. EXPERIMENTAL RESULTS
We first verified if the proposed iterative CD method
excels the non-iterative method proposed in [17]. Figure 8
presents the ROC curves of both evaluated schemes. For
better visualization, it only showed the ROC curves for
τ = 0.4 since it granted the best performance.

The results presented in Figure 8 shows that the iterative
method outperforms the non-iterative techniques for most
of the evaluated points. For instance, the evaluated points
with Pd = 0.95 are associated with the following false
alarm rates: FAR ≈ 0.143 for the iterative method using the
Bivariate Gaussian distribution, whereas FAR ≈ 0.1944 is
observed for the non-iterative case; FAR ≈ 0.2255 for the
iterative technique using the Bivariate Rayleigh distribution,
whereas FAR ≈ 0.2658 is kept for the non-iterative case;
This observed pattern is expected for scenarios with low false
alarms. In these scenarios, most information provided for
updating the distribution/histogram is accurate, translating
into better performance. However, in high false alarm
scenarios, wrong information could be used to update the
statistics decreasing the method’s performance. Moreover,
the performance of both iterative/non-iterative methods using
the Bivariate Gaussian distribution overcomes those using the
Bivariate Rayleigh distribution.

The second comparison was between the proposed
iterative CD method and five CD techniques presented
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FIGURE 9. ROC performance for the proposed iterative method, using the
Bivariate Gaussian distribution, and for the reference methods [16], [18],
and [24], and [25].

in [16], [18], [24], and [25]. The technique presented in [16]
was one of the first methods to perform change detection
in CARABAS II images. The method proposed in [18]
provides one of the best performances for the CARABAS
II data set, using only an image pair as input. The method
proposed in [24] uses three SAR images as input. To the best
of the author’s knowledge, the technique presented in [24]
has one of the best performances in terms of FAR and
Pd for the evaluated data set. Finally, the two methods
proposed in [25], named Change Detection Method Based
on NP Using only Background Statistics (NPCBS) and
Change Detection Method Based on NP-Criterion (NPC),
are CD methods that consider the use of SAR image stacks,
with no target statistics information or small knowledge
regarding target statistics, respectively. Both NPCBS and
NPC methods obtained competitive performance in terms
of the evaluated metrics for the considered data set when
compared with updated change detection methods from the
literature. Figure 9 illustrates the performance of the proposed
method and the best ROC curves presented in [16], [18], [24],
and [25].
The proposed iterative method outperforms all other

techniques for most of the tested points. Considering the
points with FAR = 100, the proposed iterative approach
achieves the performance of Pd ≈ 0.99. For the same
evaluated point, the method presented in [16] has Pd ≈

0.90; the technique shown in [18] has Pd ≈ 0.978 and
Pd ≈ 0.976 for s1 = 0.3 and 0.4, respectively, where
s1 is an amplitude constraint. Reference [24] achieves
Pd ≈ 0.9854 and Pd ≈ 0.9836 for s1 = 0.4 and s1 = 0.1,
respectively. The methods presented in [25] achieve Pd ≈

0.9830 and Pd ≈ 0.9861 for NPCBS and the NPC methods,
respectively.

VI. DISCUSSION
The performance of the proposed iterative change detection
method was assessed by ROC curves in Figures 8 and 9.

As can be seen, the proposed method outperforms the other
evaluated methods. Moreover, using difference images as
input allowed a simpler distribution model, i.e., the Bivariate
Gaussian distribution. This solution reduces the necessity of
computational resources and processing time.

Finally, as discussed in Section IV, the proposed method
can detect positive and negative changes, allowing for
other applications besides target detection in forestry areas.
Evaluating the proposed method for different applications
and data sets may be explored in future studies.

VII. FINAL REMARKS
This paper proposed an iterative CD method based on Bayes’
theorem for wavelength-resolution VHF SAR images using
traditional clutter-plus-noise statistical models. The proposed
approach uses the information of the detected changes
to iteratively update the data and distribution statistics,
obtaining more accurate information and, consequently,
reducing false alarms.

Aiming to emphasize the dependency of the proposed
iterative CD method on the clutter-plus-noise model, we con-
sidered two distributions as candidates, namely Bivariate
Rayleigh and Bivariate Gaussian distributions. The analysis
was made using the AD GoF test. We conclude that the
Bivariate Gaussian distribution is a good candidate for mod-
eling the clutter-plus-noise of difference VHF wavelength-
resolution SAR images, yielding a good match for the
evaluated data set.

The results showed that the proposed method presented
a competitive performance compared to state-of-the-art CD
methods for VHF UWB SAR images. In this work, we only
considered two well-known distributions as candidates to
model the clutter-plus-noise. Investigating other distribu-
tions to model the clutter-plus-noise statistics could grant
additional performance gains, an interesting topic for future
research.
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