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Abstract

Beyond-application perception datasets are generalised datasets that emphasise the fundamental compo-
nents of good machine perception data. When analysing the history of perception datatsets, notable trends
suggest that design of the dataset typically aligns with an application goal. Instead of focusing on a specific
application, beyond-application datasets instead look at capturing high-quality, high-volume data from a
highly kinematic environment, for the purpose of aiding algorithm development and testing in general.
Algorithm benchmarking is a cornerstone of autonomous systems development, and allows developers to
demonstrate their results in a comparative manner. However, most benchmarking systems allow developers
to use their own hardware or select favourable data. There is also little focus on run time performance
and consistency, with benchmarking systems instead showcasing algorithm accuracy. By combining both
beyond-application dataset generation and methods for fair benchmarking, there is also the dilemma of
how to provide the dataset to developers for this benchmarking, as the result of a high-volume, high-quality
dataset generation is a significant increase in dataset size when compared to traditional perception datasets.

This thesis presents the first results of attempting the creation of such a dataset. The dataset was built
using a maritime platform, selected due to the highly dynamic environment presented on water. The
design and initial testing of this platform is detailed, as well as as methods of sensor validation. Continuing,
the thesis then presents a method of fair benchmarking, by utilising remote containerisation in a way that
allows developers to present their software to the dataset, instead of having to first locally store a copy.
To test this dataset and automatic online benchmarking, a number of reference algorithms were required
for initial results. Three algorithms were built, using the data from three different sensors captured on the
maritime platform. Each algorithm calculates vessel odometry, and the automatic benchmarking system
was utilised to show the accuracy and run-time performance of these algorithms. It was found that the
containerised approach alleviated data management concerns, prevented inflated accuracy results, and
demonstrated precisely how computationally intensive each algorithm was.

Keywords: Beyond-application datasets, automatic fair benchmarking, algorithm evaluation, autonomous
systems, vehicle odometry, containerisation
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There is nothing—absolutely nothing—half so much worth doing as simply messing about in boats.

—Kenneth Grahame, The Wind in the Willows
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Chapter 1
Introduction and motivation

Autonomous systems development is currently caught between the constant improvement of sensor tech-
nology and the need for fast algorithm execution for perception and navigation. Perception algorithms are
the cornerstone of machines being able to understand the environment around them, and are therefore
inherently linked to the safe operation of an autonomous platform. These algorithms are built and trained
on datasets which are made by capturing the environment with a number of varying sensors, in order to
replicate the world the machine will operate in.

The result is that, historically, sensor selection and dataset generation has erred towards application-centric
approaches [29], which arguably prioritises algorithm development over the long term viability of the
dataset. Whilst not inherently wrong, it is now possible to see the technical trends within these datasets,
and the biases that they now present. In the case for autonomous road vehicles, this has manifested as two
clear clusters of perception datasets, with the first in 2009 corresponding to the increased development
and adoption for advanced driver-assistance systems (ADAS), and the following in 2016 corresponding to
the accelerated race around autonomous drive (AD) [29].

Datasets are also limited by the environments where they are collected, which tends to be either from
on-road scenarios using conventional passenger cars or from flying drones. In the case of land vehicles, they
are driven through urban environments or on highways, with very limited and predictable kinematics. In
the case of flying vehicles, they are limited by payload size and cost to operate. There are some exceptions,
but as of the time of writing, the author has found that when requesting datasets falling outside of this
generalisation, there is no response, or that they continue to be designed for a specific application.

Arguably, to fully test the accuracy and performance of robot perception, a state-of-the-art dataset should
enable both: a kinematically demanding agent, as well as a sensor package providing high-volume and
high-quality data of diverse scenarios. Marine vehicles would likely be the best agent to fulfil these
requirements, as weather conditions directly impact the kinematics, and that they are typically large
enough to support the payload required for a high quality sensor suite. In addition, marine environments
also provide both sparse and dense visual and geometric sensor feedback, a large variety of discrete
man-made and biological objects, and predictable behavioural patterns, which are all relevant for the
typical types of perception algorithms. Uniquely, it also provides morphological geometry as given by the
surrounding water, giving further opportunities for algorithms.

This method of building a dataset based on these merits is considered a beyond-application approach,
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2 CHAPTER 1. INTRODUCTION AND MOTIVATION

whereby the focus is less on the outcome and use-cases, and instead on these fundamentals. There are cases
where a tailored dataset is still preferable, and for the majority of contemporary algorithm developers,
working on a dataset within their domain would initially yield better results. However, when working on
algorithms that are abstract or fundamental in nature, there is a theoretical benefit from working with a
beyond-application dataset.

To prove this, there needs to be a method of fair benchmarking that is available to all who wish to use
the dataset. Benchmarking has been a cornerstone of open source dataset development, and allows users
to present their code for comparison against others for specific tasks. Whilst necessary for continual
improvements to autonomous tasks, it has been shown that submissions to these benchmarks often
overlook the importance of local hardware when developing [47]. Users take a non-systematic approach to
evaluation, and as a result, have developed their systems to favour results over computational costs. To
ensure the validity of a generalised dataset, it therefore needs to have a non-domain and non-application
approach to benchmarking, whilst providing a method that ensures that every algorithm is subjected to
the same environmental factors.

Due to the goal of high-volume data (i.e. larger than what is practical to download and use locally), a
number of technical problems were established. Firstly, even with the payload limitations being relaxed,
there is still a significant limitation of both power and space on maritime vessels. The highly kinematic
nature of the marine environment also provides challenges, being that equipment is constantly subjected
to changed acceleration forces. Migrating the data from a floating platform to an established and secure
hosting facility requires the development of said secure housing, and a method of transport that is safe.
And finally, with the implication that algorithms need to be evaluated close to the data, an important
technical problem of this work was to find methods to evaluate algorithms towards the data as efficiently
as possible.

1.1 Research problem and thesis outline

This thesis presents multiple sections of work. Chapter 2 presents contemporary dataset studies across
multiple domains. Chapter 3 presents an alternative to these studies, being the implementation of a
beyond-application approach for developing autonomous datasets. This has been done on a maritime
sensor platform suitable for littoral waters, and in Chapter 4 the platform is presented, detailing the
sensors, system, power and network architecture. It also discusses the novel solutions developed to
overcome the problems associated with maritime development. Chapter 5 then presents the work on the
validation, storage and distribution of a high-volume dataset, and specifically addresses the problems
put forward of how to overcome data modernisation and still have comprehensive, high-fidelity data
available for global use. Further on, the chapter presents the work and results of three papers that used
this platform and dataset to design, develop and test algorithms for autonomous driving. This chapter
continues by establishing methods for sensor and data validation across domains. Finally, this chapter
demonstrates these algorithms in a novel system for automated performance benchmarking, outlining the
best practice for algorithm comparisons.

From this, the research questions can be broken into the following research questions:

1. Datasets: Are beyond-application, high-volume, high-quality datasets suitable for autonomous
systems development?

2. Data collection: Is the maritime domain suitable for capture of high-volume data, and how do we
develop a practical system for this environment that can maintain data integrity?
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3. Deployment: When working with high-volume data, what are the best practices for global
distribution?

4. Benchmarking: What is the best way to ensure fair, accurate and reproducible benchmarking for
algorithm development?

To conclude the thesis, Chapter 6 contains the author’s discussion on the works concluded so far, as well
as the future direction for the project.
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Chapter 2
Related works

In 2012, the Kitti dataset was published and whilst not the first autonomous systems dataset, it is
arguably the most impacting with applied systems benchmarking [13, 15]. The paper itself details the
pipeline for users, being the collection, the annotation, and the storage of data, and then finally, a system
where developers can submit the results of their algorithms for comparison. Specifically, the Kitti dataset
allows users to develop sensor-fusion methodologies for autonomous systems, as it layered a multitude of
sensors with time synchronisation and calibration protocols. In 2015, the Kitti authors demonstrated their
comparative leaderboard, the methods used, and any papers published in relation to its submission [14].

Since this implementation, modern autonomous systems dataset generation has fallen into two categories,
being the emulation of the Kitti dataset [34] or being tailored for a specific application. In the earlier days of
autonomous systems this application was the development of ADAS algorithms, but since 2016 this shifted
towards complete AD [58], of which a large number of perception datasets have built their collection meth-
ods for [16, 8, 39, 37]. The emphasis of these datasets has been to completely replace human drivers, and
thus the datasets carry facets from a multitude of sensors designed specifically to replace human perception.

In the maritime sector, this level of development has not been as forthcoming, with focus on developing
for skipper assistance instead of true autonomous drive. This is due to the rigidness of the international
communities legislation regarding maritime autonomous surface ships (MASS). The current regulatory
standards prohibit the deployment of true AD within the maritime framework [9], and thus the develop-
mental focus has been on skipper assistance, similar to the 2009 trend of developing ADAS. Whilst the land
based datasets are publishing comprehensive sensor suites, contemporary maritime datasets are limited by
either size or sensor selection, which can be seen in a number of high profile contemporary datasets [59,
18, 31, 21, 72]. It has only been in the last few years where maritime datasets are beginning to approach
the Kitti model [30], but these are typically focusing on integrating a single sensor into an established
sensor system. Recently, there has also been a trend of utilising external data networks, with both GNSS
and the maritime automatic identification system (AIS) being able to provide navigational data to a
vessel by receiving information provided by other parties. However, similar to the other contemporary ma-
rine datasets, the emphasis is on the integration of this system into an already established platform [63, 66].

There are also datasets created using unmanned aerial drones (UAVs) for similar purposes, such as
UAV123 [44] and MOR-UAV [38]. For the purposes of developing perception algorithms, these datasets
provide annotations and benchmarking utilities specific for object detection and tracking. These datasets
are again tailored specifically for a single application, and whilst similar to Kitti in the approach to

5
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dissemination, lack a diverse sensor suite. This is quite common within UAV datasets, again due to
legislative concerns [42], but also due to the excessive cost of payload size and operation [65].

Looking at these three domains in parallel, there are two main tracks to the research being done on
cross-domain deployability. The first track looks at robots that operate across multiple domains [71].
However, these often have multiple independent algorithmic suites which are deployed as the vehicle enters
each domain. There has been some recent works that look at the transferability of algorithms across
domains [41, 53], with focus on the conceptual states that are generalised across robotics.

Regardless of domain, there has been a significant gap in providing the user with accurate timestamping
methods. In 2003, an overview was presented detailing how best to approach data synchronicity for
sensor-fusion [28], however an analysis in 2020 showed that system designers are often left to build their
own synchronisation methods, which are often error prone [70]. For the application-centric datasets that
were designed with a specific goal in mind, this is quite often the norm. However, this does limit the
transferability of those dataset between domains, as the vehicle dynamics determine if the sensor noise or
the time synchronisation is the limiting factor [25].

Aside from the actual generation of data, there has been limited research in developing fair benchmarking.
Since 2010, the trend has been to develop a dataset, the tools to utilise the dataset, and then provide
a method of benchmarking. This has lead to prioritising hardware elements for benchmarking [55].
Alternatively, some online benchmarking systems allow users to focus on the algorithm without having
to worry about the hardware. For example, this is the case within the data science platform Kaggle,
which allows users to benchmark algorithms across multiple fields with virtualised hardware [7, 69].
Unlike Kitti, this platform does not actively collect data in an experimental sense, instead it is providing
a storage medium for all datatypes, as well as a method of integrating that data into benchmarking
competitions. This system provides a flexibility to datasets that may be viable for benchmarking com-
petitions otherwise developed for specific robotic systems, which was the case for many of the early
autonomous systems datasets. However, by taking the emphasis on hardware away from the user, algorithm
development has been shown to focus on accuracy rather than run time performance and deployability [47].



Chapter 3
Beyond-application, high-volume,
high-quality data

The terms high-volume, and high-quality are the summation of a number of parts that need to work together
to produce an outcome suitable for the beyond-application scope of a generalised dataset. High-quality
not only refers to the data quality, which encompasses data fidelity and the steps required to capture and
store the data, but also ensures that the data is synchronised and deployed in a manner that preserves that
quality. Volume refers to the number of scenarios, the different environments, and the total culmination
of the data. In the case of the beyond-application approach, the goal is therefore to produce volume in
excess of what may be needed for algorithm development. This is achieved by deploying a high number
of sensors (spatial coverage), with a high sampling rate (temporal coverage), and recording a multitude
of scenarios over a large number of collection runs. This dictates the approach of building a collection
vehicle, with sensors being selected first, before any other infrastructure. Over this chapter, the factors
regarding digital sensor technology is covered, as well as how they are applied to autonomous systems
development.

3.1 Data

At the core of this thesis is data. Fundamentally, this work involves finding the digital representation of
the physical world. A sensor interprets a physical element, such as light, sound, forces, signals, or some
other element of the tangible universe, and quantifies it so that it can be represented it as a measurement.
This is an analogue data representation of the physical world [62]. However, a computer cannot capture
these values continuously. The logical processor operates cyclically on a clock and there are moments
in time between each cycle where nothing occurs and the signal at that moment is lost. This new, gap
filled signal is simply the digital representation of the data source, and this process is how modern data is
captured and processed. The analogue signal is processed into a digital format, and placed into a storage
medium where it can be accessed in the future.

The quality of this digitised data is dependent on a number of elements, which can be divided into the steps
taken before the data is processed (pre-processing), during (processing) and afterwards (post-processing).
Pre-processing steps include ensuring that the source quality is of a high enough standard, the sensors are
calibrated and tuned, and that the capture method is sufficient for the type of source that is collected.
Post-processing ensures that the data is moved and stored in a manner that is suitable. If the data is

7



8 CHAPTER 3. BEYOND-APPLICATION, HIGH-VOLUME, HIGH-QUALITY DATA

then used, this would also include any transformations on the data itself. This schema of data usage is
the basis on how this thesis captures, manages and utilises the data.

By far the biggest impact on quality is the act of processing the analogue data into the digital representation.
The following sections detail how the different aspects impact the overall digital data, and how the size
and quality change, but there is one concept that is crucial to all of this and needs to be discussed first,
which is quantising. Quantising is the method of taking infinitely changing analogue values and making
them fit to a finite scale [60, 50]. This limit is imposed by a sensors resolution and sampling rate.

3.1.1 Resolution

The numerical range of data that can be captured is usually represented as the number of bits of data
within a single data point, bit depth, where a bit is the smallest conventional piece of data representation
and allows for the values zero and one. Whilst quite limited in what can be done with a single bit, it
does allow for a succinct explanation on what happens as the bit depth increases. Using a camera with a
single bit of depth, a pixel of data would show as either a 1 or a 0, and will return a black pixel or a
white pixel. If the camera was pointed at a grey wall, each pixel would fall to either the black or the
white value, and the actual representation of the wall itself will be quite disfigured. If the bit depth was
increased to two, there would be four potential values—00, 01, 10 and 11, or zero, one, two and three.
If the range of colours is still between black and white, the values represented can be black (0), white
(3) and two grey values in between (1 and 2). The grey wall will still be disfigured, but the difference
between the true wall and the values in the data is less. At three bits, there are eight potential values
between one and zero, and the difference gets smaller again.

Bit depth is only one part of the resolution of a sensor, and dictates the total range of a data a sin-
gle point can hold. However, some sensors are not limited to capturing only one single point of data
per sample. In this case, the resolution refers to both the bit depth, as well as the spatial coverage,
which, for example, may be the height and width of a camera image. As resolution increases, it allows
for greater separation and clarity of the space it is capturing. However, as with sample rate, increas-
ing resolution increases the size of the data sample, and thus puts pressure on the throughput of the system.

3.1.2 Sample rate

The prior sections have dealt with how to quantify the measurements of the data, which are the tangible
values of the world that have been captured at a specific point in time. This time domain is equally
important in determining what can be captured. Part of this is due to the work pioneered by Nyquist,
Shannon and Whittaker, and is referred to the cardinal theorem of interpolation [32]. This theorem
establishes the link between the how fast a sensor captures data, and the maximum frequency of a
continuous signal that can be captured. This capture rate, noted as sample rate, dictates the upper
maximum of what a sensor can resolve.

The actual theorem states that perfect reconstruction of a signal can only occur at twice the frequency
of the highest frequency, which establishes that the sample rate should be twice the highest frequency
that warrants capturing [32]. As with resolution and depth, this sample rate is a key component in data
population. At the low end of the frequency spectrum, sound waves (for human hearing) start at roughly
20Hz and go to 20 kHz, thus putting the sample rate at 40 kHz to capture the entire range. At marine
VHF radio frequencies, which is one of the sensors utilised within this work, the frequencies begin in
the 150MHz range, which would entail a sampling above 300MHz to capture correctly. With a higher
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sampling rate, there is the capability of discerning higher signals within an object, allowing for separation
of signal components within an object [36]. At the top end, the light and radio wave sensors move into
spectrums where conventional sampling per second is beyond practical, and therefore requires electrical
engineering to step the captured frequency range to a range which a computer can handle. The actual
scope of this design and construction is not required for this thesis, as this is thankfully handled by the
sensors themselves, however this becomes quite a real problem during sensor validation, which is covered
in Chapter 6, and is used to establish a method for radio sensor validation.

3.2 Automation

For autonomous systems, datasets play a crucial role in the development of robotic perception, with
the goal being that these systems can correctly perceive the environment around them, and for that,
they need to be able to correctly interpret and analyse the captured data. Whilst not exhaustive, a
comparison between varying contemporary datasets [29], shows a clear definition between the complexity
of these datasets use cases, based on which category the authors intend the data to be used for. This
clear separation implies that the trend for dataset development has been to focus on application-centric
development, with the intent to develop the dataset for a specific branch of autonomous system design.
Referring back to how a dataset is developed, this typically manifests as tailored pre-processing.

This is not an problem for the one-to-one research projects which require this specific pre-processing,
but this becomes a limiting factor when attempting to use the dataset for projects outside the original
scope. The solution is to approach dataset generation outside the application specific requirements,
and instead develop a robust, generalised dataset, that focuses on the strength of overlapping sensor
technology without curbing or tailoring the collection. Instead of breaking datasets into groups like
automotive or aeronautic, a more straightforward approach is to ensure that the dataset provides the
fundamental components of autonomous research – which, simply put, is high-volume, high-quality data
in a kinematically diverse environment.

The volume and quality is dependent upon the sensor selection, but the kinematics are dictated by the
research craft and the environment it is deployed in. For environments, there are a number of possible
domains. Of these, typical examples include air, land and sea. Here, the maritime domain was selected for
evaluation, with a comparison of acceleration dynamics undertaken against road vehicles to demonstrate
the kinematic differences.

The vehicles velocity and position was measured using an ANavS Multi-Sensor RTK global navigation
satellite system (GNSS), and the acceleration was measured using an KVH P-1775 inertial measurement
unit (IMU). The sensors were mounted as centrally as possible on a 5m trailerable surface vessel, which
was towed behind a standard road car for the on-road tests, and driven in calm, littoral waters for the
on-water tests. In both cases, the vehicle was driven normally, with the operator using the vehicle as
intended. Fig. 3.1 is a snippet taken to highlight the vertical axis acceleration differences, demonstrating
that the morphological surface of the water provided significant kinematics, even in calmer waters. This
dynamic environment was further compounded with other vehicles in the area, as is shown when the
vessel moved into waters that had been recently disturbed by a heavier vessel and subsequently finding
itself without water to move on, seen with the maximum vertical acceleration obtained by the boat in
Table 3.1. This table also shows the full comparison of both road and water tests.
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Table 3.1: A comparison of acceleration forces on road and water vehicles. Total run time for the on-road
test was 19.4min and the total run time for the on-water test was 17.4min

Minimum (m s−2) Maximum (m s−2) Standard deviation (m s−2)

Road longitudinal -5.271 5.548 0.701
Road lateral -6.175 6.242 0.797
Road vertical -1.136 22.322 1.006

Boat longitudinal -18.373 8.082 0.521
Boat lateral -18.811 6.179 0.575
Boat vertical -5.655 88.734 1.271
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Figure 3.1: A plot of acceleration forces in the vertical orientation over 5min, taken from a surface vessel
travelling at approximately 40 kmh−1, in typical operation.
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Figure 3.2: A comparison of acceleration forces in the vertical orientation over 5min, taken from a road
vehicle travelling at approximately 40 kmh−1, in typical operation.
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3.3 Online distribution, benchmarking and evaluation

As mentioned, over the last few years there has been an increase in development of maritime datasets [43,
22]. The drive behind this has been mostly due to the lack of work in the domain and the focus is still on
the maritime application-centric nature of the data capture. Whilst the motivation behind this research
differs from the beyond-application motivation of this project, these datasets do highlight the difficulties of
procuring data in an environment that is both unforgiving on equipment, and highly kinematic. It should
also be noted that a comparison of established automotive datasets, and these relatively new marine
datasets [13, 22, 45, 63] shows significant skewing in quality and quantity of the data. There is also a clear
lack of scalability, as modern computation ability has vastly outgrown the quality the sensors can provide.

The first problem then, when developing a sensor platform that takes advantage of modern computing
capabilities, is that of data storage and data distribution. As sensors improve resolution, depth and
sample rate, the data generation rate increases. The introduction of datalinking, edge computing and
wireless sensor networks [26], has only increased this generation rate, as data can be collated from
multiple remote systems, as is the case of the Piraeus AIS dataset [63]. The result is that datasets
are becoming inherently more complex and larger in size, which in turn makes distribution more dif-
ficult. Storage mediums have continuously grown, and costs have reduced, but there is a practical
upper limit for personal computing storage and bandwidth, and whilst moving to an enterprise level for
storage is feasible, it is costly, and limits the accessibility of open-access data to only those who can afford it.

Another problem is fair benchmarking, which has been shown to be missing in contemporary algorithm
development [47]. It was also found that benchmarks towards open datasets were primarily focusing
on accuracy rather than run-time performance such as evaluation of formal real-time capabilities (i.e.,
suitability to run in embedded robotic systems). Furthermore, it was found that the reported results from
a few research studies could not be confirmed due to lack of conserved and fully linked software, missing
documentation, or missing source code. In addition, since benchmarks are typically computed only when
the publication in question is submitted, or possibly in some cases occasionally by the database providers
for the purpose of updating the leaderboards over time, the specific numbers can rarely be trusted to be
fair, for instance, due to differences in computational platforms. To allow fairness, benchmark results
should always be computed and presented in a common centralised system, with one such proposal being
the use of automated containerised methods [47].

The question therefore, is how to simultaneously solve data throughput limitations, and level the bench-
marking to encourage computational cost reduction as a factor. This thesis does this through the use of
containerised distribution where the users run their evaluations and benchmarking on a cluster provided
by the project, outlined in Chapter 5. This online distribution allows the users to develop without
moving data to a local machine, and each user has access to the exact same hardware infrastructure, with
performance measured in both accuracy, as is typical of current benchmarks, and computational cost.



Chapter 4
Data collection

There are specific challenges when building a data collection surface vessel that are intrinsically linked to
the maritime domain. There are no fixed lines for power or data management, and space and weight are
still luxuries when compared to a land based system. Not only do these limitations dictate the power,
computational and network architecture, but it also limits the amount of locations for sensor placement.
Thus, the first decision when building a surface vessel is to determine the size of the platform. A larger
vessel allows for a larger payload, offsetting many of the prior problems. However, a larger vessel also has
higher maintenance and running costs. There is also the problem of practical maintenance, being that if a
vessel requires a crane or drydock facilities to perform general works it can limit the usability of the vessel.
If the sensors or systems fail during a data collection run, then this problem compounds the repair pro-
cedures. As the goal is to provide a highly kinematic data set, should be seriously considered as a possibility.

With this in mind, the decision was made to procure a trailerable data collection platform. The vessel,
named Seahorse, seen in Fig. 4.1, is a 5m Ockelbo B16AL. This vessel is not without limitations, as it
lacks an on board power supply suitable for high-volume data procurement. This is compensated by the
flexibility this vessel size confers, as the entire platform is able to be moved to a laboratory with relative
ease. This chapter, therefore, looks at the resolving the problems with selecting a vessel this size, and
then looks at validating the sensor selection by analysing the inertial sensors for maritime suitability.

4.1 Building Seahorse

When building Seahorse, the initial concern was the priority of development. The vessel had an upper
payload limit, and this had to be distributed between the sensor and server selection, the power and
network architecture, the weatherproofing, and temperature control. Power had to be sufficient enough to
power the sensors and servers for an extended period, but by increasing the battery system the number
of sensors would have to be reduced to stay within the weight limit. Motivated by the datasets goal
of high-volume and high-quality data, the emphasis of the design was placed on sensor selection, with
processing and networking secondary. Weatherproofing was established after the server and sensor size
was determined, and finally, the remaining weight was given to the power architecture.

13



14 CHAPTER 4. DATA COLLECTION

Figure 4.1: An image of the research vessel Seahorse.

4.1.1 Sensors

From the autonomous systems perspective, there are two key components to making any sort of navigation
decision. The first is that the decision maker needs to know where things are, and where they are going.
The second is to know what those things are. Traditionally, the dataset collection vehicle would be built
with an application in mind, and this would dictate the sensor selection. In the case of an abstract dataset,
this selection is more difficult, but not impossible. The sensors need to be applicable to multi-domain
environments, be kinetically robust, and be able to provide the solutions to the where and the what [54].
With this in mind, the decision was made to include a 360◦ camera suite, a 240◦ high-quality camera
suite, a 360◦ light detection and ranging unit (lidar), a 360◦ radio detection and ranging unit (radar), a
GNSS, and an IMU. These, at the bare minimum, provided the position of the vessel, and short, medium
and long range data of the objects and space around it.

The sensors selected can be seen in Table 4.1. In the following sections where discussion is given on
the decision making for the various components, a top down approach was taken, where the most
computationally intense and complex sensor was used for explanation.

4.1.2 Sensor validation

Each sensor was selected based on the goal to deliver high-quality data. However, to ensure each sensor
is actually both precise and accurate, experimentation was undertaken to validate the assumed quali-
ties that made these sensors high-quality. Whilst the datasheet provided by the manufacturers offers
a level of guarantee, there is always the possibility of mechanical, communication or software errors,
and there needs to be a method for ensuring each sensor can meet the manufacturers guarantee, or at
least have a method to generate a configuration file that shows exactly what that particular sensors error is.

The Allan variance test is one such method to determine the fundamental components of the cumulative



4.1. BUILDING SEAHORSE 15

Table 4.1: A table outlining sensor selection of the Seahorse platform

Type Qty. Sensor

IMU 1 KVH P-1775
GNSS 1 (3 ant.) Anavs MSRTK
Monochrome camera* 4 Flir ORX-10G-71S7M-C
RGB camera* 2 Flir ORX-10G-71S7C-C
360° documentation camera 2 (8 cam.) Axis F44
Lidar 1 Ouster OS1
Lidar 2 Ouster OS2
Marine radar (X-band) 1 Simrad Halo 20+

*Camera lens 6 EO 16mm f/4 1′′ Pr lens (43.2°)

Table 4.2: A table outlining each unit that was considered as an IMU for Seahorse, and the length of the
test undertaken to determine Allan variance

Unit Sample rate (Hz) Sample size (seconds)

Panasonic MEMs 100 86490
Anello A1 150 123685
KVH P1775 1000 41306
OxTS RT3000GG 65 68272

error of a time based sensor, which was undertaken to show the reliability of the inertial sensor, being the
KVH P-1775 fibre optic gyroscopic (FOG) IMU. The power spectrum and Allan variance methods are
modelled off the work of El-Sheimy, Hou, and Niu [57], and the 1998 IEEE standard for FOG testing [23].
These methods develop a signal spectrum analysis, and use this to justify a relationship of the deviation of
the signal, which is made of the varying noise signals and this spectrum analysis. This formula, shown in
Eq. 4.1, is the basis for all noise signals, and allows for extraction of the signals through the analysis of a
log–log plot of σ(T ) versus T , where σ(T ) is the Allan deviation, and T is the total time of an consecutive
cluster taken from a sample of the sensor.

σ2(T ) = 4

∞∫

0

SΩ(f)
sin4(πfT )

(πfT )2
df (4.1)

where SΩ(f) is the spectrum analysis of the random process Ω(T ).

Experimentation

Four various IMUs, each a contender to be used for maritime applications, were left stationary in a sealed
lab and data was recorded for no less than eight hours. Table 4.2 specifies the units, their sample rate
and length of the sample in seconds. To determine noise, random walk and bias, the following algorithms
were applied. As each sensor has a different sample rate, the algorithm works with sample clusters, of
which the total sample N is split into consecutive data points n (with n < N

2 ). Each cluster has a time T ,
which is the number of samples in the cluster, multiplied by the length of a single sample. The Allan
variance σ, for T was obtained with Eq. 4.2, where Ω is the value in the sample:
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σ2(T ) =
1

2(N − 2n)

N−2n∑

k=1

[
Ωk+1(T )− Ωk(T )

]2
(4.2)

Velocity and angle random walk

The random walk of the sensor is accumulated drift as the sensor integrates a signal. In IMUs this is split
into angle random walk for the gyroscope and velocity random walk for the acclerometers. In both cases,
the equation to resolve both is found by integrating within Eq. 4.2, giving

σ2(T ) =
N2

T
(4.3)

where N is the random walk coefficient. This can be represented by a − 1
2 slope in a log–log plot of σ(T )

versus T . The magnitude of the walk can be fount at T = 1.

Bias

Bias requires a more complex resolution, and involves Fourier transforms to be modelled [57]. For this,
the relationship between σ and the power spectral density (PSD) must be determined, as found in Eq. 4.1.
The signal of the bias can be determined using

SΩ(f) =

{B2

2π

1

f
: f ≤ f0

0 : f > f0

(4.4)

where B is bias instability coefficient, and f0 is the cutoff frequency. Substituting this into 4.1 gives

σ2(T )=
2B2

π

[
ln 2− sin3 x

2x2
(sinx+ 4x cosx)+Ci(2x)−Ci(4x)

]

(4.5)

where x = πf0T and Ci is the cosine-integral function [57].

Using the same plot of σ(T ) versus T , bias is determined by determining the shelf located at σ(T ) =
√
2 ln 2

π ,

(0.664).

Rate random walk

Rate random walk can be determined using the following

σ2(T ) =
K2T

3
(4.6)

Where K is the rate random walk coefficient. On a log–log slope of + 1
2 , on the aforementioned plot of

σ(T ) versus T , the magnitude can be found at T = 3.
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Industry standards

Using the definitions provided by SOLAS [51], the ISO standards [24] and the definitions provided by
IEEE [23], the results found were adjusted to the defining units, and a comparison was drawn to determine
usability, as per the 1998 IEEE standard for FOG units [23].

Analysis and interpretation

A succinct overview of the results can be seen in Tables 4.3 and 4.4. For simplicity, the goal of each
value is to be as close to zero as possible. As the manufacturers have presented their datasheets in
varying units, the results shown here have been standardised to seconds (s), radians (rad), and metres (m).

Whilst informative as a comparison for varying IMU sensors and their technology, the primary goal
was to determine how trustworthy the sensors are. In the case of the KVH P-1775, it was determined
that the unit did not perform to the datasheet specifications [52], but that the unit was still quite
trustworthy, as the accumulated errors were consistent enough to be modelled, and that the accumulated
error growth was so minuscule it did not impact a typical data run due to the power limitations of Seahorse.

Table 4.3: IMU results: Acceleration. The best values are highlighted as follows: Velocity random walk,

N (ms−1
√
s
) is in italics; rate random walk, K (ms−1

√
s) is in boldface; bias, B (ms−1/s) is underlined

X Y Z

Panasonic

N 1.39E-03 1.30E-03 1.29E-03
K 3.25E-05 4.76E-02 6.01E-05
B 2.54E-03 1.46E-03 8.46E-04

Anello

N 4.80E-04 4.54E-04 4.70E-04
K 8.16E-06 8.37E-06 1.17E-05
B 3.87E-04 3.84E-04 2.83E-04

KVH

N 3.16E-04 3.17E-04 3.14E-04
K 5.28E-04 2.50E-04 9.27E-06
B 2.09E-03 4.16E-04 4.41E-04

OxTS

N 2.95E-04 1.54E-04 1.79E-04
K 2.29E-06 5.88E-07 2.67E-06
B 6.88E-05 6.62E-05 6.55E-05
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Table 4.4: IMU results: Angular rotation. The best results are highlighted as follows: Angle random walk,

N ( rad/s√
s
) is in italics; rate random walk, K (rad/s

√
s) is in boldface; bias, B (rad/s) is underlined

Roll Pitch Yaw

Panasonic

N 8.70E-03 1.03E-02 7.41E-03
K 2.72E-03 1.63E-06 2.60E-03
B 1.01E-04 1.02E-04 8.50E-05

Anello

N 1.08E-04 1.47E-04 6.12E-05
K 4.99E-07 8.66E-07 1.96E-07
B 2.07E-05 2.19E-05 8.52E-06

Anello (FOG)

N - - 1.44E-05
K - - 1.22E-08
B - - 5.91E-06

KVH

N 6.52E-06 6.24E-06 6.51E-06
K 1.50E-08 9.43E-08 2.08E-08
B 5.92E-07 7.71E-07 6.49E-07

OxTS

N 1.09E-04 1.13E-04 1.14E-04
K 5.58E-07 4.28E-07 6.30E-07
B 4.35E-05 3.75E-05 3.67E-05

4.1.3 Servers

The various components of the servers can be broken down into the minimum requirements based upon the
sensor selection and power availability. An attractive approach that maintains as much battery reserve as
possible would be to use long term power management systems [1]. In practice, this often leaves spooling
gaps as the central processing unit (CPU) switches between lower power and higher power states. In
fact, when utilising the FLIR Oryx cameras, there is considerable on/off switching of CPU cores. This
introduce flickers of cycle skips, and the subsequent sample rate analysis of a brief capture shows this when
running both a colour and monochrome camera in parallel, which can be seen in Fig. 4.2. The solution,
therefore, is to ensure that the system is spooled before and during the entire data capture, especially
when presented with high bandwidth devices. CPU switching should also be discouraged, and therefore, a
high cyclic, multiple thread CPU architecture was chosen, with the AMD EPYC 7352 selected, in a 2x2
server configuration (two servers, with two CPUs each). The higher bandwidth sensors could be provided
dedicated CPU threads, and were isolated from all other logical operations. Short term storage, in the
form of random access memory (RAM), was based on the minimum amount required to provide high
throughput buffers for these sensors. Mathematically, the FLIR camera can produce a depth, resolution
and sample rate at the following:

[3208 px× 2200 px]× 12 bit× 77Hz (4.7)
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Totalling 815MB s−1, with each frame using 11MB of data.

To ensure each sensor had ample room for short term storage, each sensor was given a 200 frame overhead,
which adds to 2.2GB per camera. Factoring in the other sensors, each server was given 128GB of RAM.
The last section is graphical processing. As mentioned, the FLIR cameras can produce 12 bit images.
There are considerable throughput savings to be made with 12 bit video encoding on a graphical processing
unit, which would drastically increase the long term usability of the work, as well as data collection run
time, due to the compression abilities reducing storage needs. For this then, each server was given a
Nvidia GeForce RTX 2080 and a Nvidia Quadro RTX 4000 which is capable of transcoding six streams,
each with video at 3208× 2200px and with a bit depth of ten. At the time of writing there are limitations
to this capability, but as stated, the entire system is built around CPU computation for the data recording,
so the benefits of having these GPUs will be fully utilised in future works. Examples of such use cases, in
addition to data compression and transcoding, could be hardware-accelerated visualisation, on-line data
quality assessment, or machine learning-based object detection and tracking giving real-time suggestions
during the data collection.
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Figure 4.2: An analysis of FLIR camera frame capture, with no CPU protocols in place to prevent spooling
or switching. Shows the time, in microseconds, from the prior recorded frame. For this recorded second,
the frame rate was set to 60Hz. This indicates about a 10% loss of data capture. When sampling at 30Hz
there was no frame loss.

4.1.4 Storage

Finding a method of storage for high-volume data that can sustain the high kinematic state of the
environment was in itself a challenge. For starters, the FLIR cameras, working at full resolution, bit
depth and sample rate, generate data faster than a high volume mechanical drive can write. The Seagate
Exos X series of drives were selected for long term storage, and each can reach a maximum speed of
270MB s−1, which is dwarfed by the production speed of the FLIR cameras as seen in Eq. 4.7. To resolve
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this, a solid storage solution that uses a U.2 connection was utilised. The Micron 9300 provides an initial
15TB of flash storage, and can be written to at 3500MB s−1. With this still unable to handle the three
FLIR cameras per server, the sample rate of each FLIR camera is held at 60Hz.

Each server utilises their own U.2 flash storage, which provides a total of an hour of recording before it
needs to flushed and written to the mechanical drives. Final storage is to be held off the vessel in an
enterprise level data centre, which is required for the vast amount of the total dataset, as well as providing
the infrastructure for the deployment methods for the benchmark.

4.1.5 Networking and synchronicity

The network map of the Seahorse platform is developed to resolve a number of problems that occur with
high-volume and high-quality data rates. Firstly, each FLIR camera requires a dedicated 10Gbit link, to
maintain the 815MB s−1 (6.5Gbit s). Each of the two SuperMicro server motherboards provide two of
these links, but to provide links for all sensors each server was then equipped with Intel x710-T4 Network
Interface Cards (NIC), which each provide four 10Gbit links. To ensure equal working load, each server
was given three FLIR cameras, as well as dividing the remaining sensors between the two. Remote ingress
was done through the PC Engines APU, which also provides a serial link to the IMU.

To ensure each subsystem of Seahorse maintains synchronicity, there are two different methods of clock
management. Network time protocol (NTP) and precision time protocol (PTP) are both utilised to
ensure synchronicity between the different servers and sensors. Both methods work on a stratum schema,
whereby a reference clock is pushed as a hierarchy through the network [46]. In NTP, the reference clock
is a trusted time-server, and each client requests an update from the step above for their local time. PTP
uses the most precise clock on the network as the reference clock, and pushes this to all clients, with
offsets generated between the client and the reference clock, regardless of how many steps are between the
two. Ultimately, both methods provide millisecond accurate synchronicity between two clients. PTP has
the benefit of providing nanosecond precision when configured with a reference clock that can support
atomic precision. As Seahorse does not carry one of these reference clocks, a novel hybrid method was
introduced to provide synchronicity.

The Seahorse server cluster (Seahorse 0, 1 and 2) are all PTP compatible, as are the FLIR cameras and
the Ouster Lidars. For these devices, a typical PTP network is established, with Seahorse 1 providing a
grandmaster clock, using one of the Intel NIC cards as the precision clock. The average offset detected
by the network cards for this PTP system between the servers sits at 50 ns. However, the network card,
not being atomic precise, will introduce drift that will impact the entire network. For the purposes of
data collection, this drift will not have time to accumulate during a typical data recording session, but it
was notable during maintenance downtime. To prevent this, the ANAVS GNSS system provides a NTP
server, corrected by GNSS time, which is used to periodically correct the grandmaster PTP clock when
required. When the GNSS is under cover, a backup link to online NTP servers is maintained to provide
the same functionality. To ensure that the NTP server does not cause the PTP layer to flicker when
recording, the NTP update is disabled and instead takes its reference time from the PTP layer. The
AXIS documentation cameras have their own network devices, which are not PTP compatible. To solve
this, a second NTP layer is introduced inside Seahorse 1 and 2, which takes the PTP time as the source,
and provides this to the AXIS network units as an NTP message. This time management can be seen as
a whole in Fig. 4.3.
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Overview of the Seahorse time management
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Figure 4.3: The time hierarchy of the PTP and NTP system with the Seahorse platform.

4.1.6 Software architecture

Each sensor requires logic to communicate and send commands, as well as receive the sensor data. There
is also a need for logic to process and store this data. There is the option of doing this as an entire
software package, but another approach demonstrates that there are significant benefits to a containerised
method of software development for the Seahorse platform [47].

Containerisation simply separates all of the steps of this structure into their own software package, which
is deployed inside an isolated environment. The environment is allowed to use the parts of the host
required, such as an Ethernet port to communicate to a camera, but otherwise stays separate from every
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other container running at the same time. This was selected as the method to build all the components
of the Seahorse system. For this, the Docker software was used to deploy each component, and each
container can be placed linearly between a sensor and the final recording. Using the OpenDLV software
architecture, each container communicates using a standard message template, allowing for interchangeable
logic blocks [4].

For data collection, each sensor has a container that handles the communication between the sensor and
the server, and then processes the data stream into the standard message template, which is then openly
broadcast to the network. In some cases, the sensor data may be too large to broadcast as a whole sample,
and is instead stored straight to disk. In all cases, every message receives an individual timestamp.

4.1.7 Power

There is an argument to be made that the power requirements should be considered before the sensor and
server selection. However, as the goal of this project is to develop the highest fidelity dataset, the power
selection should compliment the sensor selection. The platform is powered by a forty-five horsepower
engine, and whilst there is an alternator system on board to charge the starting batteries, this charger is
separated from the payload location and unable to provide a long term power solution.

With sensors and servers selected, the remaining payload weight was given to the vessels architecture to
support weather and shock proofing, and finally, the last factor was selecting a power source. For this,
the only particular was that it had to, as a minimum, power all the previous components for the time
taken to move the vessel from the Chalmers Revere vehicle laboratory to the test area, and then run a
single test. Ideally, and with the capability to quickly remove data from the U.2 drives, the total power
should be able to handle multiple test runs, in case of data corruption or other sensor problems that may
be resolvable whilst underway.

The selected unit is a 6000 kWh Mastervolt battery, which provides a 24V line. This line is stepped down
via a transformer bank to provide continuous 12V to the sensors that require the lower voltage. Total run
time with the entire setup is temperature dependent, and it was noted that through the colder months of
the Swedish winter, the battery system lost 20% of the charge before the vessel had even reached the
launching spot.

4.1.8 Temperature control

Most of the components within the servers and sensor suite are rated for quite a high temperature.
However, the entire system is enclosed to prevent weather damage and when under stress, the system
quickly reaches a temperature that puts strain on various components. As the servers have closed loop
water cooling solutions, the network interface cards, which are not part of that loop, are limited with the
amount of active cooling on them. When under load, they reached their maximum operating temperature
of 55 ◦C, where the units throttled the datalink to prevent overheating and damage. This, plus the
problem mentioned prior with the batteries being too cold, led to the development of a hot-cold aisle
system, where cool air is rotated to the front of the hardware, and the server exhaust is then vented into
a contained aisle housing the sensors and battery that require a constant temperature. An overpressure
outlet allows extra heat to be vented back to the operator, which is graciously appreciated during the
cooler weather.
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4.2 Collection runs

The data collection runs that have been undertaken have been through the littoral waters of the western
coast of Sweden. These waters were mostly the Göteborg river, as well as the river mouth and shipping
regions. Each run, as limited by the power and storage capabilities, was roughly an hour in length. The
operators of the vessel would first place the vessel in a relatively stationary position, with sensors angled
in a way that there was some static object in a frame to produce a starting point.

Due to manufacturer protocols, each sensor had a unique spooling time, which was the time taken between
starting a recording and the actual first value being captured. As each sensor had time synchronicity,
this did not impact the actual data collection, however this did tend to leave the first minute of the
dataset with a staggered sensor deployment. To overcome this, another container was built that allowed
an operator to inject each other container with a ‘record’ message, and was broadcast once the slowest
sensor was spooled. The OpenDLV architecture allowed for this to be sent across the entire network,
which effectively synchronised the recording time between each server.

The current state of the collected data includes runs in various weather systems, in both calm and rough
waters, and in both light and dark conditions. An example of a complex littoral scene can be seen in
Fig. 4.4 taken with a FLIR Oryx 10GigE.
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Figure 4.4: A vertically trimmed colour image demonstrating pedestrians, vehicles, buildings, infrastructure,
water morphology and weather deviations. Note the kinematic state of Seahorse skewing the image due to
water-induced motion.



Chapter 5
Data validation and benchmarking

With the data captured and in a state where it can be used, the next topic of this work is how it can
be used in fair benchmarking of perception algorithms. Regardless of which algorithm is being deployed
or tested, there needs to be a method of validation. The ground truth of the data is the data that can
be accurately relied upon to make this validation. As exemplified in Sect. 3.1, all measured data will be
disfigured (i.e., a digitalised approximation), but the ground truth is the data commonly agreed to be the
best possible representation of a specific measurement, such as position or vehicle motion. The task of the
perception algorithms using the dataset is then to try recreate the ground truth data exclusively using
other data present in the dataset. Papers A, B and C introduce three different algorithmic methods that
attempt to replicate this ground truth, which are different aspects of the GNSS data and the IMU data.
They do this by using lidar, camera, and radar data, respectively. This chapter covers the the trialling of
the initial dataset and reference algorithms, and the automated benchmarking facilities built to support
the testing of these.

5.1 Online benchmarking

The initial online benchmarking dataset, henceforth called the shakedown dataset, was built during the
shakedown cruise of Seahorse, which is the period of initial testing before regular use. This dataset is the
primary dataset used for the online development and testing, and is also the dataset used within Papers
A, B and C. Table 5.1 outlines the sensors, the datarate for each sensor group and the total datarate.
With each test run aiming to be between 30min and 1 h, the total summation of data can be calculated
to be between 400TB and 700TB. The final goal of the project is to have this data be internationally
disseminated to researchers in all domains. With a dataset of this size it would be impractical to have the
users pull the data for each individual use case, and so the projects cloud backend was formulated, shown
in Fig. 5.1.

Firstly, the data is transferred from Seahorse after a data collection run. There are two methods of
annotation, which is dependant upon the verification of the sensors. AIS data can be used to show
GNSS locations of other vessels, and when combined with on board RTK GNSS, allows for the automatic
generation of an annotated topographic map. Annotations can also provided by the integrated online
tool, where camera, lidar, and radar data is presented to external users. Algorithms can be uploaded by
external researchers and developers. When a new algorithm, a new annotation set, or a new dataset was
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Overview of the automated benchmarking environment
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Figure 5.1: The online cloud environment, detailing the method behind user-to-data principles.
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Table 5.1: Table outlining sensor data rates of the shakedown dataset

Type Sensor Datarate
(Qty.)× [Res.]× bit dep.× freq.(Hz)

IMU KVH P-1775 (1)× [9]× 32× 1000 =
288000 (0.036MB/s)

GNSS Anavs MSRTK (1)× [4]× 32× 100 =
12800 (0.0016MB/s)

Monochrome camera Flir ORYX-M (4)× [3208× 2200]× 12× 60 =
20325888000 (2540.74MB/s)

RGB camera Flir ORYX-C (2)× [3208× 2200]× 12× 60 =
8315136000 (1039.392MB/s)

RGB camera Axis F44 (8)× [1920× 1080]× 8× 15 =
1990656000 (248.832MB/s)

Lidar Ouster OS1 (1)× [2048× 128]× 60× 10 =
157286400 (19.5MB/s)

Lidar Ouster OS2 (2)× [2048× 128]× 60× 10 =
314572800 (39MB/s)

Radar Simrad Halo 20+ (1)× [2048× 512]× 8× 1 =
8388608 (1.049MB/s)

added, then an automated evaluation is initiated and the results are registered on the leaderboards.

Note that the full envisioned system is not yet implemented. An early version was however demonstrated
at the workshop Autonomous Maritime Robotics: Digital Twins with Simulations & Cloud-enabled Massive
Datasets, at the 2023 ICRA conference, London.

5.2 Reference algorithms

Using the shakedown dataset, there has been considerable work in developing the first of the reference
algorithms that will make use of the automated deployment. When deciding upon which algorithms to
build, the emphasis was on the high-quality and high-volume sensors, being the FLIR cameras and the
Ouster lidars. These sensors allowed for immediate testing of both object detection and vehicle odometry
systems, while object detection, for example, would require annotation before validation. Vehicle odometry
systems could be trialled directly against the ground truth sensors, with validation being done with the
aforementioned Allan variance tests to ensure the truth was maintained. This led to the decision to build
pure odometry systems, which allowed for direct comparison of accuracy and performance between the
different algorithms.
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The following three algorithms are covered far more in depth within their papers. However, there are
key points that were established with their development that shaped the development of the online
benchmarking tools, and warrant the use of a maritime platform for the creation of the beyond-application
dataset.

5.2.1 Lidar kinematics

The first of the three papers, Paper A, looked at the generation of a simultaneous localisation and mapping
(SLAM) system using one of the on board lidars. As mentioned, to ensure an autonomous vehicle has suffi-
cient information to make intelligent navigation choices, it requires to know where it is and what is around
it. SLAM is the application of generating a map of the surrounding area around the sensor, and then contin-
uously placing itself within the map. Over time, as the position changes, the map is updated to include new
data points, and the vehicle develops local odometry to update its position in the map, even without GNSS.

The use of GNSS allows for considerably accurate positioning, and the implementation of GNSS within
contemporary perception algorithms has been covered in a number of studies over the past few decades [61,
68]. However, as shown with Table 3.1, there is the significant chance of kinematic upheaval which
can cause sensor damage. This alone is significant enough to warrant exploring the development of
multi-redundant algorithms, however it has been shown that the current trend for autonomous vehicle
development is to assume that they will be operating in GNSS denied environments, and to build decision
based systems that do not rely on external sensors [20, 19].

The method to develop this SLAM relies upon the three-dimensional (3D) representation of space gen-
erated by the lidar, which are commonly referred to as pointclouds. From this, each pointcloud is first
transformed roughly to the global map through normal distribution transformation (NDT) [56], and then
refined with a method of point iteration, called iterative-closest-point (ICP) [5]. Each frame is considered
against the current map, initially transformed with NDT, and then refined with ICP. The final transform
provides the current sensor offset in rotation, pitch and yaw from the prior, as well as the translation
within the map. These factors allow the user to determine the vessels odometry.

These results are based upon the light reflection in the environment around the sensor, and this presents
the first found problem being that the properties of the water presented a surface that not only did not
provide clear reflection, but also changed dynamically with the weather [40]. The results also demonstrated
that there are gaps between the three primary domains of autonomous vehicles, as the application of an
algorithm that was developed for on a land based dataset failed when applied to the maritime domain.
This was due to the vertical motion of the vessel.

5.2.2 Visual optic flow odometry

The second method utilises a method of image tracking called optic flow [47]. Optic flow looks at
pixel intensity within specific clusters of an image, and attempts to find the same pixel intensity in a
subsequent frame. This was applied within Paper B, which uses a single FLIR camera, downsampled
to [1920× 1200]px [48]. After camera calibration, a direct sparse optic flow method was applied, which
uses a keyframe gathering approach [33], which strips the image down to significant points. These points
become the clusters of interest in the next frame, and then uses a direct approach to image comparison to
find the points in subsequent images [10].
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As with the SLAM method, the various components of odometry can be determined by how these
points move between images, however this method requires transforming the two-dimensional image
into three-dimensional space. The Sim3 method was used for validation [27, 64], but this relied upon
the ground truth to find the smallest error margin. The final results showed that within the maritime
environment, the morphology of the waves, and the lack of fixed points when looking only at the sea
caused severe deviations in the determined odometry. Likewise, when the only thing in the frame was
another non-static object moving similarly to the camera, the found velocity tended to drift towards zero.
Consequently, without static details in the image, it was impossible to determine true velocity, however
there was success in determining angular rotation.

5.2.3 Topographic flow

Utilising the method derived from the visual optic flow paper, a novel method of determining odometry
was proposed in Paper C. Topographic flow first converts top-down sensor data into a visual image, and
then applies various flow methods to determine vessel odometry. The benefits of using a time-of-flight
sensor in this manner is that the range is a known value, which allows for easier conversion to velocity
without seeing a known object in the frame. In this paper, a 360◦ radar was used, which allowed for full
coverage of the static environment along a riverside as the vessel traversed through it.

This static environment allowed for the sparse method [35] to perform exceptionally well with determining
angular rotation, however the novel method of determining velocity required key points to be in specific
orientations, and was not able to maintain a consistent track. The dense method [12] also performed quite
well with determining angular rotation, but the amount of deadspace within the frame, due to the lack of
return from water and clear radar lines, also caused the velocity track to fail.

5.3 Automated benchmarking

With this in consideration, all three of these algorithms were tested for the first run of the automated
benchmarking suite. The following details the methods of standardising the algorithm deployment within
the OpenDLV framework, as well as the results found when comparing system performance. The main
outcome from this is the ability to fairly benchmark different algorithms, using different sensors on an
automated and standardised platform. Emphasis of this system is not the accuracy of the algorithms,
as that is already established within the included papers, but is instead on the computational run-time
performance of the algorithms.

5.3.1 Method

The input for this system uses the OpenDLV message format that was captured using the device containers
outlined in Chapter 4. Each message contains timestamps as well as the sensor data, and using the cluon
library it is possible to rebroadcast these messages exactly as they were captured. This standardises the
time and sensor data inputs. The output, as it is monitoring both accuracy and run time performance,
requires the determined value, as well as the time delta between the timestamp within the sample and
the time output. A standardised template for algorithm development can therefore be seen as a classic
input-output schema of containerised software development [4].

The three algorithms detailed in Papers A, B and C each use a different sensor, however, the goal of
each algorithm is similar, which is to produce a method of vehicle odometry. Looking at the results and
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Figure 5.2: A monochrome image of the run, taken from a FLIR camera, and presented to the DSO
algorithm.

limitation shown from Papers A, B and C, it was shown that whilst each system presented a solution, the
best testing factor for this demonstration benchmarking suite is to compare the run time performance
and accuracy of the heading component. For ease of comparison, the yaw rate, which is presented as an
angular velocity in rad s−1, is presented below after running through an automated benchmarking system.

For the purpose of this thesis, the benchmarking system was tested on an isolated server. The server used
an an Intel(R) Core(TM) i5-6600K CPU and 16GB of memory, and is equipped with a NVIDIA GeForce
GTX 1060 with 6GB of memory. The server is running Linux RT 6.3.3-rt15 (i.e., a real-time kernel),
offering the best CPU prioritisation and standardisation for the different algorithms. Each algorithm is
run individually, using the same data run, and continues till the end of the run, or until the algorithm
fails. Figures 5.2 to 5.4 showcase the different inputs being presented to the algorithms, all taken from
the same dataset, which is a 533 s run through the Göteborg river, shown in Fig. 5.5.

5.3.2 Results

Each of the three algorithms were evaluated one after the other in the automated benchmarking system.
For the purpose of this demonstration, two benchmarking results are presented here, namely the angular
velocity (in rad s−1) on the vertical axis (i.e., yaw rate), and the computational time (in µs) from each
input (sensor measurement) to each output (given by the algorithm). Even though not important for the
demonstration in this thesis, the angular velocity and other estimated signals would be automatically
compared towards the ground truth signals. The result from the comparison would then be the basis for
an algorithm score to be reported on the public leader boards. The computational time on the other hand
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Figure 5.3: A lidar frame captured by an Ouster lidar and presented to the lidar SLAM algorithm. This is
the same frame as Fig. 5.2.

Figure 5.4: An example of the image captured by the radar and presented from a topographic perspective,
and used by the topographic flow algorithm. This is the same environment as Fig. 5.2.
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Figure 5.5: The GNSS route used for the first automated benchmarking appraisal [49]. The route is left to
right, over 533 s.

would be reported as a basis to assess the algorithm’s suitability as part of a formal real time system,
where time predictability is crucial.

The angular velocity results are presented in Fig. 5.6, which are presented alongside the ground truth for
comparison. The performance results are shown in Fig. 5.7.
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Figure 5.6: The angular velocity (rad s−1) of the ground truth, lidar SLAM, topographic flow, and DSO
algorithms. Note that in the case of the DSO, no more data was available after 210 s, due to a logging
error.
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Figure 5.7: The performance time of each processed result for the lidar SLAM, topographic flow, and DSO
algorithms. At 19 s, there is a spike in processing time of the lidar SLAM which reached 1.2 s. As with the
angular rotation shown in Fig. 5.6, the DSO results stop after 210 s.
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5.3.3 Analysis and interpretation

The automated benchmarking suite results demonstrated that an online approach is feasible for algorithm
comparisons. With both the lidar SLAM and the topographic flow, the angular velocity trends matched
those demonstrated by the ground truth, as shown in Fig. 5.6. As mentioned, this was not the focus of
the benchmarking, instead, the emphasis was on the performance comparison. Fig. 5.7 shows a clear
indication that the timing is working as intended, as the topographic flow algorithm reinitialises the
tracks every twenty frames. With the radar operating at roughly 1Hz, this can be seen with the spike in
processing time every 20 s.

Importantly, there is no possibility for selecting favourable input data, as seen with the results of the DSO
algorithms. There are six FLIR cameras, each covering a different angle off the front of the vessel. As
mentioned in Paper B, the algorithm tends to fail when presented with a high lateral movements, which was
seen when the DSO algorithm was used on outside cameras, and did not yield any plotable results. When
run on one of the middle cameras the DSO managed to initialise and run longer. In this case the run ended
due to an image capture failure in the shakedown dataset, but the results to that point were erratic and re-
quired considerably longer processing time when compared to the lidar SLAM or topographic flow methods.

When submitting an algorithm to the online benchmarking, the developer presents their algorithm to
the dataset, without creating a local copy of the data to work on. This prevents tailoring the dataset
to the algorithm to inflate accuracy results. There is also another benefit to this approach which was
highlighted with the DSO algorithm. As mentioned, the longer DSO results failed due to a corruption of
the dataset. The dataset can be swapped in place, which will rerun all the presented algorithms without
each author having to download the new data and present their new results. The only limitation at this
point is the storage capabilities of the automatic benchmarking system. This is still a far more attractive
approach than requiring each user have TB of local storage, and highlights the importance of the online
benchmarking system.
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Chapter 6
Discussion and conclusion

This thesis initiated the concept of beyond-application datasets for machine perception. Since perception
datasets have historically been associated with a specific application when being developed, the abstract
methods of beyond-application dataset generation is fundamentally different. High-quality, high-volume
and highly kinematic dataset design takes the emphasis away from the algorithms and gives considerably
more freedom with the decisions of sensor selection, with the goal to capture measurements of the world
as best as possible, in as many different environments and scenarios as possible. There will always be a
benefit to tailoring a dataset for an application, if the goal is to produce an algorithm specifically to solve
a problem that has a known sensor and computation structure beforehand. As an example, if the goal is
to build and test a perception algorithm that was compliant with the 1972 convention on the international
regulations for preventing collisions at sea [3], then the developers would require a dataset that contains
both visual and acoustic data.

However, there are other ways to approach perception. Stepping back from the bounds of these interna-
tional regulations allows for a more abstract based approach, and it is here the beyond-application method
shows merit. Paper C demonstrated that object detection and tracking can be a potential byproduct
of the topographic flow method. This method was found by first taking advantage of above standard
data quality captured by Seahorse. This in itself is a key point of the beyond-application dataset, in that
a user may not necessarily need the highest quality data, but may discover that there are performance
and accuracy benefits, as well as completely novel solutions when the high-quality data is used. In the
case of Paper B, the initial pixel resolution and bit depth was set quite high, at 3208 × 2200px and
12 bit. There are significant improvements with determining object edges when using the higher bit
depth [2], but for this specific algorithm, the extra resolution and bit depth drastically increased the run
time and were not necessary. At run time, only the top left quadrant of the image was required, with a
resolution of 1920× 1080px, with the bit depth reduced to 10 bit. This highlights the second part of the
beyond-application approach, which is that there is always the option of stepping the dataset down to a
lower quality when necessary. The opposite is far more difficult [67].

The emphasis on high-quality also forced a much higher scrutiny of time management systems compared
to other contemporary datasets. Whilst every effort was made to ensure that sensors used the PTP
layer, which offered significant precision and accuracy, some sensors simply did not have timestamping
capability [25]. The shakedown dataset did not escape this, with the radar being one of these devices. An
option that other datasets use is to have a mechanical system that triggers an electronic timestamp when
a spinning sensor completes a cycle. However, the radar is enclosed and this option is not practical. The

37



38 CHAPTER 6. DISCUSSION AND CONCLUSION

next option proposed requires an external detector to determine the active beam angle and match it to
the system clock. Chapter 3 discusses the difficulties with this, as the sensor in question uses a signal
frequency that is highly impractical for any off the shelf solution [17]. This, along with refining methods
to ensure data stability from the FLIR cameras, is the immediate next step for this work.

On the topic of FLIR stability, the data corruption was due in part to the highly kinematic environment
the maritime platform is subjected to. In some instances, the vessel was subjected to acceleration forces
exceeding 85m s−2. The question is if this highly kinematic state helps solve the beyond-application
approach to autonomous systems development, or if it hinders the data collection and make it unfeasible
as a platform. The answer to this is that it does both. Developing an algorithm that can handle sharp
impulses increases the real world applicability. As shown in Table. 3.1, the comparison between the road
and water vehicle acceleration demonstrates that the water based platform has higher vertical kinetics,
but both road and water shared similar kinetic factors. Whilst not the focus of the beyond-application
dataset, this does have the benefit of allowing algorithms to be deployed across domains. To highlight
this, the DSO algorithms presented in Paper B and the lidar SLAM algorithms developed in Paper A,
were initially developed for land vehicles. To that end, these algorithms have been shown to work in a
kinematic environment, regardless of which domain. The high dynamic range of the kinematics also has
the benefit of demonstrating the limitations of the algorithms, allowing developers to improve upon them.
Paper C shows that with high yaw rates, the algorithm slips and loses tracking.

However, this also carries the difficulties of building a system that can withstand those kinematics. Using
an enterprise level server solves storage limitations, however these are typically not subjected to constant
vertical shifts in acceleration, which is the case of a small, high-speed maritime platform. The shakedown
dataset shows these limitations, as one of the servers shut itself down when acceleration in the vertical
direction exceeded 25m s−2. This was the biggest hindrance to continuous dataset collection, and has
only recently been solved.

Lastly, the next group of benchmarking algorithms will attempt to solve the object detection components.
This requires object annotation for accuracy, which has already begun. In the case for most other datasets,
objects are split quite generically [29]. Due to the high-quality nature of the beyond-application approach,
there is the possibility to derive individual components of an object, which highlights the annotation
facilities of the online benchmarking suite. The public user interface, shown in Fig. 5.1, allows a developer
to annotate the dataset for their own testing. As an example, a container ship could be categorised as a
ship, or it could be split into various components, such as bridge, hold or hatch, depending on how the
developer wishes to test their algorithm. For this project, the next benchmarking algorithm will begin by
attempting to separate these various components of standard shipping designs.

6.1 Conclusion

There are four main components of this project, summarised by the four research questions outlined in
Chapter 1. The first, is to determine if a beyond-application dataset is suitable for autonomous systems
development. Papers A, B and C all show that autonomous navigational systems can be developed
with such a dataset. The next question refers to the maritime platform, and if it is suitable for the
development of this dataset. Whilst not conclusive, the highly kinematic environment demonstrates merit
in allowing developers to refine algorithm development. Unfortunately, there are also problems with
building a platform that can withstand these kinetics, but data collected after the initial shakedown
has so far proven to be continuously stable. This has led to the first successful 90min continuous run,
and has also allowed for an in depth exploration of the third question, which looks at the best practices
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for the deployment of such a large volume of data. For this, it has been shown how having an online
benchmarking system where the developer can push an algorithm towards the data, rather than having
the developer download the data, allows for continuously growing data without negatively impacting said
developer. Using the same hardware with a standardised remote benchmarking pipeline also enables great
opportunities for run-time evaluation. Such evaluation could for instance result in fair indications on
how suitable algorithms are in an industrial (i.e., embedded) setting. Lastly, this online benchmarking
approach removes the ability to select favourable data, and forces the same hardware for testing across
every test. This is the best way to ensure fair, accurate and reproducible benchmarking.
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